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Abstract—Video stabilization techniques are essential for most
hand-held captured videos due to high-frequency shakes. Sev-
eral 2D, 2.5D and 3D-based stabilization techniques have been
presented previously, but to our knowledge, no solutions based
on deep neural networks had been proposed to date. The main
reason for this omission is shortage in training data as well as
the challenge of modeling the problem using neural networks.
In this paper, we present a video stabilization technique using
a convolutional neural network. Previous works usually propose
an offline algorithm that smoothes a holistic camera path based
on feature matching. Instead, we focus on low-latency, real-time
camera path smoothing, that does not explicitly represent the
camera path, and does not use future frames. Our neural network
model, called StabNet, learns a set of mesh-grid transformations
progressively for each input frame from the previous set of
stabalized camera frames, and creates stable corresponding latent
camera paths implicitly. To train the network, we collect a
dataset of synchronized steady and unsteady video pairs via
a specially designed hand-held hardware. Experimental results
show that our proposed online method performs comparatively
to traditional offline video stabilization methods without using
future frames, while running about 10× faster. More importantly,
our proposed StabNet is able to handle low-quality videos such
as night-scene videos, watermarked videos, blurry videos and
noisy videos, where existing methods fail in feature extraction or
matching.

Index Terms—Video stabilization, video processing

I. INTRODUCTION

Videos captured by hand-held camera are often not easy to
watch due to shaky content. Several digital video stabilization
techniques have been proposed in the past decade to improve
the visual quality of hand-held videos, by removing high-
frequency camera movements [1]–[5]. The majority of the
proposed methods deal with this problem using a global view,
by first estimating and then smoothing the camera path using
offline computation. The very few online stabilization methods
follow a ‘capture→ compute→display’ procedure for each
incoming video frame in real time with low latency. Due
to the real-time requirement in such methods, the camera
motion is estimated by an Affine transformation, homography
or using meshflow. In this paper, we focus on the online
stabilization problem. Different from existing approaches, that
must explicitly model the camera path to smooth it, we use
a learning-based approach to directly compute a target steady
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Fig. 1. Deep online video stabilization. We propose StabNet, a neural network
that learns to predict transformations for each incoming unsteady frame, given
the history of steady frames. Applying the predicted transformations to the
original unsteady frame generates the stabilized output frame. The stabilized
frames then act as historical frames for stabilizing the following unsteady
frames.

transformation, with guidance from historical stabilized frames
(see Figure 1).

In recent years, we have witnessed how convolutional neural
networks (CNNs) changed Computer Vision and Computer
Graphics fields. Methods that are based on CNNs perform
more accurately and more efficiently. For example, several
traditional video processing topics such as video stylization [6]
and video deblurring [7] are re-addressed using CNNs. To our
knowledge, there are no CNN-based methods published for
digital video stabilization, although it is an important topic
in video processing. We observed two main obstacles that
prevent a CNN-based stabilization solution. First, the lack of
training data: pairs of steady and unsteady synchronized videos
with an identical capturing route and content are required for
training a CNN model. While this is not necessary for tradi-
tional methods, it is essential for a learning-based stabilization
approach. Second, the challenge of correct problem definition:
traditional stabilization methods compute and smooth a camera
path, which cannot be easily adapted to a CNN-based solution.
A somewhat different problem definition is required.

Based on these observations, we propose to solve the corre-
sponding issues by creating a practical data set for training a
neural network, and modifying the formulation of the problem
by defining a progressive online stabilization algorithm. First,
to collect training data, we captured synchronized hand-held
steady/unsteady video pairs using a special hardware. We
remodeled a hand-held stabilizer with two cameras, where
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only one camera is stabilized by the stabilizer while the other
camera is fixed to the stabilizer grip, moving consistently with
the hand motions. Second, in our modified formulation of the
stabilization problem, instead of estimating and smoothing a
virtual camera path, we learn transformations for spatially
distributed regular mesh grids from each unsteady frame
progressively along the time-line, and generate a steady output
video in an online fashion.

We present StabNet, a CNN model to stabilize frames with
light-weighted feed-forward operations through the network.
The learning process is driven by the information of his-
torically stabilized frames with the supervised ground-truth
steady frame. Figure 1 shows the overview of our deep video
stabilization. The proposed deep stabilization method performs
comparably well on test videos collected from existing works.
The main merit of our algorithm is the ability to run in
real-time at 35.5 FPS with minumum latency (1 frame) on
a NVIDIA GTX 1080Ti graphic card, being about 10×
faster than offline methods. More importantly, our method
is superior to existing methods with the ability to handle
low-quality videos, such as night-scene videos, watermarked
videos, blurry videos and noisy videos, where existing feature-
matching based methods may totally fail. To our knowledge,
the proposed StabNet is a pioneer in using convolutional
network for digital video stabilization.

