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Background, Objectives, and Pre-requisite 
 The past few decades have been characterized by an extraordinary growth in the use 

of quantitative methods in the analysis of various asset classes; be it equities, fixed 
income securities, commodities, currencies, and derivatives.

 In response, financial economists have routinely been developing advanced 
mathematical, statistical, and econometric techniques to understand asset pricing 
models, market anomalies, equity premium predictability, asset allocation, security 
selection, volatility, correlation, and the list goes on. 

 This course attempts to provide a fairly deep understanding of such topical issues.

 It targets advanced master and PhD level students in finance and economics. 

 This set of notes compliments notes on Machine Learning Methods in the Cross 
Section of Asset Returns 

https://faculty.idc.ac.il/davramov/Machine_learning.pdf

 Required: prior exposure to matrix algebra, distribution theory, Ordinary Least 
Squares, as well as kills in computer programing. 

 MATLAB and Python are the most recommended for this course. 
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Topics to be covered  
 From CAPM to market anomalies 

 Credit risk implications for the cross section of asset returns

 Rational versus behavioural attributes of stylized cross-sectional effects

 Are market anomalies pervasive? 

 Conditional CAPM

 Conditional versus unconditional portfolio efficiency 

 Multi-factor models

 Interpreting factor models

 Panel regressions with fixed effects and their association with market-timing and cross-section investment strategies

 Machine learning methods: Lasso, Ridge, elastic net, group Lasso, Neural Network, Random Forest, and adversarial GMM

 Stock return predictability by macro variables

 Finite sample bias in predictive regressions

 Lower bound on the equity premium 

 The Campbell-Shiller log linearization 

 Consumption based asset pricing models

 The discount factor representation in asset pricing

 The equity premium puzzle

 The risk free rate puzzle

 The Epstein-Zin preferences 
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Topics to be covered  
 Long-run risk

 Habit formation 

 Prospect theory 

 Time-series asset pricing tests

 Cross-section asset pricing tests

 Vector auto regressions in asset pricing 

 On the riskiness of stocks for the long run – Bayesian perspectives 

 On the risk-return relation in the time series 

 GMM: Theory and application

 The covariance matrix of regression slope estimates in the presence of heteroskedasticity and 
autocorrelation 

 Bayesian Econometrics 

 Bayesian portfolio optimization  

 The Hansen Jagannathan Distance measure 

 Spectral Analysis 
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Course Materials
 The Econometrics of Financial Markets, by John Y. Campbell, Andrew W. Lo, and A. Craig 

MacKinlay, Princeton University Press, 1997

 Asset Pricing, by John H. Cochrane, Princeton University Press, 2005 

 Class notes as well as published and working papers in finance and economics listed in the 

reference list 
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From Rational Asset pricing to Market 

Anomalies
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Expected Return
 Statistically, an expected asset return (in excess of the risk free rate) can be formulated as 

𝔼 𝑟𝑖,𝑡
𝑒 = 𝛼𝑖 + 𝛽𝑖

′𝔼(𝑓𝑡)

where 𝑓𝑡 denotes a set of K portfolio spreads realized at time t, 𝛽𝑖 is a 𝐾 vector of factor loadings, and 𝛼𝑖
reflects the expected return component unexplained by factors, or model mispricing.

 The market model is a statistical setup with 𝑓 represented by excess return on the market portfolio. 

 An asset pricing model aims to identify economic or statistical factors that eliminate model mispricing.

 Absent alpha, expected return differential across assets is triggered by factor loadings only. 

 The presence of model mispricing could give rise to additional cross sectional effects. 

 If factors are not return spreads (e.g., consumption growth) 𝛼 is no longer asset mispricing.

 The presence of factor structure with no alpha does not imply that asset pricing is essentially rational. 

 Indeed, comovement of assets sharing similar styles (e.g., value, large cap) or belonging to the same 

industry could be attributed to biased investor’s beliefs just as they could reflect risk premiums.

 Later, we discuss in more detail ways of interpreting factor models. 
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CAPM
 The CAPM of Sharpe (1964), Lintner (1965), and Mossin (1966) originates the literature on asset 

pricing models. 

 The CAPM is an equilibrium model in a single-period economy. 

 It imposes an economic restriction on the statistical structure of expected asset return. 

 The unconditional version is one where moments are time-invariant. 

 Then, the expected excess return on asset i is formulated as

𝔼(𝑟i,t
𝑒 ) = cov(𝑟𝑖,𝑡 , 𝑟𝑚,𝑡

𝑒 )
𝔼(𝑟𝑚,𝑡

𝑒 )

𝑣𝑎𝑟(𝑟𝑚,𝑡
𝑒 )

= 𝛽𝑖,𝑚𝔼(𝑟𝑚,𝑡
𝑒 )

where 𝑟𝑚,𝑡
𝑒 is excess return on the market portfolio at time 𝑡.

 Asset risk is the covariance of its return with the market portfolio return. 

 Risk premium, or the market price of risk, is the expected value of excess market return. 

 In CAPM, risk means co-movement with the market. 
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CAPM

 The higher the co-movement the less desirable the asset is, hence, the asset price is lower and the 

expected return is higher. 

 This describes the risk-return tradeoff: high risk comes along with high expected return. 

 The market price of risk, common to all assets, is set in equilibrium by the risk aversion of investors.

 There are conditional versions of the CAPM with time-varying moments.

 For one, risk and risk premium could vary with macro economy variables such as the default spread 

and risk (beta) can vary with firm-level variables such as size and book-to-market.

 Time varying parameters could be formulated using a beta pricing setup (e.g., Ferson and Harvey 

(1999) and Avramov and Chordia (2006a)).

 Another popular approach is time varying pricing kernel parameters (e.g., Cochrane (2005)). 

 Risk and risk premium could also obey latent autoregressive processes.

 Lewellen and Nagel (LN 2006) model beta variation in rolling samples using high frequency data.
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Empirical Violations: Market Anomalies
 The CAPM is simple and intuitive and it is widely used among academic scholars and 

practitioners as well as in finance textbooks.

 However, there are considerable empirical and theoretical drawbacks at work.

 To start, the CAPM is at odds with anomalous patterns in the cross section of asset returns.

 Market anomalies describe predictable patterns (beyond beta) related to firm characteristics such 

as size, book-to-market, past return (short term reversals and intermediate term momentum), 

earnings momentum, dispersion, net equity issuance, accruals, credit risk, asset growth, capital 

investment, profitability, new 52-high, IVOL, and the list goes on.

 Harvey, Liu, and Zhu (2016)  document 316 (some are correlated) factors discovered by 

academia. 

 They further propose a t-ratio of at least 3 to make a characteristic significant in cross section 

regressions. 

 Green, Hand, and Zhang (2013) find 330 return predictive signals.

 See also the survey papers of Subrahmanyam (2010) and Goyal (2012).
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Multi-Dimension in the Cross Section? 
 The large number of predictive characteristics leads Cochrane (2011) to conclude that there is a multi-

dimensional challenge in the cross section.

 On the other hand, Avramov, Chordia, Jostova, and Philipov (2013, 2019) attribute the predictive ability of 

various factors to financial distress.

 They thus challenge the notion of multi-dimension in the cross section.

 Their story is straightforward: firm characteristics become extreme during financial distress, such as large 

negative past returns, large negative earnings surprises, large dispersion in earnings forecasts, large 

volatility, and large credit risk.

 Distressed stocks are thus placed in the short-leg of anomaly portfolios.

 As distressed stocks keep on loosing value, anomaly profitability emerges from selling them short.

 This explains the IVOL effect, dispersion, price momentum, earnings momentum, among others, all of 

these effects are a manifestation of the credit risk effect. 

 Also, value weighting anomaly payoffs or excluding micro-cap stocks attenuate the strength of many 

prominent anomalies. 

 The vast literature on market anomalies is briefly summarized below.   
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The Beta Effect

 Friend and Blume (1970) and Black, Jensen, and Scholes (1972) show that high beta stocks deliver 
negative alpha, or they provide average return smaller than that predicted by the CAPM.

 Frazzini and Pedersen (2014) demonstrate that alphas and Sharpe ratios are almost monotonically 
declining in beta among equities, bonds, currencies, and commodities. 

 They propose the BAB factor – a market neutral trading strategy that buys low-beta assets, leveraged 
to a beta of one, and sells short high-beta assets, de-leveraged to a beta of one. 

 The BAB factor realizes high Sharpe ratios in US and other equity markets. 

 What is the economic story?

 For one, high beta stocks could be in high demand by constrained investors. 

 Moreover, Hong and Sraer (2016) claim that high beta assets are subject to speculative overpricing.

 Just like the beta-return relation is counter intuitive – an apparent violation of the risk return tradeoff –
there are several other puzzling relations in the cross section of asset returns.

 The credit risk return relation (high credit risk low future return) is coming up next. 


. 
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The credit risk return relation

 Dichev (1998), Campbell, Hilscher, and Szilagyi (2008), and Avramov, Chordia, Jostova, and Philipov 

(2009, 2013) demonstrate a negative cross-sectional correlation between credit risk and returns.

 Campbell, Hilscher, and Szilagyi (2008) suggest that such negative relation is a challenge to standard 

rational asset pricing models. 

 Once again, the risk-return tradeoff is challenged. 

 Campbell, Hilscher, and Szilagyi (2008) use failure probability estimated by a dynamic logit model with 

both accounting and equity market explanatory variables. 

 Using the Ohlson (1980) O-score, the Z-score, or credit rating to proxy distress yields similar results.

 Dichev and Piotroski (2001) and Avramov, Chordia, Jostova, and Philiphov (2009)  document abnormal 

stock price declines following credit rating downgrades, and further the latter study suggests that 

market anomalies only characterize financially distressed firms. 

 On the other hand, Vassalou and Xing (2004) use the Merton’s (1974) option pricing model to compute 

default measures and argue that default risk is systematic risk, and Friewald, Wagner, and Zechner 

(2014) find that average returns are positively related to credit risk assessed through CDS spreads. 

 I believe in the negative credit risk return relation, yet the contradicting findings asks for resolution. 
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Size effect: higher average 

returns on small stocks than 

large stocks. Beta cannot 

explain the difference. First 

papers go to Banz (1981), 

Basu (1983), and Fama and 

French (1992)

Size Effect
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 Value effect: higher average 

returns on value stocks than 

growth stocks. Beta cannot 

explain the difference.

 Value firms: Firms with high 

E/P, B/P, D/P, or CF/P. The 

notion of value is that physical 

assets can be purchased at low 

prices.

 Growth firms: Firms with low 

ratios. The notion is that high 

price relative to fundamentals 

reflects capitalized growth 

opportunities. 

Value Effect
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The International Value Effect

16



Past Return Anomalies
 The literature has documented short term reversals, intermediate term momentum, and long term reversals.

 Lehmann (1990) and Jegadeesh (1990) show that contrarian strategies that exploit the short-run return 
reversals in individual stocks generate abnormal returns of about 1.7% per week and 2.5% per month, 
respectively. 

 Jegadeesh and Titman (1993) and a great body of subsequent work uncover abnormal returns to momentum-
based strategies focusing on investment horizons of 3, 6, 9, and 12 months

 DeBondt and Thaler (1985, 1987) document long run reversals

 Momentum is the most heavily explored past return anomaly. 

 Several studies document momentum robustness.

 Others document momentum interactions with firm, industry, and market level variables.

 There is solid evidence on momentum crashes following recovery from market downturns. 

 More recent studies argue that momentum is attributable to the short-leg of the trade – and it difficult to 
implement in real time as losers stocks are difficult to short sale and arbitrage. 
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From Momentum Robustness to Momentum Crash
 Fama and French (1996) show that momentum profitability is the only CAPM-related 

anomaly unexplained by the Fama and French (1993) three-factor model. 

 Remarkably, regressing gross momentum payoffs on the Fama-French factors tends to 
strengthen, rather than discount, momentum profitability. 

 This is because momentum loads negatively on market, size, and value factors. 

 Momentum also seems to appear in bonds, currencies, commodities, as well as mutual funds 
and hedge funds.

 As Asness, Moskowitz, and Pedersen (2013) note: Momentum and value are everywhere. 

 Schwert (2003) demonstrates that the size and value effects in the cross section of returns, as 
well as the ability of the aggregate dividend yield to forecast the equity premium disappear, 
reverse, or attenuate following their discovery. 

 Momentum is an exception. Jegadeesh and Titman (2001, 2002) document the profitability of 
momentum strategies in the out of sample period after its initial discovery. 

 Haugen and Baker (1996), Rouwenhorst (1998), and Titman and Wei (2010) document 
momentum in international markets (not in Japan). 
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From Momentum Robustness to Momentum Crash
 Korajczyk and Sadka (2004) find that momentum survives trading costs, whereas 

Avramov, Chordia, and Goyal (2006a) show that the profitability of short-term reversal 

disappears in the presence of trading costs.

 Fama and French (2008) show that momentum is among the few robust anomalies – it 

works also among large cap stocks. 

 Geczy and Samonov (2013) examine momentum during the period 1801 through 1926 –

probably the world’s longest back-test.  

 Momentum had been fairly robust in a cross-industry analysis, cross-country analysis, 

and cross-style analysis.

 The prominence of momentum has generated both behavioral and rational theories. 

 Behavioral: Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and 

Subrahmanyam (1998), and Hon, Lim, and Stein (2000). 

 Rational: Berk, Green, and Naik (1999), Johnson (2002), and Avramov and Hore (2017). 
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 In 2009, momentum delivers a negative 85% payoff.

 The negative payoff is attributable to the short side of the trade.

 Loser stocks had forcefully bounced back.

 Other episodes of momentum crashes were recorded. 

 The down side risk of momentum can be immense.

 Daniel and Moskowitz (2017) is a good empirical reference while Avramov and Hore (2017) give 

theoretical support. 

 In addition, both Stambaugh, Yu, and Yuan (2012) and Avramov, Chordia, Jostova, and Philipov 

(2007, 2013) show that momentum is profitable due to the short-leg of the trade.

 Based on these studies, loser stocks are difficult to short and arbitrage – hence, it is really difficult 

to implement momentum in real time.

 In addition, momentum does not work over most recent years. 

Momentum Crash
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Momentum Interactions
Momentum interactions have been documented at the stock, industry, and aggregate levels.

Stock level interactions 

 Hon, Lim, and Stein (2000) show that momentum profitability concentrates in small stocks. 

 Lee and Swaminathan (2000) show that momentum payoffs increase with trading volume. 

 Zhang (2006) finds that momentum concentrates in high information uncertainty stocks 

(stocks with high return volatility, cash flow volatility, or analysts’ forecast dispersion) and 

provides behavioral interpretation. 

 Avramov, Chordia, Jostova, and Philipov (2007, 2013) document that momentum 

concentrates in low rated stocks. Moreover, the credit risk effect seems to dominate the other 

interaction effects. 

Potential industry-level interactions

 Moskowitz and Grinblatt (1999) show that industry momentum subsumes stock level 

momentum. That is, buy the past winning industries and sell the past loosing industries.

 Grundy and Martin (2001) find no industry effects in momentum. 
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Market States

 Cooper, Gutierrez, and Hameed (2008) show that momentum profitability heavily depends on the 
state of the market. 

 In particular, from 1929 to 1995, the mean monthly momentum profit following positive market 
returns is 0.93%, whereas the mean profit following negative market return is -0.37%. 

 The study is based on the market performance over three years prior to the implementation of the 
momentum strategy.

Market sentiment 
 Antoniou, Doukas, and Subrahmanyam (2010) and Stambaugh, Yu, and Yuan (2012) find that 

the momentum effect is stronger when market sentiment is high. 

 The former paper suggests that this result is consistent with the slow spread of bad news during 
high-sentiment periods. 

 Stambaugh, Yu, and Yuan (2015) use momentum along with ten other anomalies to form a stock 
level composite overpricing measure. For instance, loser stocks are likely to be overpriced due to 
impediments on short selling. 
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Other interactions at the aggregate level 
 Chordia and Shivakumar (2002) show that momentum is captured by business cycle variables. 

 Avramov and Chordia (2006a) demonstrate that momentum is captured by the component in model 
mispricing that varies with business conditions. 

 Avramov, Cheng, and Hameed (2016) show that momentum payoffs vary with market illiquidity - in contrast 
to “limits to arbitrage” momentum is profitable during highly liquid markets.  

Momentum in Anomalies  
 Avramov et al (Scaling Up Market Anomalies 2017) show that one could implement momentum among top and 

bottom anomaly portfolios.

 They consider 15 market anomalies, each of which is characterized by the anomaly conditioning variable., e.g., 
gross profitability, IVOL, and dispersion in analysts earnings forecast. 

 There are 15 top (best performing long-leg) portfolios.

 There are 15 bottom (worst performing short-leg) portfolios.

 The trading strategy involves buying a subset (e.g., five) top portfolios and selling short a subset of bottom portfolios 
based on past one-month return or based on expected return estimated from time-series predictive regressions. 

 Implementing momentum among anomalies delivers a robust performance even during the post-2000 period and 
during periods of low market sentiment. 

 Building on Avramov et al (2017), Eshani and Linnainmaa (2019) show that stock-level momentum emerges from 
momentum in factor returns. 

 Thus, momentum is not a distinct risk factor; rather, it aggregates the autocorrelations found in all other factors.
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Momentum Spillover from Stocks to Bonds 
 Gebhardt, Hvidkjaer, and Swaminathan (2005) examine the interaction between momentum in the 

returns of equities and corporate bonds. 

 They find significant evidence of a momentum spillover from equities to corporate bonds of the same 

firm.

 In particular, firms earning high (low) equity returns over the previous year earn high (low) bond 

returns in the following year. 

 The spillover results are stronger among firms with lower-grade debt and higher equity trading 

volume.

 Beyond momentum spillover, Jostova et al (2013) find significant price momentum in US corporate 

bonds over the 1973 to 2008 period. 

 They show that bond momentum profits are significant in the second half of the sample period, 1991 

to 2008, and amount to 64 basis points per month. 
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Are there Predictable Patterns in Corporate Bonds? 
 For the most part, anomalies that work on equities also work on corporate bonds.

 In addition, the same-direction mispricing applies to both stocks and bonds.

 See, for example, Avramov, Chordia, Jostova, and Philipov (2019).

 They document overpricing in stocks and corporate bonds. 

 Indeed, structural models of default, such as that originated by Merton (1974),  impose a tight relation between 

equity and bond prices, as both are claims on the same firm assets.

 Then, if a characteristic x is able to predict stock returns, it must predict bond returns.

 On one hand, the empirical question is thus whether bond returns are over-predictable or under-predictable for a 

given characteristic. 

 On the other hand, structural models of default have had difficult times to explain credit spreads and moreover 

bond and stock markets may not be integrated. 

 Also, some economic theory claims that there might be wealth transfer from bond holders to equity holders –

thus, one may suspect that equity overpricing must be followed by bond underpricing. 
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Time-Series Momentum
 Time-series momentum in an absolute strength strategy, while the price momentum is a 

relative strength one. Here, one takes long positions in those stocks having positive expected 

returns and short positions in stocks having negative expected returns, where expected 

return is assessed based on the following equation from Moskowitz, Ooi, and Pedersen (2012):

Τ𝑟𝑡
𝑠 𝜎𝑡−1

𝑠 = 𝛼 + Τ𝛽ℎ𝑟𝑡−ℎ
𝑠 𝜎𝑡−ℎ−1

𝑠 + 𝜀𝑡
𝑠

Earnings Momentum (see also next page)
 Ball and Brown (1968) document the post-earnings-announcement drift, also known as 

earnings momentum. 

 This anomaly refers to the fact that firms reporting unexpectedly high earnings subsequently 

outperform firms reporting unexpectedly low earnings. 

 The superior performance lasts for about nine months after the earnings announcements.

Revenue Momentum
 Chen, Chen, Hsin, and Lee (2010) study the inter-relation between price momentum, earnings 

momentum, and revenue momentum, concluding that it is ultimately suggested to combine all 

types rather than focusing on proper subsets.
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Earnings Momentum: under-reaction?
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Asset Growth
 Cooper, Gulen, and Schill (2008) find companies that grow their total asset more earn lower 

subsequent returns. 

 They suggest that this phenomenon is due to investor initial overreaction to changes in future 
business prospects implied by asset expansions. 

 Asset growth can be measured as the annual percentage change in total assets.

Capital Investment
 Titman, Wei, and Xie (2004) document a negative relation between capital investments and 

returns. 

 Capital investment to assets is the annual change in gross property, plant, and equipment plus 
the annual change in inventories divided by lagged book value of assets. 

 Changes in property, plants, and equipment capture capital investment in long-lived assets used 
in operations many years such as buildings, machinery, furniture, and other equipment. 

 Changes in inventories capture working capital investment in short-lived assets used in a 
normal business cycle. 
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Idiosyncratic volatility (IVOL)

 Ang, Hodrik, Xing, and Zhang (2006, 2009) show negative cross section relation between IVOL and average 

return in both US and global markets. 

 The AHXZ proxy for IVOL is the standard deviation of residuals from time-series regressions of excess stock 

returns on the Fama-French factors.

Counter intuitive relations

 The forecast dispersion, credit risk, betting against beta, and IV effects apparently violate the risk-return 

tradeoff.

 Investors seem to pay premiums for purchasing higher risk stocks. 

 Intuition may suggest it should be the other way around.

 Avramov,  Chordia, Jostova, and Philipov (2013, 2018) provide a plausible story: institutional and retail 

investors underestimate the severe implications of financial distress. 

 Thus, financially distressed stocks (and bonds) are overpriced. 

 As financially distressed firms exhibit high IVOL, high beta, high credit risk, and high dispersion – all the 

counter intuitive relations are explained by the overpricing of financially distressed stocks. 
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Return on Assets (ROA)
 Fama and French (2006) find that more profitable firms (ROA) have higher expected returns than 

less profitable firms. 

 ROA is typically measured as income before extraordinary items divided by one quarter lagged 

total assets.

Quality Investing 
 Novy-Marks describes seven of the most widely used notions of quality: 

 Sloan’s (1996) accruals-based measure of earnings quality (coming next) 

 Measures of information uncertainty and financial distress (coming next)

 Novy-Marx’s (2013) gross profitability (coming next)

 Piotroski’s (2000) F-score measure of financial strength (coming next)

 Graham’s quality criteria from his “Intelligent Investor” (appendix) 

 Grantham’s “high return, stable return, and low debt” (appendix)

 Greenblatt’s return on invested capital (appendix)
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 Accruals: Sloan (1996) shows that firms with high accruals earn abnormal lower returns on 

average than firms with low accruals. Sloan suggests that investors overestimate the persistence 

of the accrual component of earnings when forming earnings expectations. Total accruals are 

calculated as changes in noncash working capital minus depreciation expense scaled by average 

total assets for the previous two fiscal years. 

 Information uncertainty: Diether, Malloy, and Scherbina (2002) suggest that firms with high 

dispersion in analysts’ earnings forecasts earn less than firms with low dispersion. Other 

measures of information uncertainty: firm age, cash flow volatility, etc. 

 Financial distress: As noted earlier, Campbell, Hilscher, and Szilagyi (2008) find that firms 

with high failure probability have lower, not higher, subsequent returns. Campbell, Hilscher, and 

Szilagyi suggest that their finding is a challenge to standard models of rational asset pricing. The 

failure probability is estimated by a dynamic logit model with both accounting and equity market 

variables as explanatory variables. Using Ohlson (1980) O-score as the distress measure yields 

similar results. Avramov, Chordia, Jostova, and Philipov (2009) use credit ratings as a proxy for 

financial distress and also document the same phenomenon: higher credit rating firms earn 

higher returns than low credit rating firms.

Quality investing: Accruals, Information uncertainty, and Distress
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Quality investing: Gross Profitability Premium
 Novy-Marx (2010) discovers that sorting on gross-profit-to-assets creates abnormal benchmark-

adjusted returns, with more profitable firms having higher returns than less profitable ones.

 Novy-Marx argues that gross profits scaled by assets is the cleanest accounting measure of true 

economic profitability. The further down the income statement one goes, the more polluted 

profitability measures become, and the less related they are to true economic profitability. 

Quality investing: F-Score
 The F-Score is due to Piotroski (2000).

 It is designed to identify firms with the strongest improvement in their overall financial conditions 

while meeting a minimum level of financial performance. 

 High F-score firms demonstrate distinct improvement along a variety of financial dimensions, while 

low score firms exhibit poor fundamentals along these same dimensions. 

 F-Score is computed as the sum of nine components which are either zero or one.

 It thus ranges between zero and nine, where a low (high) score represents a firm with very few 

(many) good signals about its financial conditions. 
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Illiquidity
 Illiquidity is not considered to be an anomaly. 

 However, it is related to the cross section of average returns (as well as the time-series) 

 Amihud (2002) proposes an illiquidity measure which is theoretically appealing and does a 
good job empirically.

 The Amihud measure is given by:

𝐼𝐿𝐿𝐼𝑄𝑖,𝑡 =
1

𝐷𝑖,𝑡
෍

𝑡=1

𝐷𝑖,𝑡 𝑅𝑖𝑡𝑑
𝐷𝑉𝑂𝐿𝑖𝑡𝑑

where: 𝐷𝑖,𝑡 is the number of trading days in the month, 𝐷𝑉𝑂𝐿𝑖𝑡𝑑 is the dollar volume, 𝑅𝑖𝑡𝑑 is   

the daily return

 The illiquidity variable measures the price change per a unity volume. 

 Higher change amounts to higher illiquidity 
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The turnover effect

 Higher turnover is followed by lower future return. See, for example, Avramov and Chordia 

(2006a). 

 Swaminathan and Lee (2000) find that high turnover stocks exhibit features of high growth stocks.

 Turnover can be constructed using various methods. For instance, for any trading day within a 

particular month, compute the daily volume in either $ or the number of traded stocks or the 

number of transactions. Then divide the volume by the market capitalization or by the number of 

outstanding stocks. Finally, use the daily average, within a trading month, of the volume/market 

capitalization ratio as the monthly turnover.

Economic links and predictable returns

 Cohen and Frazzini (2008) show that stocks do not promptly incorporate news about economically 

related firms.

 A long-short strategy that capitalizes on economic links generates about 1.5% per month. 
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Corporate Anomalies
 The corporate finance literature has documented a host of other interesting anomalies:

 Stock Split 

 Dividend initiation and omission 

 Stock repurchase 

 Spinoff 

 Merger arbitrage 

 The long horizon performance of IPO and SEO firms. 

 Finance research has documented negative relation between transactions of external 

financing and future stock returns: returns are typically low following IPOs (initial 

public offerings), SEOs (seasoned public offerings), debt offerings, and bank borrowings. 

 Conversely, future stock returns are typically high following stock repurchases.

 See also discussion in the appendix. 
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Are anomalies pervasive? 
 The evidence tilts towards the NO answer. Albeit, the tilt is not decisive. 

 Lo and MacKinlay (1990) claim that the size effect may very well be the result of unconscious, 
exhaustive search for a portfolio formation creating with the aim of rejecting the CAPM. 

 Schwert (2003) shows that anomalies (time-series and cross section) disappear or get 
attenuated following their discovery.

Avramov, Chordia, and Goyal (2006) show that implementing short term reversal strategies 
yields profits that do not survive direct transactions costs and costs related to market impact. 

Wang and Yu (2010) find that the return on asset (ROA) anomaly exists primarily among 
firms with high arbitrage costs and high information uncertainty. 

Avramov, Chordia, Jostova, and Philipov (2007a,b, 2013, 2019) show that momentum, 
dispersion, credit risk, among many other effects, concentrate in a very small portion of high 
credit risk stocks and only during episodes of firm financial distress. 

In particular, investors tend to overprice distressed stocks. Moreover, distressed stocks display 
extreme values of firm characteristics – high IVOL, high dispersion, large negative past 
returns, and large negative earnings surprises. They are thus placed at the short-leg of 
anomaly portfolios. Anomaly profitability emerges only from the short-leg of a trade, as 
overpricing is corrected. 
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Are anomalies pervasive? 
Chordia, Subrahmanyam, and Tong (2014) and McLean and Pontiff (2014) find that several 

anomalies have attenuated significantly over time, particularly in liquid NYSE/AMEX stocks, and 

virtually none have significantly accentuated. 

 Stambaugh, Yu, and Yuan (2012) associate anomalies with market sentiment.

Following Miller (1977), there might be overpriced stocks due to costly short selling.

As overpricing is prominent during high sentiment periods, anomalies are profitable only during 

such episodes and are attributable to the short-leg of a trade. 

Avramov, Chordia, Jostova, and Philipov (2013) and Stambaugh, Yu, and Yuan (2012) seem to 

agree that anomalies represent an un-exploitable stock overvaluation.

But the sources are different: market level sentiment versus firm-level credit risk.

Avramov, Chordia, Jostova, and Philipov (2019) integrate the evidence: anomalies concentrate in 

the intersection of firm credit risk and market-wide sentiment. 

And the same mechanism applies for both stocks and corporate bonds. 

Beyond Miller (1977), there are other economic theories that permit overpricing. 
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Are anomalies pervasive? 
For instance, the Harrison and Kreps (1978) basic insight is that when agents agree to disagree and short 

selling is impossible, asset prices may exceed their fundamental value.

The positive feedback economy of De Long, Shleifer, Summers, and Waldmann (1990) also recognizes the 
possibility of overpricing ─ arbitrageurs do not sell or short an overvalued asset, but rather buy it, 
knowing that the price rise will attract more feedback traders.

 Garlappi, Shu, and Yan (2008) and Garlappi and Yan (2011) argue that distressed stocks are overvalued 
due to shareholders' ability to extract value from bondholders during bankruptcy.

 Kumar (2009), Bailey, Kumar, and Ng (2011), and Conrad, Kapadia, and Xing (2014) provide support for 
lottery-type preferences among retails investors. Such preferences can also explain equity overpricing. 

 Lottery-type stocks are stocks with low price, high idiosyncratic volatility, and positive return skewness.

 The idea of skewness preferring investors goes back to Barberis and Huang (2008) who build on the 
prospect theory of Kahneman and Tversky (1979) to argue that overpricing could prevail as investors 
overweight low-probability windfalls.

 Notice, however, that Avramov, Chordia, Jostova, and Philipov (2019) find that bonds of overpriced equity 
firms are also overpriced, thus calling into question the transfer of wealth hypothesis.

 Also, the upside potential of corporate bonds is limited relative to that of stocks – thus lottery-type 
preferences are less likely to explain bond overpricing.

 In sum, anomalies do not seem to be pervasive. They could emerge due to data mining, they typically 
characterize the short-leg of a trade, they concentrate in difficult to short and arbitrage stocks, and they 
might fail survive reasonable transaction costs.  
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Could anomalies emerge from the long-leg? 
 Notably, some work does propose the possibility of asset underpricing. 

 Theoretically, in Diamond and Verrecchia (1987), investors are aware that, due to short sale 
constraints, negative information is withheld, so individual stock prices reflect an expected 
quantity of bad news. Prices are correct, on average, in the model, but individual stocks can be 
overvalued or undervalued.

 Empirically, Boehmer, Huszar, and Jordan (2010) show that low short interest stocks exhibit 
positive abnormal returns. Short sellers avoid those apparently underpriced stocks

 Also, the 52-week high anomaly tells you that stocks that are near their 52-week high are 
underpriced. 

 Recently, Avramov, Kaplanski, and Subrahmanyam (2018) show that a ratio of short (fast) and 
long (slow) moving averages predict both the long and short legs of trades. 

 The last two papers attribute predictability to investor’s under-reaction due to the anchoring 
bias.

 Avramov, Kaplanski, and Subrahmanyam (2019) show theoretically why anchoring could 
result in positive autocorrelation in returns. 

 The anchoring bias is the notion that agents rely too heavily on readily obtainable (but often 
irrelevant) information in forming assessments (Tversky and Kahneman, 1974). 
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Sticky expectations and market anomalies 

 As an example of the anchoring bias, in Ariely, Loewenstein, and Prelec (2003), 
participants are asked to write the last two digits of their social security number and then 
asked to assess how much they would pay for items of unknown value. Participants having 
lower numbers bid up to more than double relative to those with higher numbers, 
indicating that they anchor on these two numbers.

 Such under-reaction could be long lasting as shown by Avramov, Kaplanski, and 
Subrahmanyam (2019). 

 While the former study points at anchoring as a potential rationale for mispricing, the 
sticky expectations (SE) concept somehow formalizes the same notion. 

 The SE concept has been developed and studied by Mankiw and Reis (2002), Reis (2006), 
and Coibion and Gorodnichenko (2012, 2015).

 Bouchaus, Kruger, Landier, and Thesmar (2019) propose SE to explain the profitability 
anomaly along with price momentum and earnings momentum.

 The idea is straightforward. 

 In particular, expectations about an economic quantity (πt+h) are updated using the process 

𝐹𝑡πt+h = 1 − 𝜆 𝐸𝑡πt+h+ 𝜆𝐹𝑡−1πt+h
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Sticky expectations and market anomalies 

 The term 𝐸𝑡πt+h denotes the rational expectation of πt+h conditional on information 

available at date t. 

 The coefficient λ indicates the extent of expectation stickiness. 

 When λ = 0, expectations are perfectly rational. 

 Otherwise, new information is insufficiently accounted for in establishing forecasts. 

 This framework accommodates patterns of both under-reaction (0 < λ < 1) and 

overreaction (λ < 0).

 As noted by Coibion and Gorodnichenko (2012, 2015), this structure gives rise to 

straightforward testable predictions that are independent of the process underlying 

πt+h. 

 This structure also provides a direct measure of the level of stickiness.
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Sticky expectations and market anomalies 

 In the first place, forecast errors should be predicted by past revisions:

𝐸𝑡 πt+1−𝐹𝑡πt+1 =
λ

1 − λ
𝐹𝑡πt+1−𝐹𝑡−1πt+1

 Second, revisions are auto-correlated over time: 

𝐸𝑡−1 𝐹𝑡πt+1 −𝐹𝑡−1πt+1 =λ 𝐹𝑡−1πt+1−𝐹𝑡−2πt+1

 These two relations can be readily tested on expectations data (including inflation, 
profitability, interest rate, future price) without further assumptions about the data-
generating process of π. 

 The intuition behind the first testable restriction is that forecast revisions contain some 
element of new information that is only partially incorporated into expectations.

 The second prediction pertains to the dynamics of forecast revisions. 

 When expectations are sticky, information is slowly incorporated into forecasts, so that 
positive news generates positive forecast revisions over several periods. 

 This generates momentum in forecasts.
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Market Anomalies: Polar Views 
 Scholars like Fama would claim that the presence of anomalies merely indicates the 

inadequacy of the CAPM. 

 Per Fama, an alternative risk based model would capture all anomalous patterns in asset 

prices. Markets are in general efficient and the risk-return tradeoff applies. The price is right 

up to transaction cost bounds. 

 Scholars like Shiller would claim that asset prices are subject to behavioral biases. 

 Per Shiller, asset returns are too volatile to be explained by changing fundamental values and 

moreover higher risk need not imply higher return. 

 Both Fama and Shiller won the Nobel Prize in Economics in 2013. 

 Fama and Shiller represent polar views on asset pricing: rational versus behavioral. 

 But whether or not markets are efficient seems more like a philosophical question. 

 In his presidential address, Cochrane (2011) nicely summarizes this debate. See next page.
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Rational versus Behavioral perspectives 
 It is pointless to argue “rational” vs. “behavioral.”

 There is a discount rate and equivalent distorted probability that can rationalize any 

(arbitrage-free) data.

 “The market went up, risk aversion must have declined” is as vacuous as “the market 

went up, sentiment must have increased.” Any model only gets its bite by restricting 

discount rates or distorted expectations, ideally tying them to other data. 

 The only thing worth arguing about is how persuasive those ties are in a given model 

and dataset.

 And the line between recent “exotic preferences” and “behavioral finance” is so blurred, it 

describes academic politics better than anything substantive.

 For example, which of Epstein and Zin (1989), Barberis, Huang, and Santos (2001), 

Hansen and Sargent (2005), Laibson (1997), Hansen, Heaton and Li (2008), and 

Campbell and Cochrane (1999) is really “rational” and which is really “behavioral?

 Changing expectations of consumption 10 years from now (long run risks) or changing 

probabilities of a big crash are hard to tell from changing “sentiment.”
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Rational versus Behavioral perspectives  
 Yet another intriguing quote followed by a response.

 Cochrane (2011): Behavioral ideas - narrow framing, salience of recent experience, and 
so forth - are good at generating anomalous prices and mean returns in individual assets 
or small groups. They do not easily generate this kind of coordinated movement across 
all assets that looks just like a rise in risk premium. Nor do they naturally generate 
covariance. For example, “extrapolation” generates the slight autocorrelation in returns 
that lies behind momentum. But why should all the momentum stocks then rise and fall 
together the next month, just as if they are exposed to a pervasive, systematic risk?

 Kozak, Nagel, and Stantosh (KNS 2017a): The answer to this question could be that 
some components of sentiment-driven asset demands are aligned with covariances with 
important common factors, some are orthogonal to these factor covariances. Trading by 
arbitrageurs eliminates the effects of the orthogonal asset demand components, but 
those that are correlated with common factor exposures survive because arbitrageurs are 
not willing to accommodate these demands without compensation for the factor risk 
exposure.
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Theoretical Drawbacks of the CAPM

A. The CAPM assumes that the average investor cares only about the performance of the 

investment portfolio.

 But eventual wealth could emerge from both investment, labor, and entrepreneurial incomes. 

 Additional factors are therefore needed. 

 The CAPM says that two stocks that are equally sensitive to market movements must have the 

same expected return. 

 But if one stock performs better in recessions it would be more desirable for most investors who 

may actually lose their jobs or get lower salaries in recessions.

 The investors will therefore bid up the price of that stock, thereby lowering expected return. 

 Thus, pro-cyclical stocks should offer higher average returns than countercyclical stocks, even if 

both stocks have the same market beta. 

 Put another way, co-variation with recessions seems to matter in determining expected returns. 

 You may correctly argue that the market tends to go down in recessions. 

 Yet, recessions tend to be unusually severe or mild for a given level of market returns.
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ICAPM
B. The CAPM assumes a static one-period model.

 Merton (1973) introduces a multi-period version of the CAPM - the inter-temporal CAPM 

(ICAPM). 

 In ICAPM, the demand for risky assets is attributed not only to the mean variance component, as 

in the CAPM, but also to hedging against unfavorable shifts in the investment opportunity set. 

 The hedging demand is something extra relative to the CAPM. 

 In ICAPM, an asset’s risk should be measured via its covariance with the marginal utility of 

investors, and such covariance could be different from the covariance with the market return. 

 Merton shows that multiple state variables that are sources of priced risk are required to explain 
the cross section variation in expected returns.

 In such inter-temporal models, equilibrium expected returns on risky assets may differ from the 
riskless rate even when they have no systematic (market) risk. 

 But the ICAPM does not tell us which state variables are priced - this gives license to fish factors 
that work well in explaining the data albeit void any economic content. 
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Conditional CAPM

C. The CAPM is an unconditional model.

 Avramov and Chordia (2006a) show that various conditional versions of the CAPM do not explain 

anomalies.

 LN (2006) provide similar evidence yet in a quite different setup. 

 LN nicely illustrate the distinct differences between conditional and unconditional efficiency. 

 In particular, it is known from Hansen and Richards (1987) that a portfolio could be efficient 

period by period (conditional efficiency) but not unconditionally efficient. 

 Here are the details (I try to follow LN notation):

 Let 𝑅𝑖𝑡 be the excess return on asset i and let 𝑅𝑀𝑡 be excess return on the market portfolio. 

 Conditional moments for period t given t-1 are labeled with a t-subscript.

 The market conditional risk premium and volatility are 𝛾𝑡 and 𝜎𝑡 and the stock’s conditional beta 

is 𝛽𝑡. 

 The corresponding unconditional moments are denoted by 𝛾, 𝜎𝑀 , and 𝛽𝑢

 Notice: 𝛽 ≡ 𝐸(𝛽𝑡) ≠ 𝛽𝑢
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Conditional CAPM
 The conditional CAPM states that at every time t the following relation holds:

𝐸𝑡−1 𝑅𝑡 = 𝛽𝑡𝛾𝑡

 Taking expectations from both sides

𝐸 𝑅𝑡 = 𝐸 𝛽𝑡)𝐸(𝛾𝑡 + 𝑐𝑜𝑣 𝛽𝑡 , 𝛾𝑡

= 𝛽𝛾 + 𝑐𝑜𝑣(𝛽𝑡 , 𝛾𝑡 )

 Notice that the unconditional alpha is defined as

𝛼𝑢 = 𝐸 𝑅𝑡 − 𝛽𝑢𝛾

where

𝛾 = 𝐸 𝛾𝑡

 Thus

𝛼𝑢 = 𝛽𝛾 + 𝑐𝑜𝑣 𝛽𝑡 , 𝛾𝑡 − 𝛽𝑢𝛾

𝛼𝑢 = 𝛾 𝛽 − 𝛽𝑢 + 𝑐𝑜𝑣 𝛽𝑡 , 𝛾𝑡
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Conditional CAPM
 Now let 𝛽𝑡 = 𝛽 + 𝜂𝑡.

 Conditional CAPM, 𝑅𝑖𝑡 = 𝛽𝑡𝑅𝑀𝑡 + 𝜀𝑡

= 𝛽𝑅𝑀𝑡 + 𝜂𝑡𝑅𝑀𝑡 + 𝜀𝑡

 The unconditional covariance between 𝑅𝑖𝑡 and 𝑅𝑀𝑡 is equal to

𝑐𝑜𝑣 𝑅𝑖𝑡 , 𝑅𝑀𝑡 = 𝑐𝑜𝑣 𝛽𝑅𝑀𝑡 + 𝜂𝑡𝑅𝑀𝑡 + 𝜀𝑡 , 𝑅𝑀𝑡

= 𝛽𝜎𝑀
2 + 𝑐𝑜𝑣 𝜂𝑡𝑅𝑀𝑡 + 𝜀𝑡 , 𝑅𝑀𝑡

= 𝛽𝜎𝑀
2 + 𝐸 𝜂𝑡𝑅𝑀𝑡

2 − 𝐸 𝜂𝑡𝑅𝑀𝑡 𝐸 𝑅𝑀𝑡

= 𝛽𝜎𝑀
2 + 𝑐𝑜𝑣 𝜂𝑡 , 𝑅𝑀𝑡

2 − 𝛾𝑐𝑜𝑣(𝜂𝑡 , 𝑅𝑀𝑡)

= 𝛽𝜎𝑀
2 + 𝑐𝑜𝑣 𝜂𝑡 , 𝜎𝑡

2 + 𝑐𝑜𝑣 𝜂𝑡 , 𝛾𝑡
2 − 𝛾𝑐𝑜𝑣(𝜂𝑡 , 𝛾𝑡)

= 𝛽𝜎𝑀
2 + 𝑐𝑜𝑣 𝜂𝑡 , 𝜎𝑡

2 + 𝛾𝑐𝑜𝑣 𝜂𝑡 , 𝛾𝑡 + 𝑐𝑜𝑣 𝜂𝑡 , 𝛾𝑡 − 𝛾 2
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Conditional CAPM
 Then,

𝛽𝑢 = 𝛽 +
𝛾

𝜎𝑀
2 𝑐𝑜𝑣 𝛽𝑡, 𝛾𝑡 +

1

𝜎𝑀
2 𝑐𝑜𝑣 𝛽𝑡, 𝛾𝑡 − 𝛾 2 +

1

𝜎𝑀
2 𝑐𝑜𝑣 𝛽𝑡, 𝜎𝑡

2

So 𝜷𝒖 differs from 𝑬(𝜷𝒕) if

 𝛽𝑡 covaries with 𝛾𝑡

 𝛽𝑡 covaries with 𝛾𝑡 − 𝛾 2

 𝛽𝑡 covaries with 𝜎𝑡
2

 The stock unconditional alpha is 

𝛼𝑢 = 1 −
𝛾2

𝜎𝑀
2 𝑐𝑜𝑣 𝛽𝑡, 𝛾𝑡 −

𝛾

𝜎𝑀
2 𝑐𝑜𝑣 𝛽𝑡, 𝛾𝑡 − 𝛾 2 −

𝛾

𝜎𝑀
2 𝑐𝑜𝑣 𝛽𝑡, 𝜎𝑡

2

 Notice that even when the conditional CAPM holds exactly we should expect to find deviations from the 
unconditional CAPM if any of the three covariance terms is nonzero.

 But if the conditional CAPM holds, 𝛼𝑢 should be relatively small, at odds with market anomalies. 
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D. Perhaps Multifactor Models?
 The poor performance of the single factor CAPM motivated a search for multifactor models. 

 Multiple factors have been inspired along the spirit of 

The Arbitrage Pricing Theory — APT — (1976) of Ross 

The inter-temporal CAPM (ICAPM) of Merton (1973).

 Distinguishing between the APT and ICAPM is often confusing. 

 Cochrane (2001) argues that the biggest difference between APT and ICAPM for empirical 

work is in the inspiration of factors: 

 The APT suggests a statistical analysis of the covariance matrix of returns to find factors 

that characterize common movements

 The ICAPM puts some economic meaning to the selected factors
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Multifactor Models
 FF (1992, 1993) have shown that the cross-sectional variation in expected returns can be captured using the 

following factors: 

1. the return on the market portfolio in excess of the risk free rate of return 

2. a zero net investment (spread) portfolio long in small firm stocks and short in large firm stocks (SMB) 

3. a spread portfolio long in high book-to-market stocks and short in low book-to-market stocks (HML) 

 FF (1996) have shown that their model is able to explain many of the cross sectional effects known back then -

excluding momentum.

 But meanwhile many new effects have been discovered that the FF-model fails to explain.

 FF (1993) argue that their factors are state variables in an ICAPM sense. 

 Liew and Vassalou (2000) make a good case for that claim: they find that the FF factors forecast GDP growth

 But the FF model is empirically based while it voids any theoretical underpinning

 Moreover, the statistical tests promoting the FF model are based on 25 size book to market portfolios that already 

obey a factor structure, while results are less favorable focusing on industry portfolios or individual securities.

 Factor structure means that the first three eigen vectors of the covariance matrix of returns display similar 

properties to the market, size, and value factors. So perhaps nothing is really special about the FF model. 
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Multifactor Models
 The FF model is also unable to explain the IVOL effect, the credit risk effect, the dispersion effect, earnings 

momentum, net equity issues (net equity issued less the amount of seasoned equity retired), among many others.

 Out-of-sample, the FF model performs poorly. 

 In fact, factor models typically do not perform well out-of-sample.

 Models based on cross section regressions with firm characteristics perform better (see, e.g., Haugen and Baker 

(2006) and the recently developing machine learning methods in finance) possibly due to estimation errors.

 In particular, in time-series asset pricing regressions, N times K factor loadings are estimated in addition to K risk 

premiums, while in cross section regressions only M slope coefficients, where N is the number of test assets, K is 

the number of factors, and M is the number of firm characteristics. 

 Cross-section regressions thus require a smaller number of estimates.

 Shrinkage methods (e.g., Ridge and Lasso) attempt to improve the estimation of cross section regressions. 

 Indeed, cross section regression coefficients are still estimated with errors and their computation implicitly requires 

the estimation of the inverse covariance matrix of all predictors, whose size grows quadratically with the number of 

firm characteristics. 

 Moreover, firm characteristics are typically highly correlated – thus the regression suffers from the multi-

collinearity problem.
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Multifactor Models

 Carhart (1997) proposes a four-factor model to evaluate performance of equity mutual funds —

MKT, SMB, HML, and WML, where WML is a momentum factor. 

 He shows that profitability of “hot hands” based trading strategies (documented by Hendricks, 

Patel, and Zeckhauser (1993)) disappears when investment payoffs are adjusted by WML. 

 The profitability of “smart money” based trading strategies in mutual funds (documented by Zheng 

(1999)) also disappears in the presence of WML. 

 Pastor and Stambaugh (2003) propose adding a liquidity factor. 

 Until 2003 we had five major factors to explain equity returns 

1. market 

2. SMB 

3. HML 

4. WML 

5. Liquidity 
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Multifactor Models
 Often bond portfolios such as the default risk premium and the term premium are also added (need 

to distinguish between risk premiums and yield spreads).

