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Abstract

Channel-aware scheduling strategies - such as the CDF scheduler (CS) algorithm - provide an effective mechanism for
utilizing the channel data rate for improving throughput performance in wireless data networks by exploiting channel
fluctuations. A highly desired property of such a scheduling strategy is that its algorithm is stable, in the sense that
no user has incentive ”cheating” the algorithm in order to increase his/hers channel share (on the account of others).
Considering a single user we show that no such user can increase his/hers channel share by misreporting the channel
capacity. In contrast, considering a group of users, we present a scheme by which coordination allows them to gain
permanent increase in both their time slots share and in their throughput on the expense of others, by misreporting
their rates. We show that for large populations consisting of regular and coordinated users in equal numbers, the ratio
of allocated time slots between a coordinated and a regular user converges to e − 1 ≈ 1.7. Our scheme targets the
very fundamental principle of CS (as opposed to just attacking implementation aspects), which bases its scheduling
decisions on the Cumulative Distribution Function (CDF) of the channel rates reported by users. Our scheme works
both for the continuous channel spectrum and the discrete channel spectrum versions of the problem. Finally, we
outline a modified CDF scheduler immune to such attacks.

Keywords: Wireless, Cellular, MAC layer, CDF, Scheduling, Fairness, DDoS, Attack, Exploit.

1. Introduction

High-speed wireless networks are becoming increas-
ingly common and along with that the strategy of
scheduling the high-speed data - which is vital to the
performance of moderns wireless systems - has become
the subject of active research. The modern wireless
networks standards such as HSPDA [1] and EV-DO
[2] [3] allow new generation of channel aware sched-
ulers - such as the Proportional Fairness [4] [5] and the
CDF scheduler [6] - which improve throughput perfor-
mance by exploiting channel fluctuations while main-
taining fairness between the users.

The CDF Scheduler (CS) makes scheduling decisions
based on the Cumulative Distribution Function (CDF)
functions of the users in such way that every time slot
the user whose rate is the least probable to become
higher is scheduled for transmission. An important
property of this scheduler is that it statistically allocates
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all users an equal number of slots while smartly utilizing
the knowledge of channel capacity to dynamically select
at every moment the more attractive (higher capacity)
users. A distinctive feature of this algorithm is that it al-
lows to predict the exact throughput for each user based
on his/hers1 CDF alone, regardless of changes in the
channel rate distribution of other users. These features
and its simple notion of fairness (equal time share) make
CS an attractive alternative to the Proportional Fairness
Scheduler (PFS) [4]. Recent studies [7] [8] revealed the
vulnerability of PFS to delays/jitter and loss of through-
put caused by malicious users by providing false chan-
nel capacity reports. In this paper the vulnerability of
the CDF scheduler to threats of non-conforming oppor-
tunistic users as well as malicious users is investigated
for the first time.

One of the main roles of a resource allocation mech-
anism is to ensure fairness of the allocation under the
assumption that every user aims at increasing his own
allocation. Furthermore, it is highly important that the

1From now on we use ”he” and ”his” to mean ”she/he” and
”hers/his” for the sake of reading flow.
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scheduler will be resilient to users who may try to in-
crease the resources allocated to them by not fully con-
forming with the protocol rules.

The objective of this work is to study this problem.
Namely, whether a user, or a group of users, can mis-
lead the CDF scheduler by providing false channel ca-
pacity reports and use it to increase the amount of re-
sources allocated to them. Every modern channel-aware
scheduler must allow a temporary state of unfairness in
order to utilize a temporary exceptionally good chan-
nel condition of one of the users. Nevertheless, it is
still expected that in the long run - that is, in the steady
state - fairness is enforced. For example, in [7] the au-
thors presented an attack on PFS in which a starved user
can suddenly report an exceptionally good channel con-
dition and temporarily be granted high priority, which
cause other users to experience jitter. However, in the
long run, the fairness that PFS is meant to ensure, is
kept. In this work, we show that the CDF scheduler can
be attacked by malicious and selfish users who gain a
permanent advantage over users. That is, the time share
fairness that the CDF scheduler is meant to ensure is not
kept even in the steady state. We show that this is a fun-
damental weak point of the CDF scheduler regardless of
its exact implementation.

To this end we show that the CDF algorithm is re-
silient against ”attacks” produced by a single user. That
is, a single user can increase neither the number of slots
nor the bandwidth allocated to him by providing mis-
leading information about his channel capacity. We then
show, that nonetheless, a group of coordinated users
which collaborate with each other can increase both the
number of slots and the bandwidth allocated to each of
them. That is, while the scheduler is designed to counter
an independent selfish behavior of a single user, its de-
sign does not take into account the possibility of a co-
ordinated group of users. The capacity announcement
strategy used by the coordinated users is very simple
and requires only knowledge of each other’s capacity.
We conduct the analysis of this strategy and derive its
performance gains. The analysis is carried out both for
the the continuous rate distribution model (Section 3)
and the discrete rate distribution model (Section 4). Our
results show that the gain that such non-conforming
users can achieve may be as high as 28% in a typical
system configuration (30 users). Furthermore, the ratio
between the slot allocation of a coordinated user and a
regular user can reach e − 1 ≈ 1.7. We further con-
sider coordinated malicious users. These aim at reduc-
ing the performance the regular users, not caring about
their own performance. We show that the channel share
loss that the regular innocent users suffer can be as high

as 48% in a typical system configuration.
The attack algorithm we show exploits the stochas-

tic worst case traffic pattern of multiple users that can
be applied to the system. This type of attack is demon-
strated in the Reduction of Quality (RoQ) attacks papers
[9, 10, 11]. RoQ attacks target the adaptation mecha-
nisms by hindering the adaptive component from con-
verging to steady-state. This is done by sending - from
time to time - a very short burst of surge demand imi-
tating many users and thus pushing the system into an
overload condition. Using a similar technique, Kuz-
manovic and Knightly [12] presented the Shrew Attack
which is tailored and designed to exploit TCP’s deter-
ministic retransmission timeout mechanism. Another
example of an attack exploiting the stochastic worst case
is given in [13, 14]. There it is shown that Weighted Fair
Queueing (WFQ), a commonly deployed mechanism to
protect traffic from DDoS attacks, is ineffective in an
environment consisting of bursting applications such as
the Web client application. The paper [15] shows attack
on the SSL handshake, by requesting again and again
hard SSL requests.

The rest of the paper is organized as follows: After
model and preliminaries given in Section 2, Section 3
analyzes non-conformist users under the continuous rate
distribution, and Section 4 does it under the discrete rate
distribution. In Section 5 we analyze the loss for regular
users by coordinated and malicious users in the practical
discrete model. Finally, in Section 6 we outline a modi-
fied CDF Scheduler immune to selfish or malicious be-
havior. Note that a short abstract of this work has been
presented at [16].

2. Assumptions, Model and Preliminaries

In the scheduling models discussed in this work, time
is slotted to slots t = 1, 2, ... and the possible channel
rates are arbitrary and non negative. The rate at which
user k can transmit at time slot t is given by Rk(t). Rk(t)
is distributed according to random variable Rk associ-
ated with user k, and whose CDF is FRk (r) = Pr[Rk ≤
r]. Rk(t) is a stationary random process assumed to be
independent of Rk(t′) for any t , t′ and of R j(t′) for any
j , k and any t′.

At each slot t, each user k announces to the sched-
uler his actual value Rk(t). The scheduler may compute
the distribution FRk (r) from the past reports of user k.
Note that we demonstrate the vulnerability of CS with-
out targeting a weak point in the inferring mechanism,
therefore throughout the paper we assume the schedular
has the precise CDF functions of the channel rates re-
ported by users. At time t, the scheduler can use both
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the studied FRk (r), k = 1, ...,K and the current user rates
Rk(t), k = 1, ...,K to decide to which user to transmit at
slot t. The rate at which the server will transmit to the
selected user, say k, is Rk(t).