We also built the DeepStab dataset consisting of pairs of
synchronized steady/unsteady videos. We have released the
dataset and believe that it will benefit the community for future
research on stabilization using data-driven methods.

II. RELATED WORK

Our work is closely related to digital video stabilization
approaches and deep learning video manipulation.

a) Digital Video Stabilization: Existing offline stabilization
techniques estimate the camera trajectory from 2D, 2.5D or
3D perspective and then synthesize a new smooth camera
trajectory to remove the undesirable high-frequency motion.
2D video stabilization methods estimate (bundled) homogra-
phy or affine transformations between consecutive frames and
smooth these transformations temporally. In pioneer works,
low-pass filters were applied to smooth parameters of models
[1], [8]. An L1-norm optimization-based method was proposed
by Grundman et al. with a path synthesis consisting of simple
cinematography motions [3]. Later, a bundled camera path
based model was proposed by Liu et al. [5], estimating
and smoothing multiple local camera paths. Zhang et al. [9]
proposed to optimize geodesics on the Lie group embedded
in transformation space to stabilize video. Liang et al. [10]
analyzed the rolling shutter effect via global motion estimation
and velocity estimation, and corrected the distortion via local
motion refinement and scanline realignment. 3D-based video
stabilization approaches reconstruct the 3D scene [11] from
video, then estimate and smooth the 3D camera trajectory.
Content-preserve warping [2] was proposed as the first 3D sta-
bilization method. Later, subspace video stabilization [4] was

proposed with long tracked features smoothed using subspace
constraints. Goldstein and Fattal [12] proposed to enhance
the length of feature tracks with epipolar transfer. Generally
speaking, 2D stabilization methods perform efficiently and
robustly, and 3D-based methods are able to generate visually
better results.

Real-time online stabilization is specifically desired for live
stream applications. Solutions combining the gyroscope hard-
ware and image contents were applied on mobile phones
[13]. Liu et al. [14] proposed an online stabilization method
which only use historical camera path to compute warping
functions for incoming frames. Inspired by their idea, we
present a deep online stabilization approach which performs
stabilization given a few historical stabilized frames. The
novelty of our approach is that we avoid explicitly estimating
and smoothing camera path, instead, we use a CNN model to
directly predict warping functions.

b) CNNs for Video Applications: In recent years, CNNs have
made huge improvements in computer vision tasks such as
image recognition [15], [16] and generation [17], [18]. When
feeding multiple successive frames from videos, CNNs can
predict optical flow [19], camera motion [20], or semantics
[21]. There are several works which use CNNs to directly
produce video contents, such as scene dynamic generation
[22], frame interpolation [23] and deblurring [7], [24]. Because
predicting a long video sequence is still a challenging problem,
all of the above works used only two or very few successive
frames as training samples. The proposed StabNet also con-
siders a temporal neighborhood at each time. The stabilization
problem cannot be solved using a generation-based model
because of the severe vibration of the input video content.
To generate visually pleasing result, our StabNet learns the
warping transformations instead of generating pixel values.

III. TRAINING DATASET

Generating training data is one of the key challenges for
digital video stabilization, where ground truth data cannot be
easily collected/labeled. To train StabNet, two synchronized
video sequences of the same scene are required: one sequence
captures a steady camera movement, while the other is un-
stable. One possible way to generate such data is to render
a virtual scene with two camera path configurations: smooth
and jumpy. However, CNN models trained using rendered
virtual scene may not generalize well due to the domain
gap between training synthetic video and testing real videos
captured by hand-held camera. To generate authentic data,
we designed a specialized hardware with two portable GoPro
Hero 4 Black cameras and a hand-held stabilizer, where
the cameras lay horizontally next to each other with small
disparity (Figure 3). When capturing videos, the two cameras
shoot synchronously, with only one camera stabilized, while
the other moves consistently with the hand/body motion of
the holder. We turned off the auto-focus and auto-exposure

https://www.youtube.com/watch?v=8vu7IDuDD64
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Fig. 2. Exemplar frames of DeepStab dataset. The dataset includes pairs of synchronously captured videos. Each pair consists of an unsteady video and
a stabilized video, with the same content. Camera motions include forward movement, pan movement, spin movement and complex movements including
combinations of the above, at various speed.

Fig. 3. Hardware and training data capturing process.

functions of the cameras and used the synchronous remote
control for synchronization.

