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Fig. 1. Top: landmark detection results on artistic portraits with different styles allows to define the geometric style of an artist. Bottom: results of style
transfer of portraits using various artists’ geometric style including Modigliani, Picasso, Keane, Leger and Foujita.
From left to right: Portrait of Bindo Altoviti, 1515 by Raphael courtesy WikiArt [Public Domain] via (http://bit.ly/2HzoPyz), Gypsy Woman with a Baby, 1919
by Amedeo Modigliani courtesy WikiArt [Public Domain] via (http://bit.ly/2EbAWkn), Two Women with Rice Cakes and Swords, 1844-1845 by Utagawa
Kunisada courtesy Van Gogh Museum [Public Domain] via (http://bit.ly/2JUuFh1), Little Girl with Doll, 1918 by Tsuguharu Foujita courtesy WikiArt [Public
Domain US] via (http://bit.ly/2Q82xbf), Portrait of the Composer Anton von Webern, 1914 by Oskar Kokoschka courtesy WikiArt [Public Domain US] via
(http://bit.ly/30AuxsS), Woman with Peanuts, 1962 ©Estate of Roy Lichtenstein courtesy Image-Duplicator [Fair Use] via (http://bit.ly/2HA3DIF). Natural face
images from [Minear and Park 2004], used with permission.

Facial Landmark detection in natural images is a very active research do-
main. Impressive progress has been made in recent years, with the rise of
neural-network based methods and large-scale datasets. However, it is still a
challenging and largely unexplored problem in the artistic portraits domain.
Compared to natural face images, artistic portraits are much more diverse.
They contain a much wider style variation in both geometry and texture
and are more complex to analyze. Moreover, datasets that are necessary to
train neural networks are unavailable.

We propose a method for artistic augmentation of natural face images
that enables training deep neural networks for landmark detection in artistic
portraits. We utilize conventional facial landmarks datasets, and transform
their content from natural images into “artistic face” images. In addition,
we use a feature-based landmark correction step, to reduce the dependency
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between the different facial features, which is necessary due to position and
shape variations of facial landmarks in artworks. To evaluate our landmark
detection framework, we created an “Artistic-Faces” dataset, containing 160
artworks of various art genres, artists and styles, with a large variation in
both geometry and texture. Using ourmethod, we can detect facial features in
artistic portraits and analyze their geometric style. This allows the definition
of signatures for artistic styles of artworks and artists, that encode both the
geometry and the texture style. It also allows us to present a geometric-aware
style transfer method for portraits.

CCS Concepts: • Computing methodologies → Image processing; Image
representations; Non-photorealistic rendering; Neural networks.

Additional Key Words and Phrases: facial landmark detection , neural net-
works, artistic image augmentation, geometry aware style transfer
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1 INTRODUCTION
Portraiture has been an important part of art going back as far
as 5000 years ago to ancient Egypt. Before the invention of pho-
tography, a painted, sculpted, or drawn portrait was the only way
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to record the appearance of a person. However, portraits have al-
ways been more than just a recording of a face, they are the artist’s
interpretation of the subject: they can be realistic, abstract, repre-
sentational etc. (Figure 1) - they convey the style of the artist.

Given the growing abilities of digital tools and algorithms, portrait
analysis, synthesis and stylization are also in high demand. However,
most algorithms that work well for natural images fail when applied
to more artistic inputs. The differences between artistic portraits and
face images span two domains: texture appearance differences, and
geometric differences. Many recent works concentrate on capturing
appearance style [Jing et al. 2017], but neglect geometric style.
In this work, we try to bridge the gap between machine under-

standing of face photographs and understanding of artistic portraits.
We concentrate on detecting facial landmark in artworks and learn-
ing geometric style. Facial landmark detection aims to localize a set
of predefined landmarks such as eye corners or mouth corners in a
face depiction. It is the basis of any portrait drawing analysis, and a
fundamental problem in computer vision. Detecting facial features
in art allows us to model the geometric style of an artist and use it,
for instance, in geometry-aware style transfer (see Figure 1).
Using neural networks, impressive progress has been made on

facial landmark detection in recent years on natural face images.
However, moving to artistic portraits this becomes much more of
a challenge. Compared to natural face images, artistic portraits
are much more diverse. They contain a much wider variation in
both geometry and texture and are more complex to analyze. Facial
features in artworks are often exaggerated in ways that lead to the
deviation from the implicit humanly attributes. Moreover, large scale
datasets that are necessary to train neural networks are unavailable.
We propose to use artistic image augmentation of natural face

images. We utilize conventional facial landmarks datasets, and trans-
form their content from natural images into "artistic face" images.
This transformation is performed using image warping with various
geometric variations along with neural style transfer. Our augmen-
tation method enables training deep neural networks despite the
absence of annotated data of artistic portraits.

The networkwe train in this work is based on the ECT (Estimation-
Correction-Tuning) framework for facial landmark detection [Zhang
et al. 2018], which combines the advantages of the global robustness
of a data-driven method, the outlier correction capability of a model-
driven method, and non-parametric optimization of landmark mean-
shift. We enhance the frameworks performance on artistic portraits
by using artistic augmentation in the training procedure. In addition
we add a spatial transformer network (STN) component [Jaderberg
et al. 2015] to the network, and use a feature-based correction step.
These additions reduce the dependency between the different facial
features, which are necessary due to position and shape variations
of facial landmarks in artworks.

To evaluate our landmark detection, we create an “artistic-faces”
dataset, containing 160 artworks of various art genres, artists and
styles, with a large variations in both geometry and texture. To
maintain consistency with previous works, the images were anno-
tated with 68 facial landmarks using a semi-automatic procedure.
We measure our results on this dataset and publish the data for
future research.

We demonstrate several applications for artistic facial feature
detection. First, we can use the detected features for style analysis.
By extracting shape information frommultiple artworks of the same
artist, we can learn signature facial features proportions and define
the geometric style of the artist. Second, creating a signature for
geometric style allows us to compare and classify artworks based
on their geometric style and not just texture. Third, we can utilize
geometric style for synthesis application such as geometry-aware
style-transfer for portraits (see Figure 1 and other figures in this
work).

Our main contributions are:
• A method for artistic facial feature detection based on neural
networks.

• The collection of an “artistic-faces” dataset for future research.
• A method for analyzing the geometric style of artists and
portraits, creating a signature of style.

• A method for geometry-aware style transfer for portraits.