3. The Basic Problem: Dealing with Continuous
Rate Distributions

In this section we assume that all the channel rate dis-
tributions are continuous, that is the distribution func-
tions do not contain mass values (i.e. FRk (r) is differen-
tiable and Pr[Rk = x] equals zero for every x). Later, in
Section 4, we will deal with discrete (and mixed) prob-
ability functions.

3.1. Scheduling Algorithm

The basic CDF Scheduler (CS), aiming at dealing
with continuous distributions, was introduced in [6] and
operates as follows. Recall that Rk(t) is the actual chan-
nel capacity of user k at time slot (TS) t and let k∗(t) be
the user selected for data transmission. The scheduler
selects k∗(t) to be the user for which P[Rk > Rk(t)] is the
smallest among all users. That is, the user whose rate is
the least probable to become higher, namely:

k∗(t) = argmaxk{FRk (Rk(t))},

where FRk (r) = P[Rk ≤ r]. The original sched-
uler definition [6] includes the option to assign each
user a special weight wk according to k∗(t) =

argmaxk{FRk (Rk(t))
1

wk } but for the sake of simplicity
we omit the weight factor and assume the Base Sta-
tion (BS) serves the users equally. For notational sim-
plicity we define Vk(t) = FRk (Rk(t)) and since k∗(t) =
argmaxk{Vk(t)} we will refer to Vk(t) as the priority
value assigned to User k at TS t.

The CDF scheduler relies on a well-known property
of CDF functions to ensure time share fairness: The
CDF function of every continuous random variable X is
distributed uniformly, FX ∼ Uniform(0, 1). That is, the
priority value of every user k is distributed uniformly,
Vk ∼ Uniform(0, 1), regardless of the distribution of
Rk. Therefore, all users have equal chance to obtain the
highest priority value and hence time-share fairness is
maintained.

3.2. Misreporting of channel rates cannot benefit a sin-
gle user

The idea of users reporting fake channel rate to ex-
ploit the properties of channel aware scheduler was al-
ready introduced in [8]. The users can fake channel

rate by modifying their laptop’ 3G PC cards, by either
through the accompanying software development kit or
the device firmware. And the providers cannot detect it,
even if they attempt tamper-proof technique [8]. Never-
theless, we prove that under the CDF scheduler, it is im-
possible for one user to benefit from an additional time
share or throughput by misreporting his channel condi-
tion. We show that this result stems from the funda-
mental characteristics of the CDF scheduler which are
common to both the continuous and the discrete models
(Section 4).

Theorem 1. If a user has no knowledge on the reports
of others, then no strategy can benefit him with long-run
additional time share.

Proof: The CDF function of every continuous random
variable X is distributed uniformly, FX ∼ Uniform(0, 1),
regardless of its distribution. Therefore, since the chan-
nel condition reports issued by the users are independent
of each other, the priority value of every user is a ran-
dom number between zero and one. Hence, every user
has an equal probability to win a time slot. Therefore,
all users receive (in the steady state) the same amount
of time share 1

N where N is the number of users in the
system. �

Note that the proof for Theorem 1 does not hold for a
user who coordinate with other user(s), because then the
channel reports of the users are no longer independent.
In addition to Theorem 1, under both continuous and
discrete models, there is no misreporting strategy that
allows a user to achieve higher throughput than what
he would get by always reporting his real rate. Due
to its length, the formal proof of this claim (under the
discrete model, which is the model used in practice) is
placed at the Appendix. Nevertheless, we give here an
intuitive explanation for the validity of this claim (under
both continuous and discrete models). A false reports
strategy can involve reporting a fake high rate when the
real rate is lower and vice versa. Reporting a fake high
channel rate might increase the priority values in some
of the time slots in which the real rate is low. How-
ever, it makes the high rates reported by the user less
exceptional than they really are and hence decrease the
priority value when the user truly experiences and re-
ports a high rate. Such behavior is not beneficial since
increasing the priority value of some low-rate time slots
on the expense of the priority value of high-rate time
slots, never benefits the user. Reporting a rate lower
than the real rate has also both negative and positive ef-
fects. The positive effect is that such behavior makes
other time slots in which the user report the truth about
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his high rate look more exceptional. Hence, the user
will have an increased priority value in these time slots.
The negative effect is that in the time slots in which he
fakes a low rate, the user has a lower priority value than
if he reported the truth. In addition, even if he is as-
signed for transmission, the transmission rate will fit his
report and will be lower than what his real channel con-
dition can support. In the formal proof we show that
this negative effect shadows the positive effect. Hence,
if to summarize it in one sentence, scarifying some of
the high rate slots to increase the priority value in the
rest never pays off. Finally we can conclude that since
no strategy can benefit the user with either additional
throughput or time share – the best strategy for one user
is to always report his real rate.

3.3. Coordinated Users Strategy

We next deal with a group of non-conforming oppor-
tunistic users who coordinate their action and reporting
in order to increase their time and throughput shares.

In the previous section we explained that the nega-
tive effects of a misreporting strategy exceed its benefit
when one user acts on his own. In this section we de-
scribe a cooperation scheme in which a group of users
can gain additional time share and throughput while
avoiding the negative effects that reporting a false chan-
nel condition may cause.

Let C be a group of |C| = L coordinated users and
N is the number of additional regular users in the net-
work. Each one of the coordinated users knows if
his rate is the least probable to be higher (and there-
fore will get the highest scheduling priority) in C be-
fore reporting to the BS. Let c∗(t) be the user with the
highest CDF value in the group in time t. Formally,
c∗(t) = argmaxc{FRc (Rc(t))} where c ∈ C. The report-
ing strategy is simple: at time slot t user c∗ will be the
only one acting normal (reporting his real channel rate
Rc∗(t)) while all others report zero.

The users share their CDF value, so each user knows
if he is c∗ or not. The coordinated users strategy can
be implemented using a low bandwidth medium/side-
channel that allows the users to share this small amount
of information. For example, a big factory using a des-
ignated private (low rate and cost) wireless network to
coordinate the access points used by its employees in
order to gain more throughput to its users. Note that
in Section 5 we describe a malicious strategy that does
not require any communication between the users dur-
ing the attack and causes even a greater damage to the
system than the coordinated strategy described here.

3.4. Analysis of the Coordinated Users Share

Let R′c be the R.V. of the reported channel rate by user
c when he follows the coordination strategy. Recall that
Rc(t) is the real channel rate of user c at TS t, therefore
R′c = Rc if the user behaves normally.

Lemma 1.
FR′c (r) = G(FRc (r)) (1)

where G(x) = L−1
L +

1
L xL and c ∈ C.

Proof: Let Er be the event where user c ∈ C reports to
the BS channel rate less than r (Rc(t) < r). Let WIN be
the event where user c is the chosen user in C to report
his real channel rate, therefore:

FR′c (r) = (1 − P[WIN])P[Er |¬WIN] + P[WIN]P[Er |WIN] (2)

Every time slot each coordinated user has an equal
probability to be the one reporting his real channel rate,
therefore P[WIN] = 1

L . If c is not chosen to report his
real rate, then he reports minimal channel rate, therefore
for every r, P[Er |¬WIN] = 1. Now all is left is compute
P[Er |WIN].