Training videos are obtained by holding the designed hardware
while taking videos in a first-person point of view. We present
the DeepStab dataset, containing pairs of synchronized videos
with diverse camera movements. The dataset includes indoor
scenes with large parallax, and common outdoor scenes with
buildings, vegetation, crowd, etc. Camera motions include for-
ward movement, pan movement, spin movement and complex
movements including combinations of the above, at various
speed. We remove the fish-eye distortion of the videos in
post-processing. We trim parts with large lighting difference
between the cameras pair, and videos with non-overlapping
field of views of the cameras by aligning the frame content
and cropping a new rectangular view for each camera.

In total, we collected 60 pairs of synchronized videos whose
length is within 30 seconds, at 30 FPS. The videos are
split into 44 training pairs, 8 validation pairs and 8 testing
pairs. Figure 2 shows representative sampled frames from the
dataset. The recorded video pairs are augmented to provide

more training samples by horizontally flipping the frames,
reversing the video sequences and combining both flipping
and reversing.

IV. THE STABNET

Overview: We propose to stabilize the video without using
future frames, relying on how the hand-held stabilizer works
during capturing paired steady and unsteady videos. We con-
vert the online stabilization problem to a supervised learning
problem of conditional transformation regression without ex-
plicitly computing a camera path. Our goal is to learn to warp
the input video from an unstable camera to a virtually stable
camera horizontally next to the unstable camera with a small
parallax, as in the training data.

The inputs to StabNet are an incoming unsteady frame It and
six conditional historical steady frames sampled from approx-
imately one second St = 〈İt−32, İt−16, İt−8, İt−4, İt−2, İt−1〉
for time-stamp t. The sampling of historical frames are denser
near the incoming frame and sparser far from the incoming
frame. Inspired by [5] which uses a bundled camera model for
stabilization, we propose to regress a transformation f i,jt for
the (i, j)-th regularly divided mesh-grid gi,jt , where a 4 × 4
mesh Gt = {gi,jt |1 ≤ i, j ≤ 4} are spatially distributed
on frame It. The output of our model is consequentially
a set of transformations Ft = {f i,jt |1 ≤ i, j ≤ 4} for
frame It. The steady frame is then created by applying
Ît = Ft ∗ It, where ∗ is the warping operator. We use the
desired vertices {(x̂it, ŷ

j
t ), (x̂

i+1
t , ŷjt ), (x̂

i, ŷj+1
t ), (x̂i+1, ŷj+1)}

of the deformed mesh grid ĝi,jt to represent each transfor-
mation f i,jt . Our network can regress the mesh grid vertex
transformation representation, and can drive the warping of
image content located inside the grid. The learning process
is supervised by our ground-truth steady frames I ′t. When
training StabNet, the conditional inputs St are the ground-truth
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Fig. 4. Network Architecture. StabNet is a two-branch Siamese network with shared parameters in each branch. It consists of an Encoder and a Multi-Grid
Regressor. The Encoder is an adapted ResNet-50 backbone model, which encodes input concatenated frames into a 1×1×2048 feature vector. The Multi-Grid
Regressor consists of a sequence of FC layers where the last fc reg layer regresses grid vertex positions with dimension (h+1)× (w+1)× 2, and h,w are
grid numbers along x-axis and y-axis respectively. During training, samples 〈It, st〉 and 〈It−1, st−1〉 of two successive incoming frames with corresponding
historical frames fed to the network. The transformations Ft and Ft−1 are then predicted. The network is trained with stability loss, shape-preserving loss
and temporal loss.

steady frames 〈I ′t−32, I ′t−16, I ′t−8, I ′t−4, I ′t−2, I ′t−1〉, while
when testing, St are the historical stabilized frames
〈Ît−32, Ît−16, Ît−8, Ît−4, Ît−2, Ît−1〉.

A. Network Architecture

Our StabNet is a Siamese network [25] that has two branches
sharing the network parameters. We use a Siamese architecture
to preserve temporal consistency of successive transformed
frames Ît−1 = Ft−1 ∗ It−1 and Ît = Ft ∗ It. Each branch
of StabNet is a two-stage network consisting of a backbone
encoder, that extracts high-level features from the inputs
and a multi-grid transformation regressor, that predicts the
stabilization transformations from the extracted feature map.
Figure 4 shows the architecture of StabNet. The inputs are
seven concatenated grayscale frames, each with dimension
W × H × 1, consisting of six conditional steady frames
St and one unsteady frame It. Frames are sent to an en-
coder to extract features. This encoder adapts ResNet-50 [16]
as the backbone feature extractor, using the conv 1 as the
input channel, modified to meet our inputs, and removing
all layers after average pooling. The extracted feature map
from the encoder is of dimension 1 × 1 × 2048. Next, we
use a sequence of FC layers with output feature dimensions
〈2048, 1024, 512, (h + 1) × (w + 1) × 2〉, where w = 4 and
h = 4 are grid sizes along x-axis and y-axis respectively.
The output dimension corresponds to the total number of grid
vertex points.