 Fama and French (2015) propose a five-factor model based on the original market, size, and book-

to-market factors and adds investment and profitability factors.

 Hou, Xue, and Zhang (2015) propose four-factors: market, size, investment, and profitability. 

 Both studies provide theoretical motivations for why these factors contain information about 

expected return.

 Hou, Xue, and Zhang (2015) rely on an investment-based pricing model, while Fama and French 

(2015) invoke comparative statics of a present-value relation.

 Stambaugh and Yuan (2016) propose two mispricing factors based on 11 anomalies studied in 

Stambaugh, Yu, and Yuan (2012).

 Avramov, Cheng, and Hameed (2018) employ the Stambaugh-Yuan factor in understanding 

performance of mutual funds. 

 Controlling for this benchmark eliminates alphas of mutual funds that hold mispriced stocks. 
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What if factors are not pre-specified? The APT 

 Chen, Roll, and Ross (1986) study pre-specified factors, presumably motivated by the APT.

 However, the APT is mostly silent on the return deriving factors.

 Considering latent (as opposed to pre-specified) factors is the basic tenet of APT.

 The APT is appealing as it requires minimal set of assumptions: that there are many 

assets, that trading is costless, and that a factor model drives returns.

 To analyse the model empirically, however, one must impose additional structure. 

 First, as Shanken (1982) emphasizes, obtaining an exact rather than approximate factor 

pricing relation requires an assumption about market equilibrium.  

 Second, some assumptions that ensure statistical identification are necessary. 

 One possibility is to assume that returns are Gaussian, that their co-variances are 

constant, and that all co-movement in asset returns can be attributed to factor movements. 

 Given these restrictions, it is possible to use maximum likelihood factor analysis to 

estimate factor loadings. 
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What if factors are not pre-specified? The APT 

 Roll and Ross (1980) used these loadings to test exact APT pricing with constant factor 

risk premiums using simple cross-sectional regression tests.

 Lehmann and Modest (1988) use a more sophisticated factor decomposition algorithm to 

consider much larger cross-sections of returns under the same assumptions.

 Extending the results of Chamberlain and Rothschild (1982), Connor and Korajczyk 

(1986) introduced a novel method for factor extraction, which they called asymptotic 

principal components. 

 Notice that asymptotic is with respect to the number of stocks, not time-series. 

 The procedure allows for non-Gaussian returns. 

 The central convergence result of CK states that given a large enough set of assets 

returns whose residuals are sufficiently uncorrelated, the realizations, over a fixed time 

period, of the unobserved factors (up to a non-singular translation) may be recovered to 

any desired precision.

 Jones (2001) extends CK to the case of heteroskedastic asset returns.

 Details on extracting latent factors are provided below.
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Extracting latent factors
 CK assume countably infinite set of assets.

 We observe 𝑅𝑁, the 𝑁 × 𝑇 matrix of excess returns on the first 𝑁 assets in the economy.

 We can write

𝑅𝑁 = 𝐵𝑁𝐻 + 𝐸𝑁

where 𝐵𝑁 is the 𝑁 × 𝐾 matrix of factor loadings, 𝐻 is a K× 𝑇 matrix of factor risk 

premiums, and 𝐸𝑁 contains the 𝑁 × 𝑇 regression residuals.

 Notice that 
1

𝑁
𝑅𝑁

′
𝑅𝑁 =

1

𝑁
𝐻′𝐵𝑁

′
𝐵𝑁𝐻 +

1

𝑁
𝐻′𝐵𝑁

′
𝐸𝑁 +

1

𝑁
𝐸𝑁

′
𝐵𝑁𝐻 +

1

𝑁
𝐸𝑁

′
𝐸𝑁

= 𝑋𝑁 + 𝑌𝑁 + 𝑌𝑁
′
+ 𝑍𝑁

 CK assume that 
1

𝑁
𝐵𝑁

′
𝐵𝑁 has a probability limit 𝑀, implying that 𝑋𝑁 → 𝐻′𝑀𝐻

 As the residual terms have zero means and are also serially uncorrelated, 𝑌𝑁 and 𝑌𝑁
′

have probability limits equal to zero.
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Extracting latent factors 
 The non-serial correlation and homoscedastic assumptions imply that there exists an 

average residual variance ത𝜎2 that is constant through time.

 Taking together all assumptions, we get
1

𝑁
𝑅𝑁

′
𝑅𝑁 → 𝐻′𝑀𝐻 + ത𝜎2𝐼𝑇

or
1

𝑁
𝑅𝑁

′
𝑅𝑁 → 𝐹′𝐹 + ത𝜎2𝐼𝑇

 The 𝐾 eigenvectors corresponding to the largest 𝐾 eigenvalues of 
1

𝑁
𝑅𝑁

′
𝑅𝑁 are the latent factors.

 Each of the extracted factors is a T-vector. 

 Notice that replacing 𝐻 by 𝐹 in time-series regressions of excess returns on factors does not 

have any effect on alpha estimates and their significance.

 One can use such PCA to test exact asset pricing as well as assess performance (alpha) of 

mutual funds and hedge funds.
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Extracting latent factors 
 Jones (2001) accounts for asset return heteroscedasticity but the non-serial correlation 

assumption is still preserved.

 Then 
1

𝑁
𝑅𝑁

′
𝑅𝑁 still converges to 𝐻′𝑀𝐻 + 𝐷 while 𝐷 is a 𝑇 × 𝑇 diagonal matrix with non 

equal diagonal entries.  

 Put another way, the average idiosyncratic variance can freely change from one period to 

the next.

 Due to serially uncorrelated residuals 𝑌𝑁 and 𝑌𝑁
′

still have probability limits of zero.

 As 
1

𝑁
𝑅𝑁

′
𝑅𝑁 → 𝐹′𝐹 + 𝐷, it follows that 

1

𝑁
𝐷−

1

2𝑅𝑁
′
𝑅𝑁𝐷−

1

2 → 𝐷−
1

2𝐹′𝐹𝐷−
1

2 + 𝐼𝑇

 Or 
1

𝑁
𝐷−

1

2𝑅𝑁
′
𝑅𝑁𝐷−

1

2 → 𝑄′𝑄 + 𝐼𝑇

 By the singular value decomposition 𝑄 = 𝑈′ Λ − 𝐼𝐾
1

2𝑉′, where 𝑉 contains the 

eigenvectors corresponding to the 𝐾 largest eigenvalues of 
1

𝑁
𝐷−

1

2𝑅𝑁
′
𝑅𝑁𝐷−

1

2, and Λ

contains the diagonal matrix of these eigenvalues in descending order.
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Extracting latent factors 
 Assuming 𝑈 = 𝐼𝐾, we get 𝐹′ = 𝑄𝐷

1

2 = Λ − 𝐼𝐾
1

2𝑉′𝐷
1

2.

 As 𝐷 is unknown, Jones uses the iterative process:

 Compute 𝐶 =
1

𝑁
𝑅𝑁

′
𝑅𝑁.

 Guess an initial estimate of 𝐷, say ෡𝐷.

 Collect the K eigenvectors corresponding to the 𝐾 largest eigenvalues of the matrix ෡𝐷−
1

2𝐶෡𝐷−
1

2.

 Let Λ be the diagonal matrix with the 𝐾 largest eigenvalues on the diagonal arranged in 

descending order, and let 𝑉 denote the matrix of eigenvectors.

 Compute an estimate of the factor matrix as

෨𝐹 = ෡𝐷
1
2𝑉 Λ − 𝐼𝐾

1
2

 Compute a new estimate ෡𝐷 as the diagonal of 𝐶 − ෨𝐹′ ෨𝐹.

 Keep the iteration till convergence.
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Understanding factor models 
 Whether multi-factor models are based on pre-specified or latent factors, the stochastic discount 

factor (SDF) is represented as a function of a small number of portfolio returns. 

 Such models are reduced-form because they are not derived from assumptions about investor 
beliefs, preferences, and technology that prescribe which factors should appear in the SDF. 

 Reduced-form factor models in this sense also include theoretical models that analyze how cross-
sectional differences in stocks' covariances with the SDF arise from firms' investment decisions. 

 Berk, Green, and Naik (1999), Johnson (2002), Liu, Whited, and Zhang (2009), and Liu and 
Zhang (2014) belong into the reduced-form class because they make no assumptions about 
investor beliefs and preferences other than the existence of an SDF.

 These models show how firm investment decisions are aligned with expected returns in 
equilibrium, according to first-order conditions. 

 But they do not give a clue about which types of beliefs, rational or otherwise, investors align 
their marginal utilities with asset returns through first-order conditions.

 Similarly, in the ICAPM (1973), the SDF is derived from the first-order condition of an investor 
who holds the market portfolio and faces exogenously given time-varying investment 
opportunities. This leaves open the question how to endogenously generate the time-variation in 
investment opportunities in a way that is consistent, in equilibrium, with the ICAPM investor's 
first-order condition and his choice to hold the market portfolio.
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Understanding factor models 

 In this context, researchers often take the view that a tight link between expected returns 

and factor loadings is consistent with rational rather than behavioral asset pricing.

 This view is also underlying arguments that a successful test or calibration of a reduced-

form SDF provides a rational explanation of asset pricing anomalies.

 However, the reduced-form factor model evidence does not help in discriminating 

between alternative hypotheses about investor beliefs. 

 In particular, only minimal assumptions on preferences and beliefs of investors are 

required for a reduced-form factor model with a small number of factors to describe the 

cross-section of expected returns. 

 These assumptions are consistent with plausible behavioral models of asset prices as 

much as they are consistent with rational ones.

 Thus, one cannot learn much about investor beliefs from the empirical evaluation of a 

reduced-form model.
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Understanding factor models 
 For test assets that are equity portfolios sorted on firm characteristics, the covariance matrix is typically 

dominated by a small number of factors. 

 Then, the SDF can be represented as a function of these few dominant factors. 

 Absence of “near arbitrage” opportunities implies that there are no investment opportunities with extremely 
high Sharp Ratios, which is to say that there are no substantial loadings on principal components with 
extremely low eigen values (see formal details on the next page). 

 Hence, if assets have a small number of factors with large eigen values, then these factors must explain 
returns. 

 Otherwise, near-arbitrage opportunities would arise, which would be implausible, even if one entertains the 
possibility that prices could be influenced substantially by irrational sentiment investors.

 This result is in the spirit of the Arbitrage Pricing Theory (APT) of Ross (1976).

 Ross (p. 354) suggests bounding the maximum squared Sharpe Ratio of any arbitrage portfolio at twice the 
squared SR of the market portfolio. 

 Fama and French (1996) (p. 75) regard the APT as a rational pricing model. 

 KNS disagree with this interpretation, as absence of near-arbitrage opportunities still leaves a lot of room 
for belief distortions to affect asset prices.

 In particular, belief distortions that are correlated with common factor covariances will affect prices, while 
belief distortions that are uncorrelated with common factor covariances will be neutralized by arbitrageurs 
who are looking for high-SR opportunities.
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Understanding factor models 
 The basic claim is that if a small number of factors dominate --- they have the largest eigenvalues ---

then those factors must explain asset returns.

 To see why, consider the Hansen Jagannathan (1991) pricing kernel representation

𝑀𝑡 = 1 − 𝑏′(𝑟𝑡 − 𝜇)

where 𝑟𝑡 is an N-vector of excess returns and b is the N-vector of pricing kernel coefficients. 

 Imposing the asset pricing restriction E(𝑀𝑡𝑟𝑡)=0, the pricing kernel can be represented as 

𝑀𝑡 = 1 − 𝜇′𝑉−1 𝑟𝑡 − 𝜇 , 

where 𝜇 and 𝑉 are the 𝑁-vector of mean excess returns and the 𝑁 ×𝑁 covariance matrix. 

 That is, pricing kernel coefficients are weights of the mean-variance efficient portfolio. 

 Notice that

var 𝑀𝑡 = 𝜇′𝑉−1𝜇

which is the highest admissible Sharpe ratio based on the 𝑁 risky assets.

 Now, express 𝑉 = 𝑄Λ𝑄′, where 𝑄 = [𝑞1, … , 𝑞𝑁] is the collection of 𝑁 principal components and Λ
= diag(𝜆1, … , 𝜆𝑁) is the diagonal matrix of the corresponding eigenvalues.

 Then

𝑉−1 = 𝑄Λ−1𝑄′

=
𝑞1𝑞1

′

𝜆1
+
𝑞2𝑞2

′

𝜆2
+⋯+

𝑞𝑁𝑞𝑁
′

𝜆𝑁
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Understanding factor models 
 Assume further that the first PC is a level factor, or 𝑞1 =

1

𝑁
1𝑁.

 Check: 𝑞1
′𝑞1 = 1

 Moreover, to get 𝑞1
′𝑞𝑘 = 0 for 𝑘 = 2,… ,𝑁 it must be the case that 𝑞𝑘 is a combination of 

positive (long) and negative (short) entries.

 We get

var 𝑀 = 𝜇′𝑉−1𝜇 = 𝜇′𝑄Λ−1𝑄′𝜇

=
𝜇′𝑞1

2

𝜆1
+

𝜇′𝑞2
2

𝜆2
+⋯+

𝜇′𝑞𝑁
2

𝜆𝑁

=
𝜇𝑀
𝜎𝑀

2

+ 𝑁var(𝜇𝑖)෍

𝑘=2

𝑁
corr 𝜇𝑖 , 𝑞𝑘𝑖

2

𝜆𝑘

where 𝜇𝑀 =
1

𝑁
𝑞1′𝜇 and σ𝑀 =

𝜆1

𝑁
, since var 𝑞𝑖𝑘 = 1 ∀ 𝑘 = 1,… ,𝑁

 This expression for var 𝑀 is also the expression for the maximal Sharpe ratio.

 It shows that expected returns must line up with only the first few PCs --- otherwise 

dividing by a small eigenvalue leads to enormous squared Sharpe ratio.

67



Understanding factor models 

 If you extract 𝐾 = 1,… , 15 factors, the maximum squared SR based on the extracted 

factors rises with 𝐾.

 Out-of-sample --- things look very differently.

 That is, let 𝑅 is the 𝑇 × 𝑁 matrix of asset returns based on the first part of the sample, 

and compute 𝑓1 = 𝑅𝑞1, 𝑓2 = 𝑅𝑞2, … , 𝑓𝐾 = 𝑅𝑞𝑘.

 Then compute max 𝑆𝑅2 = 𝜇𝐹
′ 𝑉𝐹

−1𝜇𝐹 where 𝜇𝐹 and 𝑉𝐹 are the mean vector and  the 

covariance matrix of factors.

 Then apply 𝑞1, … , 𝑞𝑘 for out-of-sample 𝑅 − the maximum 𝑆𝑅2 is much smaller

 Thus, mere absence of near arbitrage opportunities has limited economic content.

 For instance, the absence of near arbitrage opportunities could characterizes economics 

in which all cross-section variation in expected returns is attributable to sentiment.
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Understanding Factor Models
 Let us revisit the HJ pricing kernel representation to reinforce the idea that only a small 

number of factors should explain asset returns.

 The pricing kernel is now represented using eigenvectors and eigenvalues:

𝑀𝑡 = 1 − 𝜇′𝑉−1 𝑟𝑡 − 𝜇
= 1 − 𝜇′𝑄Λ−1𝑄′ 𝑟𝑡 − 𝜇

 Now, let 𝑄𝑡 = 𝑄′𝑟𝑡 and 𝜇𝑄 = 𝑄′𝜇, then

𝑀𝑡 = 1 − 𝜇𝑄
′ Λ−1(𝑄𝑡 − 𝜇𝑄)

= 1 − 𝑏𝑄
′ (𝑄𝑡 − 𝜇𝑄)

 The sample estimate of 𝑏𝑄 is given by ෠𝑏𝑄 = ෡Λ−1 ො𝜇𝑄.

 Assume that Λ is known, then var ෠𝑏𝑄 =
1

𝑇
Λ−1 where 𝑇 is the smaple size.

 This expression tells you that the variance of the pricing kernel coefficients associated 

with the smallest eigenvalues is huge.

 The variance could even be more extreme when Λ is unknown.
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Pricing Kernel with time-varying Parametes
 The conditional version of the pricing kernel is represented through time varying 

coefficients:

𝑀𝑡 = 1 − 𝑏𝑡−1
′ (𝑟𝑡 − 𝜇𝑡−1)

where 𝜇𝑡−1 = 𝐸𝑡−1(𝑟𝑡).

 The profession typically considers two formulations for time variation.

 First, 𝑏𝑡−1could varywith firm-level characteristics.

 Second, it could vary with macro-level variables. 

 Notably, time-varying beta is different from time varying b, one does not imply the other.

 Considering firm level characteristics, it follows that 𝑏𝑡−1 = 𝐶𝑡−1𝑏, where 𝐶𝑡−1 is an 𝑁 × 𝐻
matrix, 𝐻 characteristics (e.g., size, profitability, past returns) for each of the 𝑁 stocks, 

and 𝑏 is an H× 1 vector.

 Plugging 𝑏𝑡−1 into the conditional version of the pricing kernel yields 

𝑀𝑡 = 1 − 𝑏′ 𝐶𝑡−1
′ 𝑟𝑡 − 𝐸𝑡−1 𝐶𝑡−1

′ 𝑟𝑡
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Conditional Asset Pricing Revisited
 The set of assets consists of H managed portfolios with realized returns 𝐶𝑡−1

′ 𝑟𝑡

 The vector 𝑏 is again weights of the mean-variance efficient portfolio based on managed portfolios.

 Next, we model time-variation with 𝑀 macro variables, such as the dividend yield, the term spread, and 

the default spread, denoted by 𝑧𝑡−1:

𝑏𝑡−1 = 𝑏𝑧𝑡−1

where 𝑏𝑡−1 is an 𝑁 × 1 vector, 𝑏 is an 𝑁 ×𝑀 matrix, and 𝑧𝑡−1 is an 𝑀 × 1 vector.

 The pricing kernel representation is then

𝑀𝑡 = 1 − 𝑣𝑒𝑐 𝑏 ′ 𝑟𝑡⨂𝑧𝑡−1 − 𝐸𝑡−1 𝑟𝑡⨂𝑧𝑡−1

where 𝑣𝑒𝑐 𝑏 is the vectorization of the matrix 𝑏.

 The pricing kerenl parameters are again weights of the mean-variance efficient portfolio where the 

investment universe consists of 𝑁 ×𝑀 managed portfolios with realized returns 𝑟𝑡⨂𝑧𝑡−1.

 In what comes next, we revisit the presidential address of Cochrane and cover the literature that emerged 

in response to his high-dimensionality challenge. 
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The high-dimensionality challenge per Cochrane (2011)
 Recall, Harvey, Liu, and Zhu (2016)  document 316 factors discovered by academia. 

 If you believe the results of Avramov, Chordia, Jostova, and Philipov noted earlier – then the dimension is too high: 
asset pricing anomalies concentrate in episodes of firm financial distress. 

 Cochrane underlies the following challenges in understanding the cross section dispersion in average returns. 

 First, which firm characteristics really provide independent information about average returns? Which are subsumed 
by others?

 Second, does each new anomaly variable also correspond to a new factor formed on those same anomalies? 
Momentum returns correspond to regression coefficients on a winner-loser momentum “factor.” Carry-trade profits 
correspond to a carry-trade factor. Do accruals return strategies correspond to an accruals factor? 

 Third, how many of these new factors are really important? Can we again account for N independent dimensions of 
expected returns with K<N factor exposures? Can we account for accruals return strategies by betas on some other 
factor, as with sales growth? 

 Notice that factor structure is neither necessary nor sufficient for factor pricing. ICAPM and consumption-CAPM 
models do not predict or require that the multiple pricing factors will correspond to big co-movements in asset 
returns. And big co-movements, such as industry portfolios, need not correspond to any risk premium. 

 There always is an equivalent single-factor pricing representation of any multifactor model, the mean-variance 
efficient portfolio. Still, the world would be much simpler if betas on only a few factors, important in the covariance 
matrix of returns, accounted for a larger number of mean characteristics.
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The high-dimensionality challenge per Cochrane (2011)
 Fourth, eventually, we have to connect all this back to the central question of finance, why do prices 

move?

 Cochrane states: “to address these questions in the zoo of new variables, I suspect we will have to 

use different methods.”

 Indeed, financial economists have typically employed two methods to identify return predictors: (i) 

portfolio sorts using one or multiple characteristics and (ii) Fama and MacBeth (1973) cross section 

regressions. 

 Portfolio sorts are subject to the curse of dimensionality when the number of characteristics is large, 

and linear regressions make strong functional-form assumptions and are sensitive to outliers.

 In response to Cochrane’s challenge and his call for different methods, there has been emerging 

literature that applies machine learning techniques in asset pricing.

 Before we delve into heavy duty machine learning methods, there is a short chapter, coming up, 

that tells you how to distinguish between time-series and cross-sectional effects in the relation 

between future stock return and the current value of predictive characteristic.  
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Panel regression slope coefficients and 

their association with trading strategies  
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Panel Regressions 
 We study panel regressions with versus without fixed effects and their close association with average

payoffs to time-series and cross-sectional strategies.

 The time-series dimension consists of T months altogether.

 The cross-section dimension consists of N firms altogether.

 We consider a panel that is not essentially balanced.

 In each month, there are 𝑁𝑡 ≤ N firms, while each firm records Ti ≤ T monthly observations of returns
and predictive characteristics, such as past return, volatility, investment, credit risk, and profitability.

 Let rit denote return on stock i at month t and let zit represent a single characteristic for stock i at month t.

 Consider the regression of future return on the current value of characteristic with stock fixed effects:

𝑟𝑖𝑡+1 = 𝑎𝑖 + 𝑏𝑇𝑆𝑧𝑖𝑡 + 𝜀𝑖𝑡+1

 To increase the power of the inference the slope is assumed constant across stocks and through time.

 The slope has the TS subscript because the regression assesses only time-series predictability.

 That is, accounting for stock fixed-effects reflects only within-stock time-series variation in 𝑧𝑖𝑡.

 The slope can be estimated from a no-intercept regression of return on demeaned characteristic, where
demeaning is along the time-series dimension.
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Panel Regressions with stock fixed effects
 The estimated slope is thus given by

෠𝑏𝑇𝑆 =
σ𝑖=1
𝑁 𝑇𝑖 ො𝜎𝑧𝑟, 𝑖
σ𝑛=1
𝑁 𝑇𝑛 ො𝜎𝑧,𝑛

2

where ො𝜎𝑧,𝑖
2 is the time−series variance of zit 𝑖 and ො𝜎𝑧𝑟, 𝑖 is the time-series covariance between 𝑟𝑖𝑡+1and zit .

 To understand the properties of the slope estimate and its significance, we can express the slope as

෠𝑏𝑇𝑆 = 𝑏𝑇𝑆 +
σ𝑖σ𝑡 𝑧𝑖𝑡 − ҧ𝑧𝑖 𝜀𝑖𝑡+1

σ𝑛=1
𝑁 𝑇𝑛 ො𝜎𝑧,𝑛

2

where ҧ𝑧𝑖 is the firm i time-series mean of the predictive characteristic.

 Clustering is essential for estimating the standard error. 

 Pastor, Stambaugh, and Taylor (2017) show that this slope can also be represented as

෠𝑏𝑇𝑆 =෍

𝑖=1

𝑁

𝑤𝑖
෠𝑏𝑖

where 𝑤𝑖 =
𝑇𝑖ෝ𝜎𝑧,𝑖

𝟐

σ𝑛=1
𝑁 𝑇𝑛ෝ𝜎𝑧,𝑛

2 and ෠𝑏𝑖 is the estimated slope coefficient in stock-level time- series regressions:

𝑟𝑖𝑡+1 = 𝑎𝑖 + 𝑏𝑖𝑧𝑖𝑡 + 𝑒𝑖𝑡+1

 That is, the panel regression slope estimate is a value weighted average of estimated slopes from individual regressions. 

 This weighting scheme places larger weights on time-series slopes of stocks with more observations as well as stocks whose predictive 
characteristic fluctuates more over time.
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Time-series based investment strategies 
 Pastor, Stambaugh, and Taylor (2017) also show that the panel regression coefficient is related to 

investment strategy payoff. 

 To illustrate, consider a long-short trading strategy from a time-series perspective:

Long A: zit in stock i at month t

Short B: ҧ𝑧𝑖 in stock i at month t 

 Strategy A is a market-timing strategy with time-varying weights.

 Strategy B is a static constant-weight strategy.

 Denote the total payoff for the long-short strategy by 𝜑𝑇𝑆, 𝑖

 It follows that:

φ𝑇𝑆, 𝑖
=෍

𝑡=1

𝑇
𝑖

𝑧𝑖𝑡 − ҧ𝑧𝑖 𝑟𝑖𝑡+1 = 𝑇𝑖 ො𝜎𝑟𝑧, 𝑖

 That is, the payoff is proportional to the time-series covariance between future return and the 

current value of the predictive characteristic. 
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Panel Regressions with stock fixed effectss

 Then, the total payoff that aggregates across all stocks is given by

φ𝑇𝑆 =෍

𝑖=1

𝑁

φ𝑇𝑆, 𝑖
=෍

𝑖=1

𝑁

𝑇𝑖 ො𝜎𝑟𝑧, 𝑖

 The total payoff can thus be represented as a function of the panel regression slope

φ𝑇𝑆 = ෠𝑏𝑇𝑆 ෍

𝑛=1

𝑁

𝑇𝑛 ො𝜎𝑍,𝑛
2

 Hence, the total (and average) payoff is proportional to the slope estimate in a panel regression with 

stock-fixed effects.

 We could make it equality 𝜑𝑇𝑆=𝑏𝑇𝑆 by scaling the investment. 

 That is, rather than dollar long dollar sort, invest 1/(σ𝑛=1
𝑁 𝑇𝑛 ො𝜎𝑍,𝑛

2 ) in both the long and the short. 
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Panel Regressions with month fixed effects
s

 Consider now a panel regression with month-fixed effects

𝑟𝑖𝑡+1 = 𝑎𝑡 + 𝑏𝐶𝑆𝑧𝑖𝑡 + 𝜈𝑖𝑡+1

 We use the CS subscript to reflect the notion that month fixed effects correspond to a cross-sectional analysis. 

 Accounting for month fixed-effects reflects only cross-section variation in the predictive characteristic.

 The slope can be estimated through a no-intercept panel regression of future stock return on the demeaned characteristic, 

where demeaning is along the cross-section dimension. 

 The slope of such demeaned regression is readily estimated as

෠𝑏𝐶𝑆 =
σ𝑡=1
𝑇 𝑁𝑡 ො𝜎𝑧𝑟, 𝑡
σ𝑡=1
𝑇 𝑁𝑡 ො𝜎𝑧,𝑡

2

where ො𝜎z,t
𝟐 is the cross-sectional variance of the characteristic in month t and ො𝜎𝑧𝑟, 𝑖 is the cross-sectional covariance `

between 𝑟𝑖𝑡+1and zit .

 To understand the properties of the slope estimate and its significance, we can express the slope as

෠𝑏𝐶𝑆 = 𝑏𝐶𝑆 +
σ𝑖σ𝑡 𝑧𝑖𝑡 − ҧ𝑧𝑡 𝜀𝑖𝑡+1

σ𝑡=1
𝑇 𝑁𝑡 ො𝜎𝑧,𝑡

2

where ҧ𝑧𝑡 is the time t cross-sectional mean of the predictive characteristic.
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Panel Regressions with month fixed effects

 The slope can be estimated through ෠𝑏𝐶𝑆 = σ𝑡=1
𝑇 𝑤𝑡

෠𝑏𝑡 where 𝑤𝑡 =
𝑁
𝑡
ෝ𝜎𝑍,𝑡
2

σ𝑠=1
𝑇 𝑁

𝑠
ෝ𝜎𝑍,𝑠
2
.

 Thus, the slope is a value weighted average of slopes from monthly cross-section regressions: 

𝑟𝑖𝑡+1 = 𝑎𝑡 + 𝑏𝑡𝑧𝑖𝑡 + 𝜂𝑖𝑡+1

 Larger weights are placed on cross-sectional estimates from periods with more stocks and periods in 

which the independent variable exhibits more cross-sectional variation. 

 Notice that the same slope obtains also through regressing demeaned return on demeaned characteristic 

(no month fixed effects), where demeaning is along the cross-section direction.

 With stock-fixed effects the weights depend on the number of time-series observations per stock, while 

with month fixed-effects, the weights depend on the number of stocks per month.

 Also, with stock-fixed effects the weights depend on the time-series variation of the independent variable, 

while with month fixed-effects, they depend on the cross-sectional variation. 
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Cross Section based investment strategies 

 Let us now consider a long-short trading strategy from a cross-sectional perspective:

Long A: zit in stock i at month t

Short B: ҧ𝑧𝑡 in stock i at month t 

where ҧ𝑧𝑡 is the time t cross-sectional mean of zit

ҧ𝑧𝑡 =
1

𝑁𝑡

෍

𝑖=1

𝑁
𝑡

𝑧𝑖𝑡

 The total payoff for this long-short strategy is 

φ 𝐶𝑆, 𝑡
=෍

𝑖=1

𝑁

𝑧𝑖𝑡 − ҧ𝑧𝑡 𝑟𝑖𝑡+1 = 𝑁𝑡 ො𝜎𝑟𝑧, 𝑡

where ො𝜎𝑟𝑧, 𝑡 is the estimate of month t cross-sectional covariance between 𝑟𝑖𝑡+1and zit .
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Panel Regressions with month Fixed effects
 Aggregating through all months, the total payoff is given by

φ 𝐶𝑆 =෍

𝑡=1

𝑇

φ 𝐶𝑆, 𝑡
=෍

𝑡=1

𝑇

𝑁𝑡 ො𝜎𝑟𝑧, 𝑡

 The total payoff is thus proportional to the panel regression slope with month fixed effects. 

 In particular

φ 𝐶𝑆 = ෠𝑏𝐶𝑆 ෍

𝑡=1

𝑇

𝑁𝑡 ො𝜎𝑟𝑧, 𝑡

 Notice also that ෠𝑏𝐶𝑆 is related to the commonly used Fama-MacBeth estimator

෠𝑏𝐹𝑀 =
1

𝑇
෍

𝑡=1

𝑇

𝑏𝑡

 The Fama-MacBeth estimator is a special case if the panel is balanced (𝑁𝑡 = N for all t) and the cross-sectional 
variance of the dependent variable does not change over time.  

 The addition of month fixed effects to stock fixed effects controls for any unobserved variables that change over 
time but not across stocks, such as macroeconomic variables, regulatory changes, and aggregate trading activity.

 Similarly, the addition of stock fixed effects to month fixed effects controls for any unobserved variables that 
change across stocks but not across time, such as managerial attributes, corporate governance, etc.
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Unconditional Covariance between 𝑟𝑖𝑡+1and 𝑧𝑖𝑡
 While Pastor, Stambaugh, and Taylor (2017) have focused on conditional covariation between future return and 

current value of characteristic, it is also intriguing to understand the sources of unconditional covariation. 

 The unconditional covariance between future stock return and the current value of firm characteristic is not 
conditioned on either stock fixed effects or time fixed effects.

 We show below that the unconditional covariance can also be expressed as a function of payoffs attributable to 
time-series and cross-sectional strategies. 

 In particular, let ҧ𝑧= 
1

σ𝑖 𝑇𝑖
σ𝑖σ𝑡 𝑧𝑖𝑡 and   ҧ𝑟= 

1

σ𝑖 𝑇𝑖
σ𝑖σ𝑡 𝑟𝑖𝑡+1. 

 These quantities are the grand means (across months and stocks) of the characteristic and return.

 The estimated unconditional covariance is then given by

𝐶𝑂𝑉 =෍

𝑖

෍

𝑡

𝑧𝑖𝑡 − ҧ𝑧 𝑟𝑖𝑡+1 − ҧ𝑟

=෍

𝑖

෍

𝑡

𝑧𝑖𝑡 − ҧ𝑧 𝑟𝑖𝑡+1
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Unconditional Covariance between 𝑟𝑖𝑡+1and 𝑧𝑖𝑡
 As an intermediate stage, let us decompose the payoffs to the time-series and cross-sectional 

strategies as follows

φ𝑇𝑆 =෍

𝑖

෍

𝑡

𝑧𝑖𝑡 − ҧ𝑧𝑖 𝑟𝑖𝑡+1 =෍

𝑖

෍

𝑡

ҧ𝑧𝑡 − ҧ𝑧 𝑟𝑖𝑡+1

A

+෍

𝑖

෍

𝑡

𝑧𝑖𝑡 − ҧ𝑧𝑡 − ҧ𝑧𝑖 − ҧ𝑧 𝑟𝑖𝑡+1

𝐵

φ 𝐶𝑆 =
෍

𝑖

෍

𝑡

𝑧𝑖𝑡 − ഥ𝑧𝑡 𝑟𝑖𝑡+1 =෍

𝑖

෍

𝑡

ҧ𝑧𝑖 − ҧ𝑧 𝑟𝑖𝑡+1

𝐶

+෍

𝑖

෍

𝑡

𝑧𝑖𝑡 − ҧ𝑧𝑡 − ҧ𝑧𝑖 − ҧ𝑧 𝑟𝑖𝑡+1

𝐵

 Notice that the payoffs for the time-series and cross-sectional strategies do share a common 

component (B) reflecting through-time-across-stock payoff. 

 Notice also that both strategies do have unique components A and C reflecting purely through-

time and across-stock payoffs, respectively. 

 Let us now decompose the difference 𝑧𝑖𝑡 − ҧ𝑧 such that

𝑧𝑖𝑡 − ҧ𝑧 = ҧ𝑧𝑡 − ҧ𝑧 + 𝑧𝑖𝑡 − ҧ𝑧𝑡 − ҧ𝑧𝑖 − ҧ𝑧 + ҧ𝑧𝑖 − ҧ𝑧
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Unconditional Covariance between 𝑟𝑖𝑡+1and 𝑧𝑖𝑡
 Thus, the unconditional covariance between future stock return and the current value of predictive characteristic 

is given by 

𝐶𝑂𝑉 𝑟𝑖𝑡+1 , 𝑧𝑖𝑡 = 𝐴 + 𝐵 + 𝐶

 In words, the estimated unconditional covariance is equal to the sum of the unique time-series payoff (A), the 
unique cross-sectional payoff (C), and the common component (B). 

 Now, let 𝛾 denote the slope in the unconditional (no fixed effects) panel regression. 

 The slope is estimated as 

ො𝛾 =
σ𝑖 σ𝑡 𝑧𝑖𝑡− ҧ𝑧 𝑟𝑖𝑡+1− ҧ𝑟

σ𝑖 σ𝑡 𝑧𝑖𝑡− ҧ𝑧
2

 The slope can then be decomposed into its three components reflecting the contribution of A, B, and C in 
explaining the total variation (through time and across stocks) in return:

ො𝛾 = ො𝛾A+ ො𝛾B+ො𝛾C.

 For instance,

ො𝛾𝐴 =
𝐴

σ𝑖 σ𝑡 𝑧𝑖𝑡− ҧ𝑧
2

 Avramov and Xu (2019) implement such slope decomposition in the context of predicting future currency return 
by the foreign interest rate for various economies. 
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Unconditional Covariance between 𝑟𝑖𝑡+1and 𝑧𝑖𝑡
 To understand the quantity ො𝛾𝐴, consider the regression of return rit+1 on ҧ𝑧t.

 The estimated slope in that regression is denoted by መ𝛿𝐴.

 Then, it follows that

ො𝛾𝐴 = መ𝛿𝐴
𝑉𝐴𝑅 ( ҧ𝑧

𝑡
)

𝑉𝐴𝑅 (𝑧
𝑖𝑡
)

 Similarly, consider the regression of return  rit+1 on ҧ𝑧i.

 The estimated slope in this regression is denoted by መ𝛿𝑐. 

 Then, it follows that

ො𝛾𝐶 = መ𝛿𝐶
𝑉𝐴𝑅 ( ҧ𝑧

𝑡
)

𝑉𝐴𝑅 (𝑧𝑖𝑡)

 Notice also that መ𝛿𝐴 =
𝐴

𝑉𝐴𝑅 ( ҧ𝑧
𝑡
)

and መ𝛿𝐶 =
𝐶

𝑉𝐴𝑅 ( ҧ𝑧
𝑖
)
.

 Significance of ො𝛾 is easily inferred from the unconditional regression while signifnace of ො𝛾A, ො𝛾B, or ො𝛾C or 

significance of ratios such as A/C can be assessed through Jackknife or Bootstrap (see Avramov and Xu (2019)).

 The ratio A/C reflects the strength of time-series versus cross-sectional strategies. 
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Multiple Panel regressions with fixed effects 
 Thus far, we have studied univariate panel regressions.

 Consider now a multiple panel regression with stock fixed effects 

𝑟𝑖𝑡+1 = 𝑎𝑖 + 𝑏𝑇𝑆′𝑧𝑖𝑡 + 𝜀𝑖𝑡+1

 𝑧𝑖𝑡 is an M-vector of characteristics for firm i at month t and 𝑏𝑇𝑆 is an M-vector of slope coefficients. 

 We thus have to estimate N intercepts (a1,a2,…,aN) along with M slopes, altogether (N+M ) parameters. 

 OLS coefficients are given by
ො𝑎1
ො𝑎2
⋮
ො𝑎𝑁
෠𝑏𝑇𝑆

= (𝑋′𝑋) −1𝑋′𝑅

 Let ෨𝑇 = σ𝑖=1
𝑁 𝑇𝑖, then R is a ෨𝑇-vector, 𝑅′ = 𝑟′1, 𝑟

′
2, … , 𝑟′𝑁 , with ri being a Ti-vector of returns for firm i.
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Multiple Panel regressions with fixed effects 
 In addition, X is a ෨𝑇 × (𝑀 + 𝑁) matrix:

𝑋 =

𝜄1
0
⋮

0
𝜄2
⋮

0 0

⋯
⋯
⋱
⋯

0
0
⋮
𝜄𝑁

𝑧1
𝑧2
⋮
𝑧𝑁

 Then, it can be shown that

෠𝑏𝑇𝑆 =෍

𝑖=1

𝑁

𝑤𝑖
෠𝑏𝑖

where 𝑤𝑖 = 𝑇𝑖 σ𝑠=1
𝑁 𝑇𝑠 ෠Σzs

−1 ෠Σzi , ෠Σzi is the time-series covariance matrix of firm i characteristics, and ෠𝑏𝑖 is an M-vector 

of slope estimates from individual predictive regressions of future returns on current values of firm characteristics. 

 As in the univariate case, the slope is a value weighted average of firm-level slopes but now weights are formulated 
through an 𝑀 ×𝑀 matrix.

 The slope can also be represented as 

෠𝑏𝑇𝑆 = ෍

𝑠=1

𝑁

𝑇𝑠 ෠Σzs

−1

෍

𝑖=1

𝑁

𝑇𝑖෠Σzri , where ෠Σzri is a covariance vector between future return and 𝑀 characteristics.
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Multiple Panel regressions with fixed effects 
 Similarly, consider a multiple regression with month fixed-effects:

𝑟𝑖𝑡+1 = 𝑎𝑡 + 𝑏𝐶𝑆′𝑧𝑖𝑡 + 𝜀𝑖𝑡+1

 We estimate T intercepts and M slops coefficients, altogether T+M parameters.

 The slope estimate is given by:

෠𝑏𝐶𝑆 =෍

𝑡=1

𝑇

𝑤𝑡
෠𝑏𝑡

where ෠𝑏𝑡 is an M-vector of slopes estimated from monthly cross section regressions,

𝑤𝑡 =Nt σ𝑠=1
𝑇 𝑁𝑆

෠𝛴zS

−1 ෠𝛴zt , and ෠𝛴zt is the month-t cross-sectional covariance matrix of firm 

characteristics.

89



Panel regressions with Common Factors 
 Let us now extend the panel regression setup to account for common factors.

 To keep it simple, let us consider a single factor model.

 Then, the panel regression is formulates as

𝑟𝑖𝑡+1 = 𝑎𝑖 + 𝑟𝑓𝑡 + 𝛽𝑖ft+1 + 𝛾 zit + 𝜀𝑖𝑡+1

 𝑟𝑓𝑡 is the risk-free rate for period t+1, observed at time t.

 Clearly, 𝑟𝑓𝑡 and ft+1 vary only through time but not across stocks.

 In the time-invariant beta setup, beta varies only across stocks.

 Essentially, we ask what does the 𝛽𝑖ft+1 component capture?

 It can capture cross-sectional predictability if 𝛽𝑖 is correlated, in the cross section, with the 
characteristic. 

 It can also capture time-series predictability if, for at least one stock, ft+1 is correlated, in the 
time series, with zit .

 We formalize these concepts below. 
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Panel regressions with Common Factors 
 Let us define risk adjusted excess return as ǁ𝑟𝑖t+1 = 𝑟𝑖𝑡+1 − 𝑟𝑓𝑡 − 𝛽𝑖ft+1 .

 The corresponding payoffs to the time-series and cross-sectional strategies are given by

෥φ𝑇𝑆 =෍

𝑖

෍

𝑡

𝑧𝑖𝑡 − ҧ𝑧𝑖 ǁ𝑟𝑖𝑡+1 = ෩𝐴 + ෨𝐵

෥φ𝐶𝑆 =
෍

𝑖

෍

𝑡

𝑧𝑖𝑡 − ҧ𝑧𝑡 ǁ𝑟𝑖𝑡+1 = ሚ𝐶 + ෨𝐵

where ෩𝐴 , ෨𝐵, and ሚ𝐶 are similar to A, B ,and C except that ǁ𝑟𝑖𝑡+1is replacing 𝑟𝑖𝑡+1.

 Then, it can be shown that

෩𝐴 = 𝐴 −෍

𝑖

෍

𝑡

𝑧𝑖𝑡 − ҧ𝑧𝑖 𝛽𝑖ft+1

෩𝐴 = 𝐴 −෍

𝑖

𝛽𝑖෍

𝑡

𝑧𝑖𝑡 − ҧ𝑧𝑖 ft+1

෩𝐴 = 𝐴 −෍

𝑖

𝛽𝑖 Ti ො𝜎𝑧𝑓, 𝑖

where ො𝜎𝑧𝑓, 𝑖 is the time-series covariance between ft+1 and 𝑧𝑖𝑡 and Ti is the number of time-series observations per stock i.
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Panel regressions with Common Factors 
 The last equation formalizes the notion that including common factors can capture time-series 

predictability by firm characteristics as long as the factor is correlated with the lagged characteristic 

for at least one stock. 

 Clearly, if ො𝜎𝑧𝑓, 𝑖 is equal to zero for each of the stocks then asset pricing factors do not explain any 

time-series predictability. 

 From a cross-sectional perspective, it follows that 

ሚ𝐶 = 𝐶 − σ𝑖σ𝑡 ҧ𝑧𝑖𝑡 − ҧ𝑧𝑡 𝛽𝑖ft+1

= 𝐶 − σ𝑡 ft+1σ𝑖 ҧ𝑧𝑖𝑡 − ҧ𝑧𝑡 𝛽𝑖

= 𝐶 − σ𝑡=1
𝑇 Ntft+1 ො𝜎𝛽𝑧, 𝑡

where ො𝜎𝛽𝑧, 𝑡 is the cross-section covariance between 𝛽𝑖 and zit  while 𝑁𝑡 is the number of stocks at 

month t.

 Asset pricing factors could explain cross-sectional predictability as long as factor loadings are 

correlated with firm characteristics, for at least one period.  
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Predictive Regressions: 

statistical evidence and economic 

restrictions 
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Stock Return Predictability

 Empirical evidence shows that returns were predictable by financial ratios, such as the 

price-dividend or price-earnings ratio.

 Later other variables, such as the spread between long-term and short-term bond 

yields, the consumption-wealth ratio, macroeconomic variables, and corporate decision 

variables were also shown to have predictive ability.

 The literature has expanded its interest to returns on other asset classes, such as 

government bonds, currencies, real estate, and commodities, and to many countries.

 Initially, the finding of predictability was interpreted as evidence against the efficient 

market hypothesis.

 Fama (1991) proposed the alternative explanation of time-varying expected returns.

94



Stock Return Predictability Based on Macro Variables
 Indeed, in the past twenty years, research in asset pricing has proposed several 

equilibrium models with efficient markets that generate time variation in expected 

returns: models with time-varying risk aversion (Campbell and Cochrane, 1999), time-

varying aggregate consumption risk (Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 

2009), time-varying consumption disasters (Gabaix, 2009), time-variation in risk-sharing 

opportunities among heterogeneous agents (Lustig and Van Nieuwerburgh, 2005), or 

time-variation in beliefs (Timmermann, 1993; Detemple and Murthy, 1994).

 The  evidence  on  predictability  is  typically  based  upon  the system

𝑟𝑡 = 𝑎 + 𝛽𝑧𝑡−1 + 𝑢𝑡
𝑧𝑡 = 𝑐 + 𝜌𝑧𝑡−1 + 𝑣𝑡

 Statistically, predictability means that the 𝛽 coefficient is significant at conventional levels.

 Economically, predictability means that you can properly time the market, switching between 

an equity fund and a money market fund, based on expected stock return.
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Predictive regressions- Finite sample bias in the slope 

coefficients

 Re-writing the predictive system

𝑟𝑡 = 𝑎 + 𝛽𝑧𝑡−1 + 𝑢𝑡
𝑧𝑡 = 𝑐 + 𝜌𝑧𝑡−1 + 𝑣𝑡

 Now, let 𝜎𝑣
2 denote the variance of 𝑣𝑡, and let 𝜎𝑢𝑣 denote the covariance between 𝑢𝑡 and 𝑣𝑡.

 We know from Kandall (1954) that the OLS estimate of the persistence parameter 𝜌 is 

biased, and that the bias is −1(1 + 3𝜌)/𝑇.

 Stambaugh (1999) shows that under the normality assumption, the finite sample bias in መ𝛽, 

the slope coefficient in a predictive regression, is

𝐵𝑖𝑎𝑠 = 𝔼 መ𝛽 − 𝛽 = −
𝜎𝑢𝑣

𝜎𝑣
2

1 + 3𝜌

𝑇

 The bias can easily be derived.
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Finite Sample Bias

 Note that the OLS estimates of 𝛽 and 𝜌 are

መ𝛽 = (𝑋′𝑋)−1𝑋′𝑅 = 𝛽 + (𝑋′𝑋)−1𝑋′𝑈

ො𝜌 = (𝑋′𝑋)−1𝑋′𝑍 = 𝜌 + (𝑋′𝑋)−1𝑋′𝑉

where

𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑇]
′, 𝑍 = [𝑧1, 𝑧2, … , 𝑧𝑇]

′

𝑈 = [𝑢1, 𝑢2, … , 𝑢𝑇]
′, 𝑉 = [𝑣1, 𝑣2, … , 𝑣𝑇]

′

𝑋 = [𝜄𝑇 , 𝑍−1], 𝜄𝑇 is a 𝑇-dimension vector of ones

𝑍−1 = [𝑧0, 𝑧1, … , 𝑧𝑇−1]
′
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Finite Sample Bias

 Also note that 𝑢𝑡 can be decomposed into two orthogonal components

𝑢𝑡 =
𝜎𝑢𝑣

𝜎𝑣
2 𝑣𝑡 + 𝑒𝑡

where 𝑒𝑡 is uncorrelated with 𝑧𝑡−1 and 𝑣𝑡.

 Hence, the predictive regression slope can be rewritten as

መ𝛽 = 𝛽 +
𝜎𝑢𝑣

𝜎𝑣
2 ( ො𝜌 − 𝜌) + (𝑋′𝑋)−1𝑋′𝐸

where 𝐸 = [𝑒1, 𝑒2, … , 𝑒𝑇]
′.

 Amihud and Hurvich (2004, 2009) develop an approach to deal with statistical inference in 

the presence of a small sample bias.
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Stock Return Predictability - Is The Evidence on 

Predictability Robust?