2 RELATED WORK
Facial Landmark Detection. A common approach for facial land-

mark detection is to learn a regression model for feature posi-
tions [Cao et al. 2014; Lv et al. 2017; Xiong and la Torre 2013]. Many
current methods leverage deep CNN to learn facial features and
regressors [Dollar et al. 2010; Sun et al. 2013] with a cascade archi-
tecture to progressively update the landmark estimation [Zhu et al.
2015, 2016]. Another approach to facial landmark detection takes
the advantages of end-to-end training from deep CNN model to
learn robust heatmap of facial landmarks [Bulat and Tzimiropoulos
2016, 2017; Yang et al. 2017].
Our work follows Estimation-Correction-Tuning (ECT) frame-

work presented by Zhang et al. [2018]. This framework combines
the advantages of the global robustness of data-driven method
(deep CNN), outlier correction capability of model-driven method
(PDM) [Cootes and Taylor 1992] and non-parametric optimization
of regularized landmark Mean-Shift (RLMS) [Saragih et al. 2011].
We adapt the ECT framework for the artistic faces domain by us-
ing artistic image augmentation in the training procedure. To re-
duce the dependency between the different facial features we use
a feature-based correction step, and incorporating a Spatial Trans-
former Network (STN) component [Jaderberg et al. 2015] into the
network. STNs have increased the accuracy of a wide range of tasks
(e.g. classification), as the network learns invariance to geometric
warping. Yu et al. [2016] have used a variation of STN for landmark
detection. In their work, the STN predicts the warping parameters
on a feature map, but applied directly to the landmarks, while we
use it on the feature map itself similar to [Jaderberg et al. 2015].

Face and Landmark Detection in Art. Previous research on faces
in art focus on specific art genres, and mainly address the problems
of face detection and recognition. Several works concentrate on
Manga face images [Sun and Kise 2010; Yanagisawa et al. 2014]. For
example, the Manga FaceNet proposed by Chu and Li [2017] offers
a CNN based architecture for detecting Manga faces. Other works
focus on comics characters [Nguyen et al. 2017] or caricatures [Huo
et al. 2018]. Jha et al. [2018] annotated caricatures with 15 facial land-
marks and trained a network for recognition and landmark detection

ACM Trans. Graph., Vol. 38, No. 4, Article 60. Publication date: July 2019.



The Face of Art: Landmark Detection and Geometric Style in Portraits • 60:3

Fig. 2. Samples from the Artistic-Faces Dataset including landmarks.
From left to right: Portrait of Jeanne Hebuterne, 1919 by Amedeo Modigliani courtesy WikiArt [Public Domain] via (http://bit.ly/2WPHkoW), Portrait
of Eduard Kosmack, Frontal, with Clasped Hands, 1910 by Egon Schiele courtesy WikiArt [Public Domain] via (http://bit.ly/30sCkss), The Red Madras
Headdress, 1907 by Henri Matisse courtesy WikiArt [Public Domain US] via (http://bit.ly/2LPdjo2), Saint Elizabeth of Thuringia, c. 1475/1480 by Israhel van
Meckenem courtesy NGA Images [Public Domain] via (http://bit.ly/30sCqAk), Woman in white, 1923 by Pablo Picasso courtesy WikiArt [Public Domain US]
via (http://bit.ly/2WQNJjF), Portrait of the Young Pietro Bembo, 1504 by Raphael courtesy WikiArt [Public Domain] via (http://bit.ly/2YB9q7P), Girl in Bath,
1963 ©Estate of Roy Lichtenstein courtesy Image-Duplicator [Fair Use] via (http://bit.ly/2QbnDoR), Actor and Woman on a Riverbank, 1820-1830 by Utagawa
Kunisada courtesy Van Gogh Museum [Public Domain] via (http://bit.ly/2VHN3Ri), La Mousme seduta, 1888 by Vincent van Gogh courtesy NGA Images
[Public Domain] via (http://bit.ly/2Jtr8GS).

in faces on datasets that combine cartoon faces and human faces.
Interestingly, they achieved better performance for the landmark
detection by using only real face images in the training set. Stricker
at al. [2018] propose a new landmark model for manga, including 60
facial landmarks suitable for capturing the manga facial shape. They
annotated 1446 images out of the 109Manga dataset [Ogawa et al.
2018] for training a CNN based on the Deep Alignment Network
(DAN) architecture [Kowalski et al. 2017].

As opposed to these previous works, we propose a framework that
supports multiple artistic genres and styles. We use a 68 landmarks
model [Sagonas et al. 2013], to match current research in the natural
faces domain and enable one-to-one comparison, matching and
transition between natural and artistic faces. Moreover, a larger
number of landmarks enables better analysis and synthesis of the
portrait artistic geometric style.

Style Transfer. Image stylization has been extensively studied
in literature. Inspired by the power of CNN, Gatys et al. [2015]
presented an optimization based method for transferring the style of
a given artwork to an image. Current neural style transfer methods
fit into one of two categories [Jing et al. 2017]: optimization-based
methods [Gatys et al. 2015; Li and Wand 2016; Li et al. 2017], and
model-based neural methods [Johnson et al. 2016; Ulyanov et al.
2016]. The first category transfers the style by iteratively optimizing
an image. The second category optimizes a generative model offline,
and produces the stylized image with a single forward pass. Style
transfer methods that target portraits specifically achieve better
results [Kaur et al. 2017; Seleim et al. 2016]. However, the success of
previous style transfer methods remains limited to color and texture,
and fail to transfer geometric style (e.g. feature exaggeration in
caricatures).

Recent works in image caricaturization [Cao et al. 2018; Shi et al.
2018], use Generative Adversarial Networks (GANs) [Goodfellow
et al. 2014] to learn both texture and geometric style of human
caricatures. These works achieve impressive results compared to
texture-only style transfer methods. Nevertheless, they rely on man-
ual facial feature detection of caricatures and do not learn a model
for an artist. Our framework can be used to automatically annotate
large-scale datasets containing artworks of various artistic styles,

and aid such algorithms to learn geometric style models as well as
expand beyond the caricature domain to other artistic styles.

Data Augmentation. Data augmentation is a standard technique
for improving the generalization of deep neural networks. It arti-
ficially inflates a dataset by using transformations to derive new
examples from the original dataset, gaining invariance to whichever
transformations are used. Recent works incorporate image texture
style in the augmentation process. Jackson et al. [2018] propose a
new augmentation method using style randomization. They utilize
a multi-style model-optimized framework [Ghiasi et al. 2017] to
learn texture style of images and show performance improvement
in the fields of image classification, cross-domain classification and
monocular depth estimation. Dong et al. [2018] propose a Style-
Aggregated-Network (SAN) to deal with the intrinsic variance of
natural image styles for facial landmark detection. For training their
generative module, they create 3 stylized versions of each original
image using Adobe Photoshop (light, gray and sketch styles). Using
the stylized images along with the originals they train face genera-
tion models to transfer styles via CycleGAN [Zhu et al. 2017] and
show performance improvement over state-of-the-art algorithms.
For our purpose of landmark detection in art, we need to deal

with a significantly larger intrinsic variance of image styles. Artistic
portraits have a large variation both in texture and in geometry. For
this purpose, we propose an Artistic Image Augmentation method
for natural face images. Our goal is to narrow the gap between the
natural and artistic face domains and train a landmark detection
network suitable for various artistic portrait styles.