B. Stabilization Loss Functions

StabNet training process is driven by three types of loss
functions: stability loss, shape-preserving loss and temporal
smoothness loss. The comprehensive loss function is based on
neighboring input frames It and It−1, and is defined as:

L =
∑

i∈{t,t−1}

Lstab(Fi, Ii) + Lshape(Fi, Gi) (1)

+ Ltemp(Ft, Ft−1, It, It−1),

where Lstab is the stability loss, Lshape is the shape-preserving
loss and Ltemp is the temporal loss.

Stability Loss: The stability loss drives the warped unsteady
frames to the ground-truth steady frames using cues of pixel
alignment and feature point alignment. It is defined as:

Lstab(Ft, It) = α1Lpixel(Ft, It) + α2Lfeature(Ft, It), (2)

where Lpixel is the pixel alignment term, Lfeature is the feature
alignment term, and α1 = 50.0, α2 = 1.0 are constant
weights.

The pixel alignment term Lpixel measures how the transformed
frame Ît = Ft ∗ It aligns with the ground-truth steady frame
I ′t, using mean squared error (MSE):

Lpixel(Ft, It) =
1

D
||I ′t − Ft ∗ It||22, (3)

where D is the spatial dimension of frame. The transformation
Ft ∗ It operates in the image domain. To make the warping
function differentiable, we used spatial transformer layer [26].
Lpixel loss will be small if the transformed frame Ît aligns
well with the ground-truth frame I ′t. However, during training
Ît can not converge well to I ′t. During early training stages,
unsteady and steady frames are not aligned and the loss term
is less correlated. For better convergence during training, we
further introduce a feature alignment loss.

The feature alignment term Lfeature is computed as the average
alignment error of matched feature points after transforming
the unsteady frame It using the predicted transformation Ft:

Lfeature(Ft, It) =
1

m

m∑
i=1

||p′it − Ft ∗ pit||22. (4)
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Fig. 5. Shape-preserving loss terms. (a) illustrates the intra-grid distortion
term associating three triangular grid vertices. (b) shows the inter-grid
consistency term on three consecutive mesh vertices along an edge.

where Pt = {〈pit, p′it 〉 | i ∈ {1, · · · ,m}} are the m pairs of
matched feature points between each steady/unsteady frame
pair, and pit and p′it are the i-th matched feature points
from unsteady frame It and ground-truth steady frame I ′t
respectively.

To compute the feature loss, all pairs Pt are computed in a
pre-processing stage between steady and unsteady frame pairs.
We extract SURF features [27] from both It and I ′t, then
calculate the matching between them by dividing the frames
into 2 × 2 sub-images, and using a RANSAC algorithm [28]
to fit a Homography in each corresponding sub-image. We
match features in 2 × 2 sub-images instead of 4 × 4 as in
[5], because of the large camera pose and content variation
between the steady and unsteady cameras. Please note that
the feature extraction and feature matching processes are only
performed for training the network and not needed during
online stabilization.

Shape-preserving loss: Because our model regresses mesh
vertex positions of the stabilized video, it is important to
preserve the shapes of grids to avoid distortion artifact and
to encourage neighboring grids to transform consistently. Our
shape-preserving loss thus consists of an intra-grid distortion
term Lintra and an inter-grid consistency term Linter.

Inspired by [2], we introduce an intra-grid loss Lintra to
encourage the triangle of neighboring deformed vertices
{v̂t, v̂0t , v̂1t } ⊂ ft ∗ gt to follow a similarity transformation:

Lintra(Ft, Gt) =
1

N

∑
v̂t

||v̂t − v̂1t − sR~v01t ||22, R =

[
0 1
−1 0

]
,

(5)
where ~v01t = v̂0t − v̂1t , v̂0t and v̂1t are neighboring vertices and
s = ||vt − v1t ||/||v0t − v1t ||, {vt, v0t , v1t } ⊂ gt is the ratio of
original grid side lengths, N is the total amount of triangular
vertices.