Let R.V. Y be Y(t) = max j{FR j (R j(t))| j ∈ C}, since
FR j is CDF then P[FR j < x] = x and we get P[Y <
y] = yL, this is true regardless of the ID of j for
whom FR j (R j(t)) = Y(t), therefore P[Y < y] = P[Y <
y|WIN] = yL. According to the strategy, if c reports
less than r and he is the chosen user (Event Er

∧
WIN)

then his real channel rate – Rc(t) – must be less than r
which means that FRc (Rc(t)) < FRc (r). Given WIN, then
FRc (Rc(t)) = max j{FR j (R j(t))| j ∈ C} = Y(t) and accord-
ing to what we just showed we get (Er

∧
WIN) ⇐⇒

FRc (Rc(t)) < FRc (r) ⇐⇒ (Y(t) < FRc (r)) and we
get P[Er |WIN] = P[Y(t) < FRc (r)] = (FRc (r))L since
P[Y < y|WIN] = yL as we showed earlier. According
to Equation 2 and the conditional results we showed we
get Equation 1. �

Recall that Vc(r) = FRc (r) is the priority value of user
c for reporting channel rate r to the BS when he behaves
normally (always reporting his real channel rate). Now
let V ′c(r) = FR′c (r) be the priority value he gets for r
when following the coordination strategy, then accord-
ing to Lemma 1 we get that:

V ′c(r) = G(Vc(r)) (3)

Before we analyze the benefit from coordination, we
first prove that it can never harm (and hence only bene-
fit) the coordinating users.
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Theorem 2. User following the coordination strategy
will still win every time slot that he would have won
when if he behaved normally. Therefore, his throughput
and time share can only be increased when following
the coordination strategy.

Proof: Assume user c0 obtains the highest priority
value when all the users in the system behave normally.
Therefore, c0 = k∗(t) = argmaxk{Vk(Rk(t))}. Since also
c0 = c∗(t), when following the strategy, c0 will be the
user from C reporting his real rate in this time slot. A
simple function analysis can show that G(x) > x for
x ∈ (0, 1). Therefore, according to Lemma 1, the pri-
ority value he gets V ′c0

(r) = G(Vc0 (r)) is greater than
Vc0 (r) which is greater than the priority values of all
other users. Therefore, he still obtains this time slot
when following the strategy. �
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Figure 1: The Y-axis is the CDF value evaluated by the base station
(FR′c (r)) as a function of the real CDF values that would have been
evaluated without coordinating with other users (FRc (r)).

Fig. 1 depicts the gain from following the coordina-
tion scheme based on Eq. 1. For example, let r0 be a rate
with a corresponding CDF value of FRc (r0) = 0.4. That
is, in reality, 40% of the time the channel rate of the user
is r0 or lower. For normal users, who always report their
real rates, the scheduler evaluates their real CDF value
FR′c (r) = 0.4 as the solid curve (labeled No Coordina-
tion) shows. If the user coordinates with another user,
L = 2, then, as the dotted curve show, the scheduler
evaluates a CDF value of 0.58 instead of 0.4. As seen
in the dashed curve, L = 5, when he cooperates with
four other users, his priority value will be 0.802 instead
of 0.4. As explained in the proof of Lemma 1, when a
user coordinates with L − 1 other users, he is expected

to report a zero channel rate L− 1/L of the time. There-
fore, when he finally reports a non-zero rate r > 0, then
FR′c (r) = Prob(R′c < r) > L−1/L. This explains why the
values of the non-solid curves in Fig. 1 are greater than
L−1/L. For example, assume a system with three users,
U1,U2 and U3. If U1, who always report his true rate,
has a CDF value of 0.4, what is the probability that he
will be assigned with the time slot? In the case where U2
and U3 are regular (non-coordinated) users, the prob-
ability that both of them have priority value that does
not exceed 0.4 is 0.42 = 16%. However, if U2 and U3
are coordinated, then one of them is going to report his
real rate, which will be given with a CDF value higher
than 0.5 regardless of the rate he reports. Therefore, if
U2 and U3 are coordinated,the probability of U1 to win
the time slot with a CDF value of 0.4 is 0% instead of
16%. To conclude, the above results show how users in
a coordinated group systematically increase their prior-
ity values. In the following theorems we show how this
advantage translates into a larger time share and more
throughput.

Theorem 3. In a network consisting L + N users of
which L are coordinated, the time share fraction ded-
icated to the L coordinated users (jointly) depends only
on L and N (regardless of the channel rate distributions
of any of users) and is given by:

L
N + 1

1 − (
L − 1

L

)N+1 . (4)

Proof: First we make few definitions and short calcula-
tions to be used later. Let R.V. W be the maximal pri-
ority W(t) = maxc{Vc(Rc(t))}. Since P[Vc < x] = x, we
get P[W < w] = wL. Therefore, the probability density
function (PDF) of W is fW (w) = (P[W < w])′ = L·wL−1.

Let R.V. B(t) = maxn{Vn(Rn(t))}, where n is one
of the regular users, be the highest priority among the
regular users and R.V. A = maxn{V ′n(Rn(t))} be the
highest priority among the coordinated users. Then,
from Equation 3 we get that A = maxn{G(Vn(Rn(t)))}.
In addition, since G is monotonically increasing, then
maxn{G(Vn(Rn(t)))} = G(maxn{Vn(Rn(t))}) and we get
A = G(W).

According to that we get:

P[B < A] =

∫ 1

w=0
fW (w) · P[B < A|W = w]dw

=

∫ 1

w=0
L · wL−1 · P[B < G(w)]dw.

The probability that all regular users will have priority
less than a is P[B < a] = aN , then P[B < G(w)] =
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(G(w))N and we get:

P[B < A] =

∫ 1

w=0
LwL−1

(
L − 1

L
+

1
L

wL
)N

dw

=

∫ 1

w=0
LwL−1 ·

N∑
i=0

(
N
i

)
(L − 1)N−i

LN wLidw

=

N∑
i=0

(
N
i

)
· (L − 1)N−i

LN−1

∫ 1

w=0
w(i+1)L−1dw

and since
∫ 1

w=0 w(i+1)L−1dw = ((i + 1)L)−1 we get:

P[B < A] =
N∑

i=0

(
N
i

)
(L − 1)N−i

LN(i + 1)
.

Hence, we receive that

P[B < A] =
L

N + 1

1 − (
L − 1

L

)N+1 (5)

�
This result now allows us to evaluate the ”inequality”

in time slot allocation between a coordinated user and a
regular user. This ”inequality” can be evaluated by the
ratio between the slot shares of these users, which as
shown next, can be very high:

Corollary 4. Let C share and Rshare be the time share of
the coordinated users and regular users respectively.
When N = L − 1, then limL→∞C share = 1 − e−1 and
limL→∞ Rshare = e−1. This means that limL→∞

Cshare

Rshare =

e − 1 ≈ 171% although this ratio - which equals L/N =
L/(L− 1) under normal conditions - should converge to
100%.

Theorem 5. In a network consisting L + N (in the con-
tinuous model) users of which L are coordinated, the av-
erage throughput (per time slot) of a coordinated user c
is given by:

N∑
i=0

(
N
i

)
· (L − 1)N−i

LN

∫ 1

w=0
w(i+1)L−1 · F−1

Rc
(w)dw, (6)

where F−1
Rc

(w) is the inverse function of FRc , the CDF
of the real channel rate distribution.

Proof: The proof is very similar to the proof of Theorem
3, we will skip the identical parts in the proof. Assume
A, B and W as defined in the proof of Theorem 3. Let
R.V. D be the rate that user c receives (at some time slot
t). If W = w then user c gets throughput from the BS

only if B > A (this is a time slot which is obtained by
a user from C). In addition, c has to be the user chosen
among the coordinated users to transmit his real channel
rate (happens with probability 1

L ). When W = w and c
is the chosen user, then FRc (r) = w therefore his the rate
in this time slot is given by F−1

Rc
(w), therefore we get:

∫ 1

w=0
fW (w) · P[B < A|W = w] · 1

L
F−1

Rc
(w)dw.