3 ARTISTIC-FACES DATA SET
The Artistic-Faces dataset contains 160 artistic portraits of 16 differ-
ent artists, which were chosen to be representative of a wide range
of artistic styles, both in geometry and texture. It contains artwork
styles ranging from High Renaissance through Cubism to Comics
(Figure 2). The portraits are annotated with 68 facial landmarks to
remain consistent with previous works in facial landmark detection
of natural faces.

For each artwork we provide the following metadata : artist name,
artwork title, style, date and source. We use this dataset to evaluate
our landmark detection framework. The Artistic-Faces dataset will
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be publicly available and can be used to evaluate future works in
landmark detection and other algorithms1.

Data Collection. Our dataset is mainly drawn from the Painter By
Numbers (PBN) dataset, which consists of 103,250 artworks. The
images in the PBN dataset were mostly obtained from the WikiArt
dataset2, In addition, our dataset contains images from online art
collections provided by: Van Gogh Museum’s collection, Image-
Duplicator by the Roy Lichtenstein Foundation, National Gallery
of Art (NGA) image collection, Tate collection, The Met collection,
Nasjonalmuseet collection and Google image search engine.
Out of the portrait dataset containing around 400 artists and

15,000 artworks, we selected 16 artists that represent a wide va-
riety of styles both in texture and geometry. The face area in the
selected artworks, were automatically detected using a MultiTask
Cascaded Convolutional Network (MTCNN) [Zhang et al. 2016]. As
the MTCNN was trained on natural face images, not all input art-
works resulted in a detected face. Around 75% of the input artworks
resulted in one or more face detected. The output face bounding
boxes were used to crop the selected artworks with a margin of 25%
of the bounding box size, and then rescaled to 256x256 pixels. From
the resulting face crops we removed false positive detections and
profile images, resulting in frontal and semi-frontal face crops. For
each of the 16 artists we randomly selected 10 images resulting in
160 face crops of artworks.

Initial landmark detection of 68 facial landmarks was obtained us-
ing the Ensemble of Regression Trees (ERT) algorithm [Kazemi and
Sullivan 2014] provided by DLib [King 2009]. The initial landmarks
were then manually corrected using the landmarker.io landmarking
tool provided by the Menpo Project [Alabort-i-Medina et al. 2014].

4 ARTISTIC FACE VARIATIONS
To motivate and plan the adaptation of existing algorithms to de-
tect landmarks of artistic portraits, we need to understand the key
differences between natural face images and artistic portraits. The
differences between the two domains are revealed by two main
aspects: geometric and textural.

4.1 Texture variations
The variation in color and texture of natural face images is sig-
nificantly smaller than the variation within the artistic portraits
category. Natural face images are usually homogeneously textured,
piecewise smooth, and contain a limited color palette. Faces in art
have a wide range of colors and textures, caused both by the medium
used (oil, acrylic, charcoal, digital, etc.) and by the style of the art-
work (see examples in Figure 2).

To model the appearance style of each portrait, we follow the
approach proposed by Gatys et al. [2015] and use Gram-based corre-
lations matrices to model textures. In Figure 3 we embed in 2D the
appearance styles of a set of natural faces (NF) and a set of artistic
faces (AF) taken from artworks (Section 3) using the T-SNE method.
It is clear that there is little overlap between NF (gray points) and
AF (red points) data in terms of texture.

1http://www.faculty.idc.ac.il/arik/site/faceofArt.asp
2https://www.wikiart.org

Fig. 3. T-SNE visualization of the vgg Gram matrix style embedding
(conv_4_3). Gray points represent natural faces (NF), red points represent
artistic faces (AF), and yellow points represent the same natural face images
with artistic texture augmentation (NF+A) as presented in our work. Some
sample thumbnail images are shown for illustration.

4.2 Geometric variations
We define the geometry of a face using the following attributes: the
shape of the face boundary, the shape of individual facial features
(eyes, mouth, nose), the size and proportions of the features and their
relative locations. In natural faces, there are typical proportions and
standard shapes for each facial feature, and the relative location of
the features is almost constant. In a sense, the human face is very
“regular” as a canonical shape.

In contrast, in artistic faces there are larger variations in the
features’ aspect-ratio and relative scale, and in the features’ relative
locations. Such shape variation can be found in a wide variety of
artistic styles, from Primitivism through Expressionism to Comics
and Caricatures (see Figure 2).

To illustrate one aspect of the differences in the geometric varia-
tion of faces, in Figure 4 we compare the distribution of positions
of landmark points on two sets: the 300W training set of natural
faces (Section 6), and our artistic faces set (Section 3), and on two
models: the 68 landmark points of [Sagonas et al. 2013], and a 5
landmark points model. In both models, the variation in positions of
the landmark points is larger in artistic faces, demonstrating higher
geometric variation.

5 METHOD
The base of our landmark detector is the ECT approach of Zhang
et al. [2018]. Given an input face image, the landmark detection
result is obtained in three steps of estimation, correction and tun-
ing. The Estimation Step aims to compute a global localization of
each landmark based on the peak response points in the response
maps, which are learned using a fully convolutional network (see
supplemental material for architecture details). In the correction
step, a more accurate initial shape is computed by correcting out-
lier landmarks using a pre-trained point distribution model (PDM).
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(a) 68 landmark points

(b) 5 landmark points (red points)

Fig. 4. Comparison between natural faces (left) and artistic faces (right) in
terms of the landmark point distributions. Mean position and the ellipse of
one standard deviation are shown. The variability in artistic faces is larger.

Fig. 5. Overview of our proposed Framework for Landmark Detection in
Artistic Portraits. The Estimation Step (E) with STN sub-network obtains
a coarse landmark shape according to the peak response points in the
heatmaps obtained by the Heat-Maps Network. The initial detection is then
followed by part-based Correction and Tuning (CpTp ).
Face taken from Anxious Girl, 1964 ©Estate of Roy Lichtenstein courtesy
Image-Duplicator [Fair Use] via (http://bit.ly/2VscEZq).

Finally, the landmark locations are fine-tuned based on weighted
regularized mean shift. We enhance the frameworks performance
on artistic portraits by using artistic augmentation in the training
procedure. In addition, we add an STN component to the network
and use a feature-based correction step, to reduce the dependency
between the different facial features. Figure 5 shows an overview
of our proposed Framework for Landmark Detection in Artistic
Portraits.

5.1 Estimation Step
Heat-Maps Network. Following Zhang et al. [2018] framework, a

regressor is used to regress an ideal heatmap for each landmark point
in a data-driven manner. The ideal heatmap of the i-th landmark for
image I is defined as a single-channel imageMi with the same res-
olution asI, the value at position z is defined asMi

z = N(z; x∗i ,σ
2I),

where x∗i is the ground truth location of the i-th landmark, and σ is
the variance of a blurring kernel creating the map.