To encourage the neighboring grids to transform consistently,
we introduce an inter-grid loss Linter. For each vertex vt and
its neighboring vertices v0t , v

1
t along an edge of two original

neighboring grids, the two vectors ~vt = v̂1t − v̂t and ~v0t =
v̂t − v̂0t formed by deformed vertices are encouraged to be
identical:

Linter(Ft, Gt) =
1

M

∑
〈v̂0

t ,v̂t,v̂1
t 〉

||v̂1t − v̂t − (v̂t − v̂0t )||22, (6)

where 〈v̂0t , v̂t, v̂1t 〉 are three successive deformed grid vertices
belonging to Ft ∗Gt, along an original mesh edge, M is the
total amount of successive vertex tuples of the mesh. Figure
5 shows an illustration of the loss terms.

The shape-preserving loss is then defined as the combination
of the above two terms:

Lshape(Ft, Gt) = γ1Lintra(Ft, Gt) + γ2Linter(Ft, Gt), (7)

with the weights set as γ1 = 1.0, γ2 = 20.0.

Temporal Loss: Simply applying the transformations sep-
arately to every video frame can create wobble artifacts in
the video. Therefore, we incorporate a temporal loss term to
enforce temporal coherency between adjacent frames using
the Siamese network architecture. Each time two successive
samples 〈It, st〉 and 〈It−1, st−1〉 are fed into StabNet, two
successive transformations Ft and Ft−1 are predicted. The
temporal loss is defined as the mean square error between
the successive output frames:

Ltemp(Ft, Ft−1, It, It−1) = λ
1

D
||Ft ∗ It − w(Ft−1 ∗ It−1)||22,

(8)
where D is the spatial dimension of frame, w(·) is a function
that warps the steady frame at t − 1 to the steady frame
t according to pre-computed optical flow, λ = 10.0 is a
constant. In our experiments we use TV-L1 algorithm [29] to
compute the optical flow, but alternative methods for optical
flow calculation can also be used.

C. Implementation Details

To train StabNet, we resize the videos to a spatial dimension
of W = 512 and H = 288 for efficiency. Pre-trained ResNet-
50 model on ImageNet [15] without the Conv 1 layer is
loaded, and is fine-tuned during the training process. We use
mini-batch size of 8 and ADAM [30] for optimization with
β1 = 0.9, β2 = 0.999. Initial learning rate is set to 0.001,
and multiplied by 0.1 every 30, 000 iterations. The training is
initialized to learn identity transformations for 300 iterations
before introducing aforementioned losses. The training process
is terminated when reaching 90, 000 iterations. The whole
training process takes about 20 hours on an NVIDIA GTX
1080 Ti graphics card.

In training process, we feed two successive samples to the
two branches (with shared network parameters) of StabNet so
that temporal coherency is aware during learning. However,
during testing, the network is used to stabilize a single frame
at a time; temporal consistency is automatically preserved.
Further, the stabilization processing is self-driven for a test
video as follows: we start by duplicating the first frame and
regard the duplicated frames as S1. After stabilizing frame It,
historical stabilized frames 〈Ît−31, Ît−15, Ît−7, Ît−3, Ît−1, Ît〉
are regarded as St+1 for stabilizing the next frame It+1. This
process is repeated through the time-line.
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TABLE I
ABLATION STUDY OF ARCHITECTURE, LOSS FUNCTION AND INPUT VARIATIONS. EACH ROW (EXCEPT THE FIRST COLUMN) FROM LEFT TO RIGHT SHOWS
THE STABILIZATION STATISTICS IN SIX SUB-SET OF VIDEOS FROM [5]: Regular, Quick Rotation, Quick Zooming, Parallax, Running AND Crowd, IN THREE

METRICS: Cropping ratio (C), Distortion value (D) AND Stability score (S). THE FIRST TWO ROWS OF STATISTICS SHOW PERFORMANCES OF
ALTERNATIVE ARCHITECTURES, THE NEXT FIVE ROWS COMPARE THE RESULTS WITHOUT feature, pixel, temporal, distortion AND consistency LOSS

FUNCTIONS, THEN THE RESULTS OF THREE INPUT VARIATIONS ARE SHOWN. THE LAST ROW SHOWS THE PERFORMANCE OF THE PROPOSED NETWORK.
SYMBOL “-” MEANS THE CORRESPONDING NETWORK DOES NOT CONVERGE.