Continuing the calculations in the same manner as in
the proof of Theorem 3 until the last equation which
consisting the integral, will give us Equation 6. �

3.5. Evaluation and Discussion
In Figure 2 we evaluate the relative benefit in time

slots a coordinated user gains from the coordination
strategy; this is relatively to what he would get ( 1

N+L )
if he did not coordinate. The figure depicts this rela-
tive benefit as a function of the number of coordinated
users L (given that the total number of users is fixed
N + L = 30). One may observe that the relative bene-
fit is maximized at L = 11, implying that a coalition of
11 coordinated users has only a little incentive adding
more users to the coalition. The relative benefit per user
obtained is 28%.
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Figure 2: Y-axis is the additional time share (in percents) that a coor-
dinated user gains when he takes part in a coordinated group of size L
(X-Axis). The results show that when there are 30 users in the system,
participating in a coordinated group of 11 users is the most beneficial
and increases the time share of the user by 28%.

When L = N + 1 - which happens approximately at
L = 15 in Figure 2 - the time share of the L users when
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behaving normally is given by L
2L+1 and converges to

1
2 . Corollary 4 pointed out that when L = N + 1 the
time share obtained by the coordinated users converges
to 1 − e−1 instead of 1

2 , means a coordinated user bene-
fits from an additional time share of (1 − e−1)/( 1

2 ) − 1 =
26.4% which is close to the result at L = 15 which
equals 25.3%. Recall that according to Theorem 3 these
results are valid for every system with 30 users regard-
less of the channel rate distributions of the users.
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Figure 3: Maximal time share (percents) that one user benefits from
following the coordination strategy as a function of the total popula-
tion in the system (X-Axis).

In Figure 3 we evaluate this maximal benefit as a
function of the population size (N + L varies). One
may see that this maximal benefit per user (of the coali-
tion) monotonically increases with the population size
and approaches 30% at large populations.

According to Theorem 2 the throughput of the co-
ordinated users can only be increased. The throughput
result for each user can be calculated according to The-
orem 5 and depends on the user’s specific distribution of
channel rates and can be different for different users in
the coordinated group. The throughput gain for a coor-
dinated group is given in the evaluation for the discrete
model.

4. CS with discrete channel rates range

4.1. Scheduling Algorithm

The original version of the CS algorithm ([6]) as-
sumed continuous channel rate values even though prac-
tical systems use discrete values. We now summarize

the extension of the CS algorithm to the case of discrete
channel rate values which appears in [17]. Again, to
keep the calculations simple, we assume all users have
the same weight and exclude the weight factor.

In the discrete model Rk(t) ∈ {r1, r2, ..., rM} where
r1 < r2 < ... < rM . At TS #t user k feeds back
mk(t) ∈ {1, ...,M} the index of his channel rate value.
Denote qk,m ≡ FRk (rm) =

∑m
i=1 P[Rk = ri] where

qk,0 is set to 0 for notational convenience. Instead of
simply taking qk,mk(t) to be the priority value of user
k, the CDF scheduler generates for each user a ran-
dom priority given by a R.V. Uk(t) which is uniformly
distributed in the interval [qk,mk(t)−1, qk,mk(t))]. Finally,
the scheduler selects the user with the highest prior-
ity k∗(t) = argmaxk{Uk(t)}. The priority value of the
discrete range algorithm (Uk) preserves the fundamen-
tal characteristic of the priority value of the continuous
range algorithm (Vk) which is that for every user k we
get P[Uk(t) ≤ x] = P[Vk(t) ≤ x] = x. More precisely,
as in the continuous model, the priority value of ev-
ery user is distributed uniformly in [0, 1] (regardless of
his channel rate distribution) and hence time share fair-
ness maintained by the scheduler also under the discrete
model.

4.2. Misreporting of channel rates cannot benefit a sin-
gle user

Section 3.2 explains why a single user cannot benefit
neither additional time share nor throughput by misre-
porting his channel rate on his own. Both under the dis-
crete and the continuous model, the priority values of
all users are distributed uniformly in [0, 1]. Therefore,
Theorem 1 which proves that one user cannot gain addi-
tional time share is valid also under the discrete model.
To complete the proof, we provide at the Appendix a
formal proof under the discrete model for the claim that
no strategy can benefit a single user who acts alone with
additional throughput.

4.3. Coordinated Users Strategy

Assume a coordinated group of users C (|C| = L)
with the same channel rate probability (but indepen-
dent from each other), means ∀c1,c2∈C qc1,i = qc2,i. Let
m∗c(t) = argmaxi{ri|∃c.Rc(t) = ri} where c are users
from the coordinated group. Every time slot, only the
users with channel rate rm∗c(t) will report their real chan-
nel rate while all other report the lowest channel rate
possible r1 (they have no chance getting the highest pri-
ority).

Let pc,i be the probability that a coordinated user ex-
periences channel rate ri and p′c,i be the probability that
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he reports channel rate ri. Then by following the strat-
egy we get:

Corollary 6. From the point of view of the BS (Base
Station), the channel rate probability of coordinated
user c is given by p’ as follows:

p′c,1 = 1 −
M∑

i=2

p′c,i

p′c,i = pc,i · (qc,i)L−1
(i≥2)

Then when a coordinated user c reports mc(t) = i,
the scheduler generates a uniform priority value in the
interval [q′c,i, q

′
c,i−1] where q′c,i is the CDF of the reported

channel rates of user c - q′c,i =
∑i

j=1 p′c, j.
For example, assume a user c1 in a network with

pc1,1 = pc1,2 = pc1,3 =
1
3 to have one of the three possi-

ble channel rates r1, r2, r3. In a normal situation, if user
c1 reports channel rate r1, then the CS generates a pri-
ority value Uc1 in [0, 1

3 ], if he reports r2 then the range
is [ 1

3 ,
2
3 ] and finally if he reports r3 the range will be

[ 2
3 , 1]. Now assume this user is part of a coordinated

group (where all users share the same channel rate dis-
tribution) which follows the coordinated users’ strategy
and we want to find p′c1,i

which is the probability for
him to actually report rate ri. When he experiences r3
then he will always report r3 because there is no other
coordinated user who will surely have higher. If he co-
ordinates with two more users who have the same rate
probabilities then according to Corollary 6 we get that
when c1 reports r2 the CS will generate Uc1 in the in-
terval [ 14

27 ,
2
3 ] and this increases his expected U value.

Therefore, the expected number of time slots where he
obtains the highest priority.

4.4. Analysis of Coordinated Users Share

Lemma 2. Let MAX j, i be the event where rm∗c(t) = ri is
reported by exactly j of the coordinated users.