 Predictability based on macro variables is still a research controversy:

— Asset pricing theories often do not identify variables that predict asset returns. For 

instance, Menzly, Santos, and Veronesi (2006), just like other studies cited on the 

previous page, provide theoretical validity for predictability – but ex post. There are two 

exceptions. The present value formula clearly identifies the dividend-to-price (or 

consumption to wealth) as a potential predictor. The lower bound identifies SVIX. 

— Statistical biases in slope coefficients of a predictive regression;

— Potential data mining in choosing the macro variables;

— Poor out-of-sample performance of predictive regressions;

 Schwert (2003) shows that time-series predictability based on the dividend yield tends to 

attenuate and even disappears after its discovery.

 Indeed, the power of macro variables to predict the equity premium substantially 

deteriorates during the post-discovery period.

99



Stock Return Predictability - Potential Data Mining

 Repeated visits of the same database lead to a problem that statisticians refer to as data 

mining (also model over-fitting or data snooping). 

 It reflects the tendency to discover spurious relationships by applying tests inspired by 

evidence coming up from prior visits to the same database.

 Merton (1987) and Lo and MacKinlay (1990), among others, discuss the problems of over-

fitting data in tests of financial models. 

 In the context of predictability, data mining has been investigated by Foster, Smith, and 

Whaley (FSW - 1997).
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Stock Return Predictability - Foster, Smith, and Whaley 

(1997)
 FSW adjust the test size for potential over-fitting, using theoretical approximations as well as 

simulation studies. 

 They assume that 

1. M potential predictors are available. 

2. All possible regression combinations are tried. 

3. Only 𝑚 < 𝑀 predictors with the highest 𝑅2 are reported. 

 Their evidence shows: 

1. Inference about predictability could be erroneous when potential specification search is 

not accounted for in the test statistic. 

2. Using other industry, size, or country data as a control to guard against variable-

selection biases can be misleading.
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Stock Return Predictability - The Poor Out-of-Sample 

Performance of Predictive Regressions

 Bossaerts and Hillion (1999) and Goyal and Welch (2006) are a good reference. 

 The adjustment of the test size for specification search could help in correctly rejecting the 

null of no relationship.

 It would, however, provide little information if the empiricist is asked to discriminate 

between competing models under the alternative of existing relation.

 BH and GW propose examining predictability using model selection criteria. 

 Suppose there are M potential predictors: then here are 2𝑀 competing specifications.

 Select one specification based on model selection criteria e.g., adjusted 𝑅2, AIC, or SIC.

 The winning model maximizes the tradeoff between goodness of fit and complexity. 

 The selected model (regardless of the criterion used) always retains predictors – not a big 

surprise – indicating in-sample predictability. 
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Stock Return Predictability
 Implicitly, you assign a 

1

2𝑀
probability that the IID model is correct - so you are essentially 

biased in favor of detecting predictability. 

 The out-of-sample performance of the selected model is always a disaster. 

 The Bayesian approach of model combination could improve out-of-sample performance (see 

Avramov (2002)). In fact, Avramov (2002) warns against using model selection criteria. 

 BMA can be extended to account for time varying parameters.

 There are three major papers responding to the apparently nonexistent out of sample 

predictability of the equity premium. 

 Cochrane (2008) points out that we should detect predictability either in returns or dividend 

growth rates. Cochrane invokes the present value relation. Coming up soon. 

 Campbell and Thompson (2008) document predictability after restricting the equity premium 

to be positive. 

 Rapach, Strauss, and Zhou (2010) combine model forecast, similar to the Bayesian Model 

Averaging concept, but using equal weights and considering a small subset of models.
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Economic restrictions on predictive regressions

 In the presence of biases in predictive regressions, data mining concerns, as well as dismal out 

of sample predictive power, financial economists have seriously questioned the notion that 

returns are really predictable.

 There have been several major responses to that concern.

 Martin derives a lower bound on the equity premium and shows that this bound is an adequate 

predictor of future return.

 Cochrane is using the log linearization to tell us that if dividend growth is unpredictable by the 

dividend-to-price ratio then it must be the case that returns are predicable.

 Some other economic restrictions include non negative expected return (e.g., Campbell and 

Thompson (2008)). 

 More details are coming up next. 
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Predictability and Lower bound on the equity premium 

 Martin (2017) contributes to the literature on return predictability through formulating a 
lower bound on the equity premium under sensible assumptions on investor preferences. 

 The lower bound is based on option prices.

 This is perhaps surprising because option pricing formulas (e.g., Black and Sholes) do not 
display the mean return, or the drift.

 Here are formal details.

 Let 𝑋𝑇 be a payoff to be paid at time T and let 𝑀𝑇 be the corresponding pricing kernel.

 The time t price of the future payoff can be described in two different ways

𝑃𝑡 = 𝐸𝑡 𝑀𝑇𝑋𝑇 =
1

𝑅𝑓𝑡
𝐸𝑡

∗𝑋𝑇

 𝐸𝑡 is the conditional expectations operator under the physical measure, while 𝐸𝑡
∗ is the 

corresponding operator under the risk-neutral measure.

 The second equality reflects the notion that in a risk neutral world, an asset price is equal to 
the present value of expected cash flows, where discounting is based on the risk free rate.

 Letting XT=R𝑇
2, it follows that

𝐸𝑡 𝑀𝑇𝑅𝑇
2 =

1

𝑅𝑓𝑡
𝐸𝑡

∗𝑅𝑇
2
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Lower bound on the equity premium 
 𝑅𝑓𝑡 is one plus the risk free rate for the period starting at time t ending at T. 

 The risk-neutral variance of future return is

𝑉𝑎𝑅𝑡
∗ 𝑅𝑇 = 𝐸𝑡

∗ 𝑅𝑇
2 − 𝐸𝑡

∗ 𝑅𝑇
2 = 𝑅𝑓𝑡𝐸𝑡 𝑀𝑇𝑅𝑇

2 − 𝑅𝑓𝑡
2

 Now, the equity premium is, by definition, 

𝐸𝑡 𝑅𝑇 − 𝑅𝑓𝑡 = 𝐸𝑡 𝑅𝑇 − 𝐸𝑡 𝑀𝑇𝑅𝑇
2 − 𝑅𝑓𝑡 − 𝐸𝑡 𝑀𝑇𝑅𝑇

2

=
1

𝑅𝑓𝑡
𝑉𝑎𝑅𝑡

∗ 𝑅𝑇 − 𝑐𝑜𝑣𝑡(𝑀𝑇𝑅𝑇, 𝑅𝑇)

 Notice that

𝑐𝑜𝑣𝑡(𝑀𝑇𝑅𝑇, 𝑅𝑇) = 𝐸𝑡 𝑀𝑇𝑅𝑇
2 − 𝐸𝑡 𝑀𝑇𝑅𝑇 𝐸𝑡 𝑅𝑇 = 𝐸𝑡 𝑀𝑇𝑅𝑇

2 − 𝐸𝑡 𝑅𝑇

where the last equality follows because the asset pricing relation is about 𝐸𝑡 𝑀𝑇𝑅𝑇 = 1

 As long as 𝑐𝑜𝑣𝑡 𝑀𝑇𝑅𝑇, 𝑅𝑇 is non-positive for any time period, the lower bound applies

𝐸𝑡 𝑅𝑇 − 𝑅𝑓𝑡 ≥
1

𝑅𝑓𝑡
𝑉𝑎𝑅𝑡

∗ 𝑅𝑇

 The negative correlation condition (NCC) holds for flexible set of preferences. 
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Lower bound on the equity premium 
 For example, consider the power preferences: U 𝑊𝑇 ∝ 𝑊𝑇

1−𝛾, then 𝑀𝑇 ∝ U′ 𝑊𝑇 .

 The covariance is negative because the expression 𝑅𝑇U′ 𝑊𝑇 is decreasing in RT 

 The essential step now is to measure the risk-neutral variance
1

𝑅𝑓𝑡
𝑉𝑎𝑅𝑡

∗ 𝑅𝑇

 To understand how to solve for 𝑉𝑎𝑅𝑡
∗ 𝑅𝑇 , we start with the Carr-Madan (CM) formula.

 In particular, let g(ST) be a payoff that depends on ST , the stock price at time T. 

 In addition, g(x) is a continuously twice differentiable function.

 The CM formula states that 

g(ST)= g(𝐹𝑡, 𝑇)+𝑔′(𝐹𝑡, 𝑇)(ST - 𝐹𝑡, 𝑇)+0׬
𝐹
𝑡
,
𝑇 𝑔′′ 𝐾 (𝐾 − ST)

+𝑑𝐾 + 𝐹׬
𝑡
,
𝑇

∞
𝑔′′ 𝐾 (ST − 𝐾)+𝑑𝐾
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Lower bound on the equity premium 
where, 

❖ 𝐹𝑡, 𝑇 is the future price on the stock with delivery at time T, thus 𝐹𝑡, 𝑇 =ST 𝑅𝑓𝑡 in the absence 

of dividend payments.

❖ (ST− 𝐾)+ = max[ST− 𝐾,0]

❖ (𝐾 − ST)
+ = max[𝐾 − ST,0]

 Now, let g(ST) = 
ST
St

2

 Applying the CM formula to 
ST
St

2

we get

ST
St

2

=
𝐹𝑡, 𝑇
St

2

+
2𝐹𝑡, 𝑇
𝑆𝑡
2

𝑆𝑇 − 𝐹𝑡, 𝑇 +
2

𝑆𝑡
2
න
0

𝐹
𝑡
,
𝑇

(𝐾 − ST)
+𝑑𝐾 +න

𝐹
𝑡
,
𝑇

∞

(ST− 𝐾)+𝑑𝐾

 Notice that 𝐸𝑡
∗ 𝑆𝑇 = 𝐹𝑡, 𝑇
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Lower bound on the equity premium 
 Then, taking risk-natural expectations from both sides of the equation yields

𝐸𝑡
∗
ST
St

2

= 𝑅𝑓𝑡
2 +

2𝑅𝑓𝑡
𝑆𝑡
2

න
0

𝐹
𝑡
,
𝑇

𝑃𝑡, 𝑇 𝐾 𝑑𝐾 +න
𝐹
𝑡
,
𝑇

∞

𝐶𝑡, 𝑇 𝐾 𝑑𝐾

where C𝑡, 𝑇
𝐾 and 𝑃𝑡, 𝑇 𝐾 are current prices of European call and put options on the 

underlying stock with maturity at time T and strike price K.

 Having at hand the expression for 𝐸𝑡
∗ ST
St

2

, the risk-neutral variance follows.

 In particular, 

𝑉𝑎𝑅𝑡
∗ 𝑅𝑇 = 𝐸𝑡

∗
ST
St

2

− 𝑅𝑓𝑡
2

 Thus,

𝑉𝑎𝑅𝑡
∗ 𝑅𝑇
𝑅𝑓𝑡

=
2

𝑆𝑡
2
න
0

𝐹
𝑡
,
𝑇

𝑃𝑡, 𝑇 𝐾 𝑑𝐾 +න
𝐹
𝑡
,
𝑇

∞

𝐶𝑡, 𝑇 𝐾 𝑑𝐾

109



Lower bound on the equity premium 
 Martin defines the simple VIX (SVIX) to be equal to the risk natural variance.

 Using the property Ft= 𝑆𝑡𝑅𝑓𝑡 , we can also express 𝑆𝑉𝐼𝑋𝑡
2 as

𝑆𝑉𝐼𝑋𝑡
2 =

2𝑅𝑓𝑡
(𝑇 − 𝑡)𝐹𝑡.𝑇

2 න
0

𝐹
𝑡
,
𝑇

𝑃𝑡, 𝑇 𝐾 𝑑𝐾 +න
𝐹
𝑡
,
𝑇

∞

𝐶𝑡, 𝑇 𝐾 𝑑𝐾

 VIX is similar to SVIX, but is more sensitive to left tail events.

 In particular, VIXt
2 is given by

𝑉𝐼𝑋𝑡
2 =

2𝑅𝑓𝑡

(𝑇−𝑡)
0׬
𝐹
𝑡
,
𝑇 1

𝐾2
𝑃𝑡, 𝑇 𝐾 𝑑𝐾 + 𝐹׬

𝑡
,
𝑇

∞ 1

𝐾2
𝐶𝑡, 𝑇 𝐾 𝑑𝐾

 The idea that risk-neutral variance of a stock return can be computed the way suggested 

here goes back to Bakshi and Madan (2000), Carr and Madan (2001), and Bakshi, 

Kapadia, and Madan (2003).
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Measuring individual stock expected return
 Option prices can also be used to measure individual stock expected returns.

 To illustrate, the risk-neutral covariance between
1

𝑚
and Ri and the variance of 

1

𝑚
are given by

𝐶𝑜𝑣∗
1

𝑚
,Ri = 𝐸∗

1

𝑚
,Ri − 𝐸∗

1

𝑚
𝐸∗Ri

= 𝑅𝑓𝑡 𝐸Ri − 𝑅𝑓𝑡

𝑉𝑎𝑅∗
1

𝑚
= 𝐸∗

1

𝑚

2

− 𝐸∗
1

𝑚

2

= 𝑅𝑓𝑡𝐸
1

𝑚
− 𝑅𝑓𝑡

2

 Dividing both equations, we get

𝐸𝑡𝑅𝑖, t+1−𝑅𝑓𝑡=𝛽𝑖, t
∗ 𝐸𝑡

1

𝑚t+1

− 𝑅𝑓𝑡

where,

𝛽𝑖, t
∗ =

𝐶𝑜𝑣𝑡
∗ 1
𝑚t+1

, 𝑅𝑖, t+1

𝑉𝑎𝑅𝑡
∗ 1
𝑚t+1
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Measuring individual stock expected return
 This equation establishes a single factor model that only requires the existence of SDF.

 The basic pricing equation holds for any asset, be it stock, bond, option, and real investment, and it holds for any two periods in a 
dynamic setup.

 It  does not assume that 

 markets are complete or a the existence of a representative investor

 asset returns are normally distributed or IID through time

 Setup is static

 particular form of preferences (such as separable utility)

 there is no human capital or any other source of non-asset income

 markets have reached an equilibrium. 

 Martin and Wagner (2019) formulate individual excess expected return as

𝐸𝑡
𝑅𝑖, t+1 − 𝑅𝑓𝑡

𝑅𝑓𝑡
= 𝑆𝑉𝐼𝑋𝑡

2 +
1

2
𝑆𝑉𝐼𝑋𝑖,𝑡

2 − 𝑆𝑉𝐼𝑋𝑡
2

➢ market volatility: SVIXt

➢ volatility of stock i: SVIXi,t

➢ average stock volatility: 𝑆𝑉𝐼𝑋𝑡

➢ The formula requires observations of option prices but no estimation.

 But it is based on three nontrivial approximations. 
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Using options to measure credit spread 

113

 Culp, Nozowa, and Veronesi (2018) analyze credit risk using “pseudo firms” that purchase traded assets 
financed with equity and zero-coupon bonds. 

 Pseudo bonds are equivalent to Treasuries minus put options on pseudo firm assets.

 They find that pseudo bond spreads are large, countercyclical, and predict lower economic growth, just 
like real corporate spreads. 

 Using that framework, they show that bond market illiquidity, investors’ overestimation of default 
risks, and corporate frictions do not seem to explain excessive observed credit spreads.

 Instead, a risk premium for tail and idiosyncratic asset risks is the primary determinant of corporate 
spreads.

 Below, I provide the intuition for their work. 

 Consider a firm that has no dividend-paying equity outstanding, and a single zero-coupon debt issue.

 The time t values of the assets of the firm, the debt, and the equity are At, Bt, and Et, respectively. The 
debt matures at time T.

 The value of the equity at time T is

𝐸𝑇 = max 0, 𝐴𝑇 − ത𝐵

 This is the payoff to a call option.

 What is the underlying asset?

 What is the strike price?



Interpreting Default-able Bonds

 The value of the debt is

𝐵𝑇 = min 𝐴𝑇 , ത𝐵

or

𝐵𝑇 = 𝐴𝑇 +min 0, ത𝐵 − 𝐴𝑇 = 𝐴𝑇 −max 0, 𝐴𝑇 − ത𝐵

 This implies that corporate bondholders could be viewed as those owning the 
firm assets, but have written a call option on the firm assets to the equity-
holders. 

 Or the bondholders own a default free bond and have written a put option on the 
firm assets.

 You can use the call-put parity to verify that both perspectives are indeed 
equivalent. 

 Thus, we can compute the value of debt and equity prior to time 𝑇 using option 
pricing methods, with the value of assets taking the place of the stock price and 
the face value of the debt taking the place of the strike price

 The equity value at time 𝑡 is the value of a call option on the firm assets. The 
value of the debt is then 𝐵𝑡 = 𝐴𝑡 –𝐸𝑡.
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Pricing Zero Coupon Bonds with Default Risk using the 

B&S Formula

 Suppose that a non dividend paying firm issues a zero coupon bond 

maturing in five years. 

 The bond’s face value is $100, the current value of the assets is $90, the 

risk-free rate (cc) is 6%, and the volatility of the underlying assets is 25%. 

What is the equity and debt value? 

What is the bond’s yield to maturity (ytm)?

 The Black-Scholes Formula Revisited 

Call Option price:

𝐶 𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿 = 𝑆𝑒−𝛿𝑇𝑁 𝑑1 − 𝐾𝑒−𝑟𝑇𝑁 𝑑2

Put Option price:

𝑃 𝑆,𝐾, 𝜎, 𝑟, 𝑇, 𝛿 = 𝐾𝑒−𝑟𝑇𝑁 −𝑑2 − 𝑆𝑒−𝛿𝑇𝑁 −𝑑1
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Default Risk Premium

 The equity value solves the BSCall:

Equity=BSCall(90,100,0.25,0.06,5,0)=27.07

 The debt value is thus 90-27.07=62.93.

 The debt cc ytm =1/5×ln(100/62.93)=9.26%.

 The ytm is greater than the risk free rate due to default risk premium.

 The default risk premium is equal to

exp(0.0926)-exp(0.06)=3.52%
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The Campbell-Shiller (CS) present value formula

 The CS decomposition is yet another economic based response to the concern that returns are unpredictable. 

 The notion is to identify the dividend-to-price ratio as a return predictor. 

 The setup is developed below. 

 Let 𝑅𝑡+1 be the simple net return on a risky asset

𝑅𝑡+1 =
𝑃𝑡+1 + 𝐷𝑡+1

𝑃𝑡
− 1

 Let 𝑟𝑡 = log 1 + 𝑅𝑡 , 𝑝𝑡 = log 𝑃𝑡 , 𝑑𝑡 = log 𝐷𝑡 .

 Then,

𝑟𝑡+1 = log 𝑃𝑡+1 + 𝐷𝑡+1 − 𝑙𝑜𝑔𝑃𝑡

= 𝑝𝑡+1 − 𝑝𝑡 + log 1 + exp 𝑑𝑡+1 − 𝑝𝑡+1

The CS approximation
 We are ready now to implement the CS approximation. 

 In particular, we approximate the function 𝑓 𝑥𝑡 = 𝑙𝑜𝑔 1 + 𝑒𝑥𝑝 𝑥𝑡 around 𝑥

 The first order Taylor approximation is given by

𝑓 𝑥𝑡 = 𝑙𝑜𝑔 1 + 𝑒𝑥𝑝 𝑥 +
𝑒𝑥𝑝 𝑥

1 + 𝑒𝑥𝑝 𝑥
𝑥𝑡 − 𝑥
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 Hence 

𝑙𝑜𝑔 1 + 𝑒𝑥𝑝 𝑑𝑡+1 − 𝑝𝑡+1 ≈ 𝑙𝑜𝑔 1 + 𝑒𝑥𝑝 𝑑 − 𝑝

−
𝑒𝑥𝑝 𝑑−𝑝

1+𝑒𝑥𝑝 𝑑−𝑝
𝑑 − 𝑝

+
𝑒𝑥𝑝 𝑑−𝑝

1+𝑒𝑥𝑝 𝑑−𝑝
𝑑𝑡+1 − 𝑝𝑡+1

 Letting 𝜌 ≡
1

1+𝑒𝑥𝑝 𝑑−𝑝
, it follows that

1 − 𝜌 =
𝑒𝑥𝑝 𝑑 − 𝑝

1 + 𝑒𝑥𝑝 𝑑 − 𝑝

𝑑 − 𝑝 = 𝑙𝑜𝑔
1

𝜌
− 1

 We get

𝑙𝑜𝑔 1 + 𝑒𝑥𝑝 𝑑𝑡+1 − 𝑝𝑡+1 ≈

−𝑙𝑜𝑔 𝜌 − 1 − 𝜌 𝑙𝑜𝑔
1

𝜌
− 1 + 1 − 𝜌 𝑑𝑡+1 − 𝑝𝑡+1
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 Now let

𝑘 ≡ −𝑙𝑜𝑔 𝜌 − 1 − 𝜌 𝑙𝑜𝑔
1

𝜌
− 1

 And the realized return could be approximated as

𝑟𝑡+1 ≈ 𝑘 + 𝜌𝑝𝑡+1 + 1 − 𝜌 𝑑𝑡+1 − 𝑝𝑡

 Rearranging, 

𝑝𝑡 ≈ 𝑘 + 𝜌𝑝𝑡+1 −𝑟𝑡+1 + 1 − 𝜌 𝑑𝑡+1

𝑝𝑡 − 𝑑𝑡 ≈ 𝑘 + 𝜌(𝑝𝑡+1−𝑑𝑡+1) −𝑟𝑡+1 +𝑑𝑡+1-𝑑𝑡

 If the dividend-to-price ratio is constant then the approximation holds exactly with

𝜌 =
1

1 +
𝐷
𝑃

 Iterating forward and assuming that lim
𝑗→∞

𝜌𝑗𝑝𝑡+𝑗 = 0 (no bubbles), we get

𝑝𝑡 − 𝑑𝑡 =
𝑘

1 − 𝜌
+෍

𝑗=0

∞

𝜌𝑗(Δ𝑑𝑡+1+𝑗 − 𝑟𝑡+1+𝑗)
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 This equation holds ex post and also ex ante, conditioning both left and right hand side of the equation 

by time t information.  

 Thus, variation in the dividend-to-price ratio predicts dividend growth or expected returns.

 This point is central in the literature about equity premium predictability.

 To illustrate, using the present value model, for finite horizon, we have

𝑑𝑝𝑡 = 𝑑𝑡 − 𝑝𝑡 =෍
𝑗=1

𝐽

𝜌𝑗−1𝑟𝑡+𝑗 −෍
𝑗=1

𝐽

𝜌𝑗−1Δ𝑑𝑡+𝑗 + 𝜌𝑘 𝑝𝑡+𝑗 − 𝑑𝑡+𝑗

 Thus,

var 𝑑𝑝𝑡 = cov 𝑑𝑝𝑡 ,෍
𝑗=1

𝐽

𝜌𝑗−1𝑟𝑡+𝑗 − cov 𝑑𝑝𝑡 ,෍
𝑗=1

𝐽

𝜌𝑗−1Δ𝑑𝑡+𝑗 + 𝜌𝐽cov 𝑑𝑝𝑡 , 𝑑𝑝𝑡+𝑘

 Dividing by var 𝑑𝑝𝑡 yields

1 = 𝑏𝑟
(𝐽)

− 𝑏𝑟𝑑
𝐽
+ 𝜌𝑘𝑏𝑑𝑝

(𝐽)

where the 𝑏s on the right hand side are the slope coefficients in the regressions:

෍
𝑗=1

𝐽

𝜌𝑗−1𝑟𝑡+𝑗 = 𝑎𝑟 + 𝑏𝑟
(𝐽)
𝑑𝑝𝑡 + 𝜀𝑡+𝐽

𝑟

෍
𝑗=1

𝐽

𝜌𝑗−1Δ𝑑𝑡+𝑗 = 𝑎𝑑 + 𝑏𝑑
(𝐽)
𝑑𝑝𝑡 + 𝜀𝑡+𝐽

𝑑

𝑑𝑝𝑡+𝐽 = 𝑎𝑑𝑝 + 𝑏𝑑𝑝
(𝐽)
𝑑𝑝𝑡 + 𝜀𝑡+𝐽

𝑑𝑝

120

The CS approximation



 Cochrane (2011) presents the long-run regression coefficients

 That says that all the variation in the dividend to price ratio corresponds to variation in 

expected returns.

 None corresponds to variation in expected dividend growth or bubbles.

 This reinforces the notion of equity premium predictability by the dividend yield.  
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𝑏𝑟
(𝐽)

𝑏𝑑
(𝐽)

𝑏𝑑𝑝
(𝐽)

Direct regression 𝐽 = 15 1.01 −0.11 −0.11

Implemented by VAR 𝐽 = 15 1.05 0.27 0.22

Implemented by VAR 𝐽 = ∞ 1.35 0.35 0.00
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 We can further show that the unexpected return can be formulated as

𝜂𝑡+1 = 𝑟𝑡+1 − 𝐸𝑡 𝑟𝑡+1 =

= 𝐸𝑡+1 ෍

𝑗=0

∞

𝜌𝑗∆𝑑𝑡+1+𝑗 − 𝐸𝑡 ෍

𝑗=0

∞

𝜌𝑗∆𝑑𝑡+1+𝑗 − 𝐸𝑡+1 ෍

𝑗=1

∞

𝜌𝑗𝑟𝑡+1+𝑗 − 𝐸𝑡 ෍

𝑗=1

∞

𝜌𝑗𝑟𝑡+1+𝑗

 Hence, the unexpected stock return is the sum of two components 

𝜂𝑡+1 = 𝜂𝑑,𝑡+1 − 𝜂𝑟,𝑡+1

 Or unexpected stock returns must be associated with changes in expectations of future 

dividends or real returns

 To illustrate let us assume that 

𝐸𝑡 𝑟𝑡+1 = 𝑟 + 𝑥𝑡

𝑥𝑡+1 = 𝜙𝑥𝑡 + 𝜀𝑡+1
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 Then

𝑝𝑟𝑡 ≡ 𝐸𝑡 ෍

𝑗=0

∞

𝜌𝑗𝑟𝑡+1+𝑗

=
𝑟

1−𝜌
+

𝑥𝑡

1−𝜌𝜙

≈
𝑟

1 − 𝜌
+

𝑥𝑡
1 − 𝜙

 So if expected return is persistent, a 1% increase in expected return has a greater effect on 

the stock price.

 Notice:

𝐸𝑡+1 ෍

𝑗=1

∞

𝜌𝑗𝑟𝑡+1+𝑗 =
𝜌𝑟

1 − 𝜌
+

𝜌𝑥𝑡
1 − 𝜌𝜙

𝐸𝑡 ෍

𝑗=1

∞

𝜌𝑗𝑟𝑡+1+𝑗 =
𝜌𝑟

1 − 𝜌
+

𝜌𝜙𝑥𝑡
1 − 𝜌𝜙

 And we get,

𝜂𝑟,𝑡+1 =
𝜌𝜀𝑡+1
1 − 𝜌𝜙123
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Campbell and Voulteenaho (CV)

 Recall, the unexpected return is 𝜂𝑡+1 = 𝜂𝑑,𝑡+1 − 𝜂𝑟,𝑡+1,which based on CV can be rewritten as 

𝜂𝑡+1 = 𝑁𝐶𝐹,𝑡+1 − 𝑁𝐷𝑅,𝑡+1

 That is to say that unexpected return is attributable to news about future cash flows 𝑁𝐶𝐹,𝑡+1,

represented through stream of dividends or consumption, as well as news about future 

discount rates 𝑁𝐷𝑅,𝑡+1.

 An increase in expected future CFs is associated with a capital gain today while an increase 

in discount rates is associated with a capital loss today.

 Such return components can also be interpreted approximately as permanent and transitory 

shocks to wealth. 

 In particular, returns generated by CF news are never reversed, whereas returns generated 

by DR news are offset by lower future returns.

 From this perspective, conservative long-term investors are more averse to CF risk than to 

DR risk. 
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Vector Auto regression Specification

 Consider now the VAR

𝑍𝑡+1 = 𝐴𝑍𝑡 + 𝑢𝑡+1

where

𝑍𝑡 =

𝑟𝑡
𝑑𝑡 − 𝑝𝑡
𝑟𝑏𝑡

and 𝑢𝑡+1 is a vector of IID shocks. 

 By the CS decomposition we have

𝜂𝑡+1 = 𝑟𝑡+1 − 𝐸𝑡 𝑟𝑡+1 =

= (𝐸𝑡+1−𝐸𝑡) ෍

𝑗=0

∞

𝜌𝑗∆𝑑𝑡+1+𝑗 − (𝐸𝑡+1−𝐸𝑡) ෍

𝑗=1

∞

𝜌𝑗𝑟𝑡+1+𝑗

 Notice:

𝐸𝑡 𝑍𝑡+1+𝑗 = 𝐴𝑗+1𝑍𝑡
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 Then,

𝐸𝑡 𝑟𝑡+1+𝑗 = 𝑒1′𝐴
𝑗+1𝑍𝑡

𝐸𝑡+1 𝑟𝑡+1+𝑗 = 𝑒1′𝐴
𝑗𝑍𝑡+1

where 𝑒1 = 1,0,0 ′

 So:

(𝐸𝑡+1−𝐸𝑡) 𝑟𝑡+1+𝑗 = 𝑒1′(𝐴
𝑗𝑍𝑡+1 − 𝐴𝑗+1𝑍𝑡)

= 𝑒1′(𝐴
𝑗 𝐴𝑍𝑡 + 𝑢𝑡+1 − 𝐴𝑗+1𝑍𝑡)
= 𝑒1′𝐴

𝑗𝑢𝑡+1

 The discount rate news is given by 

𝑁𝐷𝑅,𝑡+1 = (𝐸𝑡+1−𝐸𝑡)෍

𝑗=1

∞

𝜌𝑗𝑟𝑡+1+𝑗

= 𝑒1′ σ𝑗=1
∞ 𝜌𝑗 𝐴𝑗𝑢𝑡+1

= 𝑒1
′ 𝜌𝐴 𝐼 − 𝜌𝐴 −1𝑢𝑡+1

= 𝑒1
′
𝜆𝑢𝑡+1126
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 The vector product 𝑒1
′𝜆 captures the long-run significance of each individual VAR shock 

to DR expectations.

 The greater the absolute value of the variable’s coefficient in the return prediction 

equation (the top row of A) the greater the weight the variable receives in the discount 

rate news formula. 

 More persistent variables should also receive more weight as captured by 𝐼 − 𝜌𝐴 −1

 Similarly, the CF news is given by

𝑁𝐶𝐹,𝑡+1 = (𝐸𝑡+1−𝐸𝑡) ෍

𝑗=0

∞

𝜌𝑗∆𝑑𝑡+1+𝑗

= 𝑟𝑡+1 −𝐸𝑡 𝑟𝑡+1 + 𝑒1
′𝜌𝐴 𝐼 − 𝜌𝐴 −1𝑢𝑡+1

= 𝑒1
′𝑍𝑡+1 −𝑒1

′𝐴𝑍𝑡 + 𝑒1
′𝜌𝐴 𝐼 − 𝜌𝐴 −1𝑢𝑡+1

= 𝑒1
′𝑢𝑡+1 +𝑒1

′𝜌𝐴 𝐼 − 𝜌𝐴 −1𝑢𝑡+1

= 𝑒1
′ 𝐼 + 𝜌𝐴 𝐼 − 𝜌𝐴 −1 𝑢+1

= 𝑒1
′ 𝐼 + 𝜆 𝑢𝑡+1
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 Notice that the stock return variance can be expressed as

𝑉 1,1 = 𝑒1
′𝑉𝑒1 where 𝑉 = 𝑐𝑜𝑣 𝑍𝑡, 𝑍𝑡′

 The variance component due to DR news

𝑉𝑎𝑟 𝑁𝐷𝑅,𝑡+1 = 𝑒1
′𝜌𝐴 𝐼 − 𝜌𝐴 −1𝑉 𝐼 − 𝜌𝐴 −1 ′ 𝜌𝐴 ′𝑒1

 The component of variance due to CF news

𝑉𝑎𝑟 𝑁𝐶𝐹,𝑡+1 = 𝑒1
′ 𝐼 + 𝜌𝐴 𝐼 − 𝜌𝐴 −1 𝑉 𝐼 + 𝜌𝐴 𝐼 − 𝜌𝐴 −1 ′𝑒1

 Moreover, since the market return contains two components, both of which are not highly correlated, 

then different types of stocks may have different betas with these components. 

 In particular the cash flow beta

𝛽𝑖,𝐶𝐹 ≡
𝐶𝑜𝑣 𝑟𝑖𝑡, 𝑁𝐶𝐹,𝑡

𝑉𝑎𝑟 𝑟𝑀,𝑡
𝑒 − 𝐸𝑡−1 𝑟𝑀,𝑡

𝑒

 Likewise, the discount rate beta is

𝛽𝑖,𝐷𝑅 ≡
𝐶𝑜𝑣 𝑟𝑖𝑡, 𝑁𝐷𝑅,𝑡

𝑉𝑎𝑟 𝑟𝑀,𝑡
𝑒 − 𝐸𝑡−1 𝑟𝑀,𝑡

𝑒128
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 And we have

𝛽𝑖,𝑀 = 𝛽𝑖,𝐶𝐹 + 𝛽𝑖,𝐷𝑅

 Both betas could be represented as

𝛽𝑖,𝐶𝐹 ≡ 𝑒1
′ + 𝑒1

′𝜆
𝐶𝑜𝑣 𝑟𝑖𝑡 , 𝑢𝑡

𝑉𝑎𝑟 𝑟𝑀,𝑡
𝑒 − 𝐸𝑡−1 𝑟𝑀,𝑡

𝑒

𝛽𝑖,𝐷𝑅 ≡ −𝑒1
′𝜆

𝐶𝑜𝑣 𝑟𝑖𝑡 , 𝑢𝑡

𝑉𝑎𝑟 𝑟𝑀,𝑡
𝑒 − 𝐸𝑡−1 𝑟𝑀,𝑡

𝑒

where 𝐶𝑜𝑣 𝑟𝑖𝑡 , 𝑢𝑡 is a vector of covariance between firm i’s stock return and the 

innovations in the state variables

 Campbell (1993) derives an approximate discrete-time version of the ICAPM.

 Based on this ICAPM, CV show that

𝐸𝑡 𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = 𝛾𝜎𝑀
2𝛽𝑖,𝐶𝐹 + 𝜎𝑀

2𝛽𝑖,𝐷𝑅

 Notice that based on empirical studies 𝛾 the relative risk aversion parameter is well beyond 

one

 Thus, higher risk premium is required on the CF beta than on the DR beta
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 For this reason, CV call the CF beta the “bad beta” and the DR beta the “good beta”

 The intuition is that a higher unexpected market equity return, due to DR news, implies 

lower future growth opportunities. Thus a positive DR beta, stock that pays more when 

growth opportunity shrinks,  is welcome by investors.

 Typically in empirical studies, DR news is directly modeled while the CF news is calculated 

as the residual.

 Chen and Zhao (2006) show that this approach has a serious limitation because the DR news 

cannot be measured accurately enough.

 To illustrate, this point Chen and Zhao (2006)  apply the approach to Treasury bonds that 

should have zero CF betas

 They find that the variance of “CF news” is larger than that of “DR news”

 To see why CF news do not play a role we follow Campbell and Ammer (1993)

 Let 𝑃𝑛,𝑡 be the price of an n-periods nominal bond at time 𝑡, and 𝑝𝑛,𝑡 = 𝑙𝑛𝑃𝑛,𝑡

 Then the holding period return from time 𝑡 to time 𝑡 + 1

𝑟𝑛,𝑡+1 = 𝑝𝑛−1,𝑡+1 − 𝑝𝑛,𝑡
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 This equation can be thought as a difference equation in the log bond price

 Iterating forward and substitute 𝑃0,𝑡+𝑛 = 1 or 𝑝0,𝑡+𝑛 = 0 , we obtain

𝑝𝑛,𝑡 = − 𝑟𝑛,𝑡+1 + 𝑟𝑛−1,𝑡+2 +⋯+ 𝑟1,𝑡+𝑛 = −෍

𝑖=0

𝑛−1

𝑟𝑛−𝑖,𝑡+1+𝑖

 This equation holds ex post, but it also holds ex ante

 Taking expectation conditional on information at time t we get

𝑝𝑛,𝑡 = −𝐸𝑡 ෍

𝑖=0

𝑛−1

𝑟𝑛−𝑖,𝑡+1+𝑖

 In the end we get

𝑟𝑛,𝑡+1 − 𝐸𝑡 𝑟𝑛,𝑡+1 = − 𝐸𝑡+1 − 𝐸𝑡 ෍

𝑖=1

𝑛−1

𝑟𝑛−𝑖,𝑡+1+𝑖

 This equation express the well-known fact that unexpected positive nominal returns today 

are always offset by decrease in expected future nominal returns.
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 Campbell (1993) implements similar concepts for representative agent dynamic budget 

constraint

𝑊𝑡+1 = 𝑅𝑚,𝑡+1 𝑊𝑡 − 𝐶𝑡

where 𝑅𝑚,𝑡+1is the gross simple return on wealth invested from period t to period t + 1.

 Then, 

𝑊𝑡 = 𝐶𝑡 +
𝑊𝑡+1

𝑅𝑚,𝑡+1

 Iterating plus transversality condition yields

𝑊𝑡 = 𝐶𝑡 +෍

𝑖=1

∞
𝐶𝑡+𝑖

ς𝑗=1
𝑖 𝑅𝑚,𝑡+𝑗

 Notice that, the budget constraint is highly nonlinear

 The log linear approximation is implemented on

𝑊𝑡+1

𝑊𝑡
= 𝑅𝑚,𝑡+1 1 −

𝐶𝑡
𝑊𝑡

Campbell(1993)
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 Taking logs

∆𝑤𝑡+1 = 𝑟𝑚,𝑡+1 + 𝑙𝑜𝑔 1 − 𝑒𝑥𝑝 𝑐𝑡 − 𝑤𝑡

 First-order Taylor approximation yields

𝑙𝑜𝑔 1 − 𝑒𝑥𝑝 𝑥𝑡 ≈ 𝑙𝑜𝑔 1 − 𝑒𝑥𝑝 𝑥 −
𝑒𝑥𝑝 𝑥

1 − 𝑒𝑥𝑝 𝑥
𝑥𝑡 − 𝑥

 If 𝑥𝑡 is constant (
𝐶𝑡

𝑊𝑡
𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) then the approximation holds exactly

 The log-linear approximation is given by

∆𝑤𝑡+1 ≈ 𝑟𝑚,𝑡+1 + 𝑘 + 1 −
1

𝜌
𝑐𝑡 − 𝑤𝑡

where

𝜌 = 1 − 𝑒𝑥𝑝 𝑥 =
𝑊 − 𝐶

𝑊
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 Also

∆𝑤𝑡+1 = ∆𝑐𝑡+1 + 𝑐𝑡 − 𝑤𝑡 − 𝑐𝑡+1 − 𝑤𝑡+1

 Then

∆𝑐𝑡+1 + 𝑐𝑡 − 𝑤𝑡 − 𝑐𝑡+1 − 𝑤𝑡+1 ≈ 𝑟𝑚,𝑡+1 + 𝑘 + 1 −
1

𝜌
𝑐𝑡 − 𝑤𝑡

1

𝜌
𝑐𝑡 − 𝑤𝑡 = 𝑐𝑡+1 −𝑤𝑡+1 + 𝑟𝑚,𝑡+1 − ∆𝑐𝑡+1 + 𝑘

 Through iterating we get

𝑐𝑡 − 𝑤𝑡 =෍

𝑗=1

∞

𝜌𝑗 𝑟𝑚,𝑡+𝑗 − ∆𝑐𝑡+𝑗 +
𝜌𝑘

1 − 𝜌

 This is the log-linear version of

𝑊𝑡 = 𝐶𝑡 +෍

𝑖=1

∞
𝐶𝑡+𝑖

ς𝑗=1
𝑖 𝑅𝑚,𝑡+𝑗

 Taking expectations, we get 

𝑐𝑡 − 𝑤𝑡 = 𝐸𝑡෍

𝑗=1

∞

𝜌𝑗 𝑟𝑚,𝑡+𝑗 − ∆𝑐𝑡+𝑗 +
𝜌𝑘

1 − 𝜌
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 Suggesting that revision in the consumption to wealth ratio predicts either return or 

consumption growth or both

 Rewriting the present-value relation we get 

𝑐𝑡 − 𝐸𝑡 𝑐𝑡+1 =

∆𝐸𝑡+1෍

𝑗=0

∞

𝜌𝑗 𝑟𝑚,𝑡+1+𝑗 − ∆𝐸𝑡+1෍

𝑗=1

∞

𝜌𝑗 ∆𝑐𝑡+1+𝑗

 That is to say that upward surprise in consumption today must correspond to either upward 

revision in expected return on wealth today or downward revision in expected future 

consumption growth

 This is pretty much similar to what we get about the prediction where here consumption 

plays the role of dividends and aggregate wealth is associated with an asset whose dividends 

are equal to consumption
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Binsbergen and Koijen (2010)
 Binsbergen and Koijen (2010) propose a latent variable approach within a present-value 

model to estimate the expected returns and expected dividend growth rates of the aggregate 
stock market. 

 This approach aggregates information contained in the history of price-dividend ratios and 
dividend growth rates to predict future returns and dividend growth rates. 

 They find that returns and dividend growth rates are predictable with R-Square values 
ranging from 8.2% to 8.9% for returns and 13.9% to 31.6% for dividend growth rates. 

 Both expected returns and expected dividend growth rates have a persistent component, but 
expected returns are more persistent than expected dividend growth rates.

 In particular expected returns and expected dividend growth rates are modeled as AR(1) 
process:

𝜇𝑡+1 = 𝛿0 + 𝛿1 𝜇𝑡 − 𝛿0 + 𝜀𝑡+1
𝜇

𝑔𝑡+1 = 𝛾0 + 𝛾1 𝑔𝑡 − 𝛾0 + 𝜀𝑡+1
𝑔

where

𝜇𝑡 ≡ 𝐸𝑡 𝑟𝑡+1

𝑔𝑡 ≡ 𝐸𝑡 ∆𝑑𝑡+1
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 Then

∆𝑑𝑡+1= 𝑔𝑡 + 𝜀𝑡+1
𝑑

 Plugging these equations into

𝑑𝑝𝑡 = 𝑑𝑡 − 𝑝𝑡 =
𝑘

1 − 𝜌
+ 𝐸𝑡 ෍

𝑗=0

∞

∆𝑑𝑡+1+𝑗 − 𝑟𝑡+1+𝑗

 They get the following expression for 𝑝𝑑𝑡

𝑝𝑑𝑡 =
𝑘

1 − 𝜌
+
𝛾0 − 𝛿0
1 − 𝜌

−
𝜇𝑡 − 𝛿0
1 − 𝜌𝛿1

+
𝑔𝑡 − 𝛾0
1 − 𝜌𝛾1

 So altogether we can write the implied dynamics of the dividend-to-price ratio as:

𝑝𝑑𝑡 = 𝐴 − 𝐵1 𝜇𝑡 − 𝛿0 + 𝐵2 𝑔𝑡 − 𝛾0

where

𝐴 =
𝑘

1 − 𝜌
+
𝛾0 − 𝛿0
1 − 𝜌

𝐵1 =
1

1 − 𝜌𝛿1

𝐵2 =
1

1 − 𝜌𝛾1
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 Suggesting that the log dividend-price ratio is linear in 𝜇𝑡 and 𝑔𝑡.

 Further, the loadings of 𝑝𝑑𝑡 on 𝜇𝑡 and 𝑔𝑡 depend on the relative persistence of these two 
variables as reflected through 𝛿1 and 𝛾1

 Their model has two transition equations,

ො𝑔𝑡+1 = 𝛾1 ො𝑔𝑡 + 𝜀𝑡+1
𝑔

Ƹ𝜇𝑡+1 = 𝛿1 Ƹ𝜇𝑡 + 𝜀𝑡+1
𝜇

and two measurement equations,

Δ𝑑𝑡+1 = 𝛾0 + ො𝑔𝑡+𝜀𝑡+1
𝑑

𝑝𝑑𝑡 = 𝐴 − 𝐵1 Ƹ𝜇𝑡 + 𝐵2 ො𝑔𝑡

where

Ƹ𝜇𝑡 = 𝜇𝑡 − 𝛿0

ො𝑔𝑡 = 𝑔𝑡 − 𝛾0

 It may be surprising that there is no measurement equation for returns.

 However, the measurement equation for dividend growth rates and the price-dividend ratio 
together imply the measurement equation for returns.
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Avramov, Cederburg, and Lucivjanska (2017)

 They study the present value relation from a long horizon perspective.

 They show that cumulative log return can be approximated as

𝑟𝑇,𝑇+𝑘 = 𝑝𝑇+𝑘 − 𝑑𝑇+𝑘 − 𝑝𝑇 − 𝑑𝑇 + σ𝑖=1
𝑘 1 − 𝜌 𝑑𝑇+𝑖 − 𝑝𝑇+𝑖 + Δ𝑑𝑇,𝑇+𝑘 + 𝑘𝑞

 Returns have three components that constitute the uncertainty

 The difference between beginning and terminal price-to-dividend ratio 𝑝𝑇+𝑘 − 𝑑𝑇+𝑘
− 𝑝𝑇 − 𝑑𝑇

 The  σ𝑖=1
𝑘 1 − 𝜌 𝑑𝑇+𝑖 − 𝑝𝑇+𝑖 term captures the cumulative effect of dividend income 

during the holding period

 The Δ𝑑𝑇,𝑇+𝑘 term is the cumulative dividend growth that is realized over the horizon.

 Notice that the present value relation implies restriction on the predictive framework
𝑟𝑡+1
Δ𝑑𝑡+1

𝑝𝑡+1 − 𝑑𝑡+1
𝑧𝑡+1

= 𝑎 + 𝐵
𝑝𝑡 − 𝑑𝑡
𝑧𝑡

+

𝜀𝑟,𝑡+1
𝜀𝑑,𝑡+1
𝜀𝑝𝑑,𝑡+1
𝜀𝑧,𝑡+1
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 In particular

𝜀𝑟,𝑡+1 = 𝜌𝜀𝑝𝑑,𝑡+1 + 𝜀𝑑,𝑡+1

 The VAR thus must be estimated with observation equations for only two of the 𝑟𝑡+1, Δ𝑑𝑡+1, 

and 𝑝𝑡+1 − 𝑑𝑡+1 variables to ensure that the covariance matrix is nonsingular.

Pastor, Sinha, and Swaminathan (2008)
 The Implied Cost of Capital (ICC) is the discount rate that equates the present value of 

expected future dividends to the current stock price

 One common approach is to define the ICC as the value of 𝑟𝑒 that solves

𝑃𝑡 = ෍

𝑘=1

∞
𝐸𝑡 𝐷𝑡+𝑘
1 + 𝑟𝑒 𝑘

 Recall that CS  develop a useful approximation for the stock price which expresses the log 

price 𝑝𝑡 = 𝑙𝑜𝑔 𝑃𝑡 as

𝑝𝑡 =
𝑘

1 − 𝜌
+ 1 − 𝜌 ෍

𝑗=0

∞

𝜌𝑗𝐸𝑡 𝑑𝑡+1+𝑗 −෍

𝑗=0

∞

𝜌𝑗𝐸𝑡 𝑟𝑡+1+𝑗
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 In this framework, it is natural to define the ICC as the value of 𝑟𝑒,𝑡 that solves

𝑝𝑡 =
𝑘

1 − 𝜌
+ 1 − 𝜌 ෍

𝑗=0

∞

𝜌𝑗𝐸𝑡 𝑑𝑡+1+𝑗 − 𝑟𝑒,𝑡 ෍

𝑗=0

∞

𝜌𝑗

 To provide some insight into the ICC, it is convenient to assume that log dividend growth

𝑔𝑡+1 ≡ 𝑑𝑡+1 − 𝑑𝑡 follows a stationary AR(1) process

𝑔𝑡+1 = 𝛾 + 𝛿𝑔𝑡 + 𝜈𝑡+1, 0 < 𝛿 < 1 , 𝜈𝑡+1~𝑁 0, 𝜎𝜈
2

 Given these dynamics of 𝑔𝑡

෍

𝑗=0

∞

𝜌𝑗𝐸𝑡 𝑑𝑡+1+𝑗 =

𝑑𝑡
1 − 𝜌

+
𝛾

1 − 𝛿 1 − 𝜌 2
−

𝛾𝛿

1 − 𝛿 1 − 𝜌 1 − 𝜌𝛿
+

𝛿𝑔𝑡
1 − 𝜌 1 − 𝜌𝛿

 Substituting this equation into 𝑝𝑡 we obtain

𝑝𝑡 =
𝑘

1−𝜌
+ 𝑑𝑡 +

𝛾

1−𝛿 1−𝜌
−

𝛾𝛿

1−𝛿 1−𝜌𝛿
+𝑔𝑡

𝛿

1−𝜌𝛿
−

𝑟𝑒,𝑡

1−𝜌
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which can be rearranged into

𝑟𝑒,𝑡 = 𝑘 +
𝛾

1−𝛿
+ 𝑑𝑡 − 𝑝𝑡 1 − 𝜌 + 𝑔𝑡 −

𝛾

1−𝛿

𝛿 1−𝜌

1−𝜌𝛿

 The ICC, 𝑟𝑒,𝑡 , is a simple linear function of the log dividend-price ratio, 𝑑𝑡 − 𝑝𝑡, and log 

dividend growth, 𝑔𝑡.