Fig. 6. Artistic face augmentation is performed in two steps 1. Style transfer
from random artworks, and 2. geometric deformation by perturbing land-
mark positions and warping the image. leftmost images from [Minear and
Park 2004], used with permission.

The training dataset consists of pairs D = {(I, l∗)}, where l∗ =
[x1, ..., xn ]T ∈ Rn×2 is the ground truth positions of n landmarks
embedded in image I. The objective of the regressor becomes esti-
mating the network weights λ that minimize the following L2 loss
function:

L(λ) =
∑

(I, l∗)∈D

∑
i



Mi − ϕi (I, λ)


2 (1)

where ϕi (I, λ) is the output of the i-th channel of the heatmap
network, on the input image I.

Spatial Transformer Network. The Spatial Transformer Network
(STN) predicts the transformation parameters from its input, applies
it on a grid, and samples the input according to the warped grid
using bilinear interpolation. We used the STN on the heat-maps
before upsampling, predicting an affine transformation (6 param-
eters) and applying it to the heat-maps, hence our STN outputs
the warped heatmaps. The architecture of the STNs localisation
network, used to predict the transformation parameters, is detailed
in our supplemental material.

5.2 Artistic Data Augmentation
To our knowledge, there is no large-scale dataset of 68-landmarks
annotated artistic portraits. To overcome this absence, our key idea
is to augment an annotated natural face dataset by transforming it
to be more similar to artistic portraits. Following our observations
from Section 4, we divide the artistic augmentation pipeline into
two separate processes - first texture augmentation is applied on the
image and then geometric augmentation of the results (see Figure 6).
Using artistic data augmentation, as opposed to basic augmen-

tation, we can increase dramatically the size and variability of the
original dataset and bring the augmented natural face domain closer
to the artistic one (see Figure 3, yellow points).

Texture Style Augmentation. For the texture augmentation pro-
cess, we follow the texture modelling approach proposed by Gatys
et al. [2015] and use the GramMatrix of the VGG16 feature maps. To
create a texture-augmented copy of an input face image we use the
image-optimization style transfer method proposed in their work.
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Given a content image Ic and a style image Is , the algorithm tries
to seek a stylised image I that minimises the following objective:

I∗ = arg min
I

αLc (Ic ,I) + βLs (Is ,I)

where Lc compares the content representation of a given content
image to that of the stylised image, and Ls compares the Gram-
based style representation derived from a style image to that of the
stylised image. α and β are used to balance the content component
and style component in the stylised result.

Given a face dataset D = {(I, l∗)} and an art dataset {Iar t } (con-
taining general artistic images not necessarily portraits and not
containing artists from our “artistic-faces” dataset), we randomly
sample style images from {Iar t } and create K style-textured aug-
ment versions for each image I in a pre-processing stage. The
resulting dataset is D = {(I, l∗, {It

k }
K
k=1)}, where It

k is the k’th
texture-stylized version of image I.
We chose to use the Neural Style Transfer algorithm for texture

augmentation, as it creates more credible and visually appealing
results than model-based style transfer methods. The artistic tex-
ture augmentation brings the natural face domain closer to the
embedding of artistic faces.

Geometric Style Augmentation. Geometric augmentation is ap-
plied by randomly distorting the input pair (I, l∗) of face image
I and ground truth landmarks l∗. Applying geometric deforma-
tions on the image itself may result in over-distortion of the facial
features. Instead, we apply a set of simple random perturbations
to alter l∗, and receive the new landmark positions l

′

. Then, we
warp the Image I according to the new landmark positions l

′

using
Thin Plate Spline (TPS) interpolation [Bookstein 1989]. This creates
the geometric-style augmented version (Iд , l

′

) of the image and
its landmarks. Geometric style augmentation is fast enough to be
performed online during training.
To define the perturbation, we first determine the characteristic

of each facial feature: eyes, nose, mouth, face, and use random
deformations of the location, scale and aspect-ratio for each facial
feature independently. The landmarks of each facial feature f are
transformed accordingly:

l
′

f = F (l∗f ; sxf , syf , txf , tyf )

where l∗f is a subset of the ground truth landmarks, belonging to
a certain facial feature f , sxf , syf and txf , tyf are the scaling and
translation factors for the x and y coordinates of feature f respec-
tively. F is a global scaling and translation transform, and l

′

f is the
resulting transformed landmarks of facial feature f . The scaling and
translation factors are sampled from a uniform distribution with
given lower and upper bounds for each transformation parameter
(see our supplemental material for details).

5.3 Correction Step
At inference time, the image I is fed into the pre-trained NN to
obtain the heat-mapsM = {Mi }. The facial landmarks are initially
located at the peak response positions in the heatmaps. These land-
mark predictions then go through a correction step by fitting them
to a pre-trained point distribution model (PDM). The PDM models a

shape s with global rigid transformations (scaling, in-plane rotation,
and translation) as well as non-rigid variations (head poses and
expressions). To calculate the PDM model, all the training shape
are first aligned. The model is comprised of the mean shape s̄, and
shape components Φ. Φ is the collection of eigenvectors correspond-
ing to them largest eigenvalues, which are obtained by applying
PCA to the covariance matrix of the aligned training shapes. Fol-
lowing Zhang et al., we incorporate information obtained from
the heatmaps into the PDM regularization process. We apply non-
uniform regularization by considering the landmarks reliabilities.
This leads to better outlier correction and produces a more robust
shape correction.
Using one PDM imposes a global constraint on the shape s to

correct all 68 facial landmarks. such regularization works well for
natural faces, owing to the homogeneous nature of the human face.
However, artistic portraits have significant variability in the facial
features geometric location and proportion. Using one global con-
straint for all facial features will not allow much feature deviations
from the canonical face shape. For this reason, we use a feature-
based correction approach, i.e. we create a separate PDM model for
each facial feature. At inference time, landmark subsets belonging
to different facial features are fitted independently and create more
accurate results (see Figure 7).

5.4 Tuning Step
After computing the initial shape s0 from the correction step, Zhang
et al. propose a tuning step where the estimated shape is fine-tuned
iteratively using weighted regularized mean shift, in which the
confidence of the heatmap is integrated into a weighted version of
the Regularized Landmark Mean-Shift (RLMS) [Saragih et al. 2011]
framework. The tuning step alternates between computing the move
step from response maps and regularizing it with the shape model’s
constraint (PDM).
For landmark detection in natural faces, the combination of the

evidence from the response maps and the global parametric shape
prior further improves the accuracy of facial landmark detection. For
landmark detection in the artistic domain, using a global constraint
for all facial features regularizes the output to the canonical face
shape, and the detection performance deteriorates. For this reason,
we use the tuning step to correct only the landmarks belonging to the
outline of the face, i.e. landmarks belonging to the jaw (ECpTp :jaw )
or the union of the jaw and eye brows (ECpTp :outline ). The choice
of a model can depend on the expected geometric style captured.
While the first achieves better quantitative results, the second is
better in capturing more extreme artistic styles (see 4th column in
Figure 7).

