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Abstract

Most approaches for scene parsing, recognition or
retrieval use detectors that are either (i) independently
trained or (ii) jointly trained for conjunctions of object-
object or object-attribute phrases. We posit that neither
of these two extremes is uniformly optimal, in terms
of performance, across all categories and conjunctions.
The choice of whether one should train an independent
or composite detector should be made for each possible
conjunction separately, and depends on the statistics
of the dataset as well. For example, person holding
phone may be more accurately modeled using a single
composite detector, while tall person may be more ac-
curately modeled as combination of two detectors. We
extensively study this issue in the context of multiple
problems and datasets. Further, for efficiency, we pro-
pose a predictor that is based on a number of category
specific features ( e.g., sample size, entropy, etc.) for
whether independent or joint composite detector may
be more accurate for a given conjunction. We show
that our prediction and selection mechanism general-
izes and leads to improved performance on a number
of large-scale datasets and vision tasks.

1. Introduction

Object detection [3, 5, 7, 13], scene understand-
ing/parsing [2, 11, 14, 26], and visual language ground-
ing [11, 21] have been the cornerstones of computer
vision research for the last 20+ years. Significant
advances in recent years have been made using ma-
chine learning techniques that train detectors of vari-
ous types on images. Such detectors have shown that
both spatial and visual contextual reasoning are im-
portant. Some model the spatial layout of objects in
the scene [2, 8, 11, 9, 14], while others model the visual
appearance of the objects, and how it changes as those
objects interact [10, 13, 20, 19].

∗Work conducted while first author was an intern at Disney.

Figure 1: Method overview: given a visual com-
posite Ci and the corresponding training data D (illus-
trated by tSNE plot of the CNN image features), statis-
tical features F (D) are extracted. The resulting vectors
are used to determine which training strategy should
be used for each specific composite, using a trained re-
gressor. Our method chooses to train black sunglasses,
F (DC1), as a joint phrase and tall building, F (DC2), as
an independent product of tall and building classifiers.

Typical relationships that are considered include
attribute-object [11], object-object [13] or object-
relationship-object [11, 20, 19]. Learning detectors for
these relationships is dealt with in one of two ways:
(i) assuming conditional independence and simple ge-
ometric relationships, e.g ., similar to part-based mod-
els [11], or (ii) training of joint detectors, e.g ., for vi-
sual composite phrases [20, 19]. The issue with (i)
is that while it accounts for geometric relationships
among objects (or objects and attributes) it does not
generally account for appearance variations induced
by their combination. For example, a sitting person
modeled as a product of two independent detectors,
P (sitting person) = P (sitting)P (person), would re-
quire to detect a person in all postures, which is dif-
ficult, and does not account for the fact that sitting
person actually looks very different and is much easier
to detect. In the second approach (ii), initially explored
by Sadeghi and Farhardi et al . [20], this issue is resolved
by training a single sitting person detector. While the-
oretically training such joint detectors is always better,
in practice, this is not the case. The data available to
train each individual phrase detector becomes scarce



(or even nonexistent) in many cases, which leads to
overfitting (or inability to train a phrase detector).

The latest solution to this is to train both indepen-
dent and various forms of composite detectors and com-
bine their scores (e.g ., using a CRF [19]). However,
this comes at a price, as an exponential number of de-
tectors is needed for training and detection (e.g ., for
a single object-relationship-object entity, 4 detectors
are required in [19]). This makes scaling such methods
to datasets containing thousands of objects and hun-
dreds of relationships infeasible. Computational issues
aside, various composite detectors may actually pro-
duce poorer performance that would degrade the over-
all performance, when the scores are combined, unless
the contributions of each detector are well calibrated.

In this work, we first show that choosing the de-
tector that results in the most accurate performance,
either joint or independent for each composition, is
clearly beneficial compared to the indiscriminate meth-
ods that do one or the other consistently across all cat-
egories. Further, we show that one can use a learned
predictor, based on proxy category measures to predict
which detector will be most beneficial. These features
include the number of samples, separability, and en-
tropy of image features. The predictor allows building
the appropriate detector without training all possible
options before selecting appropriate one (e.g ., using
cross-validation). This is beneficial computationally
and when number of samples is low. The illustration of
the proposed selection process is depicted in Figure 1.