Regular Rotation Zooming Parallax Running Crowd
C D S C D S C D S C D S C D S C D S

SGR 0.66 0.92 0.70 0.52 0.41 0.83 0.58 0.88 0.76 0.57 0.62 0.67 0.53 0.81 0.73 0.47 0.69 0.62
MGR-2 0.63 0.91 0.72 0.48 0.39 0.84 0.55 0.81 0.77 0.59 0.87 0.67 0.52 0.82 0.75 0.46 0.77 0.65
w/o feat. 0.70 0.90 0.69 0.42 0.47 0.81 0.51 0.87 0.71 0.56 0.66 0.66 0.44 0.73 0.70 0.34 0.48 0.66
w/o pix. 0.56 0.86 0.72 0.49 0.40 0.75 0.65 0.84 0.70 0.54 0.72 0.67 0.52 0.81 0.76 0.48 0.62 0.67
w/o temp. 0.59 0.86 0.65 0.37 0.39 0.78 0.46 0.78 0.76 0.54 0.62 0.70 0.42 0.78 0.72 0.36 0.56 0.63
w/o dist. 0.59 0.86 0.71 0.40 0.32 0.83 0.51 0.83 0.70 0.57 0.78 0.68 0.43 0.78 0.73 0.34 0.60 0.68
w/o cons. - - - - - - - - - - - - - - - - - -
Var. 1 - - - - - - - - - - - - - - - - - -
Var. 2 0.62 0.89 0.70 0.43 0.47 0.83 0.50 0.87 0.77 0.55 0.65 0.69 0.47 0.75 0.74 0.39 0.44 0.62
Var. 3 0.60 0.47 0.72 0.46 0.56 0.82 0.57 0.52 0.77 0.63 0.25 0.70 0.43 0.70 0.76 0.40 0.40 0.66
Ours 0.61 0.83 0.75 0.41 0.54 0.83 0.52 0.80 0.79 0.57 0.70 0.71 0.60 0.80 0.77 0.50 0.71 0.68

The stabilization results inevitably have meaningless frame
borders introduced by the warping function. As StabNet uses
stabilized frames as the inputs for future frames, we need
to make StabNet robust to such borders. During training,
we add some black borders produced by Homography per-
turbation around the Identity transformation to the ground-
truth historical frames. The Homography perturbances are

randomly sampled between Hmin =

 0.9 −0.1 −0.5
−0.1 0.9 −0.5
−0.1 −0.1 1


and Hmax =

 1.1 0.1 0.5
0.1 1.1 0.5
0.1 0.1 1

, where the image axis is

normalized to [−1, 1]. For testing, we crop and trim the borders
in post-processing. We plan to release source code and pre-
trained StabNet model.

V. EXPERIMENTAL RESULTS

We train the StabNet model on the DeepStab dataset, and
test it on various video sources. Testing videos are from
our DeepStab testing set, previous dataset [5] and mobile
phone cameras. On average, testing runs at 35.5 FPS on a
graphics card, which meets the requirement of real-time online
stabilization with 1 frame latency.

We use quantitative evaluation metrics, computed following
[14] to evaluate stabilization methods. The three metrics are
cropping ratio, distortion and stability.

Cropping ratio: This metric measures the area of the remain-
ing content after stabilization. Larger cropping ratio with less
cropping is favored. Per frame cropping ratio is computed as
the scale component of the global Homography Ht estimated
from input frame It to output frame Ît. Ratio values of video
frames are averaged to generate the cropping ratio value of
the whole video.

Distortion value: Distortion value evaluates the distortion
degree introduced by stabilization. Per frame distortion value
is computed by the ratio of the two largest eigenvalues of the

affine part of the Homography Ht. The minimum value which
represents the worst distortion is chosen as the distortion value
for the whole video.

Stability score: Stability score measures how stable a video is.
Following [14], we use frequency-domain analysis of camera
paths to estimate the stability score. Spatially distributed
camera paths are computed as vertex profiles for 4× 4 mesh
grid vertices between successive frames. The vertex profiles
are then presented as 1D temporal signals for frequency
domain analysis. We take each of their lowest frequencies
components over full frequencies (DC component is excluded)
as the stability score [14]. Averaging from all profiles gives
the final score.

A. Ablation Study

In order to evaluate the effectiveness of our proposed frame-
work, we experiment with other possible network architec-
tures, loss functions and alternative input solutions. We con-
duct an ablation study on public stabilization dataset from [5]
which consists of several video categories according to scene
type and camera motion, including Regular, Quick Rotation,
Quick Zooming, Large Parallax, Running and Crowd.