6 EXPERIMENTS

6.1 Implementation
We implemented our NN using the Tensorflow framework3. The
NN takes an input of a 256 × 256 face image and outputs a set of 68
heatmaps with the same resolution. During training, in addition to
artistic augmentation we also use basic augmentation; we randomly
3http://tensorflow.org/
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Fig. 7. Examples for Feature-based Landmark Correction. 1st and 3rd rows
includes results of (ECT + A) using global correction and tuning, 2nd and
4th rows show results with part-based correction and Tuning (ECpTp + A).
By fitting each facial part independently, the landmarks can deviate from
the canonical face shape, thus producing more accurate results.
From left to right: Portrait of the Mechanical, 1917 by Amedeo Modigliani
courtesyWikiArt [Public Domain] via (http://bit.ly/2QbnSjL), SittingWoman
in a Green Blouse, 1913 by Egon Schiele courtesy WikiArt [Public Domain]
via (http://bit.ly/2YDYKWb), The Annunciation, from The Life of the Virgin
by Israhel van Meckenem courtesy The Met Collection [Public Domain] via
(http://bit.ly/2VLmzhu), Portrait of Sawamura Tosho in the Role of Karukaya
Doshin, 1834 by Utagawa Kunisada courtesy Van Gogh Museum [Public
Domain] via (http://bit.ly/2VLmDxK).

flip the input image horizontally and crop a 248 × 248 arbitrary sub-
image from it. Then, we rotate it with a random angle from −30◦ to
30◦ before rescaling it back to 256 × 256. For the texture augmenta-
tion, we create K = 9 stylized copies for each input image, which is
randomly selected out of the non-portrait training subset ofWikiArt
dataset. The parameters used for geometric style augmentation can
be found in our supplemental material. The variance σ of the 2D
gaussians in the ideal heat-maps is set to 6. For training our NN, we
use batch size of 6, and weight decay of 10−5, the learning rate is set
to 10−4. We use ADAM optimization [Kingma and Ba 2015] with
β1 = 0.9, β2 = 0.999 and ϵ̂ = 10−8. The network is trained for 115
epochs. Network weights are initialized using Xavier weight initial-
ization [Y. and Bengio 2010]. We use the Menpo Project [2014] for
performing image augmentation and landmark correction (PDM).
For w-RLMS we use the code provided by [Zhang et al. 2018]. More
implementation details can be found in our supplemental material.
Our code will be publicly available.

6.2 Data Sets
Natural Faces Data sets. We use the 68-point annotations pro-

vided by Sagonas et al. [2013]. These annotations are provided for

three existing in-the-wild datasets (LFPW [Belhumeur et al. 2013],
HELEN [Le et al. 2012] and AFW [Zhu and Ramana 2012]), and the
challenging dataset called IBUG. These annotations are split into
the following subsets:

• the training set (3148 images) consisting of LFPW training
images, HELEN training images, and AFW.

• the challenging subset (135) of IBUG.
• the common subset (554) of LFPW testing set, and HELEN
testing set.

• the full set (689) contains the union of the above subsets.
The above annotationswere actually provided as a training/validation
set for the 300W face alignment competition, which used another
set of images strictly for evaluation, called 300W test-set. The 300W
test-set consists of 600 images split into two subsets, indoor and
outdoor, which are said to have been drawn from a similar distribu-
tion as the IBUG dataset. We refer to the 300W test-set as the test
subset. We use the training subset to train our algorithm, while the
full, challenging, common and test subsets are used for evaluation.

Artistic Data sets. For texture style augmentation, we utilized the
non-portrait subset of the PBN dataset (introduced in Section 3).
Out of the non-portrait subset, we remove all artworks of the artists
included in the "Artistic-Faces" dataset. This includes around 84,000
images of various styles and genres. We split these images into
training art dataset of (80% of the images), which is used to texture-
augment the training set, and evaluation art dataset (20% of the
images), which is used to texture-augment the full, challenging,
common and test sets. We use the "Artistic-Faces" dataset presented
in Section 3 for evaluation. We also use the caricature subset of the
WebCaricature dataset [Huo et al. 2018], containing 6042 caricatures,
labeled with 17 facial landmarks for evaluating our framework.

6.3 Evaluation Metrics
For fair comparison, the evaluation metrics are chosen as the com-
mon protocols in the literature ([Ren et al. 2016], [Zhu et al. 2016],
[Lv et al. 2017]). The primary metric is the Normalized Mean Er-

ror (NME), which could be calculated as 1
n
∑n
i=1

∥xi−x∗i ∥2
d , where

d denotes the normalized distance and n is the number of facial
landmarks involved in the evaluation.
To maintain consistency with previous works we report our re-

sults using two different normalizing distances, inter-ocular distance
i.e. the distance between the outer eye corners, and inter-pupil dis-
tance i.e. the distance between the eye centers. In the artistic faces
domain where the different facial features can be localized in various
ways, the distance between eyes is less suitable. Therefore, we also
report our results using the diagonal of the bounding box as the
normalizing distance. We also use Cumulative Error Distribution
(CED) curve to compare our results to previous works. In the sup-
plemental material Area Under the Curve (AUC) @ 0.08 error and
failure rate are also reported.

6.4 Comparison to State-of-the-Art
Results on natural faces (NF). In Table 1 we compare our approach

with recently proposed state of-the-art algorithms ([Dong et al.
2018], [Kowalski et al. 2017], [Zhang et al. 2018]) on natural face
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Table 1. Comparisons of inter-ocular Normalized Mean Error (%) on the
300W test sets of natural faces (NF). Last two rows are our method.

Method Common Challenging Full
MDM [2016] 4.83 10.14 5.88
SAN [2018] 3.41 7.55 4.24
DAN [2017] 3.19 5.24 3.59
DAN-MENPO [2017] 3.09 4.88 3.44
ECT [2018] 4.66 7.96 5.31
ECpTp + A (ocular) 3.29 6.34 3.89
ECpTp + A (pupil) 4.56 9.16 5.46

images. We use the detector cropped bounding-boxes of the 300W
test sets as provided by [Sagonas et al. 2013]. For this comparison,
the error is normalized by the inter-ocular distance to maintain
consistency with the 300W competition. Since [Zhang et al. 2018]
provided results normalized by the inter-pupil distance, we provide
this measure also for our method. Compared to the ECT method, the
performance on natural faces deteriorates by 15% on the challenging
set and by 3% on the full set, however we improve the performance
on the common set by 2%. Our method (ECpTp + A) achieves re-
sults that are comparable with recent state-of-the-art methods. This
implies that adding artistic augmentation to the training procedure,
and a part-based correction for inference, enables using the same
framework for detecting facial landmarks on both natural and artis-
tic faces, and can be used as a detection component in cross-domain
applications (see Section 7 for potential applications).