Contributions: Our contributions are three-fold:
– We study the effect of choosing between indepen-

dent and joint visual phrase detectors for each con-
junction relationship. We show that selecting ap-
propriate detector can lead to large performance
benefits.

– We introduce a novel method for predicting which
of the two options is likely to be most beneficial
in practice, based on statistical measures, without
requiring pre-training of all possible detectors. To
the best of our knowledge, this is the first method
to show that this is possible.

– We demonstrate performance improvement using
the proposed method on numerous computer vi-
sion tasks and large-scale datasets, including Scene
Graph [11] and SUN [16] dataset.

2. Related work

This work is related to a number of core topics in
computer vision, including contextual object detection,
scene understanding, scene parsing and visual language
grounding. We review only most relevant literature.

Object detection: Most object detection algorithms
treat each object category independently and build in-
dependent classifiers/detectors using standard super-
vised learning methods (e.g ., SVM, structured SVM,
or latent SVM) based on hand-designed (e.g ., HOG
[3]) or learned features. Until recently, discriminative
part-based (DPM) models [5] were particularly popu-
lar, due to their ability to compactly model appear-
ance variations of objects while maintaining geometric
relationships among parts [24]. However, with recent
advances in deep learning, there has been a shift to
methods that either obtain a set of object proposals
(e.g ., using selective search [23]) and then use a CNN
for classification (e.g ., R-CNN [7]), or use CNN models
that are trained to directly regress bounding box along
with object category label [22]. Our approach builds
upon the newer R-CNN formulation [6] combined with
SVM and probabilistic score re-scaling (similar to [11])
as the basic detection model. However, our main obser-
vations and conclusions are independent of this choice.

Contextual object detection: Relatively early, in
vision, it was hypothesized that contextual relation-
ships among objects in scenes are very important for
recognition. A number of works modeled co-occurrence
between object categories by detecting individual ob-
jects and modeling their relative locations (and scales)
using spatial distributions. Gupta et al . [8] used prepo-
sitions and adjectives to relate nouns (objects); Hoiem
et al . used geometric relationships to reason about lo-
cation and scale of objects in street scenes [9]. For a
specific class of human-object context, Yao et al . [25]
proposed a joint DPM model for a person and manip-
ulated object.

Scene understanding: More generic multi-object re-
lationships were explored in [14], where groups of ob-
jects that geometrically co-occurred were mined and
modeled. A discriminative holistic model for scene un-
derstanding that combined segments, objects and scene
labels was introduced in [26]. Particularly relevant is
the recent work on semantic image retrieval [11], that
introduced the concept of scene graphs – a construct,
closely related to scene parsing, design to represent ob-
jects (e.g ., man, boat), attributes of objects (e.g ., boat
is white) and relationships between objects (e.g ., man
standing on boat).

However, all of these methods neglect to model the
change in the appearance of an object due to interac-
tion with another object and/or the attribute it pos-
sesses. For example, person sitting may look very dif-
ferent and potentially easier to detect than person and
sitting that happen to co-occur in the same spatial
location. In other words, above methods assume ap-
pearance independence, in order to express the object-



object or object-attribute relationships using an MRF
or CRF [1, 11, 26]. Our approach does not make this
assumption, and instead tries to determine if joint ap-
pearance variation is useful and model it.

Phrases and visual composites: In an attempt to
model induced object-object appearance changes, Mal-
isiewicz et al . [15] introduced a visual memex model
that modeled visual similarity and spatial context be-
tween object exemplars using a graph. The concept of
visual phrases was introduced by Sadeghi et al . [20].
In [20] it was shown that training joint detectors for
phrases (e.g ., man riding horse), as opposed to individ-
ual objects (e.g ., man, horse), resulted in better perfor-
mance, despite fewer training instances being available
to train each joint phrase classifier. This idea was fur-
ther extended in [13] by discovering visual composites
and their spatial relations, through sub-categorization.

One important observation is that while these meth-
ods showed that performance on average increases by
jointly modeling object-object appearance, this is not
the case for all object category pairs considered. Build-
ing on this intuition, in [19], a model for visual knowl-
edge extraction and visual verification of relational
phrases was introduced. To verify relational predi-
cates (e.g ., fish(bear, salmon)), a model that considers
all combinations of detectors is considered (e.g ., bear,
salmon, bear fishing, fishing salmon and bear fishing
salmon); the scores of all of these detectors are com-
bined using a form of CRF on a factor graph.