Network architectures: Because our network uses multi-
grid regressor (denoted as MGR) to learn transformations for
each input frame, here we evaluate how the proposed MGR
performs against the single-regressor one (denoted as SGR)
and the alternative MGR variations with various grid divisions.
We implement the variations using the same backbone ResNet-
50 encoder, and similar regressor architectures with the output
channels (h + 1) × (w + 1) × 2 adapted to mesh division
choices. In SGR, four frame vertex positions are regressed. In
MGR variations, 2 × 2 and 8 × 8 mesh vertex positions are
regressed, with architectures denoted as MGR-2 and MGR-
8 respectively. As a result, the stability level of results from
SGR and MGR-2 are inferior to our MGR, as they regress
coarser grids; at the same time MGR-2 and SGR’s cropping
ratio values are generally higher than our method. This is
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Fig. 6. Compare with publicly available videos from [5] in terms of three metrics.

because in a method with a better stability, a more flexible
warping must be performed, with larger warping borders. We
also observe that although the mesh division of MGR-8 is finer
than our model, regressing transformations in such granularity
ended in failure.

Loss functions: We test the proposed StabNet with some of
the loss terms turned off to validate the loss function setup. We
observed that without consistency loss, the network training
will not converge, and other alternative results are worse than
the proposed one.

Input variations: We experiment with different stacked input
frame sequences during training the model. The variations
are: 1) training one frame supervised by neighboring his-
torical frames as 〈I ′t−5, I ′t−4, · · · , I ′t−1, I〉; 2) training one
frame supervised by uniformly distributed historical frames as
〈I ′t−31, I ′t−25, I ′t−19, I ′t−13, I ′t−7, I ′t−1, I〉; 3) training current
frame and a few future frames with historical guidance as
〈I ′t−32, I ′t−16, . . . , I ′t−2, I ′t−1, I, It+1, It+2, . . . , It+16, It+32〉.

Corresponding performances are reported in Table I, as a
conclusion, results from alternative inputs are inferior to the
proposed one in terms of stability. We also experiment with
the back-bone of ResNet-101, however the improvement is not
apparent, with running time increased.

B. Comparison with Publicly Available Results

We compare with [2]–[4], [12], [14] using six publicly avail-
able videos in terms of the objective metrics, based on results
provided by corresponding authors. Comparing with offline
stabilizations is slightly unfair for our method because future-
frames information is not available for our online stabilization
method in real-time. As a result, the stability score of our
method is slightly lower, occasionally with probable visual
artifacts of unnatural cross-frame wobbling and distortion.
This is mainly because our online method only uses historical
frames without holistic knowledge of the full camera path.
Nevertheless, our method performs in real time while being
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Fig. 7. Visualization of feature trajectories from an unsteady video and the
corresponding stabilized videos. Left: two stabilized frames by StabNet, with
feature trajectories (green) and the feature trajectories from the original video
(red) highlighted. Right: visualization of the average horizontal feature offsets
between neighboring frames along the time-line, from the original unsteady
video, Adobe Stabilizer and our StabNet.

visually comparable to all existing methods. Comparison de-
tails are shown in Figure 6, for videos that we were not able
to find the result, we leave it blank.

C. Comparison with the State-of-the-Art Software

We further compare our method with commercial offline
stabilization software Adobe Premiere CS6 on dataset [5].
As far as we know, Adobe Premiere stabilizer is developed
based on subspace stabilization [4]. We choose the default
parameters for Adobe Premiere (smoothness: 50%, Smooth
Motion and Subspace Warp) to produce results. Figure 7
shows an visualization of feature trajectories before and after
stabilization. Further evaluation on the test dataset is reported
in Figure 8. Please note that the online stabilization problem
is inherently harder than offline stabilization, because only
historical frames are available in online stabilization, without
the global sense of the camera path. Hence, the quantitative
performance statistics for online stabilization methods would
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TABLE II
RUNNING TIME COMPARISON. FPS STATISTICS ARE GIVEN IN THE

SECOND COLUMN. THIRD COLUMN SHOWS WHETHER FUTURE FRAMES
ARE REQUIRED FOR STABILIZATION.

Method FPS Future Frames
Bundled Cameras 3.5 Yes
Adobe Premiere 4.2 Yes
MeshFlow 22.0 No
Ours 35.5 No

Night-scene Watermarked

Blurry Noisy

Fig. 9. Representative frames of low-quality videos. Please refer to the
supplementary video for stabilization result comparison.

be inferior to offline ones. However the average running
time performance of our method is superior to all existing
methods. Further, our method is only based on historical
frames, thus can be used for online streaming. The running
time performance is given in Table II.