P[MAX j,1] = 0 (∀ j<L)

P[MAXL,1] = (pc,1)L

P[MAX j,i] =

(
L
j

)
(pc,i) j · (qc,i−1)L− j

(∀i≥2)

Proof: rm∗c(t) = ri means that ri is the highest rate of the
users in C, therefore i = 1 only when all the users in
C have r1 which happens with probability of (pc,1)L. It
is impossible that j < L coordinated users will report
r1 since it means that at least one user reports higher
channel rate than r1 which contradicts rm∗c(t) = r1 and

therefore P[MAX j<L,1] = 0. There are
(

L
j

)
possible com-

bination of j users in C and each such combination re-
ports rm∗c(t) = ri, (i≥2) only when their actual channel rate
is ri (with probability (pc,i) j) and the channel rate of all
others is ri−1 or less (with probability (qc,i−1)L− j). �

Lemma 3. Let CWIN be the event where some coordi-
nated user wins a time slot, then

P[CWIN |MAX j,1] = (q′c,1)N · j
j + N

P[CWIN |MAX j,i] =

N∑
s=0

(
N
s

)
(p′c,i)

s(q′c,i−1)N−s · j
j + s (i≥2)

Proof: According to P[Uk(t) ≤ u] = u, the probabil-
ity for regular users to get a priority value u is uniform
in [0, 1]. When m∗c(t) = i ≥ 2, a coordinated user
can obtain the highest priority value only when all N
users has priority values in [0, q′c,i]. With probability of(

N
s

)
(p′c,i)

s(q′c,i−1)N−s exactly s regular users have priority
values in [q′c,i−1, q

′
c,i] while all the other N − s regular

users have no chance getting the highest priority. Given
that event, the priority values - Us of each of the s regu-
lar users and Uc of the coordinated users with ri is uni-
form in [q′c,i−1, q

′
c,i], therefore the probability for a coor-

dinated user to have the highest U-value is j
j+s where j

is the number of the coordinated users with channel rate
ri. The proof for P[CWIN |MAX j,1] is similar. �

Theorem 7.

P[CWIN] =
M∑

i=1

L∑
j=1

P[MAX j,i] · P[CWIN |MAX j,i],

where P[MAX j,i] and P[COR|MAX j,i] are given in Lem-
mas 2 and 3.

Proof: Immediate result from Bayes rule and the cor-
rectness of Lemmas 2 and 3. �

Theorem 8. In a network consisting L+N users (in the
discrete model) of which L are coordinated, the aver-
age throughput (per time slot) of a coordinated user c is
given by:

N∑
i=0

(
N
i

)
· 1

L

M∑
i=1

L∑
j=1

P[MAX j,i] · P[CWIN |MAX j,i] · ri (7)

where P[MAX j,i] and P[COR|MAX j,i] are given in
Lemmas 2 and 3.
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Proof: Let c be a coordinated user, the probability that
some coordinated user obtains ri at some time slot is
given by

∑L
j=1 P[MAX j,i] · P[CWIN |MAX j,i]. The proba-

bility this user was c is 1
L and we get the probability he

gets ri is given by
∑L

j=1 P[MAX j,i] · P[CWIN |MAX j,i] · 1
L

and when summing it up over all possible rates we get
Equation 7. �

4.5. Evaluation and Discussion
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Permanent Time−share Benefit − Discrete model

Figure 4: Y-axis is the additional time share (in percents) that a co-
ordinated user (experiencing Rayleigh fading channel in CDMA2000
1xEV-DO) gains when he takes part in a coordinated group of size L
(X-Axis). The results show that when there are 30 users in the system,
participating in a coordinated group of 13 users is the most beneficial
and increases the time share of the user by 13%.

While the share of a coordinated user in the continu-
ous model depends only on the size of the coordinated
group (L) and the number of regular users (N), the users’
share in the discrete model depends also on the num-
ber of the possible channel rates (M) and their proba-
bilities among the coordinated users {pc,i}Mi=1 (while still
independent from the channel rate distributions of the
regular users). The values of {pc,i}Mi=1 in the system
configuration considered in figure 4 were set according
to Rayleigh distribution on the 11 channel rates of the
CDMA2000 1xEV-DO system in the same way which
is already described in [17] (where the CDF scheduler
for discrete channel rates was presented).

As in Figure 2, Figure 4 shows that the scheduler’s
notion of fairness is violated, we can see how the ad-
ditional time share (Y-axis) for one coordinated user
changes according to the number of users in the coordi-
nated group (L) in the same manner as for the continu-

ous model (Figure 2) and for the same reasons that were
already mentioned in section 3.5. A remarkable differ-
ence between the models is that the time share benefit
in the continuous model is greater than the benefit in
the discrete model. By investigating the nature of the
strategy effects in each model, we will be able to under-
stand the reason for the differences and the effects of the
strategy in different system configurations.

In both continuous and discrete models, when a coor-
dinated user reports the minimal channel rate instead of
his real channel rate then he widens the gap between the
CDF of the distributions of his real (Fc) and reported
(F′c) channel rate distributions (F′c(r) > Fc(r)). This gap
defines the increase in the priority values the user gets
for different rates. Therefore, an important observation
is that the more the user gets to report a fake channel
rates (according to the strategy conditions) - the more
time slots he gets. In the continuous model, the shared
information between the coordinated users allows them
to identify in each time slot exactly L − 1 users who
have no chance winning while in the discrete model
their number varies from 0 to L − 1 (depending of how
many coordinated users obtained the maximal channel
rate rm∗c(t)). Therefore, there will always be more fake
channel rate reports in the continuous model and the
time share benefit in the continuous model will always
be better than in the discrete model. As the number of
the possible channel rates (M) grows, the coordinated
users’ behavior in the discrete model will become more
like their behavior in the continuous model where the
probability that two different users will get the same rate
is zero. When M grows the probability that two users
will get the same channel rate decreases. Therefore, less
users obtain rm∗c(t) and more users can report the minimal
channel rate. This means that the benefit from the strat-
egy will grow. Bigger sets of channel rates are expected
in future physical standards for wireless communication
to allow better utilization of channel fluctuations and/or
to cover bigger range of channel condition values, so
while it is expected to allow better system performance,
it will make the system more vulnerable to such coordi-
nation strategy as we showed here.

Figure 5 shows the throughput benefit for the same
settings as in Figure 4. In order to compute the through-
put, channel rate probabilities {pc,i}Mi=1 were associated
with actual rates in the CDMA2000 1xEV-DO as in
[17]. For different sets of rates, we will get different
results in Figure 5, while Figure 4 stays the same since
it depends only on the set of probabilities {pc,i}Mi=1 re-
gardless of the actual rates associated with them.

The throughput of a coordinated user was computed
according to Theorem 8 and it was compared to the
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Permanent Throughput Benefit − Discrete model

Figure 5: Y-axis is the additional throughput (in percents) that a coor-
dinated user (in the same settings as in Figure 4) gains when he takes
part in a coordinated group of size L (X-Axis). Like for time share,
the results show that participating in a coordinated group of 13 users is
the most beneficial, it increases the throughput of each user by 11.6%.

throughput that he gets under normal behavior which
is given in [17]. Unsurprisingly, the throughput benefit
demonstrates similar behavior to (as a function of L) the
time share benefit.

5. System Loss by Malicious Strategy (Discrete
Model)

In the previous section we focused on non-conformist
opportunistic coordinated users whose objective is to in-
crease their own share of the network resources. This
increase was, of course, accompanied by performance
degradation to the regular innocent users. This degrada-
tion can be easily computed from our results in Sections
3.5 and 4.5.

Our interest in this section is in malicious users
whose objective is only to damage the other regular
users, disregarding their own performance. So the ma-
licious users are willing to degrade their own perfor-
mance if it helps degrading that of the innocent users.
Of course – the malicious users can damage the inno-
cent users at least as much as opportunistic coordinated
users can do. So the major question addressed in this
section is whether they can inflict greater damage and
how much.

Our focus in this analysis will be on the discrete
distribution model which, due to its practicality, is of

higher interest (than the continuous model) to system
designers.

In section 5.1 we present a new strategy, the mali-
cious strategy which allows malicious users to cause
time share loss to the innocent users significantly higher
than the loss caused by the coordination strategy (in the
discrete model, Section 4). In fact, we prove that the
damage caused by the malicious strategy under the dis-
crete model is identical to the damage caused by the
coordination strategy under the continuous model.