Our method builds on similar intuition as [19], how-
ever, instead of building all possible partial detectors
and combining their scores (which is expensive and po-
tentially sub-optimal), we attempt to choose which of
the detectors for the given relational predicate would be
most accurate and train only those. As a consequence,
our model is no more expensive to evaluate and train
than a model that assumes independence, yet allows us
to jointly model induced appearance variations.

Attributes: We also apply our model to attribute-
object and attribute-scene relationships. Attributes
have received a lot of attention in vision [4, 12] and
tend to refer to namable mid-level semantic concepts
related to object (person sitting) or scenes (man-made).
Our work is most closely related to [18], where au-
thors propose a method for determining whether for
multi-attribute queries one should train independent
classifiers (one for each attribute) or conjunctions of
attributes. Importantly, they identify conjunctions to
train without explicitly training all combinations. We
take a conceptually similar approach but learn how to
determine which “conjunction” classifiers to train (as
opposed to relaying on inter- and intra- class variances)
and apply our method to a broader set of problems.

3. Method

Given a visual composite (e.g ., man holding a
phone) we define the problem of choosing how to model
and train the detector for this composite as strategy se-
lection. We first make the empirical observation that
non-uniform strategy selection can be beneficial (Sec-
tion 3.2). Even though one strategy is dominant on
average, some composites tend to perform better when
modeled and trained using one of the alternative strate-
gies. It is therefore intuitive that a careful selection
of a training strategy per composite can boost perfor-
mance, regardless of the task, as shown in Table 1.
With this observation in mind, we aim to predict for
each composite the training strategy that will result in
optimal performance (Section 3.3). A reliable predic-
tion is the performance measured on a validation set.
However, pre-training all detectors for various strate-
gies and cross-validating across them is computation-
ally expensive. In order to avoid pre-training, we learn
a proxy function using statistical features extracted
from the training samples and validation results of pre-
viously observed composites. Given a new composite,
we apply this function to select its training strategy.

3.1. Base model for detection

We formulate our base model following recent state-
of-the-art methods for detection and classification.
However, the exact form of the model is largely in-
dependent of our main findings. In particular, we rep-
resent each image (or an image patch) i using a fea-
ture vector xi ∈ R4096 from the last fully-connected
layer (fc7) of a CNN network. We then train a detec-
tor using a linear SVM (similarly to the process de-
scribed in [11]), and further calibrate the SVM scores
to obtain probability estimates. The calibration is im-
plemented using Platt scaling [17]: P (yc = 1|xi) =

1

1+eαc(w
T
c xi+bc)+βc

, where αc, βc are the calibration co-

efficients; wc and bc are the learned SVM weights and
bias, respectively, for class c.

For object detection, we use labeled bounding boxes
containing object c as positive samples, and use CNN
adapted for detection tasks [6] to compute xi. For
scene classification, we use labeled full images contain-
ing scene c as positive samples, and a neural network
fine-tuned for scene classification [27] compute xi re-
spectively. In both cases, negative patches/images are
extracted from the training patches/images not con-
taining c. For detection, we perform multiple rounds
of retraining using hard negative mining for further
learning refinement. When applying object detector,
at test time, we use an object proposal scheme [23] to
generate plausible hypotheses.



Note that if we want to build a detector for a rel-
atively complex visual composite entity, e.g ., C =
man sitting, we can do this using one of two ways:
(1) assuming independence, i.e.,

P (yC = 1|xi) = P (yman = 1|xi)P (ysit = 1|xi), (1)

(2) by building a joint detector for the full visual phrase

P (yC = 1|xi) = P (yman sitting = 1|xi). (2)

Detectors involved in (1) have the benefit of being
trained from a larger set of samples, but may need to
capture wider visual variances. Detector (2) has the
benefit of modeling a presumably narrower visual vari-
ance, but could potentially lack sufficient number of
samples to train a good model. As such, we posit that
the performance of the two will be different at runtime,
in general, and one will likely perform better than the
other under certain conditions (see Table 1). Before
studying the benefits of these strategies, we first more
formally define the visual composite constructions that
we use in the remainder of the paper.