 Further insight into the ICC can be obtained by assuming that the conditional expected 

return, 𝜇𝑡 ≡ 𝐸𝑡 𝑟𝑡+1 also follows a stationary AR(1) process

𝜇𝑡+1 = 𝛼 + 𝛽𝜇𝑡 + 𝑢𝑡+1, 0 < 𝛽 < 1 , 𝑢𝑡+1~𝑁 0, 𝜎𝑢
2

෍

𝑗=0

∞

𝜌𝑗 𝐸𝑡 𝑟𝑡+1+𝑗 =
𝛼

1 − 𝛽 1 − 𝜌
+ 𝜇𝑡 −

𝛼

1 − 𝛽

1

1 − 𝜌𝛽

 Plugging σ𝑗=0
∞ 𝜌𝑗𝐸𝑡 𝑑𝑡+1+𝑗 and σ𝑗=0

∞ 𝜌𝑗 𝐸𝑡 𝑟𝑡+1+𝑗 into 𝑝𝑡, we obtain

𝑝𝑡 =
𝑘

1 − 𝜌
+

𝛾

1 − 𝛿 1 − 𝜌
−

𝛼

1 − 𝛽 1 − 𝜌

+𝑑𝑡 + 𝑔𝑡 −
𝛾

1 − 𝛿

𝛿

1 − 𝜌𝛿
− 𝜇𝑡 −

𝛼

1 − 𝛽

1

1 − 𝜌𝛽
142

Pastor, Sinha and, Swaminathan (2008)



 The log stock price 𝑝𝑡 is a simple function of 𝑑𝑡, 𝑔𝑡 and 𝜇𝑡. 

 The stock price increases with dividends 𝑑𝑡 and dividend growth 𝑔𝑡, and it decreases with 
expected return 𝜇𝑡. 

 Note that 𝑝𝑡 depends on the deviations of 𝜇𝑡 and 𝑔𝑡 from their unconditional means of 
𝛼

1−𝛽
and 

𝛾

1−𝛿
respectively

 Comparing the equations of 𝑝𝑡 and 𝑟𝑒,𝑡 we have

𝑟𝑒,𝑡 =
𝛼

1−𝛽
+ 𝜇𝑡 −

𝛼

1−𝛽

1−𝜌

1−𝜌𝛽

which implies that 𝑟𝑒,𝑡 and 𝜇𝑡 are perfectly correlated. 

 Thus, the ICC is a perfect proxy for the conditional expected return in the time series in an 
AR(1) framework

 They also consider a modified version of the ICC,

𝑟𝑒2,𝑡 = 𝑘 +
𝛾

1 − 𝛿
+ 𝑑𝑡 − 𝑝𝑡 1 − 𝜌

143

Pastor, Sinha and, Swaminathan (2008)



 This expression is obtained from the equation of 𝑟𝑒,𝑡 by setting 𝑔𝑡 equal to its 

unconditional mean 
𝛾

1−𝛿
.

 This definition of 𝑟𝑒2,𝑡 captures the idea that our information about dividend growth is 

often limited in practice. 

 Note that 𝑟𝑒2,𝑡 is perfectly correlated with the dividend-to-price ratio, which is commonly 

used to proxy for expected return. 

 Since dividends tend to vary less than prices, the time variation in 𝑟𝑒2,𝑡 is driven mostly 

by the time variation in 𝑝𝑡.
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Consumption Based Asset Pricing 

Models 
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 Most prominent in the class of inter-temporal models is the consumption CAPM (CCAPM). 

 The CCAPM is a single state variable model; real consumption growth is the single factor. 

 Consumption-based asset pricing models have been among the leading multi-period general 

equilibrium models in financial economics for the past four decades. 

 The Consumption Capital Asset Pricing Model (CCAPM) was first derived in the late 1970s in 

successively more general models by Rubinstein (1976), Breeden and Litzenberger (1978), and 

Breeden (1979).

 Lucas (1978) did not derive the CCAPM formula, yet his work on Euler equations was also 

helpful to many empiricists in subsequent consumption-based asset pricing tests. 

 The CCAPM states that the expected excess return on any risky asset should be proportional 

to its “consumption beta”, or covariation with consumption growth.  

 Financial assets with higher sensitivities of returns to movements in real consumption 

spending have more systematic risk and should have proportionately higher excess returns

Perhaps the consumption CAPM does a better job? 
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 Such assets pay off more when consumption is high and marginal utility is low, and pay 

less when consumption is low and marginal utility is high, so they are worth less in price 

and have higher equilibrium returns. 

 This CCAPM differs from the CAPM as real consumption growth is not perfectly 

correlated with market returns. 

 In a multi-period model, market wealth can be high and still have high marginal utility if 

the investment opportunity set is good, as shown by Merton (1973) and Breeden (1984).  

 The first two decades of CCAPM tests produced mixed results tilting towards the model 

rejection

 Tests of the special case of the CCAPM under constant relative risk aversion by Hansen 

and Singleton (1983), Mehra and Prescott (1985), and others rejected the model. 

 Chen, Roll, and Ross (1986) found no significant consumption factor priced in the presence 

of other factors, including industrial production, junk bond returns, and inflation hedges

 Grossman, Melino, and Shiller (1987), Breeden, Gibbons, and Litzenberger (BGL, 1989) 

and Wheatley (1988) examined measurement issues in consumption (such as time 

aggregation) and their biases on measures of volatility and consumption betas. 

The consumption CAPM
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 BGL found a significant positive coefficient on consumption betas; and separately a significant 

positive coefficient on market betas; however, both the CCAPM and the CAPM were rejected. 

 BGL derived a useful result: estimation of consumption betas relative to returns on a 

consumption mimicking portfolio, which allows greater number and frequency of observations 

and more precise estimates of consumption betas. 

 The very strong theory in support of the CCAPM, contrasted with weak early empirical 

support, motivated researchers to improve both their theoretical and empirical modeling. 

 On the theoretical side, Pye (1972, 1973) and Greenig (1986) developed time-multiplicative 

utility functions.

 Then Sundaresan (1989), Constantinides (1990), and Abel (1990) modeled habit formation.

 Epstein-Zin (1989) and Weil (1989) (often jointly referred to as EZ-W) developed preference 

structures that displayed time-complementarity in utility for consumption streams, allowing 

researchers to separate effects of different levels of intra-temporal relative risk aversion (RRA) 

from levels of the elasticity of intertemporal substitution (EIS). 

The consumption CAPM
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 Campbell and Cochrane (1999) later produced a model with the habit formation approach.

 With a subsistence level of consumption for a “representative individual,” their model allows 

for dramatic rises in relative risk aversion as surplus consumption (above habit) goes towards 

zero in severe recessions. 

 With the flexibility afforded by this model, they were able to fit many aspects of empirical data 

on stock and bond returns as related to real consumption growth, especially the risk premium 

on the stock market.

 Mehra and Prescott (1985) find that the equity premium is too high (the “equity premium 

puzzle”), given the low volatility of real consumption growth.

 Mankiw and Zeldes (1991) considered that many households did not own stock at all or in 

significant amounts, a situation called “limited participation.” 

 They pointed out that there is no reason that the Euler equation should hold for households 

who are not investing.

 They found that for households who actually owned stocks, the implied estimates of relative 

risk aversion were much more reasonable than for households who did not own stocks.

 Heaton and Lucas (1992, 1996) examined “incomplete markets” that did not permit full 

hedging of labor income, thus causing consumers to have more volatile consumption streams. 

The consumption CAPM
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 Vissing-Jorgensen (2002) focused on estimating the “elasticity of intertemporal 

substitution,” which determines how much consumers change their expected consumption 

growth rate when interest rates or expected returns on assets change. 

 She finds the EIS to be quite different for stockholders than for non-stockholders, generally 

getting plausible estimates for those who chose to invest in stocks and bonds and based on 

trading off current consumption versus future consumption. 

 Also on the empirical side, advances were made in examining changes in conditional

means, variances, and covariances and testing conditional versions of the CAPM and 

CCAPM, as in Harvey (1991) and Ferson and Harvey (1991, 1999). 

 Lettau and Ludvigson (2001a,b) use deviations of consumption from total wealth (which 

includes a human capital estimate in addition to stock market wealth) as a conditioning or 

“scaling” variable for changing mean returns. 

 They find results quite compatible with Merton’s (1973) and Breeden’s (1984) intertemporal 

theories, in that high consumption versus wealth is a predictor of future investment 

returns, as consumers optimally smooth forward those changes in expected returns

The consumption CAPM
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 Lettau and Ludvigson also find significant differences in the movements of consumption betas 

of value vs. growth stocks during recessions

 They find that value stocks tend to have much larger increase in consumption betas during 

recessions, when risks and risk premiums are high, which helps to explain the findings of 

higher returns on value stocks than predicted by the unconditional CCAPM betas. 

 More recently, Bansal and Yaron (2004) consider the “long run risk” caused by small, 

persistent shocks in the drift and volatility of real consumption growth. 

 They show that variance of real consumption growth grows more than proportionally with 

time, which is consistent with the persistence of growth shocks. 

 They also provide evidence that the conditional volatility of consumption is time-varying, 

which leads naturally to time-varying risk premia. 

 Much subsequent research has been done on this long run risk model, most notably in the 

paper by Bansal, Dittmar, and Kiku (2009). 

 They show that aggregate consumption and aggregate dividends have a co-integrating relation

The consumption CAPM
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 They observe that “the deviation of the level of dividends from consumption (the so-called error 

correction variable) is important for predicting dividend growth rates and returns at all 

horizons” (1, 5 and 10 years). 

 Imposing co-integration allows them to predict 11.5% of the variation in 1-year returns, 

whereas only 7.5% of the variation is predicted without co-integration

 Their conditional consumption betas account for about 75% of the cross-sectional variation in 

risk premia for the one-year horizon, and 85% for long horizons

 After Grossman, Melino, and Shiller (1987) and Breeden, Gibbons, and Litzenberger (1989) 

raised concerns about measuring consumption, Parker and Julliard (2005) showed that it is 

important to measure “ultimate consumption betas,” since consumption changes are slow-

moving, and could take 2-3 years for the full effects to be observed. 

 Using measures of these ultimate consumption betas, they were able to explain much of the 

Fama-French (1992) effects for size and book-to-market portfolios

 Let us derive a simple discrete time version of the CCAPM

 The derivation is based on the textbook treatment of Cochrane (2007). 

The consumption CAPM
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 We use the power utility to describe investor preferences: 

𝑢 𝑐𝑡 =
1

1−𝛾
𝑐𝑡
1−𝛾

for 𝛾 ≠ 1,

𝑢(𝑐𝑡) = log ( 𝑐𝑡) for 𝛾 = 1.

 Notation: 

 𝑐𝑡 denotes consumption at time 𝑡

 𝛾 is the relative risk aversion parameter. 

 The investor must decide how to allocate her wealth between consumption and saving. 

 The investor can freely buy or sell any amount of a security whose current price is 𝑝𝑡 and next-

period payoff is 𝑥𝑡+1 (𝑥𝑡+1 = 𝑝𝑡+1 + 𝑑𝑡+1). 

 How much will she buy or sell? 

 To find the answer, consider (w.l.o.g.) a two-period investor whose income at time 𝑠 is 𝑒𝑠 and let 𝑦
be the amount of security she chooses to buy.

A simple derivation of the consumption CAPM
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 The investor’s problem is 

max
𝑦

𝑢 (𝑐𝑡) + 𝔼𝑡 𝜌𝑢(𝑐𝑡+1) 𝑠. 𝑡.

𝑐𝑡 = 𝑒𝑡 − 𝑝𝑡𝑦,

𝑐𝑡+1 = 𝑒𝑡+1 + 𝑥𝑡+1𝑦,

where 𝜌 denotes the impatience parameter, also called the subjective discount factor.

 Substituting the constraints into the objective, and setting the derivative with respect to y 
equal to zero, we obtain the first order condition for an optimal consumption and portfolio 
choice, 

𝑝𝑡𝑢
′(𝑐𝑡) = 𝔼𝑡 𝜌𝑢

′(𝑐𝑡+1)𝑥𝑡+1 .

 The left hand side reflects the loss in utility from consuming less as the investor buys an 
additional unit of the asset. 

 The right hand side describes the expected increase in utility obtained from the extra payoff 
at 𝑡 + 1 attributed to this additional unit of the asset.
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 A well-known representation for the first order condition is obtained by dividing both sides of the 

equation by 𝑝𝑡𝑢
′(𝑐𝑡), 

1 = 𝔼𝑡 𝜉𝑡+1𝑅𝑡+1 ,

where 𝜉𝑡+1 =
𝜌𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)
stands for the pricing kernel, also known as the marginal rate of substitution or 

the stochastic discount factor, and 𝑅𝑡+1 =
𝑥𝑡+1

𝑝𝑡
denotes the gross return on the security. 

 The relation is the fundamental discount factor view of asset pricing theories.

 Observe from the representation that the gross risk-free rate, the rate known at time t and 

uncorrelated with the discount factor, is given by  𝑅𝑡,𝑡+1
𝑓

= 1/𝔼𝑡(𝜉𝑡+1).

 When investor preferences are described by the power utility function, as in equation (𝑢 𝑐𝑡 =
1

1−𝛾
𝑐𝑡
1−𝛾

for 𝛾 ≠ 1,), the pricing kernel takes the form 𝜉𝑡+1 = 𝜌 𝑐𝑡+1/𝑐𝑡
−𝛾.

 Assuming lognormal consumption growth one can show that the continuously compounded risk-free 
rate is 

𝑟𝑡,𝑡+1
𝑓

= − ln( 𝜌) − ln𝔼𝑡 exp( − 𝛾Δ ln 𝑐𝑡+1) ,

= − ln ( 𝜌) + 𝛾𝔼𝑡(Δ ln 𝑐𝑡+1) −
𝛾2

2
𝜎𝑡
2(Δ ln 𝑐𝑡+1).
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 To derive an explicit form for the risk-free rate we have used the useful relation that if 𝑥 is 

normally distributed then 

𝔼(𝑒𝑎𝑥) = 𝑒𝔼(𝑎𝑥)𝑒
𝑎2

2
𝜎2(𝑥).

 We can see from the risk-free rate equation that the EIS (elasticity of inter-temporal 

substitution) is 1/𝛾 which creates some problems, as discussed below. 

 From the fundamental representation, we also obtain a beta pricing model of the form

𝔼𝑡(𝑟𝑖,𝑡+1) = 𝑟𝑡,𝑡+1
𝑓

+ −
𝑐𝑜𝑣𝑡(𝑟𝑖,𝑡+1,𝜉𝑡+1)

𝑣𝑎𝑟𝑡(𝜉𝑡+1)

𝑣𝑎𝑟𝑡(𝜉𝑡+1)

𝔼𝑡(𝜉𝑡+1)

𝑟𝑖𝑠𝑘 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡

 In words, expected excess return on each security, stock, bond, or option, should be proportional 

to the coefficient in the regression of that return on the discount factor. 

 The constant of proportionality, common to all assets, is the risk premium
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 Focusing on the power utility function and using a first order Taylor series expansion, we obtain

𝔼(𝑟𝑖,𝑡+1) ≈ 𝑟𝑓 + 𝛽𝑖,Δ𝑐𝜆Δ𝑐,

where

𝛽𝑖,Δ𝑐 =
𝑐𝑜𝑣(𝑟𝑖,𝑡+1,𝛥𝑐)

𝑣𝑎𝑟(𝛥𝑐)
,

𝜆Δ𝑐 = 𝛾var(Δ𝑐).

 This is the discrete time version of the consumption CAPM. 

 The relation is exact in continuous time.

 The asset’s risk is defined as the covariance between the asset return and consumption growth. 

 The risk premium is the product of the risk aversion and the volatility of consumption growth

 Notice from the asset pricing equation that the asset expected return is larger as the covariance 

between the asset return and consumption growth gets larger. 

 Intuition: an asset doing badly in recessions (positive covariance) when the investor consumes little, 

is less desirable than an asset doing badly in expansions (negative covariance) when the investor 

feels wealthy and is consuming a great deal. 

 The former asset will be sold for a lower price, thereby commanding higher expected return.
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Theoretically, CCAPM Appears Preferable to the Traditional CAPM

 It takes into account the dynamic nature of portfolio decisions 

 It integrates the many forms of wealth beyond financial asset wealth 

 Consumption should deliver the purest measure of good and bad times as investors consume less 

when their income prospects are low or if they think future returns will be bad. 

 Empirically, however, the CCAPM has been unsuccessful 

The Equity Premium Puzzle

 From a cross section perspective, the CCAPM fails if consumption beta is unable to explain why 

average returns differ across stocks, which is indeed the case. 

 At the aggregate level (time-series perspective) the CCAPM leads to the so-called equity premium 

puzzle documented by Mehra and Prescott (1985), the risk-free rate puzzle, and the excess 

volatility puzzle. 
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 To illustrate, let us manipulate the first order condition: 1 = 𝔼𝑡 𝜉𝑡+1𝑅𝑡+1 (for notational clarity 

I will suppress the time dependence) 

1 = 𝐸(𝜉𝑅),

= 𝐸(𝜉)𝐸(𝑅) + 𝑐𝑜𝑣(𝜉, 𝑅),

= 𝐸(𝜉)𝐸(𝑅) + 𝜌𝜉,𝑅𝜎(𝜉)𝜎(𝑅).

 Dividing both sides of (𝐸(𝜉)𝐸(𝑅) + 𝜌𝜉,𝑅𝜎(𝜉)𝜎(𝑅)) by 𝐸(𝜉)𝜎(𝑅) leads to 

𝐸(𝑅)−𝑅𝑓

𝜎(𝑅)
= −𝜌𝜉,𝑅

𝜎(𝜉)

𝐸(𝜉)
,

which implies that 

𝐸(𝑅)−𝑅𝑓

𝜎(𝑅)
≤

𝜎(𝜉)

𝐸(𝜉)
= 𝜎(𝜉)𝑅𝑓 .

 The left hand side is known as the Sharpe ratio. 
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 The highest Sharpe ratio is associated with portfolios lying on the efficient frontier. 

 Notice that the slope of the frontier is governed by the volatility of the discount factor. 

 Under the CCAPM it follows that 

𝐸(𝑅𝑚𝑣)−𝑅𝑓

𝜎(𝑅𝑚𝑣)
=

𝜎 (𝑐𝑡+1/𝑐𝑡)
−𝛾

𝐸 (𝑐𝑡+1/𝑐𝑡)
−𝛾 .

 When log pricing kernel is normally distributed, the right hand side can be shown to be equal to 

(proof in the appendix)

𝑒𝛾
2𝜎2(Δ ln 𝑐𝑡+1),

which can be approximated by 

𝛾𝜎(Δ ln 𝑐).

 In words, the slope of the mean-variance efficient frontier is higher if the economy is riskier, 

i.e., if consumption growth is more volatile or if investors are more risk averse. 

 Over the past several decades in the US, real stock returns have averaged 9% with a std. of 

about 20%, while the real return on T-Bills has been about 1%.
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 Thus, the historical annual market Sharpe ratio has been about 0.4.

 Moreover, aggregate nondurable and services consumption growth had a std. of 1%.

 This fact can only be reconciled with 𝛾=50. 

 But the empirical estimates are between 2 and 10. 

 This is the “equity premium puzzle.” The historical Sharpe ratio is simply too large than the one 

obtained with reasonable risk aversion and consumption volatility estimates. 

The Risk-Free Rate Puzzle

 Using the standard CCAPM framework also gives rise to the risk-free rate puzzle. 

 Recall, we have shown that 

𝑟𝑡,𝑡+1
𝑓

= − ln ( 𝜌) + 𝛾𝔼𝑡(Δ ln 𝑐𝑡+1) −
𝛾2

2
𝜎𝑡
2(Δ ln 𝑐𝑡+1)

 With 𝛾=2 the risk-free rate should be around 5% to 6% per year. 

 The actually observed rate is less than 1%
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How could the Equity Premium and Risk-Free Puzzles be resolved ?

 Perhaps investors are much more risk averse than we may have thought. 

 This indeed resolves the equity premium puzzle. 

 But higher risk aversion parameter implies higher risk-free rate. So higher risk aversion 

reinforces the risk-free puzzle. 

 Perhaps the stock returns over the last 50 years are good luck rather than an equilibrium 

compensation for risk.

 Perhaps something is deeply wrong with the utility function specification and/or the use of 

aggregate consumption data. 

 Indeed, the CCAPM assumes that agents’ preferences are time additive VNM representation 

(e.g., power). 

 Standard power utility preferences impose tight restrictions on the relation between the 

equity premium and the risk free rate. 

 As shown earlier, EIS and the relative risk aversion parameter are reciprocals of each other. 
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 Economically they should not be tightly related. 

 EIS is about deterministic consumption paths - it measures the willingness to exchange 

consumption today with consumption tomorrow for a given risk-free rate, whereas risk aversion is 

about preferences over random variables. 

 In Epstein and Zin (1989) and Weil (1990) recursive inter-temporal utility functions, the risk 

aversion is separated from the elasticity of inter-temporal substitution, thereby separating the 

equity premium from the risk-free rate

 Duffie and Epstein (1992) introduces the Stochastic Differential Utility which is the continuous 

time version of Epstein-Zin-Weil. 

 They show that under certain parameter restrictions, the risk-free rate actually diminishes with 

higher risk aversion. 

 Empirically, recursive preferences perform better in matching the data. 

 Reitz (1988) comes up with an interesting idea: he brings the possibility of low probability states of 

economic disaster and is able to explain the observed equity premium.

 Barro (2005) supports the Reitz’s perspective. i.e., the potential for rare economic disasters explains a lot of asset-

pricing puzzles including high equity premium, low risk free rate, and excess volatility. 
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 Weitzman (2007) proposes an elegant solution using a Bayesian framework to characterize the ex ante 

uncertainty about consumption growth. 

 The asset pricing literature typically assumes that the growth rate is normally distributed 

𝑔 ∼ 𝑁(𝜇𝑔, 𝜎𝑔
2).

 The literature also assumes that 𝜇𝑔 and 𝜎𝑔 are known to the agents in the economy. 

 What if you assume that 𝜇𝑔 is known and 𝜎𝑔 is unknown? 

 Moreover, 𝜎𝑔 is a random variable obeying the inverted gamma distribution. 

 Then 𝑔 has the Student-t distribution. We will show this result later upon digging into 

Bayesian Econometrics. 

 The student t distribution captures both the high equity premium and low risk-free rate. 

 In what follows, I will elaborate on the three most successful consumption models: long run 

risk, habit formation, and prospect theory. 

 Beforehand, it is useful to get familiarity with the E-Z preferences.  
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 Epstein and Zin follow the work by Kreps and Porteus to introduce a class of preferences 

that breaks the link between risk aversion and EIS. The basic formulation is

𝑈𝑡 = 1 − 𝛽 𝐶𝑡
1−

1
𝜓 + 𝛽 𝐸𝑡 𝑈𝑡+1

1−𝛾

1−
1
𝜓

1−𝛾

1

1−
1
𝜓

 This utility function can also be rewritten as

𝑈𝑡 = 1 − 𝛽 𝐶𝑡
1−𝛾

𝜃 + 𝛽 𝐸𝑡 𝑈𝑡+1
1−𝛾

1

𝜃

𝜃

1−𝛾

where 𝜃 =
1−𝛾

1−
1

𝜓

 To give some intuition, consider the case where 𝜓 = 1:

𝑈𝑡 = 1 − 𝛽 𝑙𝑜𝑔𝐶𝑡 + 𝛽𝜃 log 𝐸𝑡 𝑒𝑥𝑝
𝑈𝑡+1
𝜃

 With normally distributed 𝑈𝑡 we get that the conditional variance of utility matters: 

𝑈𝑡 = 1 − 𝛽 𝑙𝑜𝑔𝐶𝑡 + 𝛽𝐸𝑡 𝑈𝑡+1 +
1

2
×
𝛽

𝜃
𝑉𝑎𝑟𝑡 𝑈𝑡+1

The first two terms correspond to the time-additive case while the third is the E-Z addition.

The Epstein-Zin preferences
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 The Euler equation of the Epstein-Zin preferences is given by, 

1 = 𝐸𝑡 𝛽
𝐶𝑡+1
𝐶𝑡

−
1
𝜓

𝜃

1

𝑅𝑚,𝑡+1

1−𝜃

𝑅𝑖,𝑡+1

 For the market portfolio itself, the Euler equation takes the form: 

1 = 𝐸𝑡 𝛽
𝐶𝑡+1
𝐶𝑡

−
1
𝜓

𝑅𝑚,𝑡+1

𝜃

 As 𝜃 = 1 this collapses to the familiar expression for power utility

 Now assume that 𝐶𝑡 , 𝑅𝑚,𝑡 are jointly homoscedastic and log-normally distributed, then:

1 = 𝐸𝑡𝑒𝑥𝑝 𝜃𝑙𝑛𝛽 −
𝜃

𝜓
𝑙𝑛

𝐶𝑡+1
𝐶𝑡

+ 𝜃𝑙𝑛𝑅𝑚,𝑡+1
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 Notice that the form in the exponential has a normal distribution with time-varying mean (𝐸𝑡) and constant 

variance, due to the homoscedasticity assumption, 𝑉 , both are given by:

𝐸𝑡 = 𝜃𝑙𝑛𝛽 −
𝜃

𝜓
𝐸𝑡 𝑐𝑡+1 + 𝜃𝐸𝑡𝑟𝑚,𝑡+1

𝑉 =
𝜃

𝜓

2

𝜎𝑐
2 + 𝜃2𝜎𝑚

2 −
2𝜃2

𝜓
𝜎𝑐𝑚

where 𝑐𝑡+1= 𝑙𝑛
𝐶𝑡+1

𝐶𝑡

 Thus,

1=𝐸𝑡𝑒𝑥𝑝 𝜃𝑙𝑛𝛽 −
𝜃

𝜓
𝑙𝑛

𝐶𝑡+1

𝐶𝑡
+ 𝜃𝑙𝑛𝑅𝑚,𝑡+1 = 𝑒𝑥𝑝 𝐸𝑡 +

1

2
𝑉

 Taking logs from both sides it follows that

0 = 𝜃𝑙𝑛𝛽 −
𝜃

𝜓
𝐸𝑡 𝑐𝑡+1 + 𝜃𝐸𝑡𝑟𝑚,𝑡+1 +

1

2

𝜃

𝜓

2

𝜎𝑐
2 + 𝜃2𝜎𝑚

2 −
2𝜃2

𝜓
𝜎𝑐𝑚
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 Then we get

𝐸𝑡 𝑐𝑡+1 = 𝜇𝑚 + 𝜓𝐸𝑡𝑟𝑚,𝑡+1

where

𝜇𝑚 = 𝜓𝑙𝑛𝛽 +
1

2

𝜃

𝜓
𝑉𝑎𝑟𝑡 𝑐𝑡+1 − 𝜓𝑟𝑚,𝑡+1

 We can also understand the cross section of returns: the pricing kernel representation is

𝐸𝑡𝑒𝑥𝑝 𝜃𝑙𝑛𝛽 −
𝜃

𝜓
𝑙𝑛

𝐶𝑡+1

𝐶𝑡
+ 𝜃 − 1 𝑙𝑛𝑅𝑚,𝑡+1 + 𝑙𝑛𝑅𝑖,𝑡+1 =1

 Then expected return is given by

𝐸𝑡 𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡+1 = −
𝜎𝑖
2

2
+ 𝜃

𝜎𝑖𝑐
𝜓
+ 1 − 𝜃 𝜎𝑖𝑚
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 With 𝜃 = 1 the model collapses to the loglinear CCAPM. 

 With 𝛾 = 1 (𝜃 = 0) the logarithmic version of the static CAPM holds

 Otherwise, the E-Z is a linear combination of the CAPM and CCAPM

 Dividing one by the expected value of the pricing kernel yields 

𝑟𝑓,𝑡+1 = −𝑙𝑜𝑔𝛽 +
1

𝜓
𝐸𝑡 𝑐𝑡+1 +

𝜃−1

2
𝜎𝑚
2 −

𝜃

2𝜓2 𝜎𝑐
2

 Notice that the log risk free rate under E-Z preferences is no longer the reciprocal of EIS (𝜓). 

 This is important to disentangle the equity premium and risk free rate puzzles. 

 Indeed, recursive preferences perform better in matching the data.

 The long run risk model (coming next) has employed the Epstein Zin preferences. 

 In addition, multiple papers on long run asset allocation (see e.g., the textbook treatment 

of Campbell and Viceira) have formulated investor’s preferences using EZ. 
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The Long Run Risk model
 The LRR of Bansal and Yaron (2004) has been one of the most successful asset 

pricing theory over the last decade.  

 LRR models feature a small but highly persistent component in consumption growth 

that is hard to capture directly using consumption data. 

 Never-the-less that small component is important for asset pricing. 

 The persistent component is modeled either as stationary (Bansal and Yaron (2004)) 

or as co-integrated (Bansal, Dittmar, and Kiku (2009)) stochastic process.

 The model has been found useful in explaining the equity premium puzzle, size and 

book to market effects, momentum, long term reversals, risk premiums in bond 

markets, real exchange rate movements, among others (see a review paper by 

Bansal (2007)).

 The evidence is based on calibration experiments.
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 The aggregate log consumption and dividend growth rates, 𝑔𝑐,𝑡+1and 𝑔𝑑,𝑡+1, contain a small 

persistent component, 𝑔𝑡, and a fluctuating component reflecting economic uncertainty, 𝜎𝑡

𝑔𝑡+1 = 𝜌𝑔𝑡 + 𝜑𝑒𝜎𝑡𝑒𝑡+1

𝑔𝑐,𝑡+1 = 𝜇𝑐 + 𝑔𝑡 + 𝜎𝑡𝜂𝑡+1

𝑔𝑑,𝑡+1 = 𝜇𝑑 + 𝜙𝑔𝑡 + 𝜑𝑑𝜎𝑡𝑢𝑡+1 + 𝜋𝜎𝑡𝜂𝑡+1

𝜎𝑡+1
2 = 𝜎2 + 𝜈1 𝜎𝑡

2 − 𝜎2 + 𝜎𝑤𝑤𝑡+1

 The shocks 𝑒𝑡+1, 𝜂𝑡+1, 𝑢𝑡+1, and 𝑤𝑡+1 are iid normal

 To produce an equity risk premium that is consistent with the data, the Epstein-Zin investor 

must have preferences such that 𝛾 > 1/𝜓

 Under these conditions, the price-dividend ratio tends to be high when expected consumption 

and dividend growth rates are high due to the persistent component 𝑔𝑡 and when economic 

uncertainty 𝜎𝑡
2 is relatively low.

Long Run Risk Model
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 Bansal and Yaron consider the E-Z pricing kernel representation derived earlier

𝐸𝑡𝑒𝑥𝑝 𝜃𝑙𝑛𝛽 −
𝜃

𝜓
𝑙𝑛

𝐶𝑡+1

𝐶𝑡
+ 𝜃 − 1 𝑙𝑛𝑅𝑚,𝑡+1 + 𝑙𝑛𝑅𝑖,𝑡+1 =1

 Their notation : 𝐸𝑡𝑒𝑥𝑝 𝜃𝑙𝑛𝛿 −
𝜃

𝜓
𝑔𝑡+1 + 𝜃 − 1 𝑟𝑎,𝑡+1 + 𝑟𝑖,𝑡+1 =1

 Notice that 𝑟𝑎,𝑡+1is the log return on as asset that delivers aggregate consumption as its 

dividends each period. 

 Need to solve for 𝑟𝑎,𝑡+1using the Campbell-Shiller present value formula to be developed here

𝑟𝑎,𝑡+1 = 𝑘0 + 𝑘1𝑧𝑡+1 − 𝑧𝑡 + 𝑔𝑡+1

where z is the log price-to-dividend ratio. 

 Then they guess 𝑧𝑡 = 𝐴0 + 𝐴1𝑥𝑡 + 𝐴2𝜎𝑡
2 and substitute this into the Euler equation.

Long Run Risk Model
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 Ferson, Nallareddy, and Xie (2011) examine the out of sample performance of the LRR 

paradigm. 

 They examine both the stationary and co-integrated versions of the model. 

 They find that the model performs comparably overall to the simple CAPM as well as a co-

integrated version outperforms the stationary version. 

 Beeler and Campbell (2012) display several weaknesses of LRR models:

 Too strong predictability of consumption growth by the price-dividend ratio

 Too small variance risk premium

 Too strong predictive power of return volatility by the price-dividend ratio

 Too small discount rate risk versus cash flow risk

 In response, Zhou and Zhu (2013) propose an extra volatility factor that helps resolve these 

weaknesses

Long Run Risk Model
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The habit formation model
 In the literature on habit formation there are two types of models that govern the 

specification of the habit level.

 In the internal habit models, habit is a function of previous consumption path.

 In the external habit models, habit is a function of the consumption of a peer group 

or the aggregate consumption

 Another modelling twist is about how consumption is related to the habit level. 

 Abel (1990) and Chan and Kogan (2002) are examples of ratio models in which 

utility is defined over the ratio of consumption to habit

 Constantinides (1990) and Campbell and Cochrane (1999) are examples of 

difference models wherein utility is defined over the difference between 

consumption and habit. 

 Importantly, the relative risk aversion is constant in ratio models but time-varying 

in difference models. 
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The habit formation model

 Time-varying relative risk aversion implies that the price of risk is time-varying

 This feature lines up with the ever growing literature on time-series predictability. 

 In difference habit models, expected returns are time varying due to changes in the effective 

risk aversion of the agents as we show below. 

 Following extended periods of low consumption growth, investors require higher risk 

premiums as consumption approaches the habit. 

 This variation in discount rates in the model produces stock market returns that are 

predictable using the price-dividend ratio

 In the Campbell and Cochrane (1999) model, agents in the model maximize expected utility

𝐸 ෍

𝑡+1

∞

𝛿𝑡
𝐶𝑡 − 𝐻𝑡

1−𝛾

1 − 𝛾

where 𝐶𝑡 is consumption and 𝐻𝑡 is the habit level

175



 Aggregate consumption growth and dividend growth follow lognormal processes,

𝑙𝑜𝑔 𝐶𝑡+1/𝐶𝑡 = 𝑔𝑐 + 𝜎𝑐𝜂𝑡+1
𝑙𝑜𝑔 𝐷𝑡+1/𝐷𝑡 = 𝑔𝑑 + 𝜎𝑑𝜖𝑡+1

where 𝐷𝑡+1 is the aggregate dividend on stocks. The innovations 𝜂𝑡+1 and 𝜖𝑡+1 are iid and come 

from a standard bivariate normal distribution with correlation 𝜔

 The consumption of the identical agents must equal aggregate consumption in equilibrium,

𝐶𝑡 = 𝐶𝑡

 The surplus ratio is the sole state variable that describes time variation in valuation levels and 

expected returns in the model. 

 The price-dividend ratio is an increasing function of the surplus ratio

 Expected returns are decreasing in the surplus of consumption over the habit level. 

 Expected returns are thus a decreasing function of the price-dividend ratio
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 The evolution of the habit can be described by the log surplus ratio

𝑠𝑡 = 𝑙𝑜𝑔
𝐶𝑡 − 𝐻𝑡

𝐶𝑡

which measures the surplus of aggregate consumption over the habit level

 The log surplus ratio follows the process

𝑠𝑡+1 = 1 − 𝜙 𝑠 + 𝜙𝑠𝑡 + 𝜆 𝑠𝑡 𝑐𝑡+1 − 𝑐𝑡 − 𝑔𝑐

where 𝜙 governs the persistence and 𝑠 governs the long-run mean of the log surplus ratio, 𝑔𝑐 is expected 

consumption growth, and 𝜆 𝑠𝑡 is a sensitivity function that modulates the effect of unexpected consumption 

growth on the habit. 
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 In what follows, it is useful to consult the class notes by Simone Gilchrise: ‘Asset pricing 

models with Habit Formation’

 Campbell and Cochrane use the following sensitivity function:

𝜆 𝑠𝑡 =
1

𝑆
1 − 2 𝑠𝑡 − 𝑠 − 1

where  0 ≤ 𝑆 ≤ 𝑠𝑚𝑎𝑥 and  𝑆 and smax are respectively the steady-state and upper bound of the  

surplus-consumption ratio given by

𝑆 = 𝜎
𝛾

1−𝜙

𝑠𝑚𝑎𝑥 = 𝑠 +
1 − 𝑆

2

2

 These two values for 𝑆 and smax are one possible choice that Campbell and Cochrane justify to 

make the habit locally predetermined.
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 This sensitivity function allows them to have a constant risk-free interest rate. 

 To see this, note that the risk-free rate is

𝑟𝑡+1
𝑓

= −𝑙𝑜𝑔𝛽 + 𝛾𝑔 − 𝛾 1 − 𝜙 𝑠𝑡 − 𝑠 −
𝛾2𝜎2

2
1 + 𝜆 𝑠𝑡

2

 Two effects where 𝑠𝑡 appears: intertemporal substitution and precautionary savings. 

 When 𝑠𝑡 is low, households have a low IES which drives the risk free rate up. 

 High risk aversion induces more precautionary savings which drives the risk free rate down

 Campbell and Cochrane offset these two effects by picking λ such that

𝛾 1 − 𝜙 𝑠𝑡 − 𝑠 +
𝛾2𝜎2

2
1 + 𝜆 𝑠𝑡

2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 If agent’s utility is 𝜐 𝐶, 𝐻 = 𝑢 𝐶 − 𝐻 instead of 𝑢 𝐶 and 𝐻 grows over time so that its 

distance to 𝐶 is always rather small, then a given percentage change in 𝐶 generates a larger 

percentage change in 𝐶 − 𝐻 :
Δ 𝐶 − 𝐻

𝐶 − 𝐻
=
Δ𝐶

𝐶

𝐶

𝐶 − 𝐻
>
Δ𝐶

𝐶
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 This is just a “leverage” effect coming from the “subsistence level” 𝐻. 

 Hence for a given volatility of 𝐶, we get more volatility of marginal utility of consumption 
𝒹𝑢

𝒹𝐶
.

 This allows to come closer to the Hansen-Jagannathan bounds: marginal utility of 

consumption is volatile, which is essential to resolve the equity premium puzzle.

 When agents’ consumption becomes closer to the habit level h, they fear further negative 

shocks since their utility is concave

 The relative risk aversion is time varying:

RRA 𝐶 =
−𝐶𝜈′′ 𝐶

𝜈′ 𝐶
=

−𝐶𝑢′′ 𝐶−𝐻

𝑢′ 𝐶−𝐻

 With preferences given by 𝑢 𝐶 =
𝐶1−𝛾

1−𝛾
, direct calculation yields

RRA 𝐶 = = 𝛾
𝐶

𝐶−𝐻

 As C → H, RRA 𝐶 =→∞. 

 Hence “time-varying risk aversion”, and hence time-varying risk premia
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Key mechanism

 Time-varying local risk-aversion coefficient:

𝛾𝑡 = −
𝐶𝑈𝐶𝐶
𝑈𝐶

=
𝛾

𝑆𝑡

 Counter-cyclical market price of risk. 

 To show it, let us start from 

𝑆𝑅𝑡 =
𝐸𝑡 𝑅𝑡+1

𝑒

𝜎𝑡 𝑅𝑡+1
𝑒 ≤

𝜎𝑡 𝑀𝑡+1

𝐸𝑡 𝑀𝑡+1
= 𝑀𝑃𝑅𝑡

 𝑀𝑃𝑅𝑡 is the market price of risk. 

 As noted earlier, equality holds for assets that are perfectly correlated with the SDF.

 In this model the market price of risk is:

𝑀𝑃𝑅𝑡 = 𝛾𝜎 1 + 𝜆 𝑠𝑡 =
𝛾𝜎

𝑆
1 − 2 𝑠𝑡 − 𝑠

 At the steady-state, 𝑆𝑅 =
𝛾𝜎

𝑆
, but the market price of risk is countercyclical, and hence so is 

the Sharpe ratio.181



 Several more insights: 

 Volatility of returns is higher in bad times

 The model also matches the time-series predictability evidence: dividend growth is not 

predictable, but returns are predictable, and the volatility of the price-to-dividend ratio 

is accounted for by this latter term (“discount rate news”).

 Long-run equity premium: because of mean-reversion in stock prices, excess returns on 

stocks at long horizons are even more puzzling than the standard one-period ahead 

puzzle. 

 Campbell and Cochrane note that if the state variable is stationary, the long-run 

standard deviation of the SDF will not depend on the current state. Key point: in their 

model, 𝑆−𝛾 is not stationary – variance is growing with horizon!
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The prospect theory model

 In the prospect theory model of Barberis et al. (2001), identical agents extract utility not only 
from their consumption but also from fluctuations in their financial wealth. 

 Prospect theory investors are loss averse, as they are more concerned about losses than gains.

 Investors track their gains and losses relative to a slow-moving benchmark, and their 
effective risk aversion is higher (lower) when they have accumulated losses (gains). 

 This specification triggers intertemporal variation in risk aversion and more volatile asset 
prices relative to the benchmark case with symmetric preferences

 Formally, prospect theory agents maximize utility of the form

𝐸 ෍

𝑡+1

∞

𝛿𝑡
𝐶𝑡
1−𝛾

1 − 𝛾
+ 𝑏0𝐶𝑡

−𝛾
𝛿𝑡+1𝜐 Χ𝑡+1, 𝑆𝑡 , 𝑠𝑡

∗

 The first part of the utility function corresponds to standard power utility over the agent's 
consumption

 The second part reflects loss aversion preferences

 The 𝑏0𝐶𝑡
−𝛾

term is a scaling factor
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 The function 𝜐 depends on 

 The value of the agent's stock holdings 𝑆𝑡

 The change in financial wealth 𝑋𝑡+1 ≡ 𝑆𝑡𝑅𝑡+1 − 𝑆𝑡𝑅𝑓,𝑡 (where 𝑅𝑡+1 and 𝑅𝑓,𝑡 are the returns on 
stocks and the risk-free asset)

 𝑠𝑡
∗ which is the historical benchmark level of stocks 𝑆𝑡

∗ given as a fraction                                                          
of the stock value 𝑆𝑡(i.e., 𝑠𝑡

∗ ≡ 𝑆𝑡
∗/𝑆𝑡)

 The state variable 𝑠𝑡
∗ is assumed to sluggishly evolve and is modeled by

𝑠𝑡+1
∗ = 𝜂 𝑠𝑡

∗
𝑅

𝑅𝑡+1
+ 1 − 𝜂

which 𝑅 is a parameter chosen such that 𝑠𝑡
∗ is equal to one on average

 𝜂 ∈ 0,1 corresponds to the memory of the agents

 If 𝜂 = 0 the benchmark level quickly adapts and is equal to the stock price at every time t, 𝑆𝑡
∗ = 𝑆𝑡

 When 𝜂 is greater than zero, however, the benchmark level reflects a longer memory of the agent 
with respect to past gains and losses
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 Overall, the function 𝜐 captures loss aversion such that agents are more sensitive to losses below 

their historical benchmark.

 Aggregate consumption and dividend growth rates follow the same iid processes as in the habit

formation model 

𝑙𝑜𝑔 𝐶𝑡+1/𝐶𝑡 = 𝑔𝑐 + 𝜎𝑐𝜂𝑡+1
𝑙𝑜𝑔 𝐷𝑡+1/𝐷𝑡 = 𝑔𝑑 + 𝜎𝑑𝜖𝑡+1

 Given that dividend growth is IID, all variation in the price-dividend ratio is driven through a 

valuation channel with time-varying expected returns. 

 For example, the gains from an unexpected positive dividend shock reduce effective risk 

aversion. 

 A corresponding decrease in expected returns is accompanied by an increase in the price-

dividend ratio that amplifies the effects of dividend shocks in the model. 

 In equilibrium, the price-dividend ratio and expected returns are functions of the sole state 

variable 𝑠𝑡
∗.
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When prospect theory meets data
 Barberis, Mukherjee, and Wang (2015) develop testable predictions of prospect theory.

 They outline the challenges in applying prospect theory outside the laboratory. 

 In particular, prospect theory entails two steps. 

 First, since a prospect theory agent is assumed to derive utility from gains and losses, 
the agent forms a mental representation of the gains and losses characterizing the 
random outcome. 

 In experimental settings, the answer is clear: laboratory subjects are typically given a 
representation for any risk they are asked to consider – a 50:50 bet to win $110 or lose 
$100, say. 

 Outside the laboratory, however, the answer is less clear: how does an investor who is 
thinking about a stock represent that stock in his mind?

 Second, the agent evaluates this representation – this distribution of gains and losses –
to see if it is appealing.

 The valuation step is straightforward: Tversky and Kahneman (1992) provide detailed 
formulas that specify the value that a prospect theory agent would assign to any given 
distribution of gains and losses. 
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When prospect theory meets data

 Barberis et al suggest that, for many investors, their mental representation of a 

stock is given by the distribution of the stock’s past returns. 

 Indeed, the past return distribution is a good and easily accessible proxy for the 

object agents are interested in - the distribution of the stock’s future returns. 

 This belief may be mistaken: a stock with a high mean return over the past few 

years typically could have low subsequent return (De Bondt and Thaler, 1985); 

and a stock whose past returns are highly skewed need not exhibit high 

skewness in its future returns. 

 Nonetheless, many investors may think that a stock’s past return distribution is 

a good approximation of its future return distribution, and therefore adopt the 

past return distribution as their mental representation of the stock.
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Estimating and Evaluating 

Asset Pricing Models
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Why Caring About Asset Pricing Models 
 An essential question that arises is why both academics and practitioners invest huge 

resources attempting to develop and test of asset pricing models.

 It turns out that pricing models have crucial roles in various applications in financial 
economics – both asset pricing as well as corporate finance.

 In the following, I list five major applications.

1 – Common Risk Factors
 Pricing models characterize the risk profile of a firm.

 In particular, systematic risk is no longer stock return volatility – rather it is the loadings on 
risk factors.

 For instance, in the single factor CAPM the market beta – or the co-variation with the 
market – characterizes the systematic risk of the firm

 Likewise, in the single factor CCAPM the consumption growth beta – or the co-variation with 
consumption growth – characterizes the systematic risk of the firm.

 In the multi-factor Fama-French (FF) model there are three sources of risk – the market 
beta, the SMB beta, and the HML beta.

 Under FF, other things being equal (ceteris paribus), a firm is riskier if its loading on SMB 
beta is higher.

 Under FF, other things being equal (ceteris paribus), a firm is riskier if its loading on HML 
beta is higher
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2 – Moments for Asset Allocation
 Pricing models deliver moments for asset allocation.

 For instance, the tangency portfolio takes on the form

𝑤𝑇𝑃 =
𝑉−1𝜇𝑒

𝜄′𝑉−1𝜇𝑒

 Under the CAPM, the vector of expected returns and the covariance matrix are given by:

𝜇𝑒 = 𝛽𝜇𝑚
𝑒

𝑉 = 𝛽𝛽′𝜎𝑚
2 + Σ

where σ is the covariance matrix of the residuals in the time-series asset pricing regression. 