Results on natural faces with artistic augmentation (NF+A). When
adding artistic augmentation to the test set to mimic real art por-
traits, our method performs better than state-of-the-art methods.
We use the 300W test sets, with artistic augmentation, and the er-
ror is normalized by the inter-ocular distance. For the augmented
test sets we use ground truth bounding box to crop the input im-
ages, calculated using the minimum and maximum coordinates of
ground truth face landmarks. We compare our approach with best
performing state of-the-art algorithms in Table 2 ([Dong et al. 2018],
[Kowalski et al. 2017], [Zhang et al. 2018]). To obtain results of
these methods we use the official implementation released by the
authors. For our methods (ECT +A, ECpTp +A), we used our own
implementation. Our method outperforms the other methods be-
cause landmark detection methods for natural faces are trained on
natural face data, and therefore deals poorly with the wide range
of variations in texture and geometry of the artistically augmented
test sets. In addition, many landmark detection algorithms use a
shape prior or regularizer, which constrains the landmarks shape to
the canonical human face and thus deteriorate their performance in
artistic-style inputs.

Results on Artistic-Faces. We show the performance of different
facial landmark detection algorithms on real artistic portraits in
Table 3 using the NME measure. We use the Artistic-Faces dataset
(Section 3) using ground truth bounding box to crop the input im-
ages, calculated using the minimum and maximum coordinates of
ground truth landmarks. We use 3 different normalization methods
for comparison; inter-ocular distance, inter-pupil distance and the

Table 2. Comparisons of inter-ocular Normalized Mean Error (%) on the
300W test sets with artistic augmentation (NF+A). Last two rows are our
method.

Method Common-A Challenging-A Full-A Test-A
DAN 16.05 26.26 18.05 18.66
DAN-MENPO 15.74 24.89 17.54 18.32
SAN 9.74 22.65 12.27 14.50
MDM 7.07 17.00 9.01 10.67
ECT 6.26 17.51 8.46 10.52
ECT+A 3.98 11.05 5.36 5.82
ECpTp:jaw + A 3.67 10.88 5.08 5.52
ECpTp:out + A 3.69 10.80 5.09 5.55

Table 3. Comparisons of Normalized Mean Error (%) on the Artistic-Faces
dataset (AF). Last two rows are our method.

inter-pupil inter-ocular BB diagonl
Method NME NME NME
MDM 8.04 5.63 2.47
SAN 8.03 5.60 2.49
DAN 7.43 5.21 2.27
DAN-MENPO 7.25 5.08 2.25
ECT 7.44 5.21 2.32
ECT+A 6.89 4.81 2.14
ECpTp:jaw + A 6.57 4.59 2.04
ECpTp:out + A 6.47 4.52 2.01

diagonal of the ground truth bounding-box. Similar to the NF+A test
sets, our method outperforms state-of-the-art methods that were
trained on natural face data. Note that artistic augmentation can be
added to the training procedure of any algorithm to enhance perfor-
mance on artistic portraits. In addition, any global shape regularizer
or prior, should be modified accordingly for further improvement.
We also provide AUC and failure rate comparisons in the supple-
mental material.
To examine another artistic domain we evaluate our model on

the caricature subset of the WebCaricature dataset [Huo et al. 2018].
For this purpose, a subset of 16 out of 68 landmarks is used. One
landmark (top of hairline) cannot be obtained out of the 68 land-
marks model [Sagonas et al. 2013], and is removed from the ground-
truth annotation for comparison. Our method ECpTp +A achieves
inter-ocular NME of 10.34%, compared to 13.23% using the ECT
method [Zhang et al. 2018].

6.5 Ablation Study
We verify the significance of each component in our proposed
method for landmark detection in art. Figure 8 shows the compari-
son regarding CED curves of the ECT [2018], ECT+A and ECpTp +A
methods. As can be seen, there is a performance improvement by
adding each one of the components to the landmark detection frame-
work. Artistic augmentation (“+A”) increases the robustness of the
neural network to a wide variety of textures and geometric input
styles, and the part-based landmark correction (“CpTp”) further
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Fig. 8. Comparison of cumulative errors distribution (CED) curves on the
Artistic-Faces dataset (normalized by inter-ocular distance)

increases the performance by reducing the dependency between
the different facial features, which is necessary due to position and
shape variations of facial features in artworks.

We examine the effect of adding each Artistic Augmentation com-
ponent separately: Geometric and Texture-style augmentation to
the Network training. To isolate the effect of each component, we
conducted 4 tests which differ only in the type of augmentation. In
all tests we use the exact same parameters to train the Heat-Map
Network, and only change the type of augmentation performed
on the training set. We refer to each test by the name of its aug-
mentation; Basic, Texture, Geometry and Geometry+Texture
(G+T) (see Figure 9). We report the test results in Table 4. For each
augmentation type we report the results of the network predictions
(E), as well as the results of the full ECT method and our ECpTp
algorithm. For this comparison we use our own implementation of
ECT . As seen in Table 4, using only Texture augmentation improves
the performance compared to using basic augmentation. Interest-
ingly, it shows that using only geometric augmentation deteriorates
the performance compared to using basic augmentation. We be-
lieve that this is due to the fact that the network “struggles” to deal
with unknown textures. When omitting texture augmentation, it
is beneficial for the network to learn the canonical face, so it can
“expect” the facial features to appear in certain areas of the input
image, and by that overcome uncertainties that arises from new
input textures. The best results are achieved using both texture and
geometric augmentation in the training procedure.

Facial landmark detection is a mature field and many algorithms
achieve impressive results, it is therefore difficult to attain large
improvement over state-of-the-art methods in terms of average per-
formance. However, examining the results qualitatively reveals a
significant improvement in capturing the geometric style of por-
traits. Figure 10 shows a number of results of our proposed method
(ECpTp + A) on the Artistic-Faces dataset. In Figure 7 a detailed
example was shown where similar average distances actually have
significant qualitative differences in matching the facial features’
shape.

Table 4. Comparisons of Normalized Mean Error (%) on the Artistic-Faces
dataset (AF) using different Augmentation strategies.

Method E ECT ECpTp
Basic 5.93 5.33 5.37
Geometry 6.75 5.60 5.93
Texture 5.10 4.84 4.63
G+T 5.06 4.81 4.52

Note: We refer to each test by the name of its augmentation; Basic, Texture,
Geometry and Geometry+Texture (G+T).