3.2. Visual composites

We consider two types of visual composite C ∈ C
consisting of up to 3 parts (or word tokens) of simple
noun phrases: object-attribute or object-relationship-
object phrases. Hence, each part/word token, ci ∈
{O,A,R}, can be a noun from a predefined set of
noun object (or scene) categories O (e.g ., “man”,
“horse”), an adjective from a set of visual attributes
describing objects (or scenes) A (e.g ., “tall”, “bold”,
“open”), preposition and/or verb from a set of pre-
defined object relationships R (e.g ., “in”, “next to”,
“holding”, “riding”). A visual composite is then ei-
ther a pair of object and attribute (e.g., “red hat”,
where {c1 = a = “red” ∈ A, c2 = o = “hat” ∈ O}),
or a triplet of object-relation-object (e.g., “man hold-
ing phone”, where {c1 = o1 = “man” ∈ O, c2 = r =
“holding” ∈ R, c3 = o2 = “phone” ∈ O}).

In general, if we want to detect or ground C, given
an image x, we have a number of options available to
us, as alluded to in the previous section. Specifically,
for “man holding phone”, if we treat each part/token
independently, we obtain traditional formulation [11]:

b
∗
1 ,b
∗
2 = argmax

b1,b2

P (yC = 1|x)

= argmax
b1,b2

P (yo1 = 1|xb1
)P (yo2 = 1|xb2

)P (b1,b2|r), (3)

where b1 and b2 are the bounding boxes for o1 and
o2, respectively, xb1

and xb2
are corresponding CNN

features of the image patches enclosed by these bound-
ing boxes and P (b1,b2|r) is a spatial distribution for
relationship r (e.g ., a Gaussian mixture model [11]),
designed to encode spatial consistency between two ob-
ject patches. Alternatively, the problem can also be ex-
pressed using joint information in the following ways:

= argmax
b1,b2

P (yo1 = 1|xb1
)P (yo2+r = 1|xb2

)P (b1,b2|r), (4)

= argmax
b1,b2

P (yo1+r = 1|xb1
)P (yo2 = 1|xb2

)P (b1,b2|r), (5)

= argmax
b1,b2

P (yo1+r = 1|xb1
)P (yo2+r = 1|xb2

)P (b1,b2|r), (6)

= argmax
b1,b2

P (yo1+r+o2
= 1|xb1∪b2

), (7)

where, for example, P (yo1+r = 1|xb1
) and P (yo2+r =

1|xb2) are classifiers trained to detect “man holding”
and “holding phone” phrases respectively. Note that
Eq.(3)–(7) illustrate different, but equally valid, factor-
izations of the conditional distribution P (yC = 1|x),
resulting in potentially different solutions for b1 and
b2. The main difference among these factorization is
the amount of assumed appearance independence (from
complete – Eq.(3), to no independence – Eq.(7)).

Our overall goal is to determine which of the Eq.
(3)–(7), that determine the learning strategy, would
result in the most accurate model at testing time. Even
more fundamentally, if this choice matters and when?

Training: To train the corresponding classifiers, we
assume that we are working with a fully annotated
dataset DOA of N training images, each image includes
labeled Bi bounding boxes corresponding to objects.
DOA = {(bi,j , (oi,j ,ai,j))}, where i ∈ [1, N ] is the im-
age index and j ∈ [1, Bi] is one of the Bi annotated re-
gions in image i. The variable bi,j ∈ R4 then denotes
the bounding box of the corresponding image region
and the pair (oi,j ,ai,j) denotes the object label oi,j ∈ O
and its (possible empty) set of attributes ai,j,k ∈ A
taken from all possible attributes A. k ∈ [1,Ki,j ] is
the index of the attribute from all Ki,j attributes as-
signed to region j in image i. We use li,j to denote the
object label- attributes pair. For example, for a region
j in image i labeled “tall old person”, the number of
attributes Ki,j = 2 and li,j = (person, {tall, old}).

In addition, each pair of bounding box annota-
tions in a given image i can be associated with a set
of relationship, such that DR = {(bi,j ,bi,k, ri,j,k)}.
For example, annotation “person holding and swing-
ing the racket”, would correspond to ri,j,k =
{holding, swinging}. For scene-attribute scenario, the
setting is somewhat simplified by effectively setting bi,j

to full images, leading to DSA. All images (or image
regions) that are not part of the positive training set
are used as negatives for training a specific classifier.
Overall, we consider the following choices:



– scene-attribute: we choose between P (ys = 1|x)
P (ya = 1|x) and P (ys+a = 1|x) trained with sam-
ples of scene s with attributes a from DSA.