 The corresponding quantities under the FF model are

𝜇𝑒 = 𝛽𝑀𝐾𝑇𝜇𝑚
𝑒 + 𝛽𝑆𝑀𝐿𝜇𝑆𝑀𝐿 + 𝛽𝐻𝑀𝐿𝜇𝐻𝑀𝐿

𝑉 = 𝛽σ𝐹 𝛽
′ + σ

where σ𝐹 is the covariance matrix of the market, size, and book-t-market factors.
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3 – Discount Factor
 Expected return is the discount factor, commonly denoted by k, in present value formulas 

in general and firm evaluation in particular:

𝑃𝑉 = σ𝑡=1
𝑇 𝐶𝐹𝑡

1+𝑘 𝑡

 In practical applications, expected returns are typically assumed to be constant over 

time, an unrealistic assumption. 

 Indeed, thus far we have examined models with constant beta and constant risk 

premiums

𝜇𝑒 = 𝛽′𝜆

where 𝜆 is a K-vector of risk premiums. 

 When factors are return spreads the risk premium is the mean of the factor.

 Later we will consider models with time varying factor loadings.

191



4 - Benchmarks

 Factors in asset pricing models could serve as benchmarks for evaluating performance of 

active investments.

 In particular, performance is the intercept (alpha) in the time series regression of excess fund 

returns on a set of benchmarks (typically four benchmarks in mutual funds and more so in 

hedge funds):

𝑟𝑡
𝑒 = 𝛼 + 𝛽𝑀𝐾𝑇 × 𝑟𝑀𝐾𝑇,𝑡

𝑒 + 𝛽𝑆𝑀𝐵 × 𝑆𝑀𝐵𝑡
+𝛽𝐻𝑀𝐿 × 𝐻𝑀𝐿𝑡 + 𝛽𝑊𝑀𝐿 ×𝑊𝑀𝐿𝑡 + 𝜀𝑡

5 - Corporate Finance
 There is a plethora of studies in corporate finance that use asset pricing models to risk adjust 

asset returns.

 Here are several examples:

 Examining the long run performance of IPO firm.
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5 - Corporate Finance
 Examining the long run performance of SEO firms

 Analyzing abnormal performance of stocks going through splits and reverse splits.

 Analyzing mergers and acquisitions 

 Analyzing the impact of change in board of directors.

 Studying the impact of corporate governance on the cross section of average returns.

 Studying the long run impact of stock/bond repurchase.
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Methods of evaluation model pricing abilities

 The finance literature has used three main approaches to evaluate asset pricing models:

calibration, cross sectional and time series asset pricing tests, and out-of-sample fit. 

 With calibration (e.g., Long run risk, habit formation, prospect theory), values for the 

parameters of the underlying model are chosen, and the model is solved at these parameter 

values for the prices of financial assets. 

 The model-generated series of prices and returns are examined to see if their moments match 

key moments of actual asset prices.

 In asset pricing tests, model parameters are optimally chosen to fit a panel of economic series 

and asset returns. 

 Standard errors for the parameter estimates quantify their precision. 

 Statistical hypothesis tests about the parameters are conducted and the residuals of the 

model are examined to assess the fit to the sample. 

 Estimation typically challenges a model in more dimensions at once than calibration. For 

example, a calibrated parameter value may not be the value that maximizes the likelihood, 

indicating that more issues are going on in the data than captured by the calibration.
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 The practical utility of an asset pricing model ultimately depends on its ability to fit out-of-

sample returns, as most practical applications are, in some sense, out of sample

 For example, firms want to estimate costs of capital for future projects, portfolio and risk 

managers want to know the expected compensation for future risks, and academic 

researchers will want to make risk adjustments to expected returns in future data. 

 Many of these applications rely on out-of-sample estimates for the required or ex ante 

expected return, where the model parameters are chosen based on available data. 

 This perspective leads naturally to the mean squared pricing error (MSE) criterion: a better 

model produces lower MSE.

 Ex post out-of-sample performance of asset allocation decisions would establish a solid 

economic metric for model pricing abilities.

 More on asset allocation is in the Bayesian section of the class notes.

 This section provides the econometric paradigms of asset pricing tests.
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Time Series Tests

 Time series tests are designated to examine the validity of models in which factors are 

portfolio based, or factors that are return spreads.

 Example: the market factor is the return difference between the market portfolio and the 

risk-free asset.

 Consumption growth is not a return spread. 

 Thus, the consumption CAPM cannot be tested using time series regressions, unless you form 

a factor mimicking portfolio (FMP) for consumption growth

 FMP is a convex combination of asset returns having the maximal correlation with 

consumption growth. 

 The statistical time series tests have an appealing economic interpretation

 Testing the CAPM amounts to testing whether the market portfolio is the tangency portfolio.

 Testing multi-factor models amounts to testing whether some optimal combination of the 

factors is the tangency portfolio.
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 Run the time series regression:

𝑟1𝑡
𝑒 = 𝛼1 + 𝛽1𝑟𝑚𝑡

𝑒 + 𝜀1𝑡

⋮

𝑟𝑁𝑡
𝑒 = 𝛼𝑁 + 𝛽𝑁𝑟𝑚𝑡

𝑒 + 𝜀𝑁𝑡

 The null hypothesis is:

𝐻0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑁 = 0

 In the following, four times series test statistics will be described:

 WALD;

 Likelihood Ratio;

 GRS (Gibbons, Ross, and Shanken (1989));

 GMM.
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The Distribution of α
 Recall, 𝑎 is asset mispricing.

 The time series regressions can be rewritten using a vector form as:

𝑟𝑡
𝑒

𝑁×1
= Ƚ

𝑁×1
+ Ⱦ

𝑁×1
⋅ 𝑟𝑚𝑡

𝑒

1×1
+ 𝜀𝑡

𝑁×1

 Let us assume that

ε𝑡
𝑁×1

∼
𝑖𝑖𝑑
𝑁 0, σ

𝑁×𝑁

for      𝑡 = 1,2,3, … , 𝑇

 Let Θ = 𝛼′, 𝛽′, 𝑣𝑒𝑐ℎ 𝜀 ′ ′ be the set of all parameters. 

 Under normality, the likelihood function for 𝜀𝑡 is

𝐿 𝜀𝑡|𝜃 = 𝑐| σ|−
1

2 exp −
1

2
𝑟𝑡
𝑒 − 𝛼 − 𝛽 𝑟𝑚𝑡

𝑒 ′σ 𝑟𝑡
𝑒 − 𝛼 − 𝛽 𝑟𝑚𝑡

𝑒

where  𝑐 is the constant of integration (recall the integral of a probability distribution function 
is unity).
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 Moreover, the IID assumption suggests that

𝐿 |𝜀1, 𝜀2, … , 𝜀𝑁 𝜃 = 𝑐𝑇|Σ|−
𝑇
2

× exp −
1

2
෍

𝑡=1

𝑇

𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒 ′ Σ−1 𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒

 Taking the natural log from both sides yields

ln 𝐿 ∝ −
𝑇

2
ln |Σ| −

1

2
෍

𝑡=1

𝑇

𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒 ′Σ−1 𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒

 Asymptotically, we have 𝜃 − መ𝜃~𝑁 0,σ 𝜃

where

Σ 𝜃 = −𝐸 𝜕2 𝑙𝑛 𝐿
𝜕𝜃𝜕𝜃′

−1
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 Let us estimate the parameters

𝜕 𝑙𝑛 𝐿

𝜕𝛼
= Σ−1 ෍

𝑡=1

𝑇

𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒

𝜕 𝑙𝑛 𝐿

𝜕𝛽
= Σ−1 ෍

𝑡=1

𝑇

𝑟𝑡
𝑒 − 𝛼 − 𝛽𝑟𝑚𝑡

𝑒 × 𝑟𝑚𝑡
𝑒

𝜕 𝑙𝑛 𝐿

𝜕Σ
= −

𝑇

2
Σ−1 +

1

2
Σ−1 ෍

𝑡=1

𝑇

𝜀𝑡 𝜀𝑡
′ Σ−1

 Solving for the first order conditions yields

ො𝛼 = Ƹ𝜇𝑒 − መ𝛽 ⋅ Ƹ𝜇𝑚
𝑒

መ𝛽 =
σ𝑡=1
𝑇 𝑟𝑡

𝑒 − Ƹ𝜇𝑒 𝑟𝑚𝑡
𝑒 − Ƹ𝜇𝑚

𝑒

σ𝑡=1
𝑇 𝑟𝑚𝑡

𝑒 − Ƹ𝜇𝑚
𝑒 2
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 Moreover,

෡σ =
1

𝑇
෍

𝑡=1

𝑇

Ƹ𝜀𝑡 Ƹ𝜀𝑡
′

Ƹ𝜇𝑒 =
1

𝑇
෍

𝑡=1

𝑇

𝑟𝑡
𝑒

𝜇𝑚
𝑒 =

1

𝑇
෍

𝑡=1

𝑇

𝑟𝑚𝑡
𝑒

 Recall our objective is to find the variance-covariance matrix of ො𝛼.

 Standard errors could be found using the information matrix:

𝐼 𝜃 = − 𝐸

𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕𝛼′
,
𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕𝛽′
,
𝜕2 𝑙𝑛 𝐿

𝜕𝛼𝜕Σ′

𝜕2 𝑙𝑛 𝐿

𝜕𝛽𝜕𝛼′
,
𝜕2 𝑙𝑛 𝐿

𝜕𝛽𝜕𝛽′
,
𝜕2 𝑙𝑛 𝐿

𝜕𝛽𝜕Σ′

𝜕2 𝑙𝑛 𝐿

𝜕Σ𝜕𝛼′
,
𝜕2 𝑙𝑛 𝐿

𝜕Σ𝜕𝛽′
,
𝜕2 𝑙𝑛 𝐿

𝜕Σ𝜕Σ′
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The Distribution of  the Parameters
 Try to establish yourself the information matrix.

 Notice that ො𝛼 and መ𝛽 are independent of ෠Σ - thus, your can ignore the second derivatives with 
respect to Σ in the information matrix if your objective is to find the distribution of ො𝛼 and መ𝛽 . 

 If you aim to derive the distribution of ෠Σ then focus on the bottom right block of the 
information matrix.

The Distribution of α

 We get:

ො𝛼~𝑁 𝛼,
1

𝑇
1 +

ො𝜇𝑚
𝑒

ො𝜎 𝑚

2

Σ

 Moreover,

መ𝛽~𝑁 𝛽,
1

𝑇
⋅
1

ො𝜎𝑚
2 Σ

𝑇෡σ~𝑊 𝑇 − 2, Σ

 Notice that 𝑊(𝑥, 𝑦) stands for the Wishart distribution with 𝑥 = 𝑇 − 2 degrees of freedom and 
a parameter matrix 𝑦 = Σ. 
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The Wald Test
 Recall, if

𝑋~𝑁 𝜇, Σ then 𝑋 − 𝜇 ′෡σ−1 𝑋 − 𝜇 ~𝜒2 𝑁

 Here we test  

𝐻0: ො𝛼 = 0
𝐻1: ො𝛼 ≠ 0

where

ො𝛼 ∼
𝐻0 𝑁 0, Σ𝛼

 The Wald statistic is ො𝛼′෡σ𝛼
−1 ො𝛼~𝜒2 𝑁 ,which becomes:

𝐽1 = 𝑇 1 +
ො𝜇𝑚
𝑒

ො𝜎 𝑚

2 −1

ො𝛼′෡σ−1 ො𝛼 = 𝑇
ො𝛼′෡σ−1 ො𝛼

1 + 𝑆 ෠𝑅𝑚
2

where 𝑆 ෠𝑅𝑚 is the Sharpe ratio of the market factor.
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Algorithm for Implementation

 The algorithm for implementing the statistic is as follows:

 Run separate regressions for the test assets on the common factor:

𝑟𝑡
𝑒

𝑇𝑥1
= 𝑋

𝑇𝑥2
θ1
2𝑥1

+ ε1
𝑇𝑥1

⋮
𝑟𝑁
𝑒

𝑇𝑥1
= 𝑋

𝑇𝑥2
θ𝑁
2𝑥1

+ ε𝑁
𝑇𝑥1

where
𝑋
𝑇𝑥2

=
1, 𝑟𝑚1

𝑒

⋮
1, 𝑟𝑚𝑇

𝑒

𝜃𝑖 = 𝛼𝑖 , 𝛽𝑖
′

 Retain the estimated regression intercepts        

ො𝛼 = ො𝛼1, ො𝛼2, … , ො𝛼𝑁
′ and   Ƹ𝜀

𝑇𝑥𝑁
= Ƹ𝜀1, … , Ƹ𝜀𝑁

 Compute the residual covariance matrix 

෡σ =
1

𝑇
Ƹ𝜀′ Ƹ𝜀

 Compute the sample mean and the sample variance of the factor.

 Compute 𝐽1.
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The Likelihood Ratio Test

 We run the unrestricted and restricted specifications:

un:     𝑟𝑡
𝑒 = 𝛼 + 𝛽𝑟𝑚𝑡

𝑒 + 𝜀𝑡 𝜀𝑡~𝑁 0, Σ

res:     𝑟𝑡
𝑒 = 𝛽∗𝑟𝑚𝑡

𝑒 + 𝜀𝑡
∗ 𝜀𝑡

∗~𝑁 0, Σ∗

 Using MLE, we get:

መ𝛽∗ =
σ𝑡=1
𝑇 𝑟𝑡

𝑒 𝑟𝑚𝑡
𝑒

σ𝑡=1
𝑇 𝑟𝑚𝑡

𝑒 2

෡σ∗ =
1

𝑇
෍

𝑡=1

𝑇

Ƹ𝜀𝑡
∗ Ƹ𝜀𝑡

∗′

መ𝛽∗~𝑁 𝛽,
1

𝑇

1

Ƹ𝜇𝑚
2 + ො𝜎𝑚

2 σ

𝑇෡σ∗~𝑊 𝑇 − 1,σ
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The LR Test
𝐿𝑅 = ln 𝐿∗ − ln 𝐿 = −

𝑇

2
ln ෡σ∗ − ln ෡σ

𝐽2 = −2𝐿𝑅 = 𝑇 ln ෡σ∗ − ln ෡σ ∼ 𝜒2 𝑁

 Using some algebra, one can show that

𝐽1 = 𝑇 exp
𝐽2
𝑇

− 1

 Thus, 

𝐽2 = 𝑇 ⋅ ln
𝐽1
𝑇
+ 1

GRS (1989) – Finite Sample Test
Theorem:    let     

X
𝑁𝑥1

∼𝑁 0, Σ

let

A
𝑁𝑥𝑁

~ W 𝜏, Σ

where 𝜏 ≥ 𝑁 and A and X are independent. Then: 
𝜏 − 𝑁 + 1

𝑁
𝑋′𝐴−1𝑋 ∼ 𝐹𝑁,𝜏−𝑁+1
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 In our context:

𝑋 = 𝑇 1 +
Ƹ𝜇𝑚
ො𝜎𝑚

2 −
1
2

ො𝛼 ∼
𝐻0𝑁 0, Σ

𝐴 = 𝑇෠Σ ∼ 𝑊 𝜏, Σ
where

𝜏 = 𝑇 − 2
 Then:   

𝐽3 =
𝑇 − 𝑁 − 1

𝑁
1 +

Ƹ𝜇𝑚
ො𝜎𝑚

2 −1

ො𝛼′ ෠Σ−1 ො𝛼 ∼ 𝐹 𝑁, 𝑇 − 𝑁 − 1

GMM
The GMM test statistic (derivation comes up later in the notes) is given by

𝐽4 = 𝑇 ො𝛼′(𝑅(𝐷𝑇
′𝑆𝑇

−1𝐷𝑇)
−1𝑅′)−1 ⋅ ො𝛼 ∼

𝐻0 𝜒2 (𝑁)

where 

R
𝑁𝑥2𝑁

= IN
𝑁𝑥𝑁

, 0
𝑁𝑥𝑁

𝐷𝑇 = −
1, Ƹ𝜇𝑚

𝑒

Ƹ𝜇𝑚
𝑒 , Ƹ𝜇𝑚

𝑒 2 + ො𝜎𝑚
2 ⨂𝐼𝑁
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 Assume no serial correlation but heteroscedasticity:

𝑆𝑇 =
1

𝑇
෍

𝑡=1

𝑇

( 𝑥𝑡𝑥𝑡
′ ⊗ Ƹ𝜀𝑡 Ƹ𝜀𝑡

′)

where

𝑥𝑡 = [1, 𝑟𝑚𝑡
𝑒 ]′

 Under homoscedasticity and serially uncorrelated moment conditions: 𝐽4 = 𝐽1.
 That is, the GMM statistic boils down to the WALD.

The Multi-Factor Version of Asset Pricing Tests
𝑟𝑡
𝑒

𝑁𝑥1
= Ƚ

𝑁𝑥1
+ Ⱦ

𝑁𝑥𝐾
⋅ 𝐹𝑡
𝐾𝑥1

+ ε𝑡
𝑁𝑥1

𝐽1 = 𝑇 1 + Ƹ𝜇′𝐹 ෠Σ𝐹
−1 Ƹ𝜇𝐹

−1
ො𝛼′ ෠Σ−1 ො𝛼 ∼ 𝜒 𝑁

𝐽2 follows as described earlier.

𝐽3 =
𝑇 − 𝑁 − 𝐾

𝑁
(1 + Ƹ𝜇𝐹

′ ෠Σ𝐹
−1 Ƹ𝜇𝐹)

−1 ො𝛼′ ෠Σ−1 ො𝛼 ∼ 𝐹 𝑁,𝑇−𝑁−𝐾

where Ƹ𝜇𝐹 is the mean vector of the factor based return spreads
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 ෠Σ𝐹 is the variance covariance matrix of the factors.

 For instance, considering the Fama-French model:

Ƹ𝜇𝐹 =

Ƹ𝜇𝑚
𝑒

Ƹ𝜇𝑆𝑀𝐵
Ƹ𝜇𝐻𝑀𝐿

෠Σ𝐹 =

ො𝜎𝑚
2 , ො𝜎𝑚,𝑆𝑀𝐵 , ො𝜎𝑚,𝐻𝑀𝐿

ො𝜎𝑆𝑀𝐵,𝑚, ො𝜎𝑆𝑀𝐵
2 , ො𝜎𝑆𝑀𝐵,𝐻𝑀𝐿

ො𝜎𝐻𝑀𝐿,𝑚, ො𝜎𝐻𝑀𝐿,𝑆𝑀𝐵, ො𝜎𝐻𝑀𝐿
2

The Economics of Time Series Test Statistics
 Let us summarize the first three test statistics:

𝐽1 = 𝑇
ො𝛼′ ෠Σ−1 ො𝛼

1 + 𝑆 ෠𝑅𝑚
2

𝐽2 = 𝑇 ⋅ ln
𝐽1
𝑇
+ 1

𝐽3 =
𝑇 − 𝑁 − 1

𝑁

ො𝛼′ ෠Σ−1 ො𝛼

1 + 𝑆 ෠𝑅𝑚
2
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The Economics of Time Series Test Statistics
 The 𝐽4 statistic, the GMM based asset pricing test, is actually a Wald test, just like J1, except 

that the covariance matrix of asset mispricing takes account of heteroscedasticity and often 

even potential serial correlation.

 Notice that all test statistics depend on the quantity

ො𝛼෠Σ−1 ො𝛼

 GRS show that this quantity has a very insightful representation.

 Let us provide the steps.

Understanding the Quantity ො𝛼′෡σ−1 ො𝛼
 Consider an investment universe that consists of 𝑁 + 1 assets - the 𝑁 test assets as well 

as the market portfolio.

 The expected return vector of the 𝑁 + 1 assets is given by
෠λ

𝑁+1 ×1
= ොμ𝑚

𝑒 ,
1×1

ොμ𝑒′
1×𝑁

′

where ො𝜇𝑚
𝑒 is the estimated expected excess return on the market portfolio and ො𝜇𝑒 is the 

estimated expected excess return on the 𝑁 test assets.
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Understanding the Quantity ො𝛼′෡σ−1 ො𝛼
 The variance covariance matrix of the N+1 assets is given by

෡Φ
𝑁+1 × 𝑁+1

=
ො𝜎𝑚
2 , መ𝛽′ ො𝜎𝑚

2

መ𝛽 ො𝜎𝑚
2 , ෠𝑉

where ො𝜎𝑚
2 is the estimated variance of the market factor, መ𝛽 is the N-vector of market loadings,  

and ෠𝑉 is the covariance matrix of the N test assets.

 Notice that the covariance matrix of the N test assets is 

෠𝑉 = መ𝛽 መ𝛽′ ො𝜎𝑚
2 + ෠Σ

 The squared tangency portfolio of the 𝑁 + 1 assets is

𝑆 ෠𝑅𝑇𝑃
2 = መ𝜆′ ෡Φ−1 መ𝜆

 Notice also that the inverse of the covariance matrix is 

෡Φ−1 =
ො𝜎𝑚
2 −1 + መ𝛽′ ෠Σ−1 መ𝛽, − መ𝛽′ ෠Σ−1

−෠Σ−1 መ𝛽, ෠Σ−1
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Understanding the Quantity ො𝛼′෡σ−1 ො𝛼

 Thus, the squared Sharpe ratio of the tangency portfolio could be represented as

𝑆 ෠𝑅𝑇𝑃
2 =

Ƹ𝜇𝑚
𝑒

ො𝜎𝑚

2

+ Ƹ𝜇𝑒 − መ𝛽 Ƹ𝜇𝑚
𝑒 ′ ෠Σ−1 Ƹ𝜇𝑒 − መ𝛽 Ƹ𝜇𝑚

𝑒

𝑆 ෠𝑅𝑇𝑃
2 = 𝑆 ෠𝑅𝑚

2 + ො𝛼′ ෠Σ−1 ො𝛼

or

ො𝛼′ ෠Σ−1 ො𝛼 = 𝑆 ෠𝑅𝑇𝑃
2 − 𝑆 ෠𝑅𝑚

2

 In words, the ො𝛼′ ෠Σ−1 ො𝛼 quantity is the difference between the squared Sharpe ratio based on 

the 𝑁 + 1 assets and the squared Sharpe ratio of the market portfolio. 

 If the CAPM is correct then these two Sharpe ratios are identical in population, but not 

identical in sample due to estimation errors.

 The test statistic examines how close the two sample Sharpe ratios are.

 Under the CAPM, the extra N test assets do not add anything to improving the risk 

return tradeoff.

 The geometric description of ො𝛼′ ෠Σ−1 ො𝛼 is given in the next slide. 
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Understanding the Quantity ො𝛼′෡σ−1 ො𝛼

ො𝛼′ ෠Σ−1 ො𝛼 = Φ1
2 −Φ2

2

Φ2

𝑇𝑃

𝑀

Φ1

𝜎

𝑟

𝑅𝑓
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Understanding the Quantity ො𝛼′෡σ−1 ො𝛼

 So we can rewrite the previously derived test statistics as 

𝐽1 = 𝑇
𝑆 ෠𝑅𝑇𝑃

2 −𝑆 ෠𝑅𝑚
2

1+𝑆 ෠𝑅𝑚
2 ~𝜒2 𝑁

𝐽3 =
𝑇 − 𝑁 − 1

𝑁
×
𝑆 ෠𝑅𝑇𝑃

2 − 𝑆 ෠𝑅𝑚
2

1 + 𝑆 ෠𝑅𝑚
2

~𝐹 𝑁, 𝑇 − 𝑁 − 1

Cross Sectional Regressions
 The time series procedures are designed primarily to test asset pricing models based on 

factors that are asset returns. 

 The cross-sectional technique can be implemented whether or not the factor is a return 
spread. 

 Consumption growth is a good example of a non portfolio based factor. 

 The central question in the cross section framework is why average returns vary across 
assets. 

 So plot the sample average excess returns on the estimated betas. 

 But even if the model is correct, this plot will not work out perfectly well because of sampling 
errors. 
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 The idea is to run a cross-sectional regression to fit a line through the scatterplot of 

average returns on estimated betas. 

 Then examine the deviations from a linear relation. 

 In the cross section approach you can also examine whether a factor is indeed priced. 

 Let us formalize the concepts. 

 Two regression steps are at the heart of the cross-sectional approach: 

 First, estimate betas from the time-series regression of excess returns on some pre-

specified factors 

𝑟𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖
′𝑓𝑡 + 𝜖𝑖,𝑡 .

 Then run the cross-section regression of average returns on the betas 

ǉ𝑟𝑖 = 𝛽𝑖
′𝜆 + 𝜈𝑖 .

 Notation: 𝜆 – the regression coefficient – is the risk premium, and 𝜈𝑖 — the regression 

disturbance – is the pricing error. 

 Assume for analytic tractability that there is a single factor, let ǉ𝑟 = [ ǉ𝑟1, ǉ𝑟2, … , ǉ𝑟𝑁]
′, and let 

𝛽 = [𝛽1, 𝛽2, … , 𝛽𝑁]
′.
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 The OLS cross-sectional estimates are

መ𝜆 = (𝛽′𝛽)−1𝛽′ ǉ𝑟,

Ƹ𝜈 = ǉ𝑟 − መ𝜆𝛽.

 Furthermore, let Σ be the covariance matrix of asset returns, then it follows that

𝜎2( መ𝜆) =
1

𝑇
(𝛽′𝛽)−1𝛽′Σ𝛽(𝛽′𝛽)−1,

cov( Ƹ𝜈) =
1

𝑇
𝐼 − 𝛽(𝛽′𝛽)−1𝛽′ Σ 𝐼 − 𝛽(𝛽′𝛽)−1𝛽′ .

 We could test whether all pricing errors are zero with the statistic

Ƹ𝜈′𝑐𝑜𝑣( Ƹ𝜈)−1 Ƹ𝜈 ∼ 𝜒𝑁−1
2 .

 We could also test whether a factor is priced

෡𝜆

𝜎(෡𝜆)
∼ 𝑡𝑁−1

 Notice that we assume 𝛽 in  is known. 

 However, 𝛽 is estimated in the time-series regression and therefore is unknown. 

 So we have the EIV problem. 
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 Shanken (1992) corrects the cross-sectional estimates to account for the errors in estimating 

betas 

 Shanken assumes homoscedasticity in the variance of asset returns conditional upon the 

realization of factors. 

 Under this assumption he shows that the standard errors based on the cross sectional 

procedure overstate the precision of the estimated parameters.

 The EIV corrected estimates are 

𝜎𝑒𝑖𝑣
2 ( መ𝜆) = 𝜎2( መ𝜆)ϒ +

1

𝑇
Ω𝑓

cov𝑒𝑖𝑣( Ƹ𝜈) = cov( Ƹ𝜈)ϒ,

where Ω𝑓 is the variance-covariance matrix of the factors and ϒ = 1 + 𝜆′Ω𝑓
−1𝜆.

 Of course, if factors are return spreads then 𝜆′Ω𝑓
−1𝜆 is the squared Sharpe ratio attributable 

to a mean-variance efficient investment in the factors.
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Fama and MacBeth (FM) Procedure
 FM (1973) propose an alternative procedure for running cross-sectional regressions, and for 

producing standard errors and test statistics. 

 The FM approach involves two steps as well. 

 The first step is identical to the one described above. Specifically, estimate beta from a time 
series regression. 

 The second step is different.

 In particular, instead of estimating a single cross-sectional regression with the sample 

averages on the estimated betas, FM run a cross-sectional regression at each time period 

𝑟𝑖,𝑡 = 𝛿0,𝑡 + 𝛽𝑖
′𝛿1,𝑡 + 𝜖𝑖,𝑡 .

 Let 𝑟𝑡 = [𝑟1,𝑡 , 𝑟2,𝑡, … , 𝑟𝑁,𝑡]
′, let 𝛿𝑡 = [𝛿0,𝑡, 𝛿1,𝑡]

′, let 𝑋𝑖 = [1, 𝛽𝑖]
′, and let 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑁]

′

then the cross sectional estimates for 𝛿𝑡 and 𝜖𝑖,𝑡 are given by 

መ𝛿𝑡 = (𝑋′𝑋)−1𝑋′𝑟𝑡,

Ƹ𝜖𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝑋𝑖
′ መ𝛿𝑡.
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 FM suggest that we estimate 𝛿 and 𝜖𝑖 as the averages of the cross-sectional estimates 

መ𝛿 =
1

𝑇
σ𝑡=1
𝑇 መ𝛿𝑡 ,

Ƹ𝜖𝑖 =
1

𝑇
σ𝑡=1
𝑇 Ƹ𝜖𝑖,𝑡 .

 They suggest that we use the cross-sectional regression estimates to generate the sampling 

error for these estimates 

𝜎2( መ𝛿) =
1

𝑇2
σ𝑡=1
𝑇 መ𝛿𝑡 − መ𝛿

2
,

𝜎2( Ƹ𝜖𝑖) =
1

𝑇2
σ𝑡=1
𝑇 Ƹ𝜖𝑖,𝑡 − Ƹ𝜖𝑖

2
.

 In particular, let Ƹ𝜖 = [ Ƹ𝜖1, Ƹ𝜖2, … , Ƹ𝜖𝑁]
′, then the variance-covariance matrix of the sample pricing 

errors is 

𝑐𝑜𝑣( Ƹ𝜖) =
1

𝑇2
σ𝑡=1
𝑇 ( Ƹ𝜖𝑡 − Ƹ𝜖)( Ƹ𝜖𝑡 − Ƹ𝜖)′.

 Then we can test whether all pricing errors are zero using the WALD test statistic.
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 Let us now present the methodology in Avramov and Chordia (2006) for asset pricing tests 

based on individual stocks. 

 In particular, assume that returns are generated by a conditional version of a 𝐾-factor model 

𝑅𝑗𝑡 = 𝐸𝑡−1(𝑅𝑗𝑡) + σ𝑘=1
𝐾 𝛽𝑗𝑘𝑡−1 𝑓𝑘𝑡 + 𝑒𝑗𝑡 ,

where 𝐸𝑡−1 is the conditional expectations operator, 𝑅𝑗𝑡 is the return on security 𝑗 at time 𝑡, 𝑓𝑘𝑡
is the unanticipated (with respect to information available at 𝑡 − 1) time 𝑡 return on the 𝑘’th 

factor, and 𝛽𝑗𝑘𝑡−1 is the conditional beta.

 𝐸𝑡−1(𝑅𝑗𝑡) is modeled using the exact pricing specification

𝐸𝑡−1(𝑅𝑗𝑡) − 𝑅𝐹𝑡 = σ𝑘=1
𝐾 𝜆𝑘𝑡−1 𝛽𝑗𝑘𝑡−1,

where 𝑅𝐹𝑡 is the risk-free rate and 𝜆𝑘𝑡 is the risk premium for factor 𝑘 at time 𝑡.

220

Avramov and Chordia (AC) Procedure



 The estimated risk-adjusted return on each security for month 𝑡 is then calculated as:

𝑅𝑗𝑡
∗ ≡ 𝑅𝑗𝑡 − 𝑅𝐹𝑡 − σ𝑘=1

𝐾 መ𝛽𝑗𝑘𝑡−1 𝐹𝑘𝑡,

where 𝐹𝑘𝑡 ≡ 𝑓𝑘𝑡 + 𝜆𝑘𝑡−1 is the sum of the factor innovation and its corresponding risk premium and 
መ𝛽𝑗𝑘𝑡 is the conditional beta estimated by a first-pass time-series regression over the entire sample 

period as per the specification given below.

 The risk adjustment procedure assumes that the conditional zero-beta return equals the conditional 

risk-free rate, and that the factor premium is equal to the excess return on the factor, as is the case 

when factors are return spreads.

 Next, run the cross-sectional regression 

𝑅𝑗𝑡
∗ = 𝑐0𝑡 + σ𝑚=1

𝑀 𝑐𝑚𝑡 𝑍𝑚𝑗𝑡−1 + 𝑒𝑗𝑡,

where 𝑍𝑚𝑗𝑡−1 is the value of characteristic 𝑚 for security 𝑗 at time 𝑡 − 1, and 𝑀 is the total number of 

characteristics.

 Under exact pricing, equity characteristics do not explain risk-adjusted return, and are thus 

insignificant in the specification (𝑅𝑗𝑡
∗ = 𝑐0𝑡 + σ𝑚=1

𝑀 𝑐𝑚𝑡 𝑍𝑚𝑗𝑡−1 + 𝑒𝑗𝑡). 
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 To examine significance, we estimate the vector of characteristics rewards each month as 

Ƹ𝑐𝑡 = (𝑍𝑡−1
′ 𝑍𝑡−1)

−1𝑍𝑡−1
′ 𝑅𝑡

∗,

where 𝑍𝑡−1 is a matrix including the 𝑀 firm characteristics for 𝑁𝑡 test assets and 𝑅𝑡
∗ is the vector 

of risk-adjusted returns on all test assets.

 To formalize the conditional beta framework developed here let us rewrite the specification using 

the generic form 

𝑅𝑗𝑡 − [𝑅𝐹𝑡 + 𝛽(𝜃, 𝑧𝑡−1, 𝑋𝑗𝑡−1)
′𝐹𝑡] = 𝑐0𝑡 + 𝑐𝑡𝑍𝑗𝑡−1 + 𝑒𝑗𝑡 ,

where 𝑋𝑗𝑡−1 and 𝑍𝑗𝑡−1 are vectors of firm characteristics, 𝑧𝑡−1 denotes a vector of macroeconomic 

variables, and 𝜃 represents the parameters that capture the dependence of 𝛽 on the 

macroeconomic variables and the firm characteristics. 

 Ultimately, the null to test is 𝑐𝑡 = 0.

 While we have checked the robustness of our results for the general case where 𝑋𝑗𝑡−1 = 𝑍𝑗𝑡−1, the 

paper focuses on the case where the factor loadings depend upon firm-level size, book-to-market, 

and business-cycle variables.

.
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 That is, the vector 𝑋𝑗𝑡−1 stands for size and book-to-market and the vector 𝑍𝑗𝑡−1 stands for size, 

book-to-market, turnover, and various lagged return variables.

 The dependence on size and book-to-market is motivated by the general equilibrium model of 

Gomes, Kogan, and Zhang (2003), which justifies separate roles for size and book-to-market as 

determinants of beta. 

 In particular, firm size captures the component of a firm’s systematic risk attributable to its 

growth option, and the book-to-market ratio serves as a proxy for risk of existing projects.

 Incorporating business-cycle variables follows the extensive evidence on time series 

predictability (see, e.g., Keim and Stambaugh (1986), Fama and French (1989), and Chen 

(1991)).

 In the first pass, the conditional beta of security 𝑗 is modeled as

𝛽𝑗𝑡−1 = 𝛽𝑗1 + 𝛽𝑗2𝑧𝑡−1 + 𝛽𝑗3 + 𝛽𝑗4𝑧𝑡−1 𝑆𝑖𝑧𝑒𝑗𝑡−1 + (𝛽𝑗5 + 𝛽𝑗6𝑧𝑡−1)𝐵𝑀𝑗𝑡−1,

where 𝑆𝑖𝑧𝑒𝑗𝑡−1 and 𝐵𝑀𝑗𝑡−1 are the market capitalization and the book-to-market ratio at time 𝑡

− 1.
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 The first pass time series regression for the very last specification is

𝑟𝑗𝑡 = 𝛼𝑗 + 𝛽𝑗1 𝑟𝑚𝑡 + 𝛽𝑗2 𝑧𝑡−1 𝑟𝑚𝑡 + 𝛽𝑗3 𝑆𝑖𝑧𝑒𝑗𝑡−1 𝑟𝑚𝑡

+𝛽𝑗4 𝑧𝑡−1 𝑆𝑖𝑧𝑒𝑗𝑡−1 𝑟𝑚𝑡

+𝛽𝑗5 𝐵𝑀𝑗𝑡−1 𝑟𝑚𝑡 + 𝛽𝑗6 𝑧𝑡−1 𝐵𝑀𝑗𝑡−1 𝑟𝑚𝑡 + 𝑢𝑗𝑡 ,

where 𝑟𝑗𝑡 = 𝑅𝑗𝑡 − 𝑅𝐹𝑡 and 𝑟𝑚𝑡 is excess return on the value-weighted market index.

 Then, 𝑅𝑗𝑡
∗ in (𝑅𝑗𝑡

∗ = 𝑐0𝑡 + σ𝑚=1
𝑀 𝑐𝑚𝑡 𝑍𝑚𝑗𝑡−1 + 𝑒𝑗𝑡), the dependent variable in the cross-section 

regression, is given by 𝛼𝑗 + 𝑢𝑗𝑡.

 The time series regression (𝑟𝑗𝑡 = 𝛼𝑗 + 𝛽𝑗1 𝑟𝑚𝑡 + 𝛽𝑗2 𝑧𝑡−1 𝑟𝑚𝑡 + 𝛽𝑗3 𝑆𝑖𝑧𝑒𝑗𝑡−1 𝑟𝑚𝑡

+𝛽𝑗4 𝑧𝑡−1 𝑆𝑖𝑧𝑒𝑗𝑡−1 𝑟𝑚𝑡

+𝛽𝑗5 𝐵𝑀𝑗𝑡−1 𝑟𝑚𝑡 + 𝛽𝑗6 𝑧𝑡−1 𝐵𝑀𝑗𝑡−1 𝑟𝑚𝑡 + 𝑢𝑗𝑡 ,)

is run over the entire sample. 

 While this entails the use of future data in calculating the factor loadings, Fama and French 

(1992) indicate that this forward looking does not impact any of the results. 

 For perspective, it is useful to compare our approach to earlier studies 
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 Fama and French (1992) estimate beta by assigning the firm to one of 100 size-beta sorted 

portfolios. Firm’s beta (proxied by the portfolio’s beta) is allowed to evolve over time when the firm 

changes its portfolio classification.
 Fama and French (1993) focus on 25 size and book-to-market sorted portfolios, which allow firms’ 

beta to change over time as they move between portfolios

 Brennan, Chordia, and Subrahmanyam (1998) estimate beta each year in a first-pass regression 

using 60 months of past returns. They do not explicitly model how beta changes as a function of 

size and book-to-market, as we do, but their rolling regressions do allow beta to evolve over time

 We should also distinguish the beta-scaling procedure in Avramov and Chordia from those 

proposed by Shanken (1990) and Ferson and Harvey (1999) as well as Lettau and Ludvigson 

(2001). 

 Shanken and Ferson and Harvey use predetermined variables to scale factor loadings in asset 

pricing tests

 Lettau and Ludvigson use information variables to scale the pricing kernel parameters

 In both procedures, a one-factor conditional CAPM can be interpreted as an unconditional 

multifactor model. 

 The beta pricing specification of Avramov and Chordia does not have that unconditional 

multifactor interpretation since the firm-level 𝑆𝑖𝑧𝑒𝑗 and 𝐵𝑀𝑗 are asset specific – that is, they are 

uncommon across all test assets. 
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Understanding GMM: Econometrics Setup 

and Applications 
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GMM
 We can test theories in financial economics by the GMM of Hansen (1982). 

 Let us describe the basic concepts of GMM and propose some applications. 

 Let Θ be an 𝑚 × 1 vector of parameters to be estimated from a sample of observations 

𝑥1, 𝑥2, … , 𝑥𝑇. 

 One drawback in the maximum likelihood principle is that it requires specifying the joint 

density of the observations. 

 The ML principle is indeed a parametric one. 

 ML typically makes the IID, Normal, and homoscedastic assumptions. 

 All these assumptions can be relaxed in the GMM framework. 

 The GMM only requires specification of certain moment conditions (often referred as 

orthogonality conditions) rather than the full density.
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 It is therefore considered a nonparametric approach. 

 Do not get it wrong: The GMM is not ideal. 

 First, it may not make efficient use of all the information in the sample. 

 Second, non parametric approaches typically have low power in out-of-sample tests possibly 

due to over-fitting. 

 Also the GMM is asymptotic and can deliver poor, even measurable, final sample properties.

 Let 𝑓𝑡(Θ) be an 𝑟 × 1 vector of moment conditions.  

 Note that 𝑓𝑡 is not necessarily linear in the data or the parameters, and it can be 

heteroskedastic and serially correlated. 

 If 𝑟 = 𝑚, i.e., if there is the same number of parameters as there are moments, then the 

system is exactly identified. 

 In this case, one could find the GMM estimate ෡Θ, which satisfies

𝐸 𝑓𝑡(෡Θ) = 0.
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 However, in testing economic theories, there should be more moment conditions than there are 
parameters. 

 In this case, one cannot set all the moment conditions to be equal to zero (just a linear combination 
of the moment conditions as shown below). 

 Let us analyze both cases of exact identification (𝑟 = 𝑚) and over identification (𝑟 > 𝑚). 

 To implement the GMM first compute the sample average of 𝐸[𝑓𝑡(Θ)] as

𝑔𝑇(Θ) =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡 (Θ).

 If 𝑟 = 𝑚, then the GMM estimator ෡Θ solves

𝑔𝑇(෡Θ) =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡 (෡Θ) = 0.

 Otherwise, the GMM estimator minimizes the quadratic form

𝐽𝑇(Θ) = 𝑔𝑇(Θ)
′𝑊𝑇𝑔𝑇(Θ),

 Here, 𝑊𝑇 is some 𝑟 × 𝑟 weighing matrix to be discussed later.
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 Differentiating  with respect to Θ yields

𝐷𝑇(Θ)
′𝑊𝑇𝑔𝑇(Θ),

 The GMM estimator ෡Θ solves

𝐷𝑇(෡Θ)
′𝑊𝑇𝑔𝑇(෡Θ) = 0.

 Observe that the left (and obviously the right) hand side is an 𝑚 × 1 vector. Therefore, as 𝑟 >
𝑚 only a linear combination of the moments, given by 𝐷𝑇(෡Θ)

′𝑊𝑇, is set to zero.

 Hansen (1982, theorem 3.1) tells us the asymptotic distribution of the GMM estimate is 

𝑇(෡Θ − Θ) ∼ 𝑁(0, 𝑉),

where 

𝑉 = 𝐷0
′𝑊𝐷0

−1𝐷0
′𝑊𝑆𝑊𝐷0(𝐷0

′𝑊𝐷0)
−1,

𝑆 = lim
𝑇→∞

𝑉 𝑎𝑟 𝑇𝑔𝑇(Θ) ,

= σ𝑗=−∞
∞ 𝐸 𝑓𝑡(Θ)𝑓𝑡−𝑗(Θ)

′ ,

𝐷0 = 𝐸
𝜕𝑔𝑇(𝛩)

𝜕𝛩′
=

1

𝑇
σ𝑡=1
𝑇 𝐸

𝜕𝑓𝑡(𝛩)

𝜕𝛩′
.

 To implement the GMM one would like to replace 𝑆 with its sample estimate.
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 If the moment conditions are serially uncorrelated then 

𝑆𝑇 =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡 (෡Θ)𝑓𝑡(෡Θ)

′.

 We have not yet addressed the issue of how to choose the optimal weighting matrix.

 Hansen shows that optimally 𝑊 = 𝑆−1.

 The optimal 𝑉 matrix is therefore

𝑉∗ = 𝐷0
′𝑆−1𝐷0

−1.

 Moreover, if 𝑊 = 𝑆−1, i.e., if the weighting matrix is chosen optimally, then an over identifying test 

statistic is given by 

𝑇𝐽𝑇(෡Θ) ∼ 𝜒𝑟−𝑚
2 .

 This statistic is quite intuitive.

 In particular, note that 𝑆𝑇 = 𝑇𝑉𝑎𝑟 𝑔𝑇(෡Θ) .

 Thus, the test statistic can be expressed as the minimized value of the model errors (in asset 

pricing context pricing errors) weighted by their covariance matrix

𝑔𝑇(෡Θ)
′ 𝑣𝑎𝑟 𝑔𝑇(෡Θ)

−1
𝑔𝑇(෡Θ) ∼ 𝜒𝑟−𝑚

2 .
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 Below we display several applications of the GMM.

 The work of Hansen and Singleton (1982, 1983) is, to my knowledge, the first to apply the 
GMM in general and in the context of asset pricing in particular.

Application# 1: Estimating the mean of a time series
 You observe 𝑥1, 𝑥2, … , 𝑥𝑇 and want to estimate the sample mean.

 In this case there is a single parameter Θ = 𝜇 and a single moment condition

𝑓𝑡(Θ) = (𝑥𝑡 − 𝜇).

 The system is exactly identified.

 Notice that 

𝑔𝑇(Θ) =
1

𝑇
σ𝑡=1
𝑇 ( 𝑥𝑡 − 𝜇).

 Setting

𝑔𝑇(෡Θ) = 0.

 Then the GMM estimate for 𝜇 is the sample mean

Ƹ𝜇 =
1

𝑇
σ𝑡=1
𝑇 𝑥𝑡 .
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 Moreover, if 𝑥𝑡 ’s are uncorrelated then

𝑆 = 𝐸 𝑓𝑡(Θ)𝑓𝑡(Θ)
′ ,

estimated using

𝑆𝑇 =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡 (෡Θ)𝑓𝑡(෡Θ)

′ =
1

𝑇
σ𝑡=1
𝑇 ( 𝑥𝑡 − Ƹ𝜇)2

 To compute the variance of the estimate we need to find 𝐷0:

𝐷0 = 𝐸
𝜕𝑔𝑇(𝛩

′)

𝜕𝛩
=

1

𝑇
σ𝑡=1
𝑇 𝐸

𝜕𝑓𝑡(𝛩)

𝜕𝛩′
= −1.

 The optimal 𝑉 matrix is then given by

𝑉 = (𝐷0
′𝑆−1𝐷0)

−1 = 𝑆.

 Use 𝑆𝑇 as a consistent estimator.

 Asymptotically, we get

Ƹ𝜇 ∼ 𝑁 𝜇,
1

𝑇
𝑉 .
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Application # 2: Estimating the market model coefficients when the

residuals are heteroskedastic and serially uncorrelated

 In this application we will focus on a single security, while the follow up expands the analysis to 

accommodate multiple assets.

 Here is the market model for security 𝑖

𝑟𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖𝑟𝑚,𝑡 + 𝜖𝑖,𝑡.

 There are two parameters: Θ = [𝛼𝑖 , 𝛽𝑖]
′.

 There are also two moment conditions

𝑓𝑡(Θ) =
𝑟𝑖,𝑡 − 𝛼𝑖 − 𝛽𝑖𝑟𝑚,𝑡

(𝑟𝑖,𝑡 − 𝛼𝑖 − 𝛽𝑖𝑟𝑚,𝑡)𝑟𝑚,𝑡
.

 Let us rewrite the moment conditions compactly using the following form

𝑓𝑡(Θ) = 𝑥𝑡(𝑟𝑡 − 𝑥𝑡
′𝛽),

where

𝑟𝑡 = 𝑟𝑖,𝑡,

𝑥𝑡= [1, 𝑟𝑚,𝑡]
′,

𝜖𝑡= 𝜖𝑖,𝑡, and 𝛽 = [𝛼𝑖 , 𝛽𝑖]
′.
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 Let us now compute the sample moment

𝑔𝑇(Θ) =
1

𝑇
σ𝑡=1
𝑇 𝑥𝑡 (𝑟𝑡 − 𝑥𝑡

′𝛽).

 Since the system is exactly identified setting 𝑔𝑇(෡Θ) = 0 yields the GMM estimate

መ𝛽 = σ𝑡=1
𝑇 𝑥𝑡 𝑥𝑡

′ −1 σ𝑡=1
𝑇 𝑥𝑡 𝑟𝑡 ,

= 𝑋′𝑋 −1𝑋′𝑅,

where 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑇]
′ and 𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑇]

′. 

 The GMM estimator for 𝛽 is the usual OLS estimator.

 To find 𝑉 first compute

𝜕𝑓𝑡(𝛩)

𝜕𝛩′
= −𝑥𝑡𝑥𝑡

′,

𝜕𝑔𝑇(𝛩)

𝜕𝛩′
= 𝐷𝑇(Θ) = −

1

𝑇
σ𝑡=1
𝑇 𝑥𝑡 𝑥𝑡

′ = −
𝑋′𝑋

𝑇
.
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 Moreover, if 𝜖’s are serially uncorrelated then

𝑆𝑇 =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡 (෡Θ)𝑓𝑡(෡Θ)

′,

=
1

𝑇
σ𝑡=1
𝑇 𝑥𝑡 Ƹ𝜖𝑡 Ƹ𝜖𝑡

′𝑥𝑡
′,

=
1

𝑇
σ𝑡=1
𝑇 𝑥𝑡 𝑥𝑡

′ Ƹ𝜖𝑡
2.