D. Stabilizing Low-quality Videos

One promising feature of StabNet is its robustness to low-
quality videos caused by noise, motion blur, low resolution,
etc. When dealing with such kind of videos, traditional meth-
ods could fail because of either feature extraction failures
from one frame or feature-mismatches between frames. We
demonstrate the superiority of StabNet to traditional feature-
based methods via four types of low-quality videos captured
by mobile phones: night-scene videos, watermarked videos,
blurry videos and noisy videos, whose representative frames
are shown in Figure 9.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
User Study Result

Ours Better Premiere Better Indistinguishable

Fig. 10. User study result by comparing our method with Adobe Premiere
Stabilizer.

Night-scene videos: We test the proposed network on night-
scene videos. Such videos are typically blurry and contain
severe noise, where wobble distortions can appear from tradi-
tional feature matching-based stabilization methods.

Watermarked videos: Watermarks such as logos or repetitive
patterns can be overlaid on video frames. We synthesize
watermarked videos using repetitive patterns and overlay the
patterns at the same spatial positions across video frames. Such
repetitive watermark patterns can disturb feature matching
process from the original video content, resulting in false
feature matchings from existing stabilization methods.

Blurry videos: Motion blur can appear in shaky frames and
cause uncomfortable viewing experience. Such motion blur
makes it difficult to extract and match features using existing
stabilization methods.

Noisy videos: Videos could be noisy if capturing is effected
by poor illumination, high temperature, etc. Gaussian noise
could be introduced from multiple noise sources. In our
experiments, we synthesize noisy videos by adding Gaussian
noise to each video frame, and apply stabilization algorithms
to the videos. The match of features would fail using existing
stabilization methods.

In our experimental results, on low quality video cases, Stab-
Net performs robustly, while traditional stabilization methods
such as subspace stabilization [4] fail to generate stable results.
Please refer to the supplementary video for visual comparison.
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E. User Study

To visually compare our method with Adobe Premiere sta-
bilizer, we further conduct a user study with 20 participants
aged from 18 to 32. We provide 18 videos from [5], 3 from
each aforementioned category; and 12 low-quality videos, 3
from each aforementioned type. In each testing case, we si-
multaneously show the original input video, our result, and the
result from Adobe Premiere stabilizer to the subjects. The two
stabilization results are displayed horizontally in random order.
Every participant is asked to pick the more stable result from
the results of our method and Adobe Premiere stabilizer, or
mark them “indistinguishable”, while disregarding differences
in aspect ratio, or sharpness.

The user study results are shown in Figure 10. For each
category, we show the average percentage of user preference.
It can be concluded that for low-quality videos, our method
performs much better, and for videos from Quick Zooming,
Quick Rotation, Running categories, our results are comparable
with those from offline approach. For other categories that
were harder to process without future-frames information, our
results are slightly worse. The user study result coincide with
our aforementioned discussion.

VI. LIMITATION AND CONCLUSION

StabNet has limitations. First, controlling cropping ratio is not
supported by our network, which may generate warping bor-
ders in the stabilized video. However, like some existing offline
video stabilization methods, with an automatic processing of
warping border trimming off after holistic path stabilization,
the final rendered videos do not contain borders. In our case,
the stabilization (with warping borders) and cropping bound-
ing box position are computed and updated progressively in an
online stage. The warping borders can be further trimmed off
with an automatic post-processing cropping stage, based on
the computed bounding box. Nevertheless, one possible way
to control cropping ratio is to train a network conditioned
with a required specific cropping ratio, which we regard as
a future work. Second, in scenes with drastic motion or with
extreme near-range foreground objects, our method may fail,
this is because our model learns to warp the unstable camera
to a virtual stable camera with parallax. We note that these
scenarios are also challenging for previous methods [3]–[5],
[14]. Third, our solution is purely based on software without
gyroscope assistance. Fused video stabilization with additional
gyro signals using CNNs [13] is an interesting future research
direction.

To summarize, we have presented StabNet, a convolutional
network for digital online video stabilization. Unlike tra-
ditional methods which calculate estimated camera paths,
StabNet learns warping transformations of multi-grids for each
unsteady frame, using only historical stabilized frames as
condition. It runs in real time by fast feed-forward operations.
We also present the DeepStab dataset–a dataset consisting
of pairs of synchronized steady/unsteady videos for training.
This dataset was created using a practical method to generate

training videos with synchronized steady/unsteady frames,
which could benefit future deep stabilization methods. To
our knowledge, StabNet is the first CNN model for video
stabilization. We have demonstrated the power of StabNet for
handling typical types of hand-held videos and its advantage in
stabilizing low-quality videos. We believe CNN-based meth-
ods are a promising direction for digital video stabilization.
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