– object-attribute: we choose between a product
P (yo = 1|xb) P (ya = 1|xb) and P (yo+a = 1|xb)
trained with samples of object o with attribute a.

– object-relationship-object: where we choose
among the choices denoted in Eq.(3)–(6) trained
with respective data subsets from DSA and DR.

Evaluation: Table 1 (left two rows) illustrate example
performance results of the independent and the various
joint strategy(ies) for individual object-attribute and
object-relationship-object1 composites. One key obser-
vation is that for certain composites one strategy per-
forms significantly better than the other. Further, no-
tice that both independent and joint training strategies
are useful. In particular note that the optimal stategy
is not necessarily the function of the object, but rather
of the composite as a whole (e.g ., for “street-black”
joint detector is better, where as for “street-paved” in-
dependent detector leads to 22% improvement). This
raises the issue of how one should select the best strat-
egy in each case, which we will address next.

3.3. Predicting Learning Strategy

As no single strategy for training detectors is bet-
ter for all cases, there is a need to choose the optimal
strategy for each composite phrase. One possibility for
determining this is to use a subset of the data for cross
validation. In this case all types of detectors are tested
on the cross validation data and the best strategy is
chosen as the detector. Table 1 shows the results of the
cross validation strategy in (Validation) column, where
“+” designates preference of the cross validation for the
joint strategy and “-” designates preference for the in-
dependent strategy (the value itself measures strength
of preference, which corresponds to the maximum ab-
solute difference between the cross validation perfor-
mance of the independent and the best joint strategy).

Using cross-validation, however, may be extremely
time consuming and error prone. Specifically, for the
case of object-relationship-object phrases we need to
train 4 separate classifiers and evaluate them on a val-
idation set to choose an appropriate strategy. Further,
from a practical point of view, in many cases there may
not be enough data for cross validation which may re-
sult in high variance in strategy selection. To address
these issues, we propose a method for learning how to
choose an optimal strategy without explicitly training
all the detectors. To this end, we propose a simple re-

1For object-relationship-object joint strategy we report the
best performance among 3 joint strategies considered.

gression scheme defined on a set of features extracted
from the training sample sets.

Regression: Our key idea is simple, but surprisingly
effective. We use cross validation on Ctr - a small
fraction of composites (20%–30%), to learn to predict
the preference between the two strategies. We do this
by first training and measuring cross-validation perfor-
mance for this small subset of composites. We then use
a set of features of the corresponding training samples
to regress the difference in cross-validation performance
(the values in the (Validation) column of the Table 1).
The learned regressor can then serve as a predictor on
new composites to choose which strategy to use for the
remainder of (80%–70%) the composites.

Let S = {I, J1, J2, .., JM} denote the set of M + 1
possible training strategies2, where I and {Jm}Mm=1 are
the independent and (possibly multiple) joint strate-
gies, respectively. Let Ps(yC |x) be the resulting trained
classifier for composite C with strategy s. By apply-
ing Ps(yC |x) on a validation set we can obtain vali-
dation accuracy, which we denote Vs,C . Our goal is
to train a regressor to predict Vs,C from the features
of the data sub-set, lets call it DC , used for training
Ps(yC |x) directly. For this we define a feature mapping
fC = F (DC), discussed in detail in the next section. In
practice, we predict the differences VJm,C − VI,C , in-
stead of each Vs,C , learning a linear prediction models,
using Support Vectore Regression (SVR), as follows:

wm = argmin
w

|Ctr|∑
C=1

(fTCw − [VJm,C − VI,C ])2 + λ||w||22, (8)

where the second term is is a regularizer with a weight
λ (we experimentally set λ = 0.01). Simply put, we are
regressing the difference in performance between an in-
dependent and each available joint strategy, measured
on a validation set.

Given the learned regression, when observing a new
composite Cnew, our model makes a selection of the
strategy, snew ∈ S according to the following predic-
tion rule, which no longer requires training of different
strategies for Cnew or evaluation of resulting classifiers
on validation data:

snew =

{
Jm∗ if fTCnewwm∗ > 0

I, otherwise

where m∗ = argmax
m

fTCnewwm.

(9)

The above formulation predicts independent strategy
(I) when it is predicted to outperform all joint strate-
gies, otherwise, joint strategy with largest predicted
margin of improvement (J∗m) is returned. Now we turn
our attention to formalizing the features fC .