 Using the optimal weighting matrix, it follows that

𝑉𝑎𝑟( መ𝛽) =
1

𝑇
(𝐷0

′𝑆−1𝐷0)
−1,

estimated by

෢𝑉𝑎𝑟( መ𝛽) =
1

𝑇
𝐷𝑇

′𝑆𝑇
−1𝐷𝑇

−1,

= (𝑋′𝑋)−1 σ𝑡=1
𝑇 𝑥𝑡 𝑥𝑡

′ Ƹ𝜖𝑡
2 (𝑋′𝑋)−1.
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Application # 3: Testing the CAPM

 Here, we derive the CAPM test described on pages 208-210 in Campbell, Lo, and MacKinlay.

 The specification that we have is

𝑟𝑡
𝑒 = 𝛼 + 𝛽𝑟𝑚𝑡

𝑒 + 𝜖𝑡 .

 The CAPM says 𝛼 = 0.

 The 2𝑁 × 1 parameter vector in the CAPM model is described by Θ = [𝛼′, 𝛽′]′.

 In the following I will give a recipe for implementing the GMM in estimating and testing the 

CAPM.

1. Start with identifying the 2𝑁 moment conditions:

𝑓𝑡(Θ) = 𝑥𝑡 ⊗ 𝜖𝑡 =
1
𝑟𝑚,𝑡
𝑒 ⊗ 𝜖𝑡 =

𝜖𝑡
𝑟𝑚,𝑡
𝑒 𝜖𝑡

,

where 𝜖𝑡 = 𝑟𝑡
𝑒 − (𝑥𝑡

′ ⊗ 𝐼𝑁)Θ
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2. Compute 𝐷0.

𝜕𝑓𝑡(𝛩)

𝜕𝛩′
= 𝑥𝑡 ⊗− 𝑥𝑡

′ ⊗ 𝐼𝑁 ,

= −
1 𝑟𝑚,𝑡

𝑒

𝑟𝑚,𝑡
𝑒 𝑟𝑒𝑚,𝑡

2 ⊗ 𝐼𝑁.

Moreover, 

𝐷0 = 𝐸
𝜕𝑔𝑇(𝛩)

𝜕𝛩′

= 𝐸
𝜕𝑓𝑡(𝛩)

𝜕𝛩′

= −
1 𝜇𝑚
𝜇𝑚 𝜇𝑚

2 + 𝜎𝑚
2 ⊗ 𝐼𝑁,

where 𝜇𝑚 = 𝐸(𝑟𝑚,𝑡
𝑒 ) and 𝜎𝑚

2 = 𝑣𝑎𝑟(𝑟𝑚,𝑡
𝑒 ).

3. In implementing the GMM, 𝐷0 will be replaced by its sample estimate, which amounts 

to replacing the population moments 𝜇𝑚 and 𝜎𝑚
2 by their sample analogs Ƹ𝜇𝑚 and ො𝜎𝑚

2 .

4. That is,

𝐷𝑇 = −
1 Ƹ𝜇𝑚
Ƹ𝜇𝑚 Ƹ𝜇𝑚

2 + ො𝜎𝑚
2 ⊗ 𝐼𝑁 ,
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5. There are as many moments conditions as there are parameters.

6. Still, you can test the CAPM since you only focus on the model restriction 𝛼 = 0.

7. In particular, compute 𝑔𝑇(Θ) and find the GMM estimator

𝑔𝑇(Θ) =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡 (Θ),

=
1

𝑇
σ𝑡=1
𝑇 ( 𝑥𝑡 ⊗ 𝜖𝑡).

The GMM estimator ෡Θ satisfies 𝑔𝑇 ෡Θ = 0

1

𝑇
σ𝑡=1
𝑇 𝑥𝑡 ⊗ Ƹ𝜖𝑡 = 0

1

𝑇
σ𝑡=1
𝑇 𝑥𝑡 ⊗ 𝑟𝑡 − (𝑥𝑡

′ ⊗ 𝐼𝑁)෡Θ = 0
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1

𝑇
σ𝑡=1
𝑇 𝑥𝑡 ⊗𝑟𝑡 =

1

𝑇
σ𝑡=1
𝑇 ( 𝑥𝑡 ⊗𝑥𝑡

′ ⊗ 𝐼𝑁)෡Θ

The GMM estimator is thus given by

෡Θ =
1 Ƹ𝜇𝑚
Ƹ𝜇𝑚 Ƹ𝜇𝑚

2 + ො𝜎𝑚
2

−1

⊗ 𝐼𝑁
Ƹ𝜇

ො𝜎𝑟𝑚 + Ƹ𝜇 Ƹ𝜇𝑚
,

=
1

ෝ𝜎𝑚
2

Ƹ𝜇𝑚
2 + ො𝜎𝑚

2 − Ƹ𝜇𝑚
− Ƹ𝜇𝑚 1

⊗ 𝐼𝑁
Ƹ𝜇

ො𝜎𝑟𝑚 + Ƹ𝜇 Ƹ𝜇𝑚
,

=
Ƹ𝜇 −

ෝ𝜎𝑟𝑚

ෝ𝜎𝑚
2 Ƹ𝜇𝑚

ෝ𝜎𝑟𝑚

ෝ𝜎𝑚
2

=
ො𝛼
መ𝛽
.

These are the OLS estimators for the CAPM parameters.
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8. Estimate 𝑆 assuming that the moment conditions are serially uncorrelated

𝑆𝑇 =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡 (෡Θ)𝑓𝑡(෡Θ)

′,

=
1

𝑇
σ𝑡=1
𝑇 𝑥𝑡𝑥𝑡

′⊗ Ƹ𝜖𝑡 Ƹ𝜖𝑡
′

9. Given 𝑆𝑇 and 𝐷𝑇 compute 𝑉𝑇 the sample estimate of the optimal variance matrix

𝑉𝑇 = 𝐷𝑇
′𝑆𝑇

−1𝐷𝑇
−1

10. The asymptotic distribution of ෡Θ is given by

෡Θ =
ො𝛼
መ𝛽
∼ 𝑁

𝛼
𝛽 ,

1

𝑇
𝑉 ,

so you should substitute 𝑉𝑇 for 𝑉. 

11. Now, we can derive the test statistic. In particular, let 𝛼 = 𝑅Θ where 𝑅 = [𝐼𝑁, 0𝑁] and note that 

under the null hypothesis ℋ0: 𝛼 = 0 the asymptotic distribution of 𝑅෡Θ is given by

𝑅෡Θ ∼ 𝑁 0, 𝑅(
1

𝑇
𝑉)𝑅′ .

12. The statistic 𝐽7 in CLM is derived using the Wald statistic

𝐽7 = ෡Θ′𝑅′ 𝑅(
1

𝑇
𝑉𝑇)𝑅

′
−1
𝑅෡Θ,

= 𝑇 ො𝛼′ 𝑅(𝐷𝑇
′𝑆𝑇

−1𝐷𝑇)
−1𝑅′ −1 ො𝛼.
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13. Under the null hypothesis 𝐽7 ∼ 𝜒𝑁
2 .

 It should be noted that if the regression errors are both serially uncorrelated and homoscedastic 
then the matrix 𝑆𝑇 in is 

1

𝑇
(𝑋′𝑋)⊗ Σ =

1 Ƹ𝜇𝑚
Ƹ𝜇𝑚 Ƹ𝜇𝑚

2 + ො𝜎𝑚
2 ⊗Σ

 Thus 𝐽7 becomes the J1 Wald statistic derived earlier 

 So, the GMM test statistic is a generalized version of Wald correcting for heteroscedasticity. 

 You can also relax the non serial correlation assumption.

Application # 4: Asset pricing tests based on over-
identification
 Harvey (1989) nicely implements the GMM to test conditional asset pricing models.

 The conditional CAPM, wlog, implies that

𝔼(𝑟𝑡|𝑧𝑡−1) = 𝑐𝑜𝑣(𝑟𝑡 , 𝑟𝑚𝑡|𝑧𝑡−1)𝜆𝑡 ,

= 𝔼 (𝑟𝑡 − 𝔼[𝑟𝑡|𝑧𝑡−1])(𝑟𝑚𝑡 − 𝔼[𝑟𝑚𝑡|𝑧𝑡−1])|𝑧𝑡−1 𝜆𝑡 ,

where 𝑧𝑡 denotes a set of 𝑀 instruments observed at time 𝑡.
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 Let us assume that 𝜆𝑡 is constant, that is 𝜆𝑡 = 𝜆 for all 𝑡.

 Let 𝑥𝑡 = [1, 𝑧𝑡
′]′.

 Moreover,

𝔼[𝑟𝑡|𝑧𝑡−1] = 𝛿𝑟𝑥𝑡−1,

𝔼[𝑟𝑚𝑡|𝑧𝑡−1] = 𝛿𝑚𝑥𝑡−1.

 Then, let us define several residuals

𝑢𝑟𝑡 = 𝑟𝑡 − 𝛿𝑟𝑥𝑡−1,

𝑢𝑚𝑡 = 𝑟𝑚𝑡 − 𝛿𝑚𝑥𝑡−1,

𝑒𝑡 = 𝑟𝑡 − (𝑟𝑡 − 𝔼[𝑟𝑡|𝑧𝑡−1])(𝑟𝑚𝑡 − 𝔼[𝑟𝑚𝑡|𝑧𝑡−1])|𝑧𝑡−1 𝜆

= 𝑟𝑡 − (𝑟𝑡 − 𝛿𝑟𝑥𝑡−1)(𝑟𝑚𝑡 − 𝛿𝑚𝑥𝑡−1)𝜆.

 Collecting the residuals into one vector yields

𝑓𝑡(Θ) = [𝑢𝑟𝑡
′, 𝑢𝑚𝑡 , 𝑒𝑡

′]′,

where Θ = [𝑣𝑒𝑐(𝛿𝑟)
′, 𝛿𝑚

′, 𝜆]′.

 That is, there are (𝑀 + 1)(𝑁 + 1) + 1 parameters.

 How many moment conditions do we have? More than you think! 
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 Note that

𝔼[𝑓𝑡(Θ)|𝑧𝑡−1] = 0,

which means that we have the following 2𝑁 + 1 moment conditions

𝔼[𝑓𝑡(Θ)] = 0,

as well as 𝑀(2𝑁 + 1) additional moment conditions involving the instruments

𝔼[𝑓𝑡(Θ)⊗ 𝑧𝑡−1] = 0.

 Overall, there are 2𝑁 + 1 𝑀 + 1 + 𝑁 moment conditions. 

 You have more moment conditions than parameters. 

 Hence, you can test the model using the 𝜒2 over identifying test. 

 Harvey considers several other generalizations.
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Application # 5: Estimating Standard Errors in the 

presence of correlation among firms
 This application builds on Avramov, Chordia, and Goyal (2006b).

 Consider 𝑁 stocks with 𝑇 observations. 

 The dependant variable is denoted by 𝑦 and the set of 𝐾 independent variables by 𝑥. 

 For instance, 𝑦 could denote volatility and 𝑥 could include lags of volatility, day of week 

dummies, and trading-related variables. 

 The regression equation is as follows:

𝑦𝑖𝑡 = 𝑥𝑖𝑡
′ 𝛽𝑖 + 𝜖𝑖𝑡

 Let us introduce some notation. Let 𝛽 = 𝛽1
′ , … , 𝛽𝑁

′ ′, let 𝑥𝑡 = 𝑥1𝑡
′ , … , 𝑥𝑁𝑡

′ ′,                     

𝑋𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑇
′, and let 𝑌𝑖 = 𝑦𝑖1, … , 𝑦𝑖𝑇

′. Notice that 𝛽 is an 𝑁𝐾 vector.

 Moment conditions are written as 𝐸 𝑓 𝑥𝑡 , 𝛽 = 0, where 𝑓 𝑥𝑡 , 𝛽 is an 𝑁𝐾 valued 

function given by 

𝑓 𝑥𝑡 , 𝛽 =

𝑥1𝑡𝜖1𝑡
⋮

𝑥𝑁𝑡𝜖𝑁𝑡
≡

𝑥1𝑡 𝑦1𝑡 − 𝑥1𝑡
′ 𝛽1

⋮
𝑥𝑁𝑡 𝑦𝑁𝑡 − 𝑥𝑁𝑡

′ 𝛽𝑁
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Calculation of Standard Errors
 Since the number of moment conditions is exactly equal to the number of parameters, 

the system is exactly identified. 

 Thus, we do not need the usual weighting matrix to carry out the optimization. 

 The solution is, of course, given by the usual OLS 
෡𝛽𝑖 = 𝑋𝑖

′𝑋𝑖
−1𝑋𝑖

′𝑌𝑖

 The variance of the estimator is given from the GMM formula as

𝑇 × 𝑐𝑜𝑣 መ𝛽 = 𝐷−1𝑆𝐷−1′

where  the score matrix 𝐷 and the spectral density matrix 𝑆 are given by

𝐷 = 𝐸
𝜕𝑓 𝑥𝑡 , 𝛽

𝜕𝛽′

𝑆 = σ𝑠=−∞
∞ 𝐸 𝑓 𝑥𝑡 , 𝛽 𝑓 𝑥𝑡−𝑠, 𝛽

′
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Calculation of Standard Errors
 The special structure of 𝑓 and 𝛽 makes the computation of 𝐷 especially straightforward.

 In particular, we have

𝜕𝑓 𝑥𝑡 , 𝛽

𝜕𝛽′
=

−𝑥1𝑡𝑥1𝑡
′ ⋯ 0

⋮ ⋱ ⋮
0 ⋯ −𝑥𝑁𝑡𝑥𝑁𝑡

′

 Thus,

෡𝐷 = ෠𝐸
𝜕𝑓 𝑥𝑡 , 𝛽

𝜕𝛽′
=
1

𝑇

−𝑋1
′𝑋1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ −𝑋𝑁

′ 𝑋𝑁

where 0 is suitably defined 𝐾 × 𝐾 matrices. 

 Thus, the matrix 𝐷 consists of 𝐾2 blocks with the 𝑖, 𝑗 th block equal to zero if 𝑖 ≠ 𝑗 and 

equal to 𝑋𝑖
′𝑋𝑖 when 𝑖 = 𝑗. 

 The diagonal nature of this matrix also makes the computation of the inverse of 𝐷
trivial. 
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Calculation of Standard Errors
 The matrix 𝑆 consists of 𝐾2 blocks, where the 𝑖, 𝑗 th block is given by

𝑆𝑖𝑗 = ෍

𝑠=−∞

∞

𝐸 𝑥𝑖𝑡𝑥𝑗𝑡−𝑠
′ 𝜖𝑖𝑡𝜖𝑗𝑡−𝑠

′

and is estimated using the Newey–West estimation technique with 𝐿 lags as

෢𝑆𝑖𝑗 =
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑖𝑡𝑥𝑗𝑡
′ 𝑒𝑖𝑡𝑒𝑗𝑡

′ +෍

𝑠=1

𝐿
𝐿 − 𝑠

𝐿
෍

𝑡=𝑠+1

𝑇

𝑥𝑖𝑡𝑥𝑗𝑡−𝑠
′ 𝑒𝑖𝑡𝑒𝑗𝑡−𝑠

′ + 𝑥𝑗𝑡𝑥𝑖𝑡−𝑠
′ 𝑒𝑗𝑡𝑒𝑖𝑡−𝑠

′

 Combining all the pieces together, we get

ෞ𝑐𝑜𝑣 ෡𝛽𝑖 , ෡𝛽𝑗 = 𝑋𝑖
′𝑋𝑖

−1𝑇෢𝑆𝑖𝑗 𝑋𝑗
′𝑋𝑗

−1

 Finally, can consider the average 𝛽 coefficient across all stocks. 

 This is estimated as 

መҧ𝛽 =
1

𝑁
෍

𝑖=1

𝑁

෡𝛽𝑖

with the variance given by

ෞ𝑐𝑜𝑣 መҧ𝛽 =
1

𝑁2෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

ෞ𝑐𝑜𝑣 ෡𝛽𝑖 , ෡𝛽𝑗
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Application # 6: Testing return predictability over long 

horizon
 Here is a nice GMM application in the context of return predictability over long return 

horizon. 

 The model estimated is

𝑅𝑡+𝑘 = 𝛼 + 𝛽′𝑧𝑡 + 𝜖𝑡+𝑘

where 𝑅𝑡+𝑘 = σ𝑖=1
𝑘 𝑟𝑡+𝑖,with 𝑟𝑡+𝑖 being log return at time 𝑡 + 𝑖.

 Fama and French (1989) observe a dramatic increase in the sample 𝑅2 as the return horizon 

grows from one month to four years. 

 Kirby (1997) challenges the Fama-French findings using a GMM framework that accounts for 

serial correlation in the residuals. 

 Let us formalize his test statistic. 

 There are 𝑀 + 1 parameters Θ = (𝛼, 𝛽′)′, where 𝛽 is a vector of dimension 𝑀.
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 From Hansen (1982)

𝑇(Θ − ෡Θ) ∼ 𝑁(0, 𝑉),

where 

𝑉 = (𝐷0
′𝑆−1𝐷0)

−1.

 There are 𝑀 + 1 moment conditions:

𝑓𝑡(Θ) =
𝑅𝑡+𝑘 − 𝛼 − 𝛽′𝑧𝑡

(𝑅𝑡+𝑘 − 𝛼 − 𝛽′𝑧𝑡)𝑧𝑡
.

 Compute 𝐷0:

𝐷0 = 𝔼
𝜕𝑓𝑡(𝛩)

𝜕𝛩′
=

−1 −𝜇𝑧
−𝜇𝑧

′ −(Σ𝑧 + 𝜇𝑧𝜇𝑧
′)

.

 It would be useful to take the inverse of 𝐷0

𝐷0
−1 =

−(1 + 𝜇𝑧
′Σ𝑧

−1𝜇𝑧) 𝜇𝑧
′Σ𝑧

−1

Σ𝑧
−1𝜇𝑧 −Σ𝑧

−1 .

 And the matrix 𝑆 is given by

𝑆 = σ𝑗=−∞
∞ 𝔼

𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗 𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗𝑧
′
𝑡−𝑗

𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗𝑧𝑡 𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗𝑧𝑡𝑧
′
𝑡−𝑗

.
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 In estimating predictive regressions we scrutinize the slope coefficients only.

 And we know that

𝑇(𝛽 − መ𝛽) ∼ 𝑁(0, ෨𝑉),

where ෨𝑉 is the 𝑀 ×𝑀 lower-right sub-matrix of 𝑉 = 𝐷0
−1𝑆𝐷0

−1′.

 It follows that

෨𝑉 = σ𝑗=−∞
∞ 𝔼

𝜇𝑧
′Σ𝑧

−1

−Σ𝑧
−1

′
𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗 𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗𝑧

′
𝑡−𝑗

𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗𝑧𝑡 𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗𝑧𝑡𝑧
′
𝑡−𝑗

𝜇𝑧
′Σ𝑧

−1

−Σ𝑧
−1 ,

= Σ𝑧
−1 ෍

𝑗=−∞

∞

𝔼 𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗 (𝑧𝑡 − 𝜇𝑧)(𝑧𝑡−𝑗 − 𝜇𝑧)
′ Σ𝑧

−1,

= Σ𝑧
−1 σ𝑗=−∞

∞ 𝔼 𝛿𝑡+𝑘𝛿𝑡+𝑘−𝑗
′ Σ𝑧

−1,

where

𝛿𝑡+𝑘 = 𝜖𝑡+𝑘𝑧𝑡 ,

𝛿𝑡+𝑘−𝑗 = 𝜖𝑡+𝑘−𝑗𝑧𝑡−𝑗 .
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 What if you are willing to assume that there is no autocorrelation in the residuals?

 Then,

෨𝑉 = Σ𝑧
−1 𝔼 𝛿𝑡+𝑘𝛿𝑡+𝑘

′ Σ𝑧
−1,

which can be estimated by

෨𝑉 = ෠Σ𝑧
−1 1

𝑇
σ𝑡=1
𝑇 𝛿𝑡+𝑘 𝛿𝑡+𝑘

′ ෠Σ𝑧
−1.

 The estimator for ෨𝑉 is identical to the heteroskedasticity-consistent covariance matrix 

estimator of White (1980).

 What if you are willing to assume that there is no autocorrelation in the residuals and there 

is no heteroscedasticity?

෨𝑉 = Σ𝑧
−1 𝔼 𝜖𝑡+𝑘𝜖𝑡+𝑘−𝑗 𝔼(𝑧𝑡 − 𝜇𝑧)(𝑧𝑡−𝑗 − 𝜇𝑧)

′ Σ𝑧
−1,

 In that case

𝑇( መ𝛽 − 𝛽) ∼ 𝑁(0, 𝜎𝜖
2Σ𝑧

−1).

 Under the null hypothesis that 𝛽 = 0

𝑇 መ𝛽 ∼ 𝑁(0, 𝜎𝜖
2Σ𝑧

−1).
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 Note also that under the null 𝜎𝜖
2 = 𝜎𝑟

2, where 𝜎𝑟
2 is the variance of the cumulative log return.

 Using properties of the 𝜒2 distribution, it follows that

𝑇
෡𝛽′෡𝛴𝑧෡𝛽

ෝ𝜎𝑟
2 ∼ 𝜒2(𝑀),

suggesting that

𝑇𝑅2 ∼ 𝜒2(𝑀).

 So we are able to derive a limiting distribution for the regression 𝑅2.

 Kirby considers cases with heteroscedasticity and serial correlation. 

 Then the distribution of the regression slope coefficient and the 𝑅2 are much more 

complex. 

 His conclusion: the 𝑅2 in a predictive regression does not increase with the investment 

horizon

 That is almost a no brainer.
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Application # 7: Yet, another Testing return 

predictability over long horizon

 Boudoukh, Richardson, and Whitelaw (2006) is another interesting application of the GMM 

in the context of long-horizon return predictability

 Like Kirby (1997), they show that the sample evidence does not support predictability

 Further, they show that for persistent predictors the estimates of slope coefficients are almost 

perfectly correlated across horizons under the null hypothesis of no predictability

 They consider regression systems of the following type:

𝑅𝑡,𝑡+1 = 𝛼1 + 𝛽1𝑍𝑡 + 𝜀𝑡,𝑡+1

⋮
𝑅𝑡,𝑡+𝑗 = 𝛼𝑗 + 𝛽𝑗𝑍𝑡 + 𝜀𝑡,𝑡+𝑗

⋮
𝑅𝑡,𝑡+𝐾 = 𝛼𝐾 + 𝛽𝐾𝑍𝑡 + 𝜀𝑡,𝑡+𝐾

 Under the null hypothesis of no predictability

𝛽1 = ⋯ = 𝛽𝑗= ⋯ = 𝛽𝐾= 0
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 And the same number of moment conditions corresponding to the regression system as

𝑓𝑡 𝜃 =

𝑅𝑡,𝑡+1 − 𝛼1 − 𝛽1𝑍𝑡

𝑅𝑡,𝑡+1 − 𝛼1 − 𝛽1𝑍𝑡 𝑍𝑡
⋮

𝑅𝑡,𝑡+𝑗 − 𝑗𝛼1 − 𝛽𝑗𝑍𝑡 𝑍𝑡
⋮

𝑅𝑡,𝑡+𝐾 − 𝐾𝛼1 − 𝛽𝐾𝑍𝑡 𝑍𝑡

where 𝜃 = 𝛼1, 𝛽1, ⋯ , 𝛽𝑘 ’

 There are k+1 parameters and moment conditions

 Under the null, the regression estimate 𝜃 has an asymptotic normal distribution with mean 

𝛼1,0
′
and covariance matrix 𝐷′0𝑆0

−1𝐷0
−1

where 𝐷0 = 𝐸
𝜕𝑓𝑡

𝜕𝜃
and 𝑆0 = σ𝑗=−∞

∞ 𝐸 𝑓𝑡𝑓𝑡−𝑗

 𝐷0 is easily calculated as

𝐷0 = −

1
𝜇𝑍
⋮
𝑗𝜇𝑍
⋮
𝐽𝜇𝑍

𝜇𝑍
𝜇2𝑍 + 𝜎2𝑍

0
⋮
⋮
⋮

0
0
⋱
0
⋮
⋮

⋯
⋯
0

𝜇2𝑍 + 𝜎2𝑍
0
⋮

⋯
⋯
⋯
0
⋱
0

⋯
⋯
⋯
⋯
0

𝜇2𝑍 + 𝜎2𝑍
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 Long story short, for the typical 1- through 5-year horizons and for 𝜌 = 0.953 the covariance 

matrix of slope estimates under the null of no predictability is given by

𝑇𝑐𝑜𝑣 መ𝛽1, ⋯ , መ𝛽5 =
𝜎2𝑅
𝜎2𝑧

1 0.988
1

0.974
0.993
1

0.959
0.982
0.995
1

0.945
0.970
0.986
0.996
1

𝜎𝑅
2

𝜎𝑅
2𝜇𝑍
⋮

𝜎𝑅
2𝜇𝑍

𝜎𝑅
2 𝑗𝜇2

𝑍
+ 𝜎2𝑍

⋮

⋯
⋯
⋱

𝑗𝜎𝑅
2𝜇𝑍

𝜎𝑅
2 𝑗𝜇2

𝑍
+ 𝜎2𝑍 1 + σ𝑙=1

𝑗−1
𝜌𝑙

⋮

⋯
⋯
⋯

𝑘𝜎𝑅
2𝜇𝑍

𝜎𝑅
2 𝑘𝜇2𝑍 + 𝜎2𝑍 1 + σ𝑙=1

𝑗−1
𝜌𝑙

⋯

𝑗𝜎𝑅
2𝜇𝑍
⋮

𝑘𝜎𝑅
2𝜇𝑍

𝜎𝑅
2 𝑗𝜇2

𝑍
+ 𝜎2𝑍 1 + σ𝑙=1

𝑗−1
𝜌𝑙

⋮

𝜎𝑅
2 𝑘𝜇2𝑍 + 𝜎2𝑍 1 + σ𝑙=1

𝑗−1
𝜌𝑙

⋮
⋮
⋮

𝜎𝑅
2 𝑗2𝜇2

𝑍
+ 𝜎2𝑍 𝑗 + 2σ𝑙=1

𝑗−1
𝑗 − 𝑙 𝜌𝑙

⋮

𝜎𝑅
2 𝑗𝐾𝜇2

𝑍
+ 𝜎2𝑍

𝑗 + σ𝑙=1
𝑗−1

𝑗 − 𝑙

× 𝜌𝑙 + 𝜌𝐽−𝑗+𝑙 + σ𝑙=1
𝐽−𝑗

𝑗𝜌𝑙

⋯
⋱
⋮

𝜎𝑅
2 𝑗𝐾𝜇2

𝑍
+ 𝜎2𝑍

𝑗 + σ𝑙=1
𝑗−1

𝑗 − 𝑙

× 𝜌𝑙 + 𝜌𝐽−𝑗+𝑙 + σ𝑙=1
𝐽−𝑗

𝑗𝜌𝑙
⋯

𝜎𝑅
2 𝑘2𝜇2𝑍 + 𝜎2𝑍 𝑘 + 2σ𝑙=1

𝑗−1
𝑗 − 𝑙 𝜌𝑙

𝑆0 =
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Incorporating serial correlation
 In most applications in financial economics there is no a priori reason to believe that the 

regression residuals are serially uncorrelated. 

 Consequently, a suitable scheme is required in order to obtain a consistent positive definite 

estimator of 𝑆. 

 Notice that we cannot estimate the infinite sum in 

𝑆 = σ𝑗=−∞
∞ 𝐸 (𝑢𝑡𝑢𝑡−𝑗).

 Therefore, we must limit the number of terms. 

 More terms means more ability to pick up autocorrelation if there is any. 

 But this comes at the cost of losing efficiency in finite samples. 
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The covariance matrix of the slope estimates
 Recall the regression estimates based on either the GMM or OLS are give by

መ𝛽 = 𝛽 + 𝑋′𝑋 −1𝑋′𝑈

 Considering the base case of no serial correlation (SC) and no heteroscedasticity (HS), we have

𝑉𝑎𝑟 መ𝛽|𝑋 = 𝑋′𝑋 −1𝑋′ 𝑉𝑎𝑟 𝑈|𝑋 𝑋 𝑋′𝑋 −1

𝑉𝑎𝑟 𝑈|𝑋 = 𝜎2𝐼𝑇

 And the variance is estimated by:
෢𝑉𝑎𝑟 መ𝛽|𝑋 = 𝑋′𝑋 −1 ො𝜎2

ො𝜎2 =
1

𝑇
σ𝑡=1
𝑇 ො𝑢𝑡

2

 Now let us assume the presence of HS 

෢𝑉𝑎𝑟 መ𝛽|𝑋 = 𝑋′𝑋 −1 ෢𝑉𝑎𝑟 𝑋′𝑈|𝑋 𝑋′𝑋 −1

෢𝑉𝑎𝑟 𝑋′𝑈|𝑋 = σ𝑡=1
𝑇 𝑥𝑡𝑥𝑡′ ො𝑢𝑡

2

෢𝑉𝑎𝑟 መ𝛽|𝑋 = 𝑋′𝑋 −1 σ𝑡=1
𝑇 𝑥𝑡𝑥𝑡′ ො𝑢𝑡

2 𝑋′𝑋 −1
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 Let us assume now that there is serial correlation only

 In particular the error term obeys the AR(1) process

𝑦𝑡 = 𝑥𝑡
′𝛽 + 𝑢𝑡

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝑒𝑡

where

𝑉𝑎𝑟 𝑒𝑡 = 𝜎2 ∀ 𝑡

 Therefore

𝑉𝑎𝑟(𝑢𝑡) =
𝜎2

1−𝜌2
∀ 𝑡

 Then we get:

𝑉𝑎𝑟 መ𝛽 = 𝑋′𝑋 −1𝑋′𝐸 𝑈𝑈′ 𝑋 𝑋′𝑋 −1

𝐸 𝑈𝑈′ = 𝐸

𝑢1
2 𝑢1𝑢2 … 𝑢1𝑢𝑇

𝑢1𝑢2 𝑢2
2 … 𝑢2𝑢𝑇

⋮
𝑢1𝑢𝑇

⋮
…

⋮
𝑢𝑇
2
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=

𝜎2

1 − 𝜌2
𝜌𝜎2

1 − 𝜌2
… …

𝜌𝜎2

1 − 𝜌2
𝜎2

1 − 𝜌2
𝜌𝜎2

1 − 𝜌2
…

⋮
𝜌𝑇−1𝜎2

1 − 𝜌2

⋮
…

⋮
…

=

𝛾 0 𝛾 1 𝛾 2 … 𝛾 𝑇 − 1

𝛾 1 𝛾 0 𝛾 1 … 𝛾 𝑇 − 2
⋮

𝛾 𝑇 − 1
⋮

𝛾 𝑇 − 2 …

⋮
𝛾 0

=
𝜎2

1−𝜌2

1 𝜌 𝜌2 … 𝜌𝑇−1

𝜌 1 𝜌 … 𝜌𝑇−2

⋮
𝜌𝑇−1

⋮
𝜌𝑇−2 …

⋮
1
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=
𝜎2

1−𝜌2
𝐼𝑇 +

𝜎2

1−𝜌2

0 𝜌 𝜌2 … 𝜌𝑇−1

𝜌 0 𝜌 … 𝜌𝑇−2

⋮
𝜌𝑇−1

⋮
𝜌𝑇−2 …

⋮
0

 Let

𝜌 ≡

0 𝜌 𝜌2 … 𝜌𝑇−1

𝜌 0 𝜌 … 𝜌𝑇−2

⋮
𝜌𝑇−1

⋮
𝜌𝑇−2 …

⋮
0

 The co-variance matrix is eventually given by

𝑉𝑎𝑟 መ𝛽 = 𝑋′𝑋 −1
𝜎2

1 − 𝜌2
+ 𝑋′𝑋 −1𝑋′

𝜎2

1 − 𝜌2
𝜌 𝑋 𝑋′𝑋 −1
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 Notice that with zero autocorrelation we are back with the base-case covariance matrix.

 Assume now that the error term obeys the AR(2) process

𝑢𝑡 = 𝜙1𝑢𝑡−1 + 𝜙2𝑢𝑡−2 + 𝑒𝑡

𝑉𝑎𝑟 𝑒𝑡 = 𝜎2 ∀ 𝑡

𝐸 𝑈𝑈′ =

𝛾 0 𝛾 1 𝛾 2 … 𝛾 𝑇 − 1

𝛾 1 𝛾 0 𝛾 1 … 𝛾 𝑇 − 2
⋮

𝛾 𝑇 − 1
⋮

𝛾 𝑇 − 2 …

⋮
𝛾 0

 𝛾 0 =
1−𝜙2 𝜎2

1+𝜙2 1−𝜙1−𝜙2 1+𝜙1−𝜙2

 𝛾 1 = 𝛾 0
𝜙1

1−𝜙2

 𝛾 2 = 𝛾 0
𝜙1
2

1−𝜙2
+ 𝜙2
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Newey and West (1987)

 If both HS and SC, Andrews (1991) develops a complex, albeit useful, estimator.

 We focus here on Newey and West (1987) who propose the following covariance matrix

෢𝑉𝑎𝑟 𝑋′𝑈|𝑋 =෍

𝑡=1

𝑇

𝑥𝑡𝑥𝑡
′ ො𝑢𝑡

2 +෍

𝑗=1

𝑘
𝑘 − 𝑗

𝑘
෍

𝑡=𝑗+1

𝑇

ො𝑢𝑡 ො𝑢𝑡−𝑗 𝑥𝑡𝑥𝑡−𝑗
′ + 𝑥𝑡−𝑗𝑥𝑡

′

 E.g.,

 k=1

෢𝑉𝑎𝑟 𝑋′𝑈|𝑋 =෍

𝑡=1

𝑇

𝑥𝑡𝑥𝑡
′ ො𝑢𝑡

2

 k=2

෢𝑉𝑎𝑟 𝑋′𝑈|𝑋 = σ𝑡=1
𝑇 𝑥𝑡𝑥𝑡

′ ො𝑢𝑡
2 +

1

2
σ𝑡=2
𝑇 ො𝑢𝑡 ො𝑢𝑡−1 𝑥𝑡𝑥𝑡−1

′ + 𝑥𝑡−1𝑥𝑡
′

 k=3

෢𝑉𝑎𝑟 𝑋′𝑈|𝑋 =෍

𝑡=1

𝑇

𝑥𝑡𝑥𝑡
′ ො𝑢𝑡

2 +
2

3
෍

𝑡=2

𝑇

ො𝑢𝑡 ො𝑢𝑡−1 𝑥𝑡𝑥𝑡−1
′ + 𝑥𝑡−1𝑥𝑡

′ +
1

3
෍

𝑡=3

𝑇

ො𝑢𝑡 ො𝑢𝑡−2 𝑥𝑡𝑥𝑡−2
′ + 𝑥𝑡−2𝑥𝑡

′
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Bayesian Econometrics



Bayes Rule

 Let x and 𝑦 be two random variables 

 Let 𝑃 𝑥 and 𝑃 𝑦 be the two marginal probability distribution functions of x and y

 Let 𝑃 𝑥 𝑦 and 𝑃 𝑦 𝑥 denote the corresponding conditional pdfs

 Let 𝑃 𝑥, 𝑦 denote the joint pdf of x and 𝑦

 It is known from the law of total probability that the joint pdf can be decomposed as

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃 𝑦 𝑥 = 𝑃 𝑦 𝑃 𝑥 𝑦

 Therefore 

𝑃 𝑦 𝑥 =
𝑃 𝑦 𝑃 𝑥 𝑦

𝑃 𝑥
= 𝑐𝑃 𝑦 𝑃 𝑥 𝑦

where c is the constant of integration (see next page)

 The Bayes Rule is described by the following proportion 

𝑃 𝑦 𝑥 ∝ 𝑃 𝑦 𝑃 𝑥 𝑦
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Bayes Rule

 Notice that the right hand side retains only factors related to y, thereby excluding 𝑃 𝑥

 𝑃 𝑥 , termed the marginal likelihood function, is

𝑃 𝑥 = න𝑃 𝑦 𝑃 𝑥 𝑦 𝑑𝑦

= න𝑃 𝑥, 𝑦 𝑑𝑦

as the conditional distribution 𝑃 𝑦 𝑥 integrates to unity.

 The marginal likelihood 𝑃 𝑥 is an essential ingredient in computing an important quantity -

model posterior probability.  

 Notice from the second equation above that the marginal likelihood obtains by integrating 

out y from the joint density 𝑃 𝑥, 𝑦 . 

 Similarly, if the joint distribution is 𝑃 𝑥, 𝑦, 𝑧 and the pdf of interest is 𝑃 𝑥, 𝑦 one integrates  

𝑃 𝑥, 𝑦, 𝑧 with respect to z.
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Bayes Rule
 The essence of Bayesian econometrics is the Bayes Rule.

 Ingredients of Bayesian econometrics are parameters underlying a given model, the sample 

data, the prior density of the parameters, the likelihood function describing the data, and the 

posterior distribution of the parameters. 

 A predictive distribution could also be involved. 

 In the Bayesian setup, parameters are stochastic while in the classical (non Bayesian) 

approach parameters are unknown constants. 

 Decision making is based on the posterior distribution of the parameters or the predictive 

distribution of next period quantities as described below. 

 On the basis of the Bayes rule, in what follows, y stands for unknown stochastic parameters, 

x for the data, 𝑃 𝑦 𝑥 for the posetior distribution, 𝑃 𝑦 for the prior, and 𝑃 𝑥 𝑦 for the likelihood.

 The Bayes rule describes the relation between the prior, the likelihood, and the posterior, or 

put differently it shows how prior beliefs are updated to produce posterior beliefs:  

𝑃 𝑦 𝑥 ∝ 𝑃 𝑦 𝑃 𝑥 𝑦

 Zellner (1971) is an excellent source of  reference.
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Bayes Econometrics in Financial Economics 

 You observe the returns on the market index over T months: 𝑟1, … , 𝑟𝑇

 Let 𝑅: 𝑟1, … , 𝑟𝑇 ’ denote the 𝑇 × 1 vector of all return realizations

 Assume that 𝑟𝑡~𝑁 𝜇, 𝜎0
2 for 𝑡 = 1,… , 𝑇

where 

µ is a stochastic random variable denoting the mean return

𝜎0
2 is the variance which, at this stage, is assumed to be a known constant

and returns are IID (independently and identically distributed) through time.

 By Bayes rule

𝑃 𝜇 𝑅, 𝜎0
2 ∝ 𝑃 𝜇 𝑃 𝑅 𝜇, 𝜎0

2

where 

𝑃 𝜇 𝑅, 𝜎0
2 is the posterior distribution of µ

𝑃 𝜇 is the prior distribution of µ

and 𝑃 𝑅 𝜇, 𝜎0
2 is the joint likelihood of all return realizations.
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Bayes Econometrics: Likelihood

▪ The likelihood function of a normally distributed return realization is given by

𝑃 𝑟𝑡 𝜇, 𝜎0
2 =

1

2𝜋𝜎0
2
𝑒𝑥𝑝 −

1

2𝜎0
2 𝑟𝑡 − 𝜇 2

 Since returns are assumed to be IID, the joint likelihood of all realized returns is

𝑃 𝑅 𝜇, 𝜎0
2 = 2𝜋𝜎0

2 −
𝑇

2𝑒𝑥𝑝 −
1

2𝜎0
2
σ𝑡=1
𝑇 𝑟𝑡 − 𝜇 2

 Notice:

σ 𝑟𝑡 − 𝜇 2 = σ 𝑟𝑡 − Ƹ𝜇 + Ƹ𝜇 − 𝜇 2

= ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2

since the cross product is zero, and

ν = 𝑇 − 1

𝑠2 =
1

𝑇 − 1
෍ 𝑟𝑡 − Ƹ𝜇 2

Ƹ𝜇 =
1

𝑇
σ𝑟𝑡
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Prior

 The prior is specified by the researcher based on economic theory, past experience, past data, 

current similar data, etc. Often, the prior is diffuse or non-informative

 For the next illustration, it is assumed that 𝑃 𝜇 ∝ 𝑐, that is, the prior is diffuse, non-

informative, in that it apparently conveys no information on the parameters of interest.  

 I emphasize “apparently” since innocent diffuse priors could exert substantial amount of 

information about quantities of interest which are non-linear functions of the parameters. 

 Informative priors with sound economic appeal are well perceived in financial economics. 

 For instance, Kandel and Stambaugh (1996), who study asset allocation when stock returns 

are predictable, entertain informative prior beliefs weighted against predictability. Pastor 

and Stambaugh (1999) introduce prior beliefs about expected stock returns which consider 

factor model restrictions. Avramov, Cederburg, and Kvasnakova (2017) study prior beliefs 

about predictive regression parameters which are disciplined by consumption based asset 

pricing models including habit formation, prospect theory, and long run risk. 

 Computing posterior probabilities (as opposed to posterior densities) of competing models 

(e.g., Avramov (2002)) necessitates the use of informative priors. Diffuse priors won’t fit. 
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The Posterior Distribution of Mean Return 

 With diffuse prior and normal likelihood, the posterior is proportional to the likelihood 

function:

𝑃 𝜇 𝑅, 𝜎0
2 ∝ 𝑒𝑥𝑝 −

1

2𝜎02
ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2

∝ 𝑒𝑥𝑝 −
𝑇

2𝜎02
𝜇 − Ƹ𝜇 2

 The bottom relation follows since only factors related to µ are retained 

 The posterior distribution of the mean return is given by

𝜇|𝑅, 𝜎0
2~𝑁 Ƹ𝜇, ൗ𝜎0

2

𝑇

 In classical econometrics:

Ƹ𝜇|𝑅, 𝜎0
2~𝑁 𝜇, ൗ𝜎0

2

𝑇

 That is, in classical econometrics, the sample estimate of µ is stochastic while µ itself is an 

unknown non-stochastic parameter.
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Informative Prior

 The prior on the mean return is often modeled as 

𝑃 𝜇 ∝ 𝜎𝑎
−
1
2𝑒𝑥𝑝 −

1

2𝜎𝑎
2
𝜇 − 𝜇𝑎

2

where 𝜇𝑎 and 𝜎𝑎 are prior parameters to be specified by the researcher

 The posterior obtains by combining the prior and the likelihood:

𝑃 𝜇 𝑅, 𝜎0
2 ∝ 𝑃 𝜇 𝑃 𝑅 𝜇, 𝜎0

2

∝ 𝑒𝑥𝑝 −
𝜇−𝜇𝑎

2

2𝜎𝑎
2 −

𝑇 𝜇−ෝ𝜇 2

2𝜎0
2

∝ 𝑒𝑥𝑝 −
1

2

𝜇−෥𝜇 2

෥𝜎2

 The bottom relation obtains by completing the square on µ

 Notice, in particular,

𝜇2

𝜎𝑎
2
+

𝑇

𝜎0
2
𝜇2 =

𝜇2

෤𝜎2

1

𝜎𝑎2
+

𝑇

𝜎02
=

1

෤𝜎2
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The Posterior Mean

 Hence, the posterior variance of the mean is  

෤𝜎2 =
1

𝜎𝑎
2 +

1

ൗ𝜎0
2

𝑇

−1

= (prior precision + likelihood precision)−1

 Similarly, the posterior mean of 𝜇 is

෤𝜇 = ෤𝜎2
𝜇𝑎
𝜎𝑎2

+
𝑇 Ƹ𝜇

𝜎02

= 𝑤1𝜇𝑎 + 𝑤2 Ƹ𝜇

where 

𝑤1 =

1
𝜎𝑎2

1
𝜎𝑎2

+
1

ൗ𝜎02
𝑇

=
prior precision

prior precision + likelihood precision

𝑤2 = 1 − 𝑤1

 Intuitively, the posterior mean of µ is the weighted average of the prior mean and the sample 
mean with weights depending on prior and likelihood precisions, respectively.  
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What if σ is unknown? – The case of Diffuse Prior

 Bayes: 𝑃 𝜇, 𝜎 𝑅 ∝ 𝑃 𝜇, 𝜎 𝑃 𝑅 𝜇, 𝜎

 The non-informative prior is typically modeled as
𝑃 𝜇, 𝜎 ∝ 𝑃 𝜇 𝑃 𝜎

𝑃 𝜇 ∝ 𝑐

𝑃 𝜎 ∝ 𝜎−1

 Thus, the joint posterior of µ and σ is

𝑃 𝜇, 𝜎 𝑅 ∝ 𝜎− 𝑇+1 𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2

 The conditional distribution of the mean follows straightforwardly 

𝑃 𝜇 𝜎, 𝑅 is 𝑁 Ƹ𝜇, ൗ𝜎2
𝑇

 More challenging is to uncover the marginal distributions, which are obtained as

𝑃 𝜇 𝑅 = න𝑃 𝜇, 𝜎 𝑅 𝑑𝜎

𝑃 𝜎 𝑅 = න𝑃 𝜇, 𝜎 𝑅 𝑑𝜇
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Solving the Integrals: Posterior of 𝜇
 Let   Ƚ = ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2

 Then,                                                 

𝑃 𝜇 𝑅 ∝ න
𝜎=0

∞

𝜎− 𝑇+1 𝑒𝑥𝑝 −
𝛼

2𝜎2
𝑑𝜎

 We do a change of variable

𝑥 =
𝛼

2𝜎2𝑑𝜎

𝑑𝑥
= −2−1

1
2𝛼

1
2𝑥−1

1
2

𝜎−𝑇+1 =
𝛼

2𝑥

−
𝑇+1
2

 Then                                    𝑃 𝜇 𝑅 ∝ 2
𝑇−2

2 𝛼−
𝑇

2 𝑥=0׬
∞

𝑥
𝑇

2
−1𝑒𝑥𝑝 −𝑥 𝑑𝑥

 Notice                                           ׬𝑥=0
∞

𝑥
𝑇

2
−1𝑒𝑥𝑝 −𝑥 𝑑𝑥 = Γ

𝑇

2

 Therefore,

𝑃 𝜇 𝑅 ∝ 2
𝑇−2
2 Γ

𝑇

2
𝛼−

𝑇
2

∝ ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2 −
ν+1
2

 We get 𝑡 =
𝜇−ෝ𝜇

ൗ
𝑠

𝑇

~𝑡 ν , corresponding to the Student t distribution with ν degrees of freedom.
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The Marginal Posterior of σ

 The posterior on 𝜎 𝑃 𝜎 𝑅 ∝ −𝜎׬ 𝑇+1 𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝑇 𝜇 − Ƹ𝜇 2 𝑑𝜇

∝ 𝜎− 𝑇+1 𝑒𝑥𝑝 −
ν𝑠2

2𝜎2
׬ 𝑒𝑥𝑝 −

𝑇

2𝜎2
𝜇 − Ƹ𝜇 2 𝑑𝜇

 Let 𝑧 =
𝑇 𝜇−ෝ𝜇

𝜎
, then 

𝑑𝑧

𝑑𝜇
= 𝑇

1

𝜎

 𝑃 𝜎 𝑅 ∝ 𝜎−𝑇𝑒𝑥𝑝 −
ν𝑠2

2𝜎2
׬ 𝑒𝑥𝑝 − ൗ𝑧2

2 𝑑𝑧

∝ 𝜎−𝑇𝑒𝑥𝑝 −
ν𝑠2

2𝜎2

∝ 𝜎− ν+1 𝑒𝑥𝑝 −
ν𝑠2

2𝜎2

which corresponds to the inverted gamma distribution with ν degrees of freedom and    
parameter s

 The explicit form (with constant of integration) of the inverted gamma is given by

𝑃 𝜎 ν, 𝑠 =
2

Γ
ν
2

ν𝑠2

2

ൗν 2

𝜎− ν+1 𝑒𝑥𝑝 −
ν𝑠2

2𝜎2
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The Multiple Regression Model

 The regression model is given by

𝑦 = 𝑋𝛽 + 𝑢

where

y is a 𝑇 × 1 vector of the dependent variables

X is a 𝑇 ×𝑀 matrix with the first column being a 𝑇 × 1 vector of ones

β is an M × 1 vector containing the intercept and M-1 slope coefficients

and u is a 𝑇 × 1 vector of residuals.