5.1. The Malicious Strategy
Malicious users intend to harm rather than increase

their own throughput as other users in a coordinated
group do. Hence, as we explain now, a malicious group
has two advantages over a coordinated group of selfish
users: 1. They gain a larger time share; 2. They need
only to synchronize before starting the attack rather than
exchanging information before every time slot as a self-
ish coordinated group does.

A coordinated user, aiming at increasing his own
throughput, never reports a channel condition better
than what he really experiences (if he does, it will de-
crease his expected throughput). Therefore, there may
be some time slots where all the users in a coordinated
group have exceptionally poor channel conditions and
even the user (among them) with the best chances to
be scheduled with the next time slot - has a very slim
chance to get it. However, a malicious user, for whom
his expected throughput is irrelevant, can report a chan-
nel condition independent of his real channel rate. This
allows a malicious group to present in every time slot a
user with an exceptionally good channel condition. For
the same reason (irrelevancy of their throughput), the
malicious users do not need to share any information on
their real channel condition before every time slot and
hence synchronizing once at the beginning of the attack
is suffice, as demonstrated in the following description
of the malicious strategy.

Assume a group of malicious users MAL =

{1, 2, .., S } (for simplicity we assume their indices are
1, 2, ..., S ). The basic idea followed by the malicious
users is to take turns, in a round-robin fashion, in trying
to obtain time slots. This means that at TS t, malicious
user number (t mod S) will attempt to obtain the time
slot. Consider a malicious user s: In all times slots that
he tries to obtain he always reports the same channel
rate - which we denote by rhs (h ≥ 2), while in all other
slots he reports other rates which are all lower than rhs .
Each user s chooses his rhs value independently of other
users. This flexibility in choosing channel rates makes
the malicious pattern very hard to detect.
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5.2. Analysis of the Malicious Strategy

Theorem 9. In a network consisting S + N users of
which S are malicious which use the malicious strat-
egy, the time share fraction dedicated to the S malicious
users (jointly) depends only on S and N and equals

S
N + 1

1 − (
S − 1

S

)N+1 . (8)

Proof: Consider a malicious user s with chosen max-
imal channel rate rhs . Since rhs is the highest channel
rate he reports, then qs,hs = 1. Since in all other time
slots - which are S−1

S of the time - he reports rhs−1 or
lower, then we get qs,hs−1 =

S−1
S . Therefore, in every

time slot t there will be exactly one malicious user, say
s, with priority value Us ∼ Uni f orm( S−1

S , 1).
Assume there are N regular users in the network.

As stated in [17], the discrete scheduler preserves the
fundamental character of the continuous model Un ∼
Uni f orm(0, 1) for every (regular) user n.

Let Zi be the event where exactly i users get priority
values in the range( S−1

S , 1). Given Zi, the probability
that the malicious user will be the one to get the highest
value in this range is 1

i+1 since, given Zi, the priority
values of the malicious user and the regular users are
uniformly distributed in ( S−1

S , 1). Unconditional on Zi

we get that the probability that a time slot is obtained by
a malicious user is given by

N∑
i=0

P[Zi] ·
1

i + 1
. (9)

Now, P[Zi] is the probability that exactly N − i users
get priority value less than S−1

S , so according to P[Un <

u] = u we get P[Zi] =
(

N
i

)
( S−1

S )N−i( 1
S )i. Thus, the prob-

ability that a malicious user wins a TS is

N∑
i=0

(
N
i

) (
S − 1

S

)N−i ( 1
S

)i

· 1
i + 1
. (10)

Noting that Equation 10 is identical to Equation 5
(substitute S for L) we can use the analysis of Lemma 3
to obtain Equation 8. �

Remark 1. It is easy to see that the damage inflicted by
this strategy on the innocent users (under the discrete
model) is identical to the damage inflicted by coordi-
nated users strategy under the continuous model.
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Figure 6: Time Slot loss of innocent users: Malicious vs. Coordina-
tion strategy. The network’s population is 30 users.

5.3. Evaluation and Discussion

The effect of the malicious strategy is depicted in Fig-
ure 6. We consider a system consisting of 30 users in
total and evaluate the (relative, percent-wise) time share
loss experienced by each of the innocent users (com-
pared to what he would get – 1/30 – in a normal system)
as a function of the number of malicious users (x-Axis).
This is done for both the coordinated user strategy (dot-
ted line) and the malicious strategy (solid line). Both
are evaluated for the discrete model. The channel distri-
bution used is the Rayleigh distribution in CDMA2000
as in Figure 4. As one can observe, the loss caused
by malicious users is significantly higher (by approxi-
mately a factor of 2) than that inflicted by the coordi-
nated user strategy (for the discrete model). Note that
according to Remark 1 we can use Corollary 4 to get an
estimation for the time share loss of regular users. When
S = N − 1 the time share of the regular users converges
to e−1 instead of 0.5 means the loss of the regular users
converges to 26% which is not far from the loss when
S = N = 15 which equals 25% according to Figure 6.

Note that all the results in our work regarding ma-
licious and coordinated users are independent of the
channel rate distributions of regular users. While the
throughput loss of of a regular user depends on his dis-
tribution, the case where some regular user experiences
constant channel rate shows that the throughput loss can
be high as the time share loss.
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6. Solution Outline

The CDF scheduler is a unique scheduler. Almost
magically, it maintains time share fairness without keep-
ing track of past scheduling decisions. Unfortunately,
while elegant, the CDF scheduler algorithm is too frag-
ile. As we show in this work, the CDF scheduler fails to
maintain fairness in the presence of selfish or malicious
users. Hence, it has to be modified to take past schedul-
ing decisions into account when making scheduling de-
cisions. Such scheduler should record, for every user,
the expected time share he should have got since he
joined the system. For example, if a user has spent so
far 200 time slots in the system with N = 10 users, it
is expected that he should have received 1/N = 10% of
the time slots so far (20 time slots). The proportion be-
tween the expected time share so far of user k, denoted
with S e

k(t), and the time share a user received in real-
ity so far, denoted with S r

k(t), can be used to construct
a weight that will influence his priority value positively
or negatively - depends if the user is below or above his
expected share. A simple example for such a modified
scheduler can be as follows: Every user is assigned with
a priority value as usual. Then, the priority value of
every user k is multiplied with wk(t) = (S e

k(t)/S r
k(t))α,

where α > 1 is constant decided by the system de-
signer. It defines the balance between strict fairness
enforcement and the overall throughput of the system.
For example, when α is extremely high, then wk(t) is
very close to zero if the user received more than he de-
served S r

k(t) > S e
k(t). In the same manner, wk(t) is very

high for users who received less than they were expected
(S r

k(t) < S e
k(t)). Observe that as the number of users in

the system (N) increases, the expected fluctuation range
of S e

k(t)/S r
k(t) increases. Hence, a further refinement

of such modified scheduler would be to use different
α values for different values of N. That is, replace α
with α(N). Note that the above is a very rough solution
mainly meant to outline a possible solution. In our fu-
ture work we aim at designing an optimal modified CDF
scheduler which is immune to such attacks while main-
taining an overall throughput in the system as close as
possible to the original vulnerable CDF scheduler.

7. Conclusion

In this paper, based on scheme which targets the very
fundamental principle of the CDF scheduler, we showed
that non-conforming opportunistic users have the mo-
tivation to misreport their channel rates and destabi-
lize the scheduler’s notion of fairness. In addition we
studied the loss for regular users inflicted by malicious

users focused on degrading the system performance. We
showed that for large populations consisting of regular
and coordinated users in equal numbers, the ratio of al-
located time slots between a coordinated and a regular
user converges to e − 1 ≈ 1.7. After researches proved
the vulnerability of the Proportional Fairness scheduler,
our work demonstrates the vulnerability of its alterna-
tive – the CDF scheduler. We recommend that this vul-
nerability, together with the solution we outlined should
be taken into consideration by system designers when
choosing and deploying a scheduler for modern wire-
less networks.