2e.g., object-attribute pairs share the same set of strategies.



Performance Prediction

Composite Phrase Independent Joint Validation Our Model Improvement

laptop-white 0.353 0.409 +0.173 -0.064 -15.8%

street-black 0.375 0.608 +0.133 +0.005 +62.1%

street-paved 0.594 0.486 -0.091 -0.092 +22.2%

hair-black 0.209 0.234 +0.030 +0.022 +11.9%

tracks-metal 0.383 0.414 +0.054 +0.001 +8.1%

bench-wood 0.298 0.196 -0.087 -0.025 +52.0%

man-holding-phone 0.241 0.265 +0.011 +0.018 +9.9%

man-behind-man 0.203 0.230 +0.047 -0.032 -13.3%

woman-next to-bus 0.439 0.328 -0.046 -0.022 +14.0%

Table 1: Examples of performance of the two learning strategies, joint or independent, for detectors on various
visual phrases in SceneGraph dataset. Note that there is no clear strategy that outperforms the other on all
phrases. Third column shows cross validation prediction and our method’s predictions are in the fourth.

Feature extraction: Naively, one may think that
number of samples is a sufficient indicator of which
training strategy maybe useful (i.e., few available sam-
ples implies independence, many samples are indicative
of the joint preference). While number of samples is in-
deed a useful feature, it, by itself, is not sufficient as we
will show in experiments (see Fig. 2 (Threshold)). One
simple counter-example to explain why, is duplication
of sample data (e.g ., having large number of duplicate
or nearly duplicate training samples is no more infor-
mative than having a single sample).

We hypothesise that the topology of training exam-
ples for a given composite contains informative cues for
the strategy selection. Our feature selection rises from
the intuition that it should capture the trade-off be-
tween cardinality and compactness of the samples, as
suggested by [18]. Recall that Dc is positive data sub-
set for a single composite part. We use Dc to extract a
feature vector fc = [fc,1, fc,2, ..., fc,6] ∈ R6 comprising:

– Number of samples: fc,1 = |Dc|
– Compactness of samples, represented as statistics

extracted from pairwise cosine distances:

r = {|xi − xj |}, i 6= j,x ∈ Dc

encoded by fc,2 = max(r), fc,3 = min(r), fc,4 =
med(r), fc,5 = mean(r).

– Sample entropy, estimated using Nearest neigh-
bour distance approximation:

fc,6 =
1

N

N∑
i=1

ln(Nρi) + ln2 + γ,

where ρi = minj 6=i|xi − xj |; γ is Euler const.

We repeat this process for each of the parts and
corresponding pairwise composites and concatenate the
resulting features. For example, for C = {white, boat}
we have F (DC) = [fboat, fwhite, fwhite+boat].

The last column of Table 1 shows the predictions
made by the learned regressor. Note, that the regressor
was trained on composites other than the ones listed
in the table, so it has not seen these composites during
training. Even so, the regressor is able to predict the
sign (which corresponds to the preference of strategy)
in 7 out of the 9 cases and in the two cases where it
didn’t, the difference between the strategies was small.

4. Experiments

Datasets: We evaluate our method for variety of de-
tection and classification tasks. We use two public
datasets. For detection and grounding, we use Scene-
Graph dataset [11]; for scene classification, SUN [16].

SceneGraph dataset [11] consists of 5, 000 images
containing large number of object, attribute and re-
lationship annotations (see [11] for statistics). We use
4, 000 images for training and 1, 000 for testing using
the split prescribed in [11]. We test our model in object
localization task on object-attribute, object-attribute-
relationship and object-relationship-object composite
queries. To quantitatively compare performance we
report both median and mean Intersection over Union
(med IoU and mean IoU) as well as the fraction of in-
stances with IoU above various thresholds (IoU@t).

SUN dataset: We use SUN Attribute dataset [16]
comprising 14, 340 images from 707 scene categories
and annotated with 102 discriminative attributes. In
addition, to get more samples for each scene category,
we augment each scene class in SUN Attribute with up
to additional 80 images from the full SUN dataset (less
if 80 is unavailable). We test our model in the context
of scene-attribute retrieval task, where given a scene-
attribute classifier we rank all test images in terms of
their relevance to this query. We report performance
using Mean Average Precision (mAP) computed on 100
top-ranked images. We use 5 images from each scene-
attribute composite pair for testing, rest for training.