 We assume that 𝑢𝑡~𝑁 0, 𝜎2 ∀ 𝑡 = 1,… , 𝑇 and IID through time

 The likelihood function is

𝑃 𝑦 𝑋, 𝛽, 𝜎 ∝ 𝜎−𝑇𝑒𝑥𝑝 −
1

2𝜎2
𝑦 − 𝑋𝛽 ′ 𝑦 − 𝑋𝛽

∝ 𝜎−𝑇𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝛽 − መ𝛽

′
𝑋′𝑋 𝛽 − መ𝛽
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The Multiple Regression Model

where

ν = 𝑇 −𝑀

መ𝛽 = 𝑋′𝑋 −1𝑋′𝑦

𝑠2 =
1

ν
𝑦 − 𝑋 መ𝛽

′
𝑦 − 𝑋 መ𝛽

 It follows since

𝑦 − 𝑋𝛽 ′ 𝑦 − 𝑋𝛽 = 𝑦 − 𝑋 መ𝛽 − 𝑋 𝛽 − መ𝛽
′
𝑦 − 𝑋 መ𝛽 − 𝑋 𝛽 − መ𝛽

= 𝑦 − 𝑋 መ𝛽
′
𝑦 − 𝑋 መ𝛽 + 𝛽 − መ𝛽

′
𝑋′𝑋 𝛽 − መ𝛽

while the cross product is zero
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Assuming Diffuse Prior

 The prior is modeled as

𝑃 𝛽, 𝜎 ∝
1

𝜎

 Then the joint posterior of β and σ is

𝑃 𝛽, 𝜎 𝑦, 𝑋 ∝ 𝜎− 𝑇+1 𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝛽 − መ𝛽

′
𝑋′𝑋 𝛽 − መ𝛽

 The conditional posterior of β is

𝑃 𝛽 𝜎, 𝑦, 𝑋 ∝ 𝑒𝑥𝑝 −
1

2𝜎2
𝛽 − መ𝛽

′
𝑋′𝑋 𝛽 − መ𝛽

which obeys the multivariable normal distribution

𝑁 መ𝛽, 𝑋′𝑋 −1𝜎2
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Assuming Diffuse Prior

 What about the marginal posterior for β ?

𝑃 𝛽 𝑦, 𝑋 = න𝑃 𝛽, 𝜎 𝑦, 𝑋 𝑑𝜎

∝ ν𝑠2 + 𝛽 − መ𝛽
′
𝑋′𝑋 𝛽 − መ𝛽

− ൗ𝑇 2

which pertains to the multivariate student t with mean መ𝛽 and T-M degrees of freedom

 What about the marginal posterior for 𝜎?

𝑃 𝜎 𝑦, 𝑋 = න𝑃 𝛽, 𝜎 𝑦, 𝑋 𝑑𝛽

∝ 𝜎− ν+1 𝑒𝑥𝑝 −
ν𝑠2

2𝜎2

which stands for the inverted gamma with T-M degrees of freedom and parameter s

 You can simulate the distribution of β in two steps without solving analytically the integral, 

drawing first 𝜎 from its inverted gamma distribution and then drawing from the conditional 

of β given 𝜎 which is normal as shown earlier. This mechanism generates draws from the 

Student t distribution
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Bayesian Updating/Learning 

 Suppose the initial sample consists of 𝑇1 observations of 𝑋1 and 𝑦1.

 Suppose further that the posterior distribution of 𝛽, 𝜎 based on those observations is given 

by:

𝑃 𝛽, 𝜎 𝑦1, 𝑋1 ∝ 𝜎−(𝑇1+1)𝑒𝑥𝑝 −
1

2𝜎2
𝑦1 − 𝑋1𝛽 ′ 𝑦1 − 𝑋1𝛽

∝ 𝜎−(𝑇1+1)𝑒𝑥𝑝 −
1

2𝜎2
ν1𝑠1

2 + 𝛽 − መ𝛽1 ′𝑋1′𝑋1 𝛽 − መ𝛽1

where

ν1 = 𝑇1 −𝑀
መ𝛽1 = 𝑋1′𝑋1

−1𝑋1𝑦1
ν1𝑠1

2 = 𝑦1 − 𝑋1 መ𝛽1
′
𝑦1 − 𝑋1 መ𝛽1

 You now observe one additional sample 𝑋2 and 𝑦2 of length 𝑇2 observations

 The likelihood based on that sample is

𝑃 𝑦2, 𝑋2 𝛽, 𝜎 ∝ 𝜎−𝑇2𝑒𝑥𝑝 −
1

2𝜎2
𝑦2 − 𝑋2𝛽 ′ 𝑦2 − 𝑋2𝛽
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Bayesian Updating/Learning

 Combining the posterior based on the first sample (which becomes the prior for the second 

sample) and the likelihood based on the second sample yields:

𝑃 𝛽, 𝜎 𝑦1, 𝑦2, 𝑋1, 𝑋2 ∝ 𝜎− 𝑇1+𝑇2+1 𝑒𝑥𝑝 −
1

2𝜎2
𝑦1 − 𝑋1𝛽

′ 𝑦1 − 𝑋1𝛽 + 𝑦2 − 𝑋2𝛽 ′ 𝑦2 − 𝑋2𝛽

∝ 𝜎− 𝑇1+𝑇2+1 𝑒𝑥𝑝 −
1

2𝜎2
ν𝑠2 + 𝛽 − ෨𝛽

′
ϻ 𝛽 − ෨𝛽

where

ϻ = 𝑋1
′𝑋1 + 𝑋2

′𝑋2
෨𝛽 = ϻ−1 𝑋1

′𝑦1 + 𝑋2
′𝑦2

ν𝑠2 = 𝑦1 − 𝑋1 ෨𝛽
′
𝑦1 − 𝑋1 ෨𝛽 + 𝑦2 − 𝑋2 ෨𝛽

′
𝑦2 − 𝑋2 ෨𝛽

ν = 𝑇1 + 𝑇2 −𝑀

 Then the posterior distributions for β and σ follow using steps outlined earlier

 With more observations realized you follow the same updating procedure

 Notice that the same posterior would have been obtained starting with diffuse priors and 

then observing the two samples consecutively Y=[𝑦1′, 𝑦2′]′ and 𝑋 = [𝑋1′, 𝑋2
′ ]′.
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Example: Predictive Regressions

 In finance and economics you often use predictive regressions of the form

𝑦𝑡+1 = 𝑎 + 𝑏′𝑧𝑡 + 𝑢𝑡+1

𝑢𝑡+1~𝑁 0, 𝜎2 ∀ 𝑡 = 1,… , 𝑇 − 1 and IID

where 𝑦𝑡+1 is an economic quantity of interest, be it stock or bond return, inflation, interest 

rate, exchange rate, and 𝑧𝑡 is a collection of 𝑀 − 1 predictive variables, e.g., the term spread

 At this stage, the initial observation of the predictors, 𝑧0, is assumed to be non stochastic.

 Stambaugh (1999) considers stochastic 𝑧0. Then, some complexities emerge as shown later.

 The predictive regression can be written more compactly as

𝑦𝑡+1 = 𝑥𝑡′𝛽 + 𝑢𝑡+1

where

𝑥𝑡 = 1, 𝑧𝑡 ′
𝛽 = 𝑎, 𝑏 ′

 In a matrix form, comprising all time-series observations, the normal regression model 

obtains

𝑦 = 𝑋𝛽 + 𝑢
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Predictive Distribution

 You are interested to uncover the predictive distribution of the unobserved 𝑦𝑇+1

 Let Ф denote the observed data and let θ denote the set of parameters β and 𝜎2

 The predictive distribution is:

𝑃 𝑦𝑇+1 Ф = න
θ

𝑃 𝑦𝑇+1 Ф,θ 𝑃 θ Ф 𝑑θ

where

𝑃 𝑦𝑇+1 Ф,θ is the conditional or classical predictive distribution

𝑃 θ Ф is the joint posterior of β and 𝜎2

 Notice that the predictive distribution integrates out β and 𝜎 from the joint distribution

𝑃 𝑦𝑇+1, 𝛽, 𝜎 Ф

since

𝑃 𝑦𝑇+1, 𝛽, 𝜎 Ф = 𝑃 𝑦𝑇+1 Ф,θ 𝑃 θ Ф
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Predictive Distribution

 The conditional distribution of the next period realization is 

𝑃 𝑦𝑇+1 θ,Ф ∝ 𝜎−1𝑒𝑥𝑝 −
1

2𝜎2
𝑦𝑇+1 − 𝑥𝑇′𝛽

2

 Thus 𝑃 𝑦𝑇+1, 𝛽, 𝜎 Ф is proportional to 𝜎− 𝑇+2 𝑒𝑥𝑝 −
1

2𝜎2
[ 𝑦 − 𝑋𝛽 ′ 𝑦 − 𝑋𝛽 + 𝑦𝑇+1 − 𝑥𝑇′𝛽

2]

 On integrating 𝑃 𝑦𝑇+1, 𝛽, 𝜎 Ф with respect to 𝜎 we obtain

𝑃 𝑦𝑇+1, 𝛽 Ф ∝ 𝑦 − 𝑋𝛽 ′ 𝑦 − 𝑋𝛽 + 𝑦𝑇+1 − 𝑥𝑇′𝛽
2

− 𝑇+1

2

 Now we have to integrate with respect to the 𝑀 elements of 𝛽

 On completing the square on 𝛽 we get

𝑦 − 𝑋𝛽 ′ 𝑦 − 𝑋𝛽 + 𝑦𝑇+1 − 𝑥𝑇′𝛽
2

= 𝑦′𝑦 + 𝑦𝑇+1
2 + 𝛽′ϻ𝛽 − 2𝛽′ 𝑋′𝑦 + 𝑥𝑇′𝑦𝑇+1

= 𝑦′𝑦 + 𝑦𝑇+1
2 − 𝑦′X + 𝑦𝑇+1′𝑥𝑇 ϻ−1 𝑋′𝑦 + 𝑥𝑇′𝑦𝑇+1

+ 𝛽 − ϻ−1 𝑋′𝑦 + 𝑥𝑇′𝑦𝑇+1 ′ϻ 𝛽 − ϻ−1 𝑋′𝑦 + 𝑥𝑇′𝑦𝑇+1

where

ϻ = 𝑋′X + 𝑥𝑇′𝑥𝑇
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Predictive Distribution

 Integrating with respect to β yields 

𝑃 𝑦𝑇+1 Ф ∝ 𝑦′𝑦 + 𝑦𝑇+1
2 − 𝑦′𝑋 + 𝑦𝑇+1′𝑥𝑇 ϻ−1 𝑋′𝑦 + 𝑥𝑇′𝑦𝑇+1

−
ν+1
2

where

ν = 𝑇 − 𝑀

 With some further algebra it can be shown that the predictive distribution is

𝑃 𝑦𝑇+1 Ф ∝ ν + 𝑦𝑇+1 − 𝑥𝑇′ መ𝛽 𝐻 𝑦𝑇+1 − 𝑥𝑇′ መ𝛽
−
ν+1
2

where

𝐻 =
1

𝑠2
1 − 𝑥𝑇

′ ϻ−1𝑥𝑇

ν𝑠2 = 𝑦 − 𝑋 መ𝛽 ′ 𝑦 − 𝑋 መ𝛽

መ𝛽 = 𝑋′𝑋 −1𝑋′𝑦
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Predictive Moments 

 The first and second predictive moments, based on the t-distribution, are  

𝜇𝑦 = 𝐸 𝑦𝑇+1 Ф = 𝑥𝑇′ መ𝛽

𝐸 𝑦𝑇+1 − 𝜇𝑦
2
=

ν

ν−2
𝐻−1

=
ν𝑠2

ν−2
1 − 𝑥𝑇

′ ϻ−1𝑥𝑇
−1

=
ν𝑠2

ν−2
1 + 𝑥𝑇

′ 𝑋′𝑋 𝑥𝑇

o With diffuse prior, the predictive mean coincides with the classical (non Bayesian) mean.

o The predictive variance is slightly higher due to estimation risk.

o Kandel and Stambaugh (JF 1996) provide more economic intuition about the predictive density 

o The estimation risk effect on the predictive variance is analytically derived by Avramov and 

Chordia (JFE 2006) in a multi-asset (asset pricing) context. 

o Later, we will use the predictive distribution to recover asset allocation under estimation risk 

and even under model uncertainty considering informative priors. 
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Multivariate Regression Models 

 Consider the multivariate form (N dependent variables) of the predictive regression

𝑅 = 𝑋𝐵 + 𝑈

where R and U are both a 𝑇 × 𝑁 matrix , X is a 𝑇 × M matrix, B is an M× 𝑁 matrix 

𝑣𝑒𝑐(𝑈) ∼ 𝑁(0, Σ ⊗ 𝐼𝑇)

and where vec denotes the vectorization operator and ⊗ is the kronecker product 

 The priors for 𝐵 and Σ are assumed to be the normal inverted Wishart (conjugate priors)  

𝑃(𝑏|Σ) ∝ |Σ|−
1

2 exp −
1

2
(𝑏 − 𝑏0)

′[Σ−1 ⊗Ψ0](𝑏 − 𝑏0)

𝑃(Σ) ∝ |Σ|−
𝜈0+𝑁+1

2 exp −
1

2
tr[𝑆0Σ

−1]
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Multivariate regression

where

𝑏 = 𝑣𝑒𝑐(𝐵)

and 𝑏0, Ψ0, and 𝑆0 are prior parameters to be specified by the researcher.

 The likelihood function of normally distributed data constituting the actual sample obeys the 

form  

𝑃(𝑅|𝐵, Σ, 𝑋) ∝ |Σ|−
𝑇

2 exp −
1

2
tr (𝑅 − 𝑋𝐵)′(𝑅 − 𝑋𝐵) Σ−1

where tr stands for the trace operator. This can be rewritten in a more convenient form as  

𝑃(𝑅|𝐵, Σ, 𝑋) ∝ |Σ|−
𝑇

2 exp −
1

2
tr መ𝑆 + (𝐵 − ෠𝐵)′𝑋′𝑋(𝐵 − ෠𝐵) Σ−1

where

መ𝑆 = (𝑅 − 𝑋 ෠𝐵)′(𝑅 − 𝑋 ෠𝐵)

෠𝐵 = 𝑋′𝑋 −1𝑋′𝑅
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Multivariate regression

 An equivalent representation for the likelihood function is given by

𝑃(𝑅|𝑏, Σ, 𝑋) ∝ |Σ|−
𝑇

2 exp −
1

2
(𝑏 − ෠𝑏)′[Σ−1 ⊗ (𝑋′𝑋)](𝑏 − ෠𝑏)

× exp −
1

2
tr[ መ𝑆Σ−1]

where

෠𝑏 = vec( ෠𝐵)

 Combining the likelihood with the prior and completing the square on 𝑏 yield

𝑃(𝑏|Σ, 𝑅, 𝑋) ∝ |Σ|−
1
2 exp −

1

2
(𝑏 − ෨𝑏)′[Σ−1 ⊗ ෩Ψ](𝑏 − ෨𝑏)

𝑃(Σ|𝑅, 𝑋) ∝ |Σ|−
෥𝜈+𝑁+1

2 exp −
1

2
tr ሚ𝑆Σ−1
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Multivariate regression

where
෩Ψ = Ψ0 + 𝑋′𝑋
෨𝑏 = vec ෨𝐵
෨𝐵 = ෩Ψ−1𝑋′𝑋 ෠𝐵 + ෩Ψ−1Ψ0𝐵0
ሚ𝑆 = መ𝑆 + 𝑆0 + ෠𝐵′𝑋′𝑋 ෠𝐵 + 𝐵0

′Ψ0𝐵0 − ෨𝐵′෩Ψ ෨𝐵

ǁ𝜈 = 𝜈0 + 𝑇

 So the posterior for 𝐵 is normal and for Σ is inverted Wishart.

 Again,, that is the conjugate prior idea - the prior and posterior have the same distributions but 

with different parameters. 

 Not surprisingly, ෨𝐵 is a weighted average of 𝐵0 and ෠𝐵:

෨𝐵 = 𝑊𝐵0 + (𝐼 −𝑊) ෠𝐵

where 𝑊 = 𝐼 − ෩Ψ−1𝑋′𝑋. Notice, the weights are represented by matrices.  
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What if the posterior does not obey a well-known 

expression?

 Thus far, the posterior densities can readily be identified.

 However, what if the posterior does not obey a well known expression?

 Markov Chain Monte Carlo (MCMC) methods can be employed to simulate from the posterior.

 The basic intuition behind MCMC is straightforward. 

 Suppose the distribution is 𝑃 𝑥 which is unrecognized. 

 The MCMC idea is to define a Markov chain over possible values of x 𝑥0, 𝑥1, 𝑥2, … such that as 

𝑛 → ∞, we can guarantee that 𝑥𝑛~𝑃 𝑥 , that is, thatwe have a draw from the posterior.

 As the number of draws (each draw pertains to a distinct chain) gets larger you can simulate 

the posterior density. 

 The simulation gets more precise with increasing number of draws. 

 There are various ways to set up such Markov chains

 Here, we cover two MCMC methods: the Gibbs Sampling and the Metropolis Hastings.
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Gibbs Sampling

 The Gibbs Sampling analysis is based on “Measuring the Pricing Error of the Arbitrage 

Pricing Theory” by Geweke and Zhou (RFS 1996).

 This paper advocates a Bayesian method in which to test the APT of Ross (1976).

 Both APT and ICAPM motivate multiple factors – extending the CAPM.

 While APT motivates statistical based factors, as shown below, the ICAPM motivates 

economic factors related to the marginal utility of the investor – such as consumption growth.

 The basic APT model assumes that returns on 𝑁 risky portfolios are related to 𝐾 pervasive 

unknown factors (K<N).

 The relation is described by the 𝐾 factor model

𝑟𝑡 = 𝜇 + 𝛽𝑓𝑡 + 𝜖𝑡

where 𝑟𝑡 denotes returns (not excess returns) on 𝑁 assets and 𝑓𝑡 is a set of 𝐾 factor    

innovations (factors are not pre-specified, rather, they are latent). 
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Gibbs Sampling

 Specifically,

𝐸 𝑓𝑡 = 0
𝐸{𝑓𝑡𝑓

′
𝑡
} = 𝐼𝐾

𝐸{𝜖𝑡|𝑓𝑡} = 0
𝐸{𝜖𝑡𝜖

′
𝑡|𝑓𝑡} = Σ = 𝑑𝑖𝑎𝑔(𝜎1

2, … , 𝜎𝑁
2)

𝛽 = [𝛽1, … , 𝛽𝐾]

 Moreover, under exact APT, the 𝜇 vector satisfies the restriction

𝜇 = 𝜆0 + 𝛽1𝜆1 +⋯ ,+𝛽𝐾𝜆𝐾

 Notice that 𝜆0 is the component of expected return unrelated to factor exposures. 

 The original APT model is about an approximated relation. 

 An exact version is derived by Huberman (1982) among others. 

 The objective throughout is to explore a measure that summarizes the deviation from exact 

pricing. 
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Gibbs Sampling

 That measure is denoted by 𝑄2 and is given by

𝒬2 =
1

𝑁
𝜇′[𝐼𝑁 − 𝛽∗(𝛽′

∗
𝛽∗)−1𝛽∗′]𝜇

where

𝛽∗ = [1𝑁 , 𝛽]

 Recovering the sampling distribution of 𝑄2 is hopeless.

 Notice that one cannot even recover an analytic expression for the posterior density of model 

parameters 𝑃(𝛩|𝑅). 𝑃 𝛩 𝑅, 𝐹 is something known – but this is not the posterior. 

 However, using Gibbs sampling, we can simulate the posterior distribution of 𝑄2 as well as 

simulate the posterior density of all parameters and latent factors. 

 In what follows, we assume that observed returns and latent factors are jointly normally 

distributed:

𝑓𝑡
𝑟𝑡

∼ 𝑁
0
𝜇

,
𝐼𝐾 𝛽′

𝛽 𝛽𝛽′ + Σ
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Gibbs Sampling

 Here are some additional notations: 

 Data: 𝑅 = [𝑟1′, … , 𝑟T′]
′

 Parameters: Θ = [𝜇′, 𝑣𝑒𝑐(𝛽)′, 𝑣𝑒𝑐ℎ(Σ)′]′ where vech denotes the distinct elements of the matrix

 Latent factors: 𝑓 = [𝑓1′, … , 𝑓𝑇′]
′

 To evaluate the pricing error we need to simulate draws from the posterior distribution 

𝑃(𝛩|𝑅). 

 We draw from the joint posterior in a slightly different manner than that suggested in the 

Geweke-Zhou paper. 

 First, we employ a multivariate regression setting. Moreover, the well-known identification 

(of the factors) problem is not accounted for to simplify the analysis. 

 The prior on the diagonal covariance matrix is assumed to be non-informative 

𝑃0(Θ) ∝ |Σ|−
1
2 = (𝜎1…𝜎𝑁)

−1
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Gibbs Sampling

 Re-expressing the arbitrage pricing equation, we obtain:

𝑟′𝑡 = 𝐹𝑡
′𝐵′ + 𝜖𝑡

′

where

𝐹𝑡
′ = [1, 𝑓𝑡

′]
𝐵 = [𝜇, 𝛽]

 Rewriting the system in a matrix notation, we get 

𝑅 = 𝐹𝐵′ + 𝐸

 Why do we need to use the Gibbs sampling technique? 

 Because the likelihood function 𝑃(𝑅|Θ) (and therefore the posterior density) cannot be 

expressed analytically. 
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Gibbs Sampling

 However, 𝑃(𝑅|Θ, 𝐹) does obey an analytical form:

𝑃(𝑅|Θ, 𝐹) ∝ |Σ|−
𝑇
2 exp [ −

1

2
tr [𝑅 − 𝐹𝐵′]′[𝑅 − 𝐹𝐵′]Σ−1

 Therefore, we can compute the full conditional posterior densities: 

𝑃(𝐵|Σ, 𝐹, 𝑅)
𝑃(Σ|𝐵, 𝐹, 𝑅)
𝑃(𝐹|𝐵, Σ, 𝑅)

 The Gibbs sampling chain is formed as follows: 

1. Specify starting values Σ(0) and 𝐹(0) and set 𝑖 = 1.

2. Draw from the full conditional distributions: 

 Draw 𝐵(𝑖) from 𝑃(𝐵|Σ(𝑖−1), 𝐹(𝑖−1), 𝑅)

 Draw Σ(𝑖) from 𝑃(Σ|𝐵(𝑖), 𝐹(𝑖−1), 𝑅)

 Draw 𝐹(𝑖) from 𝑃(F|𝐵(𝑖), Σ(𝑖), 𝑅)

3. Set 𝑖 = 𝑖 + 1 and go to step 2.
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Gibbs Sampling

 After 𝑚 iterations the sample 𝐵(𝑚), Σ(𝑚), 𝐹(𝑚) is obtained. 

 Under mild regularity conditions (see, for example, Tierney ,1994), (𝐵(𝑚), Σ(𝑚), 𝐹(𝑚))
converges in distribution to the relevant marginal and joint distributions: 

𝑃(𝐵(𝑚)|𝑅) → 𝑃(𝐵|𝑅)

𝑃(Σ(𝑚)|𝑅) → 𝑃(Σ|𝑅)

𝑃(𝐹(𝑚)|𝑅) → 𝑃(𝐹|𝑅)

𝑃(𝐵(𝑚), Σ(𝑚), 𝐹(𝑚)|𝑅) → 𝑃(𝐵, Σ, 𝐹|𝑅)

 For 𝑚 (burn-in draws) large enough, the 𝐺 values 

(𝐵(𝑔), Σ(𝑔), 𝐹(𝑔))𝑔=𝑚+1
𝑚+𝐺

are a sample from the joint posterior. 

 What are the full conditional posterior densities?

 Note:

𝑃(𝐵|Σ, 𝐹, 𝑅) ∝ exp −
1

2
tr[𝑅 − 𝐹𝐵′]′[𝑅 − 𝐹𝐵′]Σ−1
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Gibbs Sampling

 Let 𝑏 = vec(𝐵′). Then 

𝑃(𝑏|Σ, 𝐹, 𝑅) ∝ exp −
1

2
[𝑏 − ෠𝑏]′ Σ−1 ⊗ (𝐹′𝐹) [𝑏 − ෠𝑏]

where
෠𝑏 = vec[(𝐹′𝐹)−1𝐹′𝑅]

 Therefore, 

𝑏|Σ, 𝐹, 𝑅 ∼ 𝑁 ෠𝑏, Σ ⊗ (𝐹′𝐹)−1

 Also note: 

𝑃(𝜎𝑖|𝐵, 𝐹, 𝑅) ∝ 𝜎𝑖
−(𝑇+1)

exp −
𝑇𝑆𝑖

2

2𝜎𝑖
2

where 𝑇𝑆𝑖
2 is the i-th diagonal element of the 𝑁 × 𝑁 matrix 

[𝑅 − 𝐹𝐵′]′[𝑅 − 𝐹𝐵′]
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Gibbs Sampling

suggesting that: 

𝑇𝑆𝑖
2

𝜎𝑖
2 ∼ 𝜒2(𝑇)

 Finally, 

𝑓𝑡|𝜇, 𝛽, Σ, 𝑟𝑡 ∼ 𝑁(𝑀𝑡 , 𝐻𝑡)

where

𝑀𝑡 = 𝛽′(𝛽𝛽′ + Σ)−1(𝑟𝑡 − 𝜇)

𝐻𝑡 = 𝐼𝐾 − 𝛽′(𝛽𝛽′ + Σ)−1𝛽

 Here, we are basically done with the GS implementation

 Having all the essential draws form the joint posterior at hand, we can analyze the simulated 

distribution of the pricing errors and make a call about model’s pricing abilities. 
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Metropolis Hastings (MH)

 Indeed, Gibbs Sampling is intuitive, easy to implement, and convergence to the true posterior 

density is accomplished relatively fast and with mild regularity conditions. 

 Often, however, integrable expressions for the full conditional densities are infeasible.

 Then it is essential to resort to more complex methods in which draws from the posterior 

distributions could be highly correlated and convergence could be rather slow. Still, such 

methods are useful. 

 One example is the Metropolis Hastings (MH) algorithm, a MCMC procedure introduced by 

Metropolis et al (1953) and later generalized by Hastings (1970). 

 The basic idea in MH is to make draws from a candidate distribution which seems to be 

related to the target (unknown) distribution.

 The candidate draw from the posterior is accepted with some probability – the Metropolis 

rule. Otherwise, it is rejected and the previous draw is retained. As in the Gibbs Sampling, 

the Markov Chain starts with some initial value set by the researcher. 

 The Gibbs Sampling is a special case of MH in which all draws are accepted with probability 

one. 
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Metropolis Hastings (MH)

 I will display two applications of the MH method in the context of financial economics.

 The first application goes to the seminal work of Jacquier, Polson, and Rossi (1994) on 

estimating a stochastic volatility (SVOL) model. Coming up on the next page.

 The second application is based on Stambaugh (1999) who analyzes predictive regressions 

when the first observation of the predictive variable is stochastic. 

 Mostly, analyses of predictive regressions are conducted based on the assumption that the 

first observation is fixed non-stochastic. 

 While analytically tractable this assumption does not seem to hold true.   

 Relaxing that assumption entertains several complexities and the need to use MH to draw 

from the joint posterior distribution of the predictive regression parameters. 

 I will discuss that application in the section on asset allocation when stock returns are 

predictable. 
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Stochastic Volatility (SVOL)

 The SVOL model is given by

𝑦𝑡 = ℎ𝑡𝑢𝑡
𝑙𝑛 ℎ𝑡 = 𝛼 + 𝛿𝑙𝑛 ℎ𝑡−1 + 𝜎𝑣𝑣𝑡

𝑢𝑡
𝑣𝑡

~𝑁 0, 𝐼2

 Notice that volatility varies through time rather than being constant. While in ARCH, 

GARCH, EGARCH models there is no stochastic innovation, here volatility is stochastic. 

 Now let

ℎ′ = ℎ1…ℎ𝑇
𝛽′ = 𝛼, 𝛿

𝑤′ = 𝛼, 𝛿, 𝜎𝑣
𝑦′ = 𝑦1…𝑦𝑇

 The posterior of w given values of h is available from the standard regression model described 

earlier: 𝛽 has the multivariable normal and 𝜎𝑣 has the inverted gamma distribution.

 However, drawing from ℎ|𝑤, 𝑦 requires more efforts.
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Stochastic Volatility (SVOL)

 We cannot really draw h at once, rather, we have to break down the joint posterior of the 

entire h vector by considering the series of uni-variate conditional densities.

𝑃 ℎ𝑡 ℎ𝑡−1, ℎ𝑡+1, 𝑤, 𝑦𝑡 for 𝑡 = 1,… , 𝑇

 If it were possible to draw directly these uni-variate densities, the algorithm would reduce to 

a Gibbs sampler in which we would draw successively from 𝑃 𝑤 ℎ, 𝑦 and then each of the T

univariate conditionals in turn to form one step in the Markov chain.

 The uni-variate conditional densities, however, exhibit an unusual form:

𝑃 ℎ𝑡 ℎ𝑡−1, ℎ𝑡+1, 𝑤, 𝑦𝑡
∝ 𝑃 𝑦𝑡 ℎ𝑡 𝑃 ℎ𝑡 ℎ𝑡−1 𝑃 ℎ𝑡+1 ℎ𝑡

∝ ℎ𝑡
−
1
2𝑒𝑥𝑝 −

1

2

𝑦𝑡
2

ℎ𝑡

1

ℎ𝑡
𝑒𝑥𝑝 − Τln(ℎ𝑡) − 𝜇𝑡

2 2𝜎2

where

𝜇𝑡 = Τ𝛼 1 − 𝛿 + 𝛿 ln(ℎ𝑡+1) + 𝑙𝑛(ℎ𝑡−1) 1 + 𝛿2

𝜎2 =
𝜎𝑣

2

1 + 𝛿2
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Stochastic Volatility (SVOL)

 The result follows by combining two likelihood normal terms and completing the square on 

𝑙𝑛(ℎ𝑡).

 Notice, the density is not of a standard form. It is proportional to:

𝑒𝑥𝑝 −
𝑦𝑡

2

2ℎ𝑡
−

1
2𝜎2

ln(ℎ𝑡) − 𝜇 2

ℎ𝑡 3/2

=

𝑒𝑥𝑝 −
𝑦𝑡

2

2ℎ𝑡
−

1
2𝜎2

𝑙𝑛(ℎ𝑡) − 𝜇 − Τ𝜎2 2 2

ℎ𝑡

 A good proposal here can be the lognormal density given by

1

2𝜋𝜎ℎ𝑡
𝑒𝑥𝑝 −

1

2𝜎2
𝑙𝑛(ℎ𝑡) − 𝜇 + Τ𝜎2 2 2
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Stochastic Volatility (SVOL)

 From here we compute the ratio of the target to the proposal as:

𝑡𝑎𝑟𝑔𝑒𝑡

𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
∝

ൗ𝑒𝑥𝑝 −
𝑦𝑡
2ℎ𝑡

2
−

1
2𝜎2

𝑙𝑛(ℎ𝑡) − 𝜇 − Τ𝜎2 2 2 ℎ𝑡

ൗ𝑒𝑥𝑝 −
1
2𝜎2

ln(ℎ𝑡) − 𝜇 − Τ𝜎2 2 2 ℎ𝑡

∝ 𝑒𝑥𝑝 −
𝑦𝑡

2

2ℎ𝑡

 For the MH algorithm, the relevant ratio is

𝑒𝑥𝑝
𝑦𝑡

2

2ℎ𝑡
−

𝑦𝑡
2

2ℎ𝑡
∗

where ℎ𝑡
∗

is the new proposed draw and ℎ𝑡 is the current state (or previously accepted 

draw). 
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Bayesian Portfolio Analysis

 We next present topics on Bayesian portfolio analysis based upon a review paper of Avramov 

and Zhou (2010) that came up in the Annual Review of Financial Economics

 We first study asset allocation when stock returns are assumed to be IID

 We then incorporate potential return predictability based on macro economy variables.

 What are the benefits of using the Bayesian approach?

 There are at least three important benefits including (i) the ability to account for estimation 

risk and model uncertainty, (ii) the feasibility of powerful and tractable simulation methods, 

and (iii) the ability to elicit economically meaningful prior beliefs about the distribution of 

future returns. 
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Bayesian Asset Allocation

 We start with the mean variance framework 

 Assume there are 𝑁 + 1 assets, one of which is riskless and others are risky. 

 Denote by 𝑟𝑓𝑡 and 𝑟𝑡 the rates of returns on the riskless asset and the risky assets at time 𝑡, 

respectively. 

 Then

𝑅𝑡 ≡ 𝑟𝑡 − 𝑟𝑓𝑡1𝑁

are excess returns on the 𝑁 risky assets, where 1𝑁 is an 𝑁 × 1 vector of ones.

 Assume that the joint distribution of 𝑅𝑡 is IID over time, with mean 𝜇 and covariance matrix 

𝑉.

 In the static mean-variance framework an investor at time 𝑇 chooses his/her portfolio weights 

𝑤, so as to maximize the quadratic objective function 

𝑈(𝑤) = 𝐸[𝑅𝑝] −
𝛾

2
Var[𝑅𝑝] = 𝑤′𝜇 −

𝛾

2
𝑤′𝑉𝑤
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where 𝑅𝑝 = 𝑤′𝑅𝑇+1 is the future uncertain portfolio return at time 𝑇 + 1 and 𝛾 is the 

coefficient of relative risk aversion. 

 When both 𝜇 and 𝑉 are assumed to be known, the optimal portfolio weights are 

𝑤∗ =
1

𝛾
𝑉−1𝜇

and the maximized expected utility is 

𝑈(𝑤∗) =
1

2𝛾
𝜇′𝑉−1𝜇 =

𝜃2

2𝛾

where 𝜃2 = 𝜇′𝑉−1𝜇 is the squared Sharpe ratio of the ex ante tangency portfolio of the risky 

assets. 

 This is the well known mean-variance theory pioneered by Markowitz (1952). 

 In practice, the problem is that 𝑤∗ is not computable because 𝜇 and 𝑉 are unknown. As a 

result, the above mean-variance theory is usually applied in two steps. 

 In the first step, the mean and covariance matrix of the asset returns are estimated based on 

the observed data.
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 Given a sample size of 𝑇, the standard maximum likelihood estimators are 

Ƹ𝜇 =
1

𝑇
෍

𝑡=1

𝑇

𝑅𝑡

෠𝑉 =
1

𝑇
෍

𝑡=1

𝑇

( 𝑅𝑡 − Ƹ𝜇)(𝑅𝑡 − Ƹ𝜇)′

 Then, in the second step, these sample estimates are treated as if they were the true 

parameters, and are simply plugged in to compute the estimated optimal portfolio weights, 

ෝ𝑤ML =
1

𝛾
෠𝑉−1 Ƹ𝜇

 The two-step procedure gives rise to a parameter uncertainty problem because it is the 

estimated parameters, not the true ones, that are used to compute the optimal portfolio 

weights. 

 Consequently, the utility associated with the plug-in portfolio weights can be substantially 

different from 𝑈(𝑤∗). 
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 Denote by 𝜃 the vector of all the parameters (both 𝜇 and 𝑉). 

 Mathematically, the two-step procedure maximizes the expected utility conditional on the 

estimated parameters, denoted by ෠𝜃, being equal to the true ones, 

max
𝑤

[ 𝑈(𝑤) | 𝜃 = ෠𝜃]

and the uncertainty or estimation errors are ignored.

 To account for estimation risk, let us specify the posterior distribution of the parameters as

𝑝(𝜇, 𝑉|𝛷𝑇) = 𝑝(𝜇 | 𝑉,Φ𝑇) × 𝑝(𝑉 |Φ𝑇)

with 

𝑝(𝜇 | 𝑉,Φ𝑇) ∝ |𝑉|−1/2𝑒𝑥𝑝{−
1

2
𝑡𝑟[𝑇(𝜇 − Ƹ𝜇)(𝜇 − Ƹ𝜇)′𝑉−1]}

𝑃(𝑉) ∝ |𝑉|−
𝜈
2𝑒𝑥𝑝{−

1

2
𝑡𝑟 𝑉−1(𝑇 ෠𝑉)}

where 𝜈 = 𝑇 + 𝑁. 
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 The predictive distribution is: 

𝑝 𝑅𝑇+1 Φ𝑇 ∝ ෡V + 𝑅𝑇+1 − Ƹ𝜇 𝑅𝑇+1 − Ƹ𝜇 ′/ 𝑇 + 1
− Τ𝑇 2

which is a multivariate 𝑡-distribution with 𝑇 − 𝑁 degrees of freedom. 

 While the problem of estimation error is recognized by Markowitz (1952), it is only in the 70s 

that this problem receives serious attention. 

 Winkler (1973) and Winkle and Barry (1975) are earlier examples of Bayesian studies on 

portfolio choice. 

 Brown (1976, 1978) and Klein and Bawa (1976) lay out independently and clearly the 

Bayesian predictive density approach, especially Brown (1976) who explains thoroughly the 

estimation error problem and the associated Bayesian approach. 
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 Later, Bawa, Brown, and Klein (1979) provide an excellent review of the early literature. 

 Under the diffuse prior, it is known that the Bayesian optimal portfolio weights are 

ෝ𝑤Bayes =
1

𝛾

𝑇 − 𝑁 − 2

𝑇 + 1
෠𝑉−1 Ƹ𝜇

 In contrast with the classical weights ෝ𝑤ML, the Bayesian portfolio is proportion to ෠𝑉−1 Ƹ𝜇, but 

the proportional coefficient is (𝑇 − 𝑁 − 2)/(𝑇 + 1) instead of 1. 

 The coefficient can be substantially smaller when 𝑁 is large relative to 𝑇. 

 Intuitively, the assets are riskier in the Bayesian framework since parameter uncertainty is 

an additional source of risk and this risk is now factored into the portfolio decision. 

 As a result, the overall position in the risky assets are generally smaller than before.
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 However, in the classical framework, ෝ𝑤ML is a biased estimator of the true weights since, 

under the normality assumption, 

𝐸ෝ𝑤ML =
𝑇 − 𝑁 − 2

𝑇
𝑤∗ ≠ 𝑤∗

 Let 

෨𝑉−1 =
𝑇 − N − 2

𝑇
෠𝑉−1

 Then ෨𝑉−1 is an unbiased estimator of 𝑉−1. 

 The unbiased estimator of 𝑤∗ is 

ǉ𝑤 =
1

𝛾

𝑇 − 𝑁 − 2

𝑇
෠𝑉−1 Ƹ𝜇

which is a scalar adjustment of ෝ𝑤ML.
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 The unbiased classical weights differ from their Bayesian counterparts by a scalar 𝑇/(𝑇 + 1). 

 The difference is independent of 𝑁, and is negligible for all practical sample sizes 𝑇. 

 Hence, parameter uncertainty makes little difference between Bayesian and classical 

approaches if the diffuse prior is used. 

 Therefore, to provide new insights, it is important for a Bayesian to use informative priors, 

which is a decisive advantage of the Bayesian approach that can incorporate useful 

information easily into portfolio analysis.

 In the following we show how factor models can be employed to form priors.
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 The Black-Litterman (BL) approach attempts to propose new estimates for expected returns. 

 Indeed, the sample means are simply too noisy.

 Asset pricing models - even if misspecified - could potentially deliver a good guidance.

 To illustrate, you consider a K-factor model (factors are portfolio spreads) and run the time 

series regression

𝑟𝑡
𝑒

𝑁×1
= Ƚ

𝑁×1
+ Ⱦ1

𝑁×1
𝑓1𝑡 + Ⱦ2

𝑁×1
𝑓2𝑡 +⋯+ Ⱦ𝐾

𝑁×1
𝑓𝐾𝑡 + 𝑒𝑡

𝑁×1

 Then the estimated excess mean return is given by

Ƹ𝜇𝑒 = መ𝛽1 Ƹ𝜇𝑓1 +
መ𝛽2 Ƹ𝜇𝑓2 +⋯+ መ𝛽𝐾 Ƹ𝜇𝑓𝐾

where መ𝛽1, መ𝛽2… መ𝛽𝐾 are the sample estimates of the factor loadings, and Ƹ𝜇𝑓1 , Ƹ𝜇𝑓2 … Ƹ𝜇𝑓𝐾 are the 

sample estimates of the factor mean returns.
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 The BL approach combines a model (CAPM) with some views, either relative or absolute, 

about expected returns. 

 The BL vector of mean returns is given by

μ𝐵𝐿
𝑁×1

= ɒ
1×1

Σ
𝑁×𝑁

−1
+ 𝑃′

𝑁×𝐾
Ω−1
𝐾×𝐾

𝑃
𝐾×𝑁

−1

ɒ
1×1

Σ
𝑁×𝑁

−1
μ𝑒𝑞
𝑁×1

+ 𝑃′
𝑁×𝐾

Ω−1
𝐾×𝐾

μ𝑣
𝐾×1

 We need to understand the essence of the following parameters, which characterize the mean 

return vector: σ, 𝜇𝑒𝑞 , 𝑃, 𝜏, Ω, 𝜇𝑣

 Starting from the Σ matrix - you can choose any feasible specification either the sample 

covariance matrix, or the equal correlation, or an asset pricing based covariance.
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 The 𝜇𝑒𝑞, which is the equilibrium vector of expected return, is constructed as follows. 

 Generate 𝜔𝑀𝐾𝑇,  the N ×1 vector denoting the weights of any of the N securities in the market 

portfolio based on market capitalization.  

 Of course, the sum of weights must be unity.

 Then, the price of risk is 𝛾 =
𝜇𝑚−𝑅𝑓

𝜎𝑚
2 where 𝜇𝑚 and 𝜎𝑚

2 are the expected return and variance of 

the market portfolio.

 Later, we will justify this choice for that price of risk.

 One could pick a range of values for 𝛾 and examine performance for each choice. 

 If you work with monthly observations, then switching to the annual frequency does not 

change 𝛾 as both the numerator and denominator are multiplied by 12 under the IID 

assumption. 

 It does change the Sharpe ratio, however, as the standard deviation grows with the horizon 

by the square root of the period, while the expected return grows linearly. 
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 Having at hand both 𝜔𝑀𝐾𝑇 and 𝛾, the equilibrium return vector is given by

𝜇𝑒𝑞 = 𝛾Σ𝜔𝑀𝐾𝑇

 This vector is called neutral mean or equilibrium expected return. 

 To understand why, notice that if you have a utility function that generates the tangency 

portfolio of the form

𝑤𝑇𝑃 =
σ−1 𝜇𝑒

𝜄′ σ−1 𝜇𝑒

 Then using 𝜇𝑒𝑞 as the vector of excess returns on the N assets would deliver 𝜔𝑀𝐾𝑇 as the 

tangency portfolio.
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 The question being – would you get the same vector of equilibrium mean return if you 

directly use the CAPM?

 Yes, if…

 Under the CAPM the vector of excess returns is given by

μ𝑒
𝑁×1

= Ⱦ
𝑁×1

𝜇𝑚
𝑒

𝛽 =
𝑐𝑜𝑣 𝑟𝑒 , 𝑟𝑚

𝑒

𝜎𝑚
2 =

𝑐𝑜𝑣 𝑟𝑒 , 𝑟𝑒 ′𝑤𝑀𝐾𝑇

𝜎𝑚
2 =

σ𝑤𝑀𝐾𝑇

𝜎𝑚
2

𝐶𝐴𝑃𝑀: μ𝑒
𝑁×1

=
σ𝑤𝑀𝐾𝑇

𝜎𝑚
2 𝜇𝑚

𝑒 = 𝛾෍𝑤𝑀𝐾𝑇
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 Since

𝜇𝑚
𝑒 = 𝜇𝑒 ′𝑤𝑀𝐾𝑇 and   𝑟𝑚

𝑒 = 𝑟𝑒 ′𝑤𝑀𝐾𝑇

 Then

𝜇𝑒 =
𝜇𝑚
𝑒

𝜎𝑚
2 σ𝑤𝑀𝐾𝑇 = 𝜇𝑒𝑞

 So indeed, if you use (i) the sample covariance matrix, rather than any other specification, as 

well as (ii) 

𝛾 =
𝜇𝑚 − 𝑅𝑓

𝜎𝑚
2

 Then the BL equilibrium expected returns and expected returns based on the CAPM are 

identical.
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 In the BL approach the investor/econometrician forms some views about expected returns as 

described below.

 P is defined as that matrix which identifies the assets involved in the views. 

 To illustrate, consider two "absolute" views only. 

 The first view says that stock 3 has an expected return of 5% while the second says that stock 

5 will deliver 12%. 

 In general the number of views is K. 

 In our case K=2. 

 Then P is a 2 ×N matrix.

 The first row is all zero except for the third entry which is one. 

 Likewise, the second row is all zero except for the fifth entry which is one.
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 Let us consider now two "relative views".

 Here we could incorporate market anomalies into the BL paradigm.

 Anomalies are cross sectional patterns in stock returns unexplained by the CAPM.

 Example: price momentum, earnings momentum, value, size, accruals, credit risk, dispersion, 

and volatility.

 Let us focus on price momentum and the value effects.

 Assume that both momentum and value investing outperform. 

 The first row of P corresponds to momentum investing. 

 The second row corresponds to value investing. 

 Both the first and second rows contain N elements.
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 Winner stocks are the top 10% performers during the past six months.

 Loser stocks are the bottom 10% performers during the past six months.

 Value stocks are 10% of the stocks having the highest book-to-market ratio.

 Growth stocks are 10% of the stocks having the lowest book-to-market ratios.

 The momentum payoff is a return spread – return on an equal weighted portfolio of winner 

stocks minus return on equal weighted portfolio of loser stocks.

 The value payoff is also a return spread – the return differential between equal weighted 

portfolios of value and growth stocks.
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 Suppose that the investment universe consists of 100 stocks

 The first row gets the value 0.1 if the corresponding stock is a winner (there are 10 winners 

in a universe of 100 stocks). 

 It gets the value -0.1 if the corresponding stock is a loser (there are 10 losers). 

 Otherwise, it gets the value zero. 

 The same idea applies to value investing. 

 Of course, since we have relative views here (e.g., return on winners minus return on losers) 

then the sums of the first row and the sum of the second row are both zero. 

 The same applies to value versus growth stocks.
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 Rule: the sum of the row corresponding to absolute views is one, while the sum of the row 

corresponding to relative views is zero.

 𝜇𝑣 is the K ×1 vector of K views on expected returns. 

 Using the absolute views above 

𝜇𝑣 = 0.05,0.12 ′

 Using the relative views above, the first element is the payoff to momentum trading strategy 

(sample mean); the second element is the payoff to value investing (sample mean). 

 𝛺 is a K ×K covariance matrix expressing uncertainty about views. 

 It is typically assumed to be diagonal. 

 In the absolute views case described above 𝛺 1,1 denotes uncertainty about the first view 

while 𝛺 2,2 denotes uncertainty about the second view – both are at the discretion of the 

econometrician/investor.
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 In the relative views described above: 𝛺 1,1 denotes uncertainty about momentum. This 

could be the sample variance of the momentum payoff. 

 𝛺 2,2 denotes uncertainty about the value payoff. This is the could be the sample variance of 

the value payoff. 

 There are many debates among professionals about the right value of 𝜏. 

 From a conceptual perspective it should be 1/T where T denotes the sample size.

 You can pick 𝜏 = 0.1

 You can also use other values and examine how they perform in real-time investment 

decisions.
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 Consider a sample of size T, e.g., T=60 monthly observations. 

 Let us estimate the mean and covariance of our N assets based on the sample. 

 Then the vector of expected return that serves as an input for asset allocation is given by

𝜇 = Δ−1 + (𝑉𝑠𝑎𝑚𝑝𝑙𝑒/𝑇)
−1 −1

∙ Δ−1𝜇𝐵𝐿 + (𝑉𝑠𝑎𝑚𝑝𝑙𝑒/𝑇)
−1𝜇𝑠𝑎𝑚𝑝𝑙𝑒

where

Δ = (𝜏Σ)−1+𝑃′Ω−1𝑃 −1
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 Pástor (2000) and Pástor and Stambaugh (1999) introduce interesting priors that reflect an 

investor’s degree of belief in an asset pricing model. 

 To see how this class of priors is formed, assume 𝑅𝑡 = (𝑦𝑡 , 𝑥𝑡), where 𝑦𝑡 contains the excess 

returns of 𝑚 non-benchmark positions and 𝑥𝑡 contains the excess returns of 

𝐾 (= 𝑁 −𝑚) benchmark positions.

 Consider a factor model multivariate regression 

𝑦𝑡 = 𝛼 + 𝐵𝑥𝑡 + 𝑢𝑡

where 𝑢𝑡 is an 𝑚 × 1 vector of residuals with zero means and a non-singular covariance 

matrix Σ = 𝑉11 − 𝐵𝑉22𝐵
′, and 𝛼 and 𝐵 are related to 𝜇 and 𝑉 through 

𝛼 = 𝜇1 − 𝐵𝜇2, 𝐵 = 𝑉12𝑉22
−1

where 𝜇𝑖 and 𝑉𝑖𝑗 (𝑖, 𝑗 = 1,2) are the corresponding partitions of 𝜇 and 𝑉, 

𝜇 =
𝜇1
𝜇2

, 𝑉 =
𝑉11 𝑉12
𝑉21 𝑉22
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 For a factor-based asset pricing model, such as the three-factor model of Fama and French 

(1993), the restriction is 𝛼 = 0. 

 To allow for mispricing uncertainty, Pástor (2000), and Pástor and Stambaugh (2000) specify 

the prior distribution of 𝛼 as a normal distribution conditional on Σ, 

𝛼|Σ ∼ 𝑁 0, 𝜎𝛼
2

1

𝑠𝛴
2 Σ

where 𝑠Σ
2 is a suitable prior estimate for the average diagonal elements of Σ. The above alpha-

Sigma link is also explored by MacKinlay and Pástor (2000) in the classical framework. 

 The magnitude of 𝜎𝛼 represents an investor’s level of uncertainty about the pricing ability of 

a given model. 

 When 𝜎𝛼 = 0, the investor believes dogmatically in the model and there is no mispricing 

uncertainty. 

 On the other hand, when 𝜎𝛼 = ∞, the investor believes that the pricing model is entirely 

useless. 
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 Baks, Metrick, and Wachter (JF 2001) (henceforth BMW) and Pastor and Stambaugh (JFE 

2002) have explored the role of prior information about fund performance in making 

investment decisions. 

 BMW consider a mean variance optimizing investor who is largely skeptical about the ability 

of a fund manager to pick stocks and time the market.

 They find that even with a high degree of skepticism about fund performance the investor 

would allocate considerable amounts to actively managed funds. 

 Pastor and Stambaugh nicely extend the BMW methodology to the case where prior 

uncertainly is not only about managerial skills but also about model pricing abilities. 

 In particular, starting from Jensen (1965), mutual fund performance is typically defined as 

the intercept in the regression of the fund’s excess returns on excess return of one or more 

benchmark assets.

 However, the intercept in such time series regressions could reflect a mix of fund 

performance as well as model mispricing. 
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 In particular, consider the case wherein benchmark assets used to define fund performance 

are unable to explain the cross section dispersion of passive assets, that is, the sample alpha 

in the regression of nonbenchmark passive assets on benchmarks assets is nonzero. 

 Then model mispricing emerges in the performance regression. 

 Thus, Pastor and Stambaugh formulate prior beliefs on both performance and mispricing. 

 Geczy, Stambaugh, and Levin (2005) apply the Pastor Stambaugh methodology to study the 

cost of investing in socially responsible mutual funds. 

 Comparing portfolios of these funds to those constructed from the broader fund universe 

reveals the cost of imposing the socially responsible investment (SRI) constraint on investors 

seeking the highest Sharpe ratio. 

 This SRI cost depends crucially on the investor’s views about asset pricing models and stock-

picking skill by fund managers. 
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Mutual Funds: Prior dependence across funds  

 BMW and Pastor and Stambaugh assume that the prior on alpha is independent across 

funds. 

 Jones and Shanken (JFE 2002) show that under such an independence assumption, the 

maximum posterior mean alpha increases without bound as the number of funds increases 

and "extremely large" estimates could randomly be generated. 

 This is true even when fund managers display no skill.

 Thus they propose incorporating prior dependence across funds. 

 Then, investors aggregate information across funds to form a general belief about the 

potential for abnormal performance. 

 Each fund’s alpha estimate is shrunk towards the aggregate estimate, mitigating extreme 

views
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Bayesian Asset Allocation: With Predictive Variables 

 Consider a one-period optimizing investor who must allocate at time 𝑇 funds between the 

value-weighted NYSE index and one-month Treasury bills. 

 The investor makes portfolio decisions based on estimating the predictive system 

𝑟𝑡 = 𝑎 + 𝑏′𝑧𝑡−1 + 𝑢𝑡
𝑧𝑡 = 𝜃 + 𝜌𝑧𝑡−1 + 𝑣𝑡

where 𝑟𝑡 is the continuously compounded NYSE return in month 𝑡 in excess of the 

continuously compounded T-bill rate for that month, 𝑧𝑡−1 is a vector of 𝑀 predictive variables 

observed at the end of month 𝑡 − 1, 𝑏 is a vector of slope coefficients, and 𝑢𝑡 is the regression 

disturbance in month 𝑡. 

 The evolution of the predictive variables is essentially stochastic, as shown earlier. Here, the 

evolution is crucial for understanding expected return and risk over long horizons. 

 The regression residuals are assumed to obey the normal distribution and are IID. 
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 In particular, let 𝜂𝑡 = [𝑢𝑡 , 𝑣𝑡
′]′ then 𝜂𝑡 ∼ 𝑁(0, Σ)

where 

Σ =
𝜎𝑢
2 𝜎𝑢𝑣

𝜎𝑣𝑢 Σ𝑣

 The distribution of 𝑟𝑇+1, e.g., the time 𝑇 + 1 NYSE excess return, conditional on data and 

model parameters is 𝑁(𝑎 + 𝑏′𝑧𝑇 , 𝜎𝑢
2). 

 Assuming the inverted Wishart prior distribution for Σ and multivariate normal prior for the 

intercept and slope coefficients in the predictive system, the Bayesian predictive distribution 

𝑃 𝑟𝑇+1|Φ𝑇 obeys the Student t density. 

 Then, considering a power utility investor with parameter of relative risk aversion denoted 

by 𝛾 the optimization formulation is

𝜔∗ = argmax
𝜔

න
𝑟𝑇+1

(1 − 𝜔) 𝑒𝑥𝑝 ( 𝑟𝑓) + 𝜔 𝑒𝑥𝑝 ( 𝑟𝑓 + 𝑟𝑇+1)
1−𝛾

1 − 𝛾
𝑃 𝑟𝑇+1|Φ𝑇 𝑑𝑟𝑇+1

subject to 𝜔 being nonnegative. 
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Bayesian Asset Allocation

 It is infeasible to have analytic solution for the optimal portfolio. 

 Then, considering a power utility investor with parameter of relative risk aversion denoted 

by 𝛾 the optimization formulation is

𝜔∗ = argmax
𝜔

න
𝑟𝑇+1

(1 − 𝜔) 𝑒𝑥𝑝 ( 𝑟𝑓) + 𝜔 𝑒𝑥𝑝 ( 𝑟𝑓 + 𝑟𝑇+1)
1−𝛾

1 − 𝛾
𝑃 𝑟𝑇+1|Φ𝑇 𝑑𝑟𝑇+1

subject to 𝜔 being nonnegative. 

 Then, given 𝐺 independent draws for 𝑅𝑇+1 from the predictive distribution, the optimal 

portfolio is found by implementing a constrained optimization code to maximize the quantity 

1

𝐺
෍

𝑔=1

𝐺
(1 − 𝜔) 𝑒𝑥𝑝 ( 𝑟𝑓) + 𝜔 𝑒𝑥𝑝 ( 𝑟𝑓 + 𝑅𝑇+1

(𝑔)
)
1−𝛾

1 − 𝛾

subject to 𝜔 being nonnegative. 
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Predictive Regressions with Stochastic Initial Observation

 Let us revisit the predictive regression with one predictor only

𝑟𝑡 = 𝑎 + 𝑏𝑧𝑡−1 + 𝑢𝑡
𝑧𝑡 = 𝜃 + 𝑝𝑧𝑡−1 + 𝑣𝑡

𝑢𝑡
𝑣𝑡

~
0
0

,
𝜎𝑢
2 𝜎𝑢𝑣

𝜎𝑢𝑣 𝜎𝑣
2

 The system of two equations can be re-expressed in the normal multivariate form

𝑅 = 𝑋𝛽 + 𝑢

where R is a 𝑇 × 2 matrix with the first (second) column consisting of excess stock return 

(current values of the predictors) and X is a 𝑇 × 2 matrix with the first (second) column 

consisting of a 𝑇 × 1 vector of ones (lagged values of the predictors).

 Previously we analyzed such multivariable regressions, assuming the initial observation is 

non stochastic. 

 In particular, the posterior is given by (recall from the section on multivariate regression)

Σ −
𝑇+𝑁+1

2 𝑒𝑥𝑝 −
1

2
𝛽 − ෨𝛽 Σ−1 ⊗ ෩Ψ 𝛽 − ෨𝛽 + 𝑡𝑟 ሚ𝑆Σ−1
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Stochastic Initial Observation 

 In the case of stochastic initial observation we multiply this posterior by 𝑃 𝑧0 𝑏, Σ which is

1 − 𝑝2

2𝜋𝜎𝑣
2

1
2

𝑒𝑥𝑝 −
1 − 𝑝2

2𝜎𝑣
2 𝑧0 −

𝜃

1 − 𝑝

2

 Notice that this is the normal distribution with unconditional mean and variance of the 

predictive variables. 

 Integrating the posterior analytically to obtain the marginal posterior density of the 

parameters does not appear to be feasible

 Instead, the posterior density can be obtained using the MH algorithm. 

 The candidate distribution is normal/inverted Wishart 

 See Stambaugh (1999) for a detailed discussion.
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Bayesian Asset Allocation

 Kandel and Stambaugh (1996) show that even when the statistical evidence on predictability, 

as reflected through the 𝑅2 is the predictive regression, is weak, the current values of the 

predictive variables, 𝑧𝑇, can exert a substantial influence on the optimal portfolio.

 Whereas Kandel and Stambaugh (1996) study asset allocation in a single-period framework, 

Barberis (2000) analyzes multi-period investment decisions, considering both a buy-and-hold 

investor as well as an investor who dynamically rebalances the optimal stock-bond allocation. 

 Implementing long horizon asset allocation in a buy-and-hold setup is quite straightforward. 

 In particular, let 𝐾 denote the investment horizon, and let 𝑅𝑇+𝐾 = σ𝑘=1
𝐾 𝑟𝑇+𝑘 be the 

cumulative (continuously compounded) return over the investment horizon.
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Bayesian Asset Allocation
 Avramov (2002) shows that the distribution for 𝑅𝑇+𝐾 conditional on the data (denoted Φ𝑇) 

and set of parameters (denoted Θ) is given by 

𝑅𝑇+𝐾|Θ,Φ𝑇 ∼ 𝑁 𝜆, ϒ

where

𝜆 = 𝐾𝑎 + 𝑏′ (𝜌𝐾 − 𝐼𝑀)(𝜌 − 𝐼𝑀)
−1 𝑧𝑇 + 𝑏′ 𝜌 𝜌𝐾−1 − 𝐼𝑀 (𝜌 − 𝐼𝑀)

−1 − (𝐾 − 1)𝐼𝑀 (𝜌 − 𝐼𝑀)
−1𝜃

ϒ = 𝐾𝜎𝑢
2 +෍

𝑘=1

𝐾

𝛿 (𝑘)Σ𝑣𝛿(𝑘)
′ +෍

𝑘=1

𝐾

𝜎𝑢𝑣 𝛿(𝑘)
′ +෍

𝑘=1

𝐾

𝛿 (𝑘)𝜎𝑣𝑢

𝛿(𝑘) = 𝑏′ 𝜌𝑘−1 − 𝐼𝑀 (𝜌 − 𝐼𝑀)
−1

 Drawing from the Bayesian predictive distribution is done in two steps. 

 First, draw the model parameters Θ from their posterior distribution with either fixed or stochastic 

first observation.

 Second, conditional on model parameters, draw 𝑅𝑇+𝐾 from the normal distribution. 

 The optimal portfolio is accomplished by numerically maximizing

1

𝐺
෍

𝑔=1

𝐺
(1 − 𝜔) 𝑒𝑥𝑝 ( 𝑟𝑓) + 𝜔 𝑒𝑥𝑝 ( 𝑟𝑓 + 𝑅𝑇+𝑘

(𝑔)
)
1−𝛾

1 − 𝛾
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Investment Opportunities: Risk for the Long Run
 The mean and variance in an IID world increase linearly with the investment horizon. 

 There is no horizon effect when (i) returns are IID and (ii) estimation risk is not accounted 

for, as indeed shown by Samuelson (1969) and Merton (1969) in an equilibrium framework. 

 Incorporating estimation risk in an IID setup, Barberis (2000) shows that stocks appear 

riskier in longer horizons.

 Incorporating return predictability and estimation risk, Barberis (2000) shows that investors 

allocate considerably more heavily to equity the longer their horizon. 

 This is not clear ex ante - there is a tradeoff between mean reversion and estimation risk. 

The mean reversion effect appears to be stronger. 
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Risk for the Long Run – Mean Reversion 
 Let 𝑟𝑡 be the cc return in time 𝑡 and 𝑟𝑡+1 be the cc return in time 𝑡 + 1. 

 Assume that 𝑣𝑎𝑟(𝑟𝑡) = 𝑣𝑎𝑟(𝑟𝑡+1). 

 Then the cumulative two period return is 𝑅(𝑡, 𝑡 + 1) = 𝑟𝑡 + 𝑟𝑡+1. 

 The question of interest: is 𝑣𝑎𝑟(𝑅(𝑡, 𝑡 + 1)) greater than equal to or smaller than 2𝑣𝑎𝑟 𝑟𝑡 . 

 Of course if stock returns are iid the variance grows linearly with the investment horizon, as 

long as estimation risk is overlooked. 

 However, let us assume that stock returns can be predictable by the dividend yield:

𝑟𝑡 = 𝛼 + 𝛽𝑑𝑖𝑣𝑡−1 + 𝜖𝑡
𝑑𝑖𝑣𝑡 = 𝜙 + 𝛿𝑑𝑖𝑣𝑡−1 + 𝜂𝑡

where 𝑣𝑎𝑟(𝜖𝑡) = 𝜎1
2, 𝑣𝑎𝑟(𝜂𝑡) = 𝜎2

2, and 𝑐𝑜𝑣(𝜖𝑡 , 𝜂𝑡) = 𝜎12 and the residuals are uncorrelated 

in all leads and lags.
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Risk for the Long Run: Mean Reversion 

 It follows that  

𝑣𝑎𝑟(𝑟𝑡 + 𝑟𝑡+1) = 2𝜎1
2 + 𝛽2𝜎2

2 + 2𝛽𝜎12

 Thus, if 𝛽2𝜎2
2 + 2𝛽𝜎12 < 0 the conditional variance of two period return is less than the twice 

conditional variance of one period return, which is indeed the case based on the empirical 

evidence.

 This is the mean-reversion property. 

 While mean reversion makes stocks appear less risky with the investment horizon, there are 

other effects (estimation risk, uncertainty about current and future mean return) which 

make stocks appear riskier. 

 In the next slide, we decompose the predictive variance of long horizon return to all these 

effects. 
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Risk for the Long Run: The Predictive Variance of Long Horizon 

Cumulative Return

 In the traditional predictive regression setup, the predictive variance consists of four parts:

𝑉𝑎𝑟 𝑟𝑇,𝑇+𝑘|𝐷𝑇 =

a. 𝐸 𝑘𝜎𝑟
2|𝐷𝑇

b. +𝐸 σ𝑖=1
𝑘−12𝑏𝑟 𝐼 − 𝐵𝑥

−1 𝐼 − 𝐵𝑥
𝑖 σ𝑥𝑟 |𝐷𝑇

c. +𝐸 σ𝑖=1
𝑘−1 𝑏𝑟 𝐼 − 𝐵𝑥

−1 𝐼 − 𝐵𝑥
𝑖 σ𝑥 𝑏𝑟 𝐼 − 𝐵𝑥

−1 𝐼 − 𝐵𝑥
𝑖

′
|𝐷𝑇

d. +𝑉𝑎𝑟 𝑘𝑎𝑟 + 𝑏𝑟 𝐼 − 𝐵𝑥
−1 𝑘𝐼 − 𝐼 − 𝐵𝑥

−1 𝐼 − 𝐵𝑥
𝑘 𝑎𝑥 + 𝐼 − 𝐵𝑥

𝑘 𝑥𝑇 |𝐷𝑇

a. iid uncertainty b. mean reversion c. future expected return uncertainty d. estimation risk
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The Predictive Variance of Long Horizon Cumulative 

Return

 The first is the IID component

 The second is the mean-reversion component

 The third reflects the uncertainty about future mean return

 The fourth is the estimation risk component

 In the predictive system of Pastor and Stambaugh (2012) there is a fifth component 

describing uncertainty about current mean return.

 Accounting for model uncertainty induces one more component of the predictive variance 
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Investment Opportunities: Risk for the Long Run
 Pastor and Stambaugh (2012) implement a predictive system to show that stocks may be 

more risky over long horizons from an investment perspective. 

 They exhibit one additional source of uncertainty about current mean return, which increases 

with the horizon. 

 Avramov, Cederbug, and Kvasnakova (2017) suggest model based priors on the return 

dynamics and show that per-period variance can be either higher or lower with the horizon. 

 In particular, prospect theory and habit formation (Long Run Risk) investors perceive less 

(more) risky equities due to strong (weak) mean reversion. 

 Bottom line: Economic theory could give important guidance about investments for the long 

run as the sample is not informative enough.

 The next slide gives more intuition about mean reversion. 
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Model Uncertainly

 Financial economists have identified variables that predict future stock returns, as noted 

earlier. 

 However, the “correct” predictive regression specification has remained an open issue for 

several reasons.

 For one, existing equilibrium pricing theories are not explicit about which variables should 

enter the predictive regression. 

 This aspect is undesirable, as it renders the empirical evidence subject to data over-fitting 

concerns. 

 Indeed, Bossaerts and Hillion (1999) confirm in-sample return predictability, but fail to 

demonstrate out-of-sample predictability. 
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Model Uncertainty 

 Moreover, the multiplicity of potential predictors also makes the empirical evidence difficult 

to interpret.

 For example, one may find an economic variable statistically significant based on a particular 

collection of explanatory variables, but often not based on a competing specification. 

 Given that the true set of predictive variables is virtually unknown, the Bayesian 

methodology of model averaging is attractive, as it explicitly incorporates model uncertainty.

 The idea is to compute posterior probability for each candidate return forecasting model –

then predicted return is the weighted average of return forecasting models with weights 

being the posterior model probabilities. 

 Avramov (2002) derives analytic expressions for model posterior probability. Often numerical 

methods are proposed. 

 Assuming equal prior model probability, the posterior probability is a normalized version of 

the marginal likelihood, which in turn is a mix of two components standing for model 

complexity and goodness-of-fit. 
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Bayesian Asset Allocation under Model Uncertainty 

 In the context of asset allocation, the Bayesian weighted predictive distribution of cumulative 

excess continuously compounded returns averages over the model space, and integrates over 

the posterior distribution that summarizes the within-model uncertainty about Θ𝑗 where 𝑗 is 

the model identifier. It is given by  

𝑃 𝑅𝑇+𝐾|Φ𝑇 =෍

𝑗=1

2𝑀

𝑃 ℳ𝑗|Φ𝑇 න
Θ𝑗

𝑃 Θ𝑗|ℳ𝑗 , Φ𝑇 𝑃 𝑅𝑇+𝐾|ℳ𝑗 , Θ𝑗 , Φ𝑇 𝑑Θ𝑗

where 𝑃 ℳ𝑗|Φ𝑇 is the posterior probability that model ℳ𝑗 is the correct one.

 Drawing from the weighted predictive distribution is done in three steps. 

 First draw the correct model from the distribution of models. 

 Then conditional upon the model implement the two steps, noted above, of drawing future 

stock returns from the model specific Bayesian predictive distribution. 
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Bayesian Asset Allocation - Stock return predictability 

and asset pricing models - informative priors

 The classical approach has examined whether return predictability is explained by rational 

pricing or whether it is due to asset pricing misspecification [see, e.g., Campbell (1987), 

Ferson and Korajczyk (1995), and Kirby (1998)]. 

 Studies such as these approach finance theory by focusing on two polar viewpoints: rejecting 

or not rejecting a pricing model based on hypothesis tests. 

 The Bayesian approach incorporates pricing restrictions on predictive regression parameters 

as a reference point for a hypothetical investor’s prior belief. 

 The investor uses the sample evidence about the extent of predictability to update various 

degrees of belief in a pricing model and then allocates funds across cash and stocks. 

 Pricing models are expected to exert stronger influence on asset allocation when the prior 

confidence in their validity is stronger and when they explain much of the sample evidence on 

predictability. 
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Bayesian Asset Allocation
 In particular, Avramov (2004) models excess returns on 𝑁 investable assets as 

rt = Ƚ(zt−1) + Ⱦft + urt,
Ƚ(zt−1) = Ƚ0 + Ƚ1zt−1
ft = λ(zt−1) + uft
λ(zt−1) = λ0 + λ1zt−1

where 𝑓𝑡 is a set of 𝐾 monthly excess returns on portfolio based factors, 𝛼0 stands for an 𝑁-

vector of the fixed component of asset mispricing, 𝛼1 is an 𝑁 ×𝑀 matrix of the time varying 

component, and 𝛽 is an 𝑁 × 𝐾matrix of factor loadings.

 Now, a conditional version of an asset pricing model (with fixed beta) implies the relation 

𝔼(rt | zt−1) = Ⱦλ(zt−1)

for all 𝑡, where 𝔼 stands for the expected value operator.

 The model imposes restrictions on parameters and goodness of fit in the multivariate 

predictive regression 

𝑟𝑡 = 𝜇0 + 𝜇1𝑧𝑡−1 + 𝑣𝑡

where 𝜇0 is an 𝑁-vector and 𝜇1 is an 𝑁 ×𝑀 matrix of slope coefficients. 
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Bayesian Asset Allocation
rt = (μ0 − Ⱦλ0) + (μ1 − Ⱦλ1)zt−1 + Ⱦft + urt

μ0 = Ƚ0 + Ⱦλ0
μ1 = Ƚ1 + Ⱦλ1.

 That is, under pricing model restrictions where 𝛼0 = 𝛼1 = 0 it follows that: 

μ0 = Ⱦλ0
μ1 = Ⱦλ1

 This means that stock returns are predictable (𝜇1 ≠ 0) iff factors are predictable. 

 Makes sense; after all, under pricing restrictions the systematic component of returns on 𝑁
stocks is captured by 𝐾 common factors. 

 Of course, if we relax the fixed beta assumption - time varying beta could also be a source of 

predictability. More later! 

 Is return predictability explained by asset pricing models? Probably not!

 Kirby (1998) shows that returns are too predictable to be explained by asset pricing models. 

 Ferson and Harvey (1999) show that 𝛼1 ≠ 0. 
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Bayesian Asset Allocation
 Avramov and Chordia (2006) show that strategies that invest in individual stocks 

conditioning on time varying alpha perform extremely well. More later! 

 So, should we disregard asset pricing restrictions? Not necessarily! 

 The notion of rejecting or not rejecting pricing restrictions on predictability reflects extreme 

polar views. 

 What if you are a Bayesian investor who believes pricing models could be useful albeit not 

perfect?

 As discussed earlier, such an approach has been formalized by Black and Litterman (1992) 

and Pastor (2000) in the context of IID returns and by Avramov (2004) who accounts for 

predictability. 

 The idea is to mix the model and data. 

 This is shrinkage approach to asset allocation. 

 Let 𝜇𝑑 and 𝛴𝑑 (𝜇𝑚 and 𝛴𝑚) be the expected return vector and variance covariance matrix 

based on the data (model).
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Bayesian Asset Allocation
 Simplistically speaking, moments used for asset allocation are 

μ = ωμd + (1 − ω)μm
Σ = ωΣd + (1 − ω)Σm

where ω is the shrinkage factor

 In particular, 

 If you completely believe in the model you set ω = 0. 

 If you completely disregard the model you set ω = 1. 

 Going with the shrinkage approach means that 0 < ω < 1. 

 The shrinkage of 𝛴 is quite meaningless in this context. 

 There are other quite useful shrinkage methods of 𝛴 - see, for example, Jagannathan and Ma 

(2005). 
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Bayesian Asset Allocation
 Avramov (2004) derives asset allocation under the pricing restrictions alone, the data alone, 

and pricing restrictions and data combined. 

 He shows that 

— Optimal portfolios based on the pricing restrictions deliver the lowest Sharpe ratios. 

— Completely disregarding pricing restrictions results in the second lowest Sharpe ratios. 

— Much higher Sharpe ratios are obtained when asset allocation is based on the shrinkage 

approach. 
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Could one exploit predictability to design 

outperforming trading strategies?

 Avramov and Chordia (2006), Avramov and Wermers (2006), and Avramov, Kosowski, Naik, 

and Teo (2009) are good references here. 

 Let us start with Avramov and Chordia (2006).

 They study predictability through the out of sample performance of trading strategies that 

invest in individual stocks conditioning on macro variables. 

 They focus on the largest NYSE-AMEX firms by excluding the smallest quartile of firms from 

the sample. 

 They capture 3123 such firms during the July 1972 through November 2003 investment 

period.

 The investment universe contains 973 stocks, on average, per month.
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Bayesian Asset Allocation - The Evolution of Stock 

Returns

 The underlying statistical models for excess stock returns, the market premium, and macro 

variables are 

rt = Ƚ(zt−1) + Ⱦ(zt−1)mktt + vt
Ƚ zt−1 = Ƚ0 + Ƚ1zt−1
Ⱦ(zt−1) = Ⱦ0 + Ⱦ1zt−1
mktt = a + b′zt−1 + ηt
zt = c + dzt−1 + et

 Stock level predictability could come up from: 

1. Model mispricing that varies with changing economic conditions (Ƚ1 ≠ 0); 

2. Factor sensitivities are predictable (Ⱦ1 ≠ 0); 

3. The equity premium is predictable (b ≠ 0).
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Bayesian Asset Allocation
 In the end, time varying model alpha is the major source of predictability and investment 

profitability focusing on individual stocks, portfolios, mutual funds, and hedge funds.

 In the mutual fund and hedge fund context alpha reflects skill (but can also entails 

mispricing). 

 Indeed, alpha reflects skill only if the benchmarks used to measure performance are able to 

price all passive payoffs.
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Bayesian Asset Allocation - The Proposed Strategy

 Avramov and Chordia (2006) form optimal portfolios from the universe of AMEX-NYSE stocks 

over the period 1972 through 2003 with monthly rebalancing on the basis of various models 

for stock returns.

 For instance, when predictability in alpha, beta, and the equity premium is permissible, the 

mean and variance used to form optimal portfolios are 

μt−1 = ෝȽ0 + ෝȽ1zt−1 + ෠Ⱦ(zt−1) ොa + ෠bzt−1

Σt−1 = ෠Ⱦ(zt−1)෠Ⱦ(zt−1)
′ෝσmkt

2 + ෡Ψ

+δ1 ෠Ⱦ(zt−1)෠Ⱦ(zt−1)
′ෝσmkt

2 + δ2෡Ψ
Estimation risk

.

 The trading strategy is obtained by maximizing 

wt = argmax
wt

wt
′μt −

1

2(1/γt − rft)
wt

′ Σt−1 + μt−1μt−1
′ wt

where 𝛾𝑡 is the risk aversion level. 

 We do not permit short selling of stocks but we do allow buying on margin.
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Bayesian Asset Allocation - Performance evaluation
 We implement a recursive scheme: 

 The first optimal portfolio is based on the first 120 months of data on excess returns, 

market premium, and predictors. (That is, the first estimation window is July 1962 

through June 1972.) 

 The second optimal portfolio is based on the first 121 months of data.

 Altogether, we form 377 optimal portfolios on a monthly basis for each model under 

consideration. 

 We record the realized excess return on any strategy 

rp,t+1 = ωt
′rt+1.

 We evaluate the ex-post out-of-sample performance of the trading strategies based on the 

realized returns. 

 Ultimately, we are able to assess the (quite large) economic value of predictability as well as 

show that our strategies successfully rotate across the size, value, and momentum styles 

during changing business conditions.
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Bayesian Asset Allocation - So far, we have shown 
 Over the 1972-2003 investment period, portfolio strategies that condition on macro variables 

outperform the market by about 2% per month. 

 Such strategies generate positive performance even when adjusted by the size, value, and 

momentum factors as well as by the size, book-to-market, and past return characteristics. 

 In the period prior to the discovery of the macro variables, investment profitability is 

primarily attributable to the predictability in the equity premium. 

 In the post-discovery period, the relation between the macro variables and the equity 

premium is attenuated considerably. 

 Nevertheless, incorporating macro variables is beneficial because such variables drive stock-

level alpha and beta variations. 

 Predictability based strategies hold small, growth, and momentum stocks and load less 

(more) heavily on momentum (small) stocks during recessions. 

 Such style rotation has turned out to be successful ex post.

362 Professor Doron Avramov: Topics in Asset Pricing



Bayesian Asset Allocation - Exploiting Predictability in 

Mutual Fund Returns
 Can we use our methodology to generate positive performance based on the universe of 

actively managed no-load equity mutual funds? 

 What do we know about equity mutual funds? 

— In 2015 about $6 trillion is currently invested in U.S. equity mutual funds, making 

them a fundamental part of the portfolio of a domestic investor.

— Active fund management underperforms, on average, passive benchmarks.

— Strategies that attempt to identify subsets of funds using information variables such 

as past returns or new money inflows (“hot hands” or “smart money” strategies) 

underperform when investment payoffs are adjusted the Fama-French and 

momentum benchmarks. 

 Avramov and Wermers (2006) show that strategies that invest in no-load equity funds 

conditioning on macro variables generate substantial positive performance.
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Understanding the SDF approach and the 

Hansen-Jagannathan Distance Measure
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The SDF Approach 
 The absence of arbitrage in a dynamic economy guarantees the existence of a strictly positive 

discount factor that prices all traded assets [see Harisson and Kreps (1979)].

 Asset prices are set by the investors’ first order condition:

E 𝜉𝑡+1𝑅𝑖,𝑡+1|ℐ𝑡 = 1,

 E[• |ℐ𝑡] is the expectation operator conditioned on ℐ𝑡, the full set of information available to 
investors at time 𝑡.

 The fundamental pricing equation holds for any asset either stock, bond, option, or real 
investment opportunity.

 It holds for any two subsequent periods 𝑡 and 𝑡 + 1 of a multi-period model.

 It does not assume complete markets

 It does not assume the existence of a representative investor

 It does not assume equilibrium in financial markets.

 It imposes no distributional assumptions about asset returns nor any particular class of 
preferences

 Let us now replace the consumption-based expression for marginal utility growth with a 
linear model obeying the form

𝜉𝑡+1 = 𝑎𝑡 + 𝑏′𝑡𝑓𝑡+1.
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 Notation: 𝑎𝑡 and 𝑏𝑡 are fixed or time-varying parameters and 𝑓𝑡+1 denotes 𝐾 × 1 vector of 
fundamental factors that are proxies for marginal utility growth.

 Theoretically, the pricing kernel representation is equivalent to the beta pricing specification.

 See equations (14) and (15) in Avramov (2004) and the references therein.

 The CAPM, for one, says that

𝜉𝑡+1 = 𝑎𝑡 + 𝑏𝑡𝑟𝑤,𝑡+1,

where 𝑟𝑤,𝑡+1 is the time 𝑡 + 1 return on a claim to total wealth.

Is the pricing Kernel linear or nonlinear in the factors?
 In a single-period economy the pricing kernel is given by

𝜉𝑡+1 =
𝑈′(𝑊𝑡+1)

𝑈′(𝑊𝑡)
.

 The Taylor’s series expansion of the pricing kernel around 𝑈′(𝑊𝑡) is

𝜉𝑡+1 = 1 +
𝑊𝑡𝑈

′′(𝑊𝑡)

𝑈′(𝑊𝑡)
𝑟𝑤,𝑡+1 + 𝑜(𝑊𝑡),

= 𝑎 + 𝑏𝑟𝑤,𝑡+1,

where 𝑎 = 1 + 𝑜(𝑊𝑡) and 𝑏 is the negative relative risk aversion coefficient.

 This first order approximation results in the traditional CAPM.
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 The second order approximation is given by

𝜉𝑡+1 = 1 +
𝑊𝑡𝑈

′′(𝑊𝑡)

𝑈′(𝑊𝑡)
𝑟𝑤,𝑡+1 +

𝑊𝑡
2𝑈′′′(𝑊𝑡)

2𝑈′(𝑊𝑡)
𝑟𝑤,𝑡+1
2 + 𝑜(𝑊𝑡),

= 𝑎 + 𝑏𝑟𝑤,𝑡+1 + 𝑐𝑟𝑤,𝑡+1
2 .

 This additional factor is related to co skewness in asset returns. 

 Harvey and Siddique (2000) exhibit the relevance of this factor in explaining the cross 

sectional variation in expected returns.

Are pricing kernel parameters fixed or time-varying?

 Let us start with preferences represented by 𝑈(𝑐𝑡) =
𝑐𝑡
1−𝛾

1−𝛾
.

 Take Taylor’s series expansion of the pricing kernel 𝜌
𝑈′(𝑐𝑡+1)

𝑈′(𝑐𝑡)
around 𝑈′(𝑐𝑡) and obtain

𝜉𝑡+1 = 1 − 𝛾Δ𝑐𝑡+1 + 𝑜(𝑐𝑡),

= 𝑎 + 𝑏Δ𝑐𝑡+1.

 Under the power preferences, pricing kernel parameters are time invariate (time varying) if 𝛾
is time invariate (time varying).

 Next, consider the habit-formation economy of Campbell and Cochrane (1999).
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 The utility function under habit formation

𝑈(𝑐𝑡 , 𝑥𝑡) =
(𝐶𝑡−𝐻𝑡)

1−𝛾

1−𝛾
,

where 𝐻𝑡 is the consumption habit.

 Then the pricing kernel parameters are time-varying even when the risk aversion 

parameter is constant. 

 See, e.g., Lettau and Ludvigson (2000). 

 Modeling time variation: assume that 𝑎𝑡 and 𝑏𝑡 are linear functions of 𝑧𝑡 in a conditional 

single-factor model:

𝜉𝑡+1 = 𝑎(𝑧𝑡) + 𝑏(𝑧𝑡)𝑓𝑡+1,

𝑎𝑡 = 𝑎0 + 𝑎1𝑧𝑡 ,

𝑏𝑡 = 𝑏0 + 𝑏1𝑧𝑡 .

 Then a conditional single-factor model becomes an unconditional multifactor model

𝜉𝑡+1 = 𝑎0 + 𝑎1𝑧𝑡 + 𝑏0𝑓𝑡+1 + 𝑏1𝑓𝑡+1𝑧𝑡 .

 The set of factors is = [𝑧𝑡 , 𝑓𝑡+1, 𝑓𝑡+1𝑧𝑡]
′.

 The multi-factor representation is

𝜉𝑡+1 = 𝑎0 + 𝑎1
′𝑧𝑡 + 𝑏0

′𝑓𝑡+1 + 𝑏1
′[𝑓𝑡+1 ⊗ 𝑧𝑡].
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The Hansen Jagannathan — HJ — (1997) 

Distance Measure
 The HJ measure is used for comparing and testing asset pricing models.

 Suppose you want to compare the performance of competing, not necessarily nested, asset 
pricing models. 

 If there is only one asset, then you can compare the pricing error, i.e., the difference between 
the market price of an asset and the hypothetical price implied by a particular SDF.

 However, when there are many assets, it is rather difficult to compare the pricing errors 

across the different candidate SDFs unless pricing errors of one SDF are always smaller 

across all assets. 

 One simple idea would be to examine the pricing error on the portfolio (there are infinitely 

many such portfolios) that is most mispriced by a given model. 

 Then, the superior model is the one with the smallest pricing error. 

 However, there is a practical problem in implementing this simple idea. 

 Suppose there are at least two assets which do not have the same pricing error for a given 

candidate SDF
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 Let 𝑅1𝑡 and 𝑅2𝑡 denote the corresponding gross returns. 

 Suppose that (i) the date 𝑡 − 1 market prices of these payoffs are both unity, and (ii) the model 

assigns prices of 1 + 𝜓𝑖, i.e., the pricing errors are 𝜓1 and 𝜓2. 

 Consider now forming a zero-investment portfolio by going long one dollar in security 1 and short 

one dollar in security 2. 

 The pricing error of this zero-cost position is 𝜓1 − 𝜓2. 

 That is, as long as the difference is not zero the pricing error of any portfolio of the two assets can 

be arbitrarily large by adding a scale multiple of this zero-investment portfolio.

The HJ idea
 HJ propose a way of normalization. 

 They suggest examining the portfolio which has the maximum pricing errors among all portfolio 

payoffs that have the unit second moments. 

 Let us demonstrate
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 Suppose that the SDF is modeled as 

𝜉𝑡(Θ) = Θ0 + Θ𝑣𝑤𝑅𝑡
𝑣𝑤 + Θ𝑝𝑟𝑒𝑚𝑅𝑡−1

𝑝𝑟𝑒𝑚
+ Θ𝑙𝑎𝑏𝑜𝑟𝑅𝑡

𝑙𝑎𝑏𝑜𝑟 = Θ′𝑌𝑡

where 

Θ = [Θ0, Θ𝑣𝑤 , Θ𝑝𝑟𝑒𝑚, Θ𝑙𝑎𝑏𝑜𝑟]
′,

𝑌𝑡 = [1, 𝑅𝑡
𝑣𝑤 , 𝑅𝑡−1

𝑝𝑟𝑒𝑚
, 𝑅𝑡

𝑙𝑎𝑏𝑜𝑟]′

 Moreover, let 𝑅𝑡 = [𝑅1𝑡 , 𝑅2𝑡 , … , 𝑅𝑁𝑡]
′, and let 

𝑓𝑡(Θ) = 𝑅𝑡𝜉𝑡(Θ) − 𝜄𝑁 = 𝑅𝑡𝑌𝑡
′Θ − 𝜄𝑁 .

 Observe that 𝐸[𝑓𝑡(Θ)] is the vector of pricing errors.

 In unconditional models, the number of moment conditions is equal to 𝑁, the number of test assets. 

 HJ show that the maximum pricing error per unity norm of any portfolio of these 𝑁 assets is given 

by 

𝛿 = 𝐸[𝑓𝑡(Θ)′][𝐸(𝑅𝑡𝑅𝑡
′)]−1𝐸[𝑓𝑡(Θ)].

 This is the HJ distance measure - is not the HJ bound.
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 Since the vector Θ is unknown, a natural way to estimate the system is to choose those values that 
minimize the function.

 We can then assess the specification error of a given stochastic discount factor by examining the 
maximum pricing error 𝛿.

 Next, compute some sample moments

𝐷𝑇 =
1

𝑇
σ𝑡=1
𝑇 𝜕𝑓𝑡(𝛩)

𝜕𝛩
=

1

𝑇
σ𝑡=1
𝑇 𝑅𝑡 𝑌𝑡

′ =
1

𝑇
𝑅′𝑌,

𝑔𝑇(Θ) =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡 (Θ) = 𝐷𝑇Θ − 𝜄𝑁 ,

𝐺𝑇 =
1

𝑇
σ𝑡=1
𝑇 𝑅𝑡 𝑅𝑡

′ =
1

𝑇
𝑅′𝑅,

where

𝑅 = [𝑅1, 𝑅2, … , 𝑅𝑇]
′,

𝑌 = [𝑌1, 𝑌2, … , 𝑌𝑇].

 The sample analog of the HJ distance is thus

𝛿𝑇 = min
Θ

𝑔𝑇 (Θ)′𝐺𝑇
−1𝑔𝑇(Θ).

 The first order condition of the minimization problem

minΘ 𝑔𝑇(Θ)𝐺𝑇
−1𝑔𝑇(Θ),
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is given by

𝐷𝑇
′𝐺𝑇

−1𝑔𝑇(Θ) = 0,

which gives an analytic expression for the sample minimizer

෡Θ = 𝐷𝑇
′𝐺𝑇

−1𝐷𝑇
−1𝐷𝑇

′𝐺𝑇
−1𝜄𝑁,

= 𝑇 𝑌′𝑅(𝑅′𝑅)−1𝑅′𝑌 −1𝑌′𝑅(𝑅′𝑅)−1𝜄𝑁.

 It follows that 

𝑔𝑇(෡Θ) = 𝑅′𝑌 𝑌′𝑅(𝑅′𝑅)−1𝑅′𝑌 −1𝑌′𝑅(𝑅′𝑅)−1𝜄𝑁 − 𝜄𝑁

 From Hansen (1982) the asymptotic variance of ෡Θ is given by

𝑣𝑎𝑟(෡Θ) =
1

𝑇
(𝐷𝑇

′𝐺𝑇
−1𝐷𝑇)

−1𝐷𝑇
′𝐺𝑇

−1𝑆𝑇𝐺𝑇
−1𝐷𝑇(𝐷𝑇

′𝐺𝑇
−1𝐷𝑇)

−1

 If the data is serially uncorrelated, the estimate of the variance matrix of pricing errors is 

given by

𝑆𝑇 =
1

𝑇
σ𝑡=1
𝑇 𝑓𝑡 (෡Θ)𝑓𝑡(෡Θ)

′
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 That is, the estimator ෡Θ is equivalent to a GMM estimator defined by Hansen (1982) with the 
moment condition 𝐸[𝑓(Θ)] = 0 and the weighting matrix 𝐺−1.

 If the weighing matrix is optimal in the sense of Hansen (1982), then 𝑇𝛿𝑇
2 is asymptotically a 

random variable of 𝜒2 distribution with 𝑁 −𝑚 dof, where 𝑚 is the dimension of Θ.

 Moreover, the optimal variance of ෡Θ becomes

𝑣𝑎𝑟(෡Θ) =
1

𝑇
(𝐷𝑇

′𝑆𝑇
−1𝐷𝑇)

−1.

 However, 𝐺 is generally not optimal, and thus the distribution of 𝑇𝛿𝑇
2 is not 𝜒𝑁−𝑚

2 .

 Instead, the limiting distribution of this statistic is given by

𝑢 = σ𝑗=1
𝑁−𝑚 𝜆𝑗 𝜈𝑗 ,

where 𝜈1, 𝜈2, … 𝜈𝑁−𝑚 are independent 𝜒2(1) random variables, and 𝜆1, 𝜆2, … 𝜆𝑁−𝑚 are                          

𝑁 −𝑚 nonzero eigenvalues of the matrix 𝐴 given by

𝐴 = 𝑆0.5𝐺′
−0.5

(𝐼𝑁 − (𝐺−0.5)𝐷[𝐷′𝐺−1𝐷]−1

𝐷′𝐺′−0.5)(𝐺−0.5)(𝑆0.5)′,

and where 𝑆0.5 and 𝐺0.5 are the upper-triangle matrices from the Cholesky decomposition of 𝑆
and 𝐺.
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 As long as we have a consistent estimate 𝑆𝑇 of the matrix 𝑆, we can estimate the matrix 𝐴 by 

replacing 𝑆 and 𝐺 by 𝑆𝑇 and 𝐺𝑇, respectively. 

 One can generate a large number of draws from the nonstandard distribution  to determine 

the 𝑝-value of the HJ distance measure, or whether or not it is equal to zero.

 You can follow the below-described algorithm to compute the empirical 𝑝-value: 

1. Compute 𝑇𝛿𝑇
2 = 𝑇𝑔𝑇(෡Θ)𝐺𝑇

1𝑔𝑇(෡Θ). 

2. Obtain the 𝑁 −𝑚 largest eigenvalues of መ𝐴, a consistent estimate of 𝐴. 

3. Generate 𝑁 −𝑚 independent draws from 𝜒2(1). For example, using the Matlab command 𝑔

= 𝑐ℎ𝑖2𝑟𝑛𝑑(𝜈, 1000,1) generates 1000 independent draws from 𝜒2 𝜈

4. Based on these independent draws, compute the statistic 𝑢𝑖

5. If 𝑢𝑖 > 𝑇𝛿𝑇
2 set 𝐼𝑖 = 1. Otherwise set 𝐼𝑖 = 0

6. Repeat steps 3-5 100,000 times

7. The empirical 𝑝-value is given by 
1

100,000
σ𝑖=1
100,000 𝐼𝑖.
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Considering conditional pricing models
 Let us now demonstrate the implementation of the HJ measure when the pricing kernel 

takes the form 

𝜉𝑡+1 = (Θ0
′𝑿𝑡) + (Θ1

′𝑿𝑡)𝑓𝑡+1
1 +⋯+ (Θ𝐾

′𝑿𝑡)𝑓𝑡+1
𝐾 ,

where 𝑿𝒕
′ = [1, 𝒁𝑡

′] and 𝒁𝑡 is an 𝑀 × 1 vector of information variables and 𝑓𝑡+1
𝑘 (𝑘 = [1,2, … , 𝐾]) 

denotes a proxy for marginal utility growth, or a macroeconomy factor.

 As noted earlier the first order condition implies that

𝐸 𝑅𝑡+1 (Θ0
′𝑿𝒕) + (Θ1

′𝑿𝒕)𝑓𝑡+1
1 +⋯+ (Θ𝐾

′𝑿𝒕)𝑓𝑡+1
𝐾 |𝒁𝒕 = 𝜄𝑁 .

 We collect the vector of errors,

𝒇𝑡+1 = 𝑅𝑡+1 (Θ0
′𝑿𝒕) + (Θ1

′𝑿𝒕)𝑓𝑡+1
1 +⋯+ (Θ𝐾

′𝑿𝒕)𝑓𝑡+1
𝐾 − 𝜄𝑁 ,

= 𝑅𝑡+1𝑌𝑡+1
′𝚯− 𝜄𝑁 ,

where 

Θ′ = [Θ0
′, Θ1

′, … , Θ𝐾
′],

𝑌𝑡+1
′ = [𝑿𝒕

′, 𝑿𝒕
′𝑓𝑡+1

1 , … , 𝑿𝒕
′𝑓𝑡+1

𝐾 ].
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 Overall there are (𝐾 + 1)(𝑀 + 1) parameters to estimate. 

 Observe that

𝐸[𝒇𝑡+1|𝒁𝑡] = 0,

and therefore

𝐸 𝒇𝑡+1 ⊗𝒁𝑡 |𝒁𝑡 = 0.

 This forms a set of 𝑁 × (𝑀 + 1) moment conditions given by the compact notation 

𝑔𝑇(Θ) =
1

𝑇
σ𝑡=0
𝑇−1 𝒇𝑡+1 ⊗𝑿𝑡 .

 To estimate and test the model we minimize the quadratic form 

𝛿2 = 𝑔𝑇(Θ)
′𝐺𝑇

−1𝑔𝑇(Θ),

with 𝐷 and 𝐺 being estimated by

𝐷𝑇 =
1

𝑇
σ𝑡=0
𝑇−1 𝑅𝑡+1 ⊗𝑿𝑡 𝑌𝑡+1

′ ,

𝐺𝑇 =
1

𝑇
σ𝑡=0
𝑇−1 (𝑹𝑡+1 ⊗𝑿𝑡)(𝑹𝑡+1 ⊗𝑿𝑡