Appendix A. Misreporting of channel rates cannot
benefit a single user

As promised, we provide a formal proof for this claim
under the discrete model. Note that a similar proof can
be constructed under the continuous model. Such proof
will mainly differ in the throughput expressions and will
use rates-ranges where single rates are used in the proof
under the discrete model.

Lemma 4. Let D1 and D2 be the following expressions

D1 =
(a − b)X + (b − c)Y

a − c
(aN − cN)

D2 = X(aN − bN) + Y(bN − cN)

where a > b > c ≥ 0 and N ≥ 1 is a natural number.
Then, there exists a constant d > 0 such that D1 − D2 =

d(X − Y).

Lemma 4 can be easily proved using the identity AN−
BN = (A − B)

∑N
i=1 AN−iBi−1. The full proof is provided

in a technical report [18].

Theorem 10. Under the discrete model, a user with no
knowledge of the rates of other users cannot benefit from
reporting fake channel rates.

Proof: Both under the discrete and the continuous
model, the priority values of all users are distributed
uniformly in [0, 1]. Therefore, Theorem 1 is valid also
under the discrete model. In order to complete the proof
of the claim, we now prove that a user also cannot gain
additional throughput by following a misreporting strat-
egy. A user following a false-reports strategy sometimes
report a certain channel rate which is different than his
real channel rate. Let pi, j be the probability that in a ran-
dom time slot the user reports ri although his real rate is
r j. That is,

∑M
i=1

∑M
j=1 pi, j = 1. In order to evaluate the

throughput a user gains when following a false-reports

12



strategy, we first examine the outcome of winning a time
slot with a fake report. When the user wins a time slot
for which he reported to have a channel rate of ri, the
system tries to send him data at the rate he reported. If
ri > r j, it means the real channel condition of the user
can support data transfer only up to r j. We assume, in
favor2 of false-reports strategies, that in such case the
user receives r j of the ri the system sends him. If ri ≤ r j,
that is, the real channel rate of the user is good enough
for the rate in which the system transmits (ri). Formally,
the expected rate received by a user if he wins a time slot
for which he reported a channel condition of ri while his
real channel condition is r j is given by hi, j = min{r j, ri}.
Note that since we always discuss the same user k, for
the sake of notational simplicity when we use qi instead
of qk,i until the end of the proof. The probability that a
user reports ri is qi − qi−1 =

∑M
j=1 pi, j. Therefore, given

that the user won a time slot at which he reported ri, the
expected rate he receives is

Hi =

M∑
j=1

hi, j pi, j/(qi − qi−1). (A.1)

Note that Eq. A.1 is valid only if qi − qi−1 > 0. If
qi − qi−1 = 0 it means that the user never reports rate ri.
Hence, for the sake of completeness, we trivially define
that Hi = 0 in this case. As explained earlier, in discrete
CDF scheduling, when the user reports ri he is assigned
with a random number in [qi−1, qi]. In [17] the authors
proved that (qN

i − qN
i−1)/N (where N is the total number

of users in the system) is the probability for a random
slot to be: 1. A slot in which the user reports ri and 2.
a slot at which the user was assigned for transmission.
Therefore, the expected throughput of a user is given by

T =
M∑

i=1

Hi(qN
i − qN

i−1)/N. (A.2)

Observe that Hi = ri for a user who always report his
real channel condition.

We now define a Deviation Measurement (DM)
which evaluates (for a given strategy and user) how far
from the truth are the reports of the user when he fol-
lows the strategy. The measure is given as follows:
DM(strategy, user) =

∑M
i=1

∑M
j=1 pi, j|i− j|. Observe that

if the user never fake his reports then DM = 0.
Assume by contradiction there exists some false-

reports strategy that allows some user k (with some

2The user might receive less than r j since the transmission modu-
lation might not be the optimal one for his real channel condition.

channel rate distribution) to achieve an expected
throughput Thigh higher than what he would achieve by
always reporting his real rate. Let strategy S T f ake ∈
minst{DM(st, k)|Tst = Thigh} be a strategy with the mini-
mal deviation among the strategies that achieve through-
put Thigh. We now prove that if S T f ake involves re-
porting a fake channel condition (DM( f ake, k) > 0),
there exists an alternative strategy S Talt such that 1.
Talt = Thigh; 2. DM(S Talt, k) < DM(S T f ake, k). This
contradicts the definition of S T f ake and the assumption
that throughput of Thigh cannot be achieved by simply
reporting the real channel condition. Let {p̄i, j|i, j ∈
[1,M]} be the reporting probabilities of S T f ake. Since
DM(S T f ake, k) > 0, at least one of the following claims
has to be true: 1. There are i > j such that p̄i, j > 0; 2.
there are i < j such that p̄i, j > 0. We first prove the ex-
istence of S Talt, as described above, assuming claim 1.
Let w = mini{∃ j < i. p̄i, j > 0} and let z = min j{p̄w, j > 0}
(observe that j < w). Define an alternative strategy
S Talt as follows: S Talt is identical to S T f ake with only
one difference: At time slots in which S T f ake would in-
struct the user to report rw instead of rz, S Talt instructs
the user to report rw−1 instead. Note that by its defini-
tion, w ≥ 2, hence rw−1 exists. Let { p̃i, j|i, j ∈ [1,M]} be
the reporting probabilities when the user follows S Talt.
Then,

p̃i, j =


i = w, j = z 0
i = w − 1, j = z, p̄w−1,z + p̄w,z

o/w p̄i, j

(A.3)

Therefore, DM(S T f ake, k) > DM(S Talt, k). What is
left to prove is that Talt ≥ T f ake. Let H̄i (H̃i) and q̄i (q̃i)
be the expected received rates and the CDF values of
S T f ake (S Talt), Respectively. In S alt the user sometimes
reports rw−1 instead of rw. Therefore:

q̃i =

i = w − 1 q̄w−1 + p̄w,z

o/w q̄w
(A.4)

We now want to prove that T alt − T f ake ≥ 0. From Eq.
A.2 we get that

T alt −T f ake =

M∑
i=1

[H̃i(q̃N
i − q̃N

i−1)− H̄i(q̄N
i − q̄N

i−1)] (A.5)

Both strategies are similar when it comes to reports
of rates different than rw and rw−1. Therefore, ∀i ,
w,w − 1.H̃i = H̄i (Formally, that can be concluded from
equations A.1, A.3 and A.4). Considering also Eq. A.4,
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we can contract Eq. A.5 to:

T alt − T f ake = (A.6)
H̃w(q̃N

w − q̃N
w−1) − H̄w(q̄N

w − q̄N
w−1) +

H̃w−1(q̃N
w−1 − q̃N

w−2) − H̄w−1(q̄N
w−1 − q̄N

w−2)

Using equations A.3, A.4 and A.1 Eq. A.6 can be
writtenas follows3:

T alt − T f ake = H̃w(q̄N
w − (q̄w−1 + p̄w,z)N)

− H̃w(q̄w − (q̄w−1 + p̄w,z)) + rz p̄w,z

q̄w − q̄w−1
(q̄N

w − q̄N
w−1) (A.7)

+
H̄w−1(q̄w−1 − q̄w−2) + rz p̄w,z

q̄w−1 + p̄w,z − q̄w−2
((q̄w−1 + p̄w,z)N − q̄N

w−2)

−H̄w−1(q̄N
w−1 − q̄N

w−2)

Note that since p̄w,z > 0 the denominators in Eq. A.7
must be greater than zero. In addition, note that is it
possible that both or one of H̃w and H̄w−1 is zero. We
now examine Eq. A.7 and prove that:

H̄w−1(q̄w−1 − q̄w−2) + rz p̄w,z

q̄w−1 + p̄w,z − q̄w−2
((q̄w−1 + p̄w,z)N − (q̄w−2)N)

−H̄w−1((q̄w−1)N − (q̄w−2)N) (A.8)

≥ rz((q̄w−1 + p̄w,z)N − (q̄w−1)N)

If H̄w−1 = 0 (and therefore q̄w−1 = q̄w−2) then Eq. A.8
is true. If H̄w−1 > 0, then Eq. A.8 is a result of Lemma 4
as follows. Let a = q̄w−1 + p̄w,z, b = q̄w−1 and c = q̄w−2.
Note that p̄w,z > 0 hence a > b. In addition, b > c
since H̄w−1 > 0. Define X = rz and Y = H̄w−1. Recall
that rw is the lowest channel rate the user reports (in
S T f ake) while his real channel rate is lower. Therefore,
when the user reports rw−1 in S T f ake, his real rate has to
be equal or higher than rw−1. Therefore, ∀ j. p̄w−1, j ,
0 → hw−1, j = rw−1 and we get that Y = H̄w−1 = rw−1. In
addition, recall that z < w and hence, Y = rw−1 ≥ rz =

X.
Therefore, in the context of Lemma 4 we get that

D1 ≥ D2 and therefore (a−b)X+(b−c)Y
a−c (aN − cN) − Y(bN −

cN) ≥ X(aN − bN), which is identical to Eq. A.8 if re-
placing a, b, c, X and Y with the values with which they
were defined.

From equations A.8 and A.7 we get that

T alt − T f ake ≥ (A.9)

H̃w((qw)N − (qw−1 + pw,z)N)

− H̃w(qw − (qw−1 + pw,z)) + rz pw,z

qw − qw−1
((qw)N − (qw−1)N)

+rz((qw−1 + pw,z)N − (qw−1)N)

3A detailed explanation can be found in the technical report [18].

If H̃w = 0 we immediately get that T alt − T f ake ≥ 0.
Otherwise, we use Lemma 4 to prove this claim. This
time, in the context of Lemma 4, we define a = qw,
b = qw−1 + pw,z, c = qw−1, X = H̃w and Y = rz. Note that
b > c since pw,z > 0 and a > b since H̃w > 0.

Observe that in the context of Lemma 4 we can write
equation A.9as follows:

T alt − T f ake ≥ D2 − D1 (A.10)

Recall the way z was chosen. In strategy S T f ake, rz is the
lowest possible rate the user experiences if he reports
rw. Therefore, in strategy S Talt, the lowest real rate of
the user when he reports rw cannot be lower than rz+1.
Therefore, X = H̃w > rz = Y and we get that D2−D1 > 0
and hence proved that T alt ≥ T f ake.

Recall that we explained that since DM(S T f ake, k) >
0, at least one of the following claims has to be true: 1.
There are i > j such that p̄i, j > 0; 2. there are i < j
such that p̄i, j > 0. We have just proved that if claim 1 is
true then there is a strategy S Talt such that T alt ≥ T f ake

and DM(S T f ake, k) > DM(S Talt, k) which contradicts
the definition of S T f ake. Now all is left to prove is that
if claim 2 is true, there exists strategy S Talt2 such that
T alt2 ≥ T f ake and DM(S T f ake, k) > DM(S Talt2, k). Let
w′ = maxi{∃ j > i. p̄i, j > 0} and let z′ = max j{p̄w′, j > 0}
(observe that j > w′). Define an alternative strategy
S Talt2 as follows: S Talt2 is identical to S T f ake with only
one difference: At time slots in which S T f ake would
instruct the user to report rw′ instead of rz′ j, S Talt2 in-
structs the user to report rw′+1 instead. (Note that by its
definition, w′ ≤ M − 1, hence rw′+1 exists.). The strat-
egy S Talt2 and the proofs for the above claims are com-
pletely symmetrical to S Talt and the proofs of its prop-
erties. Hence, due to luck of space we exclude from this
article the complete proof. It can be found in a technical
report [18]. �

References

[1] H. Holma, A. Toskala, HSDPA/HSUPA for UMTS: High Speed
Radio Access for Mobile Communications, John Wiley & Sons,
2006.

[2] T. I. Association, CDMA2000: High Rate Packet Data Air In-
terface Specification (TIA-856-A).

[3] V. Vanghi, A. Damnjanovic, B. Vojcic, The CDMA2000 System
for Mobile Communications: 3G Wireless Evolution, Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2004.

[4] R. P. A. Jalali, R. Pankaj, Data Throughput of CDMA-HDR: A
High Efficiency High Data Rate Personal Communication Wire-
less System, in: Proceedings of the IEEE Vehicular Technology
Conference.

[5] S. Borst, User-Level Performance of Channel-Aware Schedul-
ing Algorithms in Wireless Data Networks, IEEE/ACM Trans.
Netw. 13 (2005) 636–647.

14



[6] D. Park, H. Seo, H. Kwon, B. G. Lee, Wireless Packet Schedul-
ing Based on the Cumulative Distribution Function of User
Transmission Rates, IEEE Transactions on Communications 53
(2005) 1919–1929.

[7] S. Bali, S. Machiraju, H. Zang, V. Frost, A Measurement Study
of Scheduler-Based Attacks in 3G Wireless Networks, in: PAM,
pp. 105–114.

[8] R. Racic, D. Ma, H. Chen, X. Liu, Exploiting Opportunistic
Scheduling in Cellular Data Networks, in: Proceedings of the
15th Annual Network and Distributed System Security Sympo-
sium (NDSS 2008), San Diego, CA.

[9] M. Guirguis, A. Bestavros, I. Matta, Exploiting the Transients of
Adaptation for RoQ Attacks on Internet Resources, in: in Pro-
ceedings of the 12th IEEE International Conference on Network
Protocols (ICNP04).

[10] M. Guirguis, A. Bestavros, I. Matta, Y. Zhang, Reduction of
Quality (RoQ) Attacks on Internet End-Systems, in: in Pro-
ceedings of Infocom05: The IEEE International Conference on
Computer Communication, pp. 1362–1372.

[11] R. Smith, C. Estan, S. Jha, Backtracking Algorithmic Complex-
ity Attacks Against a NIDS, in: ACSAC.

[12] A. Kuzmanovic, E. W. Knightly, Low-Rate TCP-Targeted De-
nial of Service Attacks (The Shrew VS. the Mice and Ele-
phants), in: ACM SIGCOMM Conference on Applications.

[13] A. Bremler-Barr, H. Levy, N. Halachmi, Aggressiveness Pro-
tective Fair Queueing for Bursty Applications, in: IWQoS.

[14] E. Doron, A. Wool, Wda: A Web Farm Distributed Denial of
Service Attack Attenuator, Comput. Netw. 55 (2011) 1037–
1051.

[15] C. Castelluccia, E. Mykletun, G. Tsudik, Improving Secure
Server Performance by Re-balancing SSL/TLS Handshakes, in:
USENIX.

[16] U. Ben-Porat, A. Bremler-Barr, H. Levy, On the Exploitation
of CDF Based Wireless Scheduling, in: INFOCOM, pp. 2821–
2825.

[17] D. Park, B. G. Lee, Qos Support by Using CDF-Based Wireless
Packet Scheduling in Fading Channels, IEEE Transactions on
Communications 54 (2006) 955.

[18] U. Ben-Porat, A. Bremler-Barr, H. Levy, On the Ex-
ploitation of CDF Based Wireless Scheduling, 2012.
Http://www.faculty.idc.ac.il/bremler/.

15