Fig. 9. Training images with different Augmentation strategies. these
datasets were created to examine the effect of adding each Artistic Aug-
mentation element, i.e. Geometric and Texture style augmentation to the
Network training procedure. leftmost image from [Minear and Park 2004],
used with permission.

Figure 11 shows a comparison of artists landmark distributions
using different methods for detection. Adding artistic augmentation
to the training procedure and part-based correction allows for fur-
ther deviation from the canonical face, resulting in better modelling
of the artist’s geometric style. Compared to the ECT algorithm, each
of the added components to the framework brings the predicted
artist distribution closer to the ground truth artist distribution. In
Table 5 we verify quantitatively the advantage of using our method
vs. ECT . We measure the average KL divergence distance between
the distributions of feature locations (as in Figure 11) comparing the
ground truth to two landmark detection methods: using ECT, and
our proposed method (ECpTp + A). Our method shows improve-
ment for almost all artists. By achieving better modelling of the
artist geometric style, our method can be used for style analysis and
synthesis applications as presented in the next section.

7 APPLICATIONS
Our method for facial landmark detection in art allows both the
analysis and synthesis of artistic portraits. In this section, we present
some applications for our method.
To analyze a set of novel artistic portraits, we use the same pre-

processing depicted in Section 3 to obtain a set of 256×256 images for
any desired artist(s) {Iar tist }. Next, we use our automatic landmark
detection method to detect facial landmarks on each portrait and
represent them as the landmark vector lar tist . This creates a an
annotated dataset Dar tist = {(Iar tist , lar tist )}.

7.1 Artist’s Geometric Style
By analyzing the geometric information in {lar tist }, we can model
the shape and proportions of a specific artist or a specific set of
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Table 5. KL divergence on the Artistic-Faces dataset (AF) compared to Ground-Truth distributions

Method Modigliani Comics Schiele Leger Matisse Hindu Meckenem Bratby Chagall Kisling Dix Picasso Raphael Lichtenstein Kunisada Gogh
ECT 0.46 1.61 0.68 0.54 0.95 0.45 1.34 2.24 1.44 0.31 3.82 0.99 1.22 0.36 2.34 0.85
ECpTp + A 0.28 0.7 0.52 0.29 0.36 0.32 0.59 1.05 0.5 0.36 0.61 0.65 0.68 0.26 1.04 0.37

Fig. 10. Example results on the Artistic-Faces dataset. 1st row includes the result of the ECT algorithm [2018], 2nd row includes results of the ECT algorithm
with Artistic Augmentation (ECT+A), 3rd row includes results of our proposed method (ECpTp + A).
From left to right: Portrait of Paul F. Schmidt, 1921 by Otto Dix courtesy WikiArt [Public Domain US] via (http://bit.ly/2LRIWxx), Girl with A Black Cat, 1910
by Henri Matisse courtesy WikiArt [Public Domain US] via (http://bit.ly/2W7B1jr), Spaniard, 1906 by Pablo Picasso courtesy WikiArt [Public Domain US] via
(http://bit.ly/2VPxQha), Self-Portrait, 1889 by Vincent van Gogh courtesy NGA Images [Public Domain] via (http://bit.ly/2WSdpN0), Saint Stephen by Israhel
van Meckenem courtesy NGA Images [Public Domain] via (http://bit.ly/2Hrt7b6), Special Exhibition of Buddhist Icons at the Tenmangu Shrine, 1849-1851 by
Utagawa Kunisada courtesy Van Gogh Museum [Public Domain] via (http://bit.ly/2JLi53f).

Fig. 11. Comparison of artist distributions using different methods for landmark detection. (a) contains artwork distributions of Israhel van Meckenem. (b)
contains artwork distributions of Utagawa Kunisada. Adding Artistic Augmentation to the training procedure (ECT+A) results in a network more robust to
variations in texture and geometry, hence producing more accurate results. Adding Part-based Correction (ECpTp + A) allows for further deviation from the
canonical face and allows to capture the specific artist’s geometric style (compare to GT, the ground truth).
Face in the 2nd row taken from Tasogare, 1830-1839 by Utagawa Kunisada courtesy Van Gogh Museum [Public Domain] via (http://bit.ly/2YxsHqH).

images. This information can be used for portrait style classification,
finding similarities between different artists, and serve as a tool for
learning artistic portrait style. This information can also be used as
the input for generative algorithms (see Section 7.4).

To define a mathematical model of the geometric style of an artist
(based either on a portrait or a set of portraits), we compare the
portraits’ landmarks lar tist , to the landmarks of a natural “average-
face” lavд . The average-face landmarks’ positions are computed
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Fig. 12. Artist distributions using our proposed method for landmark de-
tection in art. Our framework is able to capture a wide variety of artistic
styles. Observing artist distributions, we can identify the signature style of
each artist; an elongated face and nose for Modigliani, a short face with
wide chin and large distance between the eyes for Leger, a small face with
large eyes for Keane. For more distribution examples see our supplemental
material.

from the 300-W training set. By computing the offsets of the por-
traits from the “average-face” we are able to capture the artists’ facial
feature variations. We uniformly normalize {lar tist } and lavд divid-
ing by the image size without changing face proportions or rotation,
and align their center points (a point on the tip of the nose). For
each pairs of matching landmark points we define an offset vec-
tor by measuring the difference of their positions: vi = (xi − zi ),
where xi ∈ lar tist , zi ∈ lavд . Using the collection of offset vectors
{var tist }, we calculate the mean vector for a set of portraits (for ex-
ample, of a specific artist) µar tist and the covariance matrix Σar tist
of the reshaped artist offset vectors {v

′

ar tist } ∈ R
1×136. Lastly, sim-

ilar to [Berger et al. 2013] we fit a Multivariate Gaussian Model to
the artist data Par tist ∼ N(µar tist , Σar tist ).
Using {lar tist } we can visualize the distribution of facial land-

marks of a specific artist. As illustrated in Figure 12, such visualiza-
tions can highlight the differences in the geometric style of different
artists. Observing these distributions, we can identify the style of
artists: an elongated face and nose for Modigliani, a small face with
large eyes for Keane, etc. For more geometric distribution examples
see the supplemental material.

7.2 Average-Portraits
Using our detection framework to obtain an annotated dataset
Dar tist = {(Iar tist , lar tist )}, we can calculate the artist mean fa-
cial shape µar tist (similar to Section 7.1), and create average por-
traits representing different artists. To create an average portrait,
we simply warp the collection of annotated portraits Dar tist to the
artists mean shape µar tist , and calculate the mean RGB values of
the warped portraits collection.
Figure 13 shows average portraits of artist collections included

in the Artistic Faces Dataset (10 portraits each). For comparison,
we also show the average portraits obtained using ground-truth
landmarks, landmarks obtain with ECT, and by calculating the mean
RGB values of the original portraits, without any alignment. Our
framework enables creating an average portrait which is meaningful,
informative and representative of both texture and geometric style
of the artist. Without any alignment, we achieve average portraits
which are blurry and ambiguous. Comparing to the average portraits
obtained using the ECT framework, our portraits are closer to the

.