Baselines: We implemented a number of baseline se-
lection strategies in order to illustrate the benefits of
our regression-based selection approach:

– Optimal: An oracle selection that results in the high-
est performance at run-time. This is an upper bound
on improvement in performance that can be achieved
by choosing best strategy per composite.

– Cross-validation: Selection that consists of pre-
training all strategies per composite, then selecting one
that scores best on the validation set.

– Independent: Using an independent detector strategy
for each and every composite. For object localization
this is equivalent to model in [11].

– Joint: Using a joint phrase [20] detector for each and
every composite.

Where appropriate, we also use additional baselines
consisting of threshold selection strategy on the num-
ber of joint samples and strategy proposed in [18].

Implementation and setup: For all baselines we use
the same image features, form of the detector, and the
training procedure as we do for our regression-based
method. We evaluate our method using 3-fold cross-
validation, where regressor is trained on 30% of all
composites, then evaluated on the rest 70% to choose
among the independent and joint variants. The chosen
variants are then trained and tested3; reported results
are averaged across the 3-folds. For stability we repeat-
ing the experiments multiple times and average. Since
it doesn’t make sense to train a joint detector with very
few samples, we prune composites with less training ex-
amples than a certain threshold. We plot performance
as a function of this threshold (otherwise we use all
composites with more than 3 joint examples).

4.1. Detection and Retrieval on SceneGraphs

Object-Attribute Detection: We extract a total of
2, 295 (|C| = 2, 295) object-attribute composites, most
frequently appearing in the SceneGraphs data-set [11].
After choosing a joint/independent strategy for each
composite, we train a classifier accordingly. The detec-
tor works by first computing a set of object bounding
box proposals, using [23], and then evaluating the prob-
ability of each proposal containing an object-attribute
pair using the trained classifier. We report Average IoU
over top 5 most confident detections in Fig. 2 (left).

From Figure 2, we can see that when there are many
composites with low number of samples, the indepen-
dent strategy performs better on average. This trend
changes as the number of joint samples increases from
left to right. Note that the potential gain from se-
lecting the correct strategy is significant, as shown by

3Only final testing is done on the test split, rest on training.

Figure 2: Detection Performance: for compos-
ite Object-Attributes (left) and Object-Relationship-
Object (right). Performance is measured in Mean IoU.
Our regression-based selection method learned from
30% of composites is denoted by “0.3 learned”. Per-
formance is reported as a function of threshold used
to filter out composites with fewer samples than the
threshold shown along the x-axis.

the optimal curve. Learning from 0.3 of the data, we
reach performance of cross-validation at a fraction of
computational cost. Using a bigger portion of data
for training does not lead to significant improvement
(see Supplementary Material). While average improve-
ment may appear small, we do get large improvements
for certain individual composites. For example, in Ta-
ble 1 we show that improvement for “street-black” is
62.1%; for “bench-wood” 52%. We can see a degra-
dation in performance as we focus on composites with
larger number of samples (a more atypical case), due
to the decrease in the number of training composites,
which results in regressor overfitting.

Object-Relationship-Object Detection: We con-
sider 4, 030 composites C = {o1, r, o2} appearing both
in train and test set. This results in 303 {o1 + r}
pairs (e.g ., man-holding) and 317 {r + o2} pairs (e.g .,
holding-phone). In addition to an independent strat-
egy in Eq.(3), we consider 3 joint strategies, listed in
Eq.(4)–(6), thus training 3 different regressors. We also
train a spatial relationship term P (b1,b2|r) for each
relationship r as discussed in Sec. 3.2. We again use
selective search to obtain object proposals. We evalu-
ate pairs of object proposals by evaluating a product
of object classification terms and the spatial term. We
measure performance using average IoU for the object
pair. We weigh top 5 pairs using corresponding prob-
abilities. Results are in Fig. 2 (right).

We see a similar trend to the previous experiment,
where our model is comparable to the cross-validation
baseline. Notable difference is that for object-object re-
lationships joint strategy seems to be preferred; this is
consistent with results from Sadeghi and Farhardi [20].
We can observe that cross-validation fails to predict
test accuracy well (optimal selection is much higher).