Fig. 13. Average Portraits. In the 1st column, ground-truth landmarks are
used to create average portraits by aligning the facial features, in the 2nd
column we use landmarks obtained from our frameworks, in the 3rd column
we show average portraits obtained using the ECT framework, the 4th
column contains average portraits obtained by calculating the mean RGB
values of the original portraits, without any alignment. Our framework
enables creating an average portrait which is representative of both texture
and geometric style of the artist.

ground-truth average portraits, while the ECT portraits tend to
be blurry due to inaccurate landmark detection. This stresses the
importance of capturing the fine details, enabled by our method.

7.3 Style Signatures
Using our observations from section 4, and several sizes and ratios
described in literature we define a vector of 99 dimensions as the
geometric style signature of a portrait. This signature vector includes
the following set of values. Feature aspect-ratios are computed as
fH : fW , for any facial feature f , where fH and fW represent
the height and width of the feature’s bounding box. For all pairs
of features f 1, f 2, the relative proportion are computed as f 1

H :
f 2
H , f

1
W : f 2

W and f 1
H : f 2

W . The relative location of all inner facial
features (mouth, eyes and eyebrows) are calculated as the normalized
difference between the feature center point f̄ and the face center
pointO in both axes: FW −1 �� f̄x −Ox

��, FH−1 �� f̄y −Oy
��, where FW =

max(lx ) − min(lx ) and FH = max(ly ) − min(ly ).
Other values included in the geometric style signature are facial

proportions that have been reported to have correlation with beauty
and attractiveness (see full list in the supplemental material). We use
two approaches proposed in literature: Neoclassical Canons [Farkas
et al. 1985], and Golden Ratios [Schmid et al. 2008].

For a holistic representation of artistic style, we combine the ge-
ometry signature with texture style embedding proposed by [Gatys
et al. 2015]. To balance the effect of each component, we use prin-
cipal component analysis (PCA) to reduce the dimensionality of
each representation vector. The reduced texture and geometry style
vectors are then concatenated into a single style signature. Figure 14
shows a visualization of the embedding of style signatures of the
Artistic-Faces dataset using T-SNE. In the left subfigure we use the
texture style representation proposed by Gatys et al. In the right
subfigure we use our combined texture and geometry signature.
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Adding geometric information to the texture style embedding re-
veals differences and similarities that were not captured by texture
alone, and allows better examination of artists style similarities.

7.4 Geometry-Aware Style Transfer
Most style transfer methods deal only with texture style transfer,
without considering the artistic geometric style. In this section, we
present a method for Geometry + Texture style transfer and show
results of various artistic models. Our geometry-aware style transfer
is performed using a portrait image bank for texture style transfer,
and an artist-specific geometric-style model for geometric style
transfer.

To stylize a natural face imageI of arbitrary size, we use our land-
mark detection framework to extract facial landmarks l, matching
to the face crop of input image I.
For geometric stylization, we will use an artists’ portrait image

bank {Iar tist }, and build the geometric style model Par tist de-
scribed in Section 7.1. Par tist is then sampled to produce an offset
vector v

′

ar tist . Each landmark l is aligned to v
′

ar tist by its center
point, and then perturbed by simply adding the matching offset to
its point: l

′

i = (xi +v
′

i ), where xi ∈ l,v
′

i ∈ v
′

ar tist . The whole input
image I is stylized by warping to the stylized landmarks l

′

using
TPS interpolation, resulting in Iд - a geometrically stylized image.

For texture style transfer we use the algorithm proposed by [Gatys
et al. 2015] described in section 5, where Iд serves as the content
image, and a random sample from {Iar tist } serves as the style
image, resulting in a portrait that is stylized in both geometry and
texture Iд+t .

Figure 16 and 1 show example results of our proposed application
for geometry-aware style transfer. We show stylization results of
the same input image, using seven different artistic style models.
The first row contains the results of the geometric stylization stage
(Iд ). For comparison, the second row contains the results of using
the algorithm of [Gatys et al. 2015] on the input image, without
performing geometric stylization (It ). The third row contains the
stylization results of our geometry + texture application for style
transfer (Iд+t ). By combining both textural and geometrical el-
ements for modelling artistic style, we achieve image stylization
which is more visually appealing, maintains higher artistic credi-
bility, and present higher variation between images stylized using
different artistic models. Our method also enables combining ge-
ometry and texture style components of different artists, creating
stylized images with inventive new styles (see Figure 18).
Our method’s ability to capture fine details in artistic portraits

allows to model the artist’s geometric style more accurately. This
is demonstrated qualitatively in Figure 13, where artists portraits
are much better aligned to produce an average protrait (compare
our framework ECpTp +A to ECT ). We can also produce stylization
results that are more similar geometrically to original artworks.
In Figure 15 we compare geometric sytlization of a portrait based
on models of the artist Utagawa Kunisada, using our landmark
detection ECpTp + A vs. ECT landmark detection of [Zhang et al.
2018].
The images created using the ECT-model, partially captures Ku-

nisada’s geometric style (elongated face). However, the inner facial

features are drawn closer to the canonical face, and key style ele-
ments are lost compared to our model (e.g. small slanted eyes, small
nose-to-mouth distance, small mouth etc.). See our supplemental
material for additional stylization examples.

8 CONCLUSIONS
In this work, we have presented the first Facial Landmark Detec-
tion framework for general-style Artistic Portraits. To achieve that,
we explored the differences between the natural and artistic faces
domains. Using these observations, we proposed a method for Artis-
tic Augmentation, which brings the natural face domain closer to
the artistic one. Such augmentation provides the means to learn
a detection algorithm that is more robust to variations in texture
and geometry. The algorithm uses a feature-based correction and
tuning steps, to reduce the dependency between the different fa-
cial features, allowing the landmarks to deviate from the canonical
face shape. Our method outperforms state-of-the-art methods of
landmark detection on the Artistic Faces dataset.
We demonstrated several applications for our method. We pre-

sented a method for analyzing the geometric style of artists, and
defined a style signature for portrait artworks containing both a
geometric and a texture-based parts. We also presented a synthesis
application for geometry-aware portrait style transfer.

Limitations: Our method cannot yet handle strong shape varia-
tions, where the facial features themselves have a distinctly different
shape than natural facial features, such as in Manga or cartoons
(see Figure 17). In the future, we plan to adapt our framework to
styles with strong shape variations. We also plan to investigate the
possibility of using geometric style analysis and style signatures for
other applications such as classification and matching of artists and
portraits.
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