Threshold
Experiment Joint @0.25 @0.5 @0.75 Independent Multi-Att[18] Our Method

obj-att 0.234 0.238 0.243 0.247 0.249 0.234 0.252

obj-rel 0.271 0.270 0.270 0.269 0.266 - 0.274

scene-att 0.155 0.156 0.157 0.159 0.161 0.155 0.167

Table 2: Comparison of selection strategies: Our approach consistently outperforms all baselines in all
experiments. For obj-att and obj-rel the performance is reported in Mean IoU and for scene-att in mAP.

Obj-attr
Independent/[11] Joint Our method

Med IoU 0.059/0.026 0.054 0.064

R@0.1 0.466/0.447 0.463 0.471
R@0.3 0.315/0.341 0.315 0.322
R@0.5 0.188/0.234 0.190 0.193

Obj-attr-rel
Independent/[11] Joint Our method

Med IoU 0.075/0.067 0.066 0.082

R@0.1 0.476/0.476 0.473 0.483
R@0.3 0.321/0.357 0.321 0.328
R@0.5 0.188/0.239 0.194 0.196

Table 3: SceneGraph retrieval: Illustrated using
only object and attributes (top) and including relation-
ships (bottom). For independent baseline we report our
re-implementation and original results [11].

This, in turn, has a big negative effect on our model.

Retrieval and Comparison to [11]: For more di-
rect comparison to [11] we reproduce the object local-
ization evaluation setup in [11]4. We are given a test
image, a set of object proposals and a corresponding
query represented as a Scene Graph, i.e., object nodes,
possibly described by attributes, connected by relation-
ship edges. Our task is one of grounding object nodes
with respect to bounding box proposals, which is for-
mulated as inference in the Scene Graph induced CRF.
We train each {o, a} and {o1, r, o2} using the strategy
selected by our model, and compare to Independent
(which is equivalent to [11]), and Joint strategies ap-
plied to all composites. Results, using the metrics in
[11], are reported in Table 3 for both object-attribute
and object-attribute-relationship queries. We note that
while out results for performance of [11] are slightly
lower at higher IoU precision, they are overall (in terms
of Median IoU) much better than what was reported
in [11] (by as much as 125% for obj-attr).

We observe a consistent improvement when using
our model, compared to both uniform joint and inde-
pendent strategies. As shown in Table 3, we improve
median IoU by 8% when using only objects and at-
tributes, and by 9% when using full scene graphs. Some
visual examples of improved localization are shown in
Supplemental Material.

4We reimplemented using guidelines of the author.

4.2. Scene classification on SUN dataset
We consider 5, 071 (|C| = 5, 071) scene-attribute

composites, C = {s, a}, found in the SUN Attribute
dataset. Results of scene-attribute query retrieval are
illustrated in Table 2 (bottom row). A more thorough
report is given in the supplemental material, where we
also show performance of regressors trained with 0.1,
0.3, and 0.5 fraction of the composites (tested on the
rest). These experiments illustrate that we can out-
perform baseline strategies (and nearly match cross-
validation performance) with as little as 10% training.

Learned Selection Strategy Evaluation: We com-
pare our selection strategy to a number of alternatives,
and illustrate performance across datasets and all tasks
in Table 2. As can be seen, our method consistently
outperforms uniform independent and joint selection,
as well as multi-attribute selection approach of [18].

One may argue that simply using a threshold on the
number of samples and choosing to train the joint de-
tector when enough samples are available is a simple
and effective strategy. We compare to such strategies
using different thresholds (“Threshold” columns in Ta-
ble 2) and show that our method outperforms these as
well. These results illustrate that number of samples
by itself is an insufficient criterion, and there is a need
to weigh in the sample statistics. This is precisely what
our regression model learns.

It should be noted that our performance, although
achieves small absolute gains, is very close to cross-
validation result (which is effectively our upper bound)
across different datasets and experiments.

Computational efficiency: Our method has a negli-
gible cost for training and selection prediction. For ex-
ample, it took us 5 minutes on average to cross-validate
performance of a single composite detector, and less
than 2 seconds to extract features from a single com-
posite and do prediction (a saving of 99.3% of time).

Conclusions: In this paper, we observed that a in-
dividual selection of training strategy for visual com-
posites can be highly beneficial. We showed that an
effective selection proxy function can be learned with
small amount of data, achieving high (similar to cross-
validation) performance at low computational cost. We
note that more sophisticated variants of Eq.(8) may
further improve performance and should be explored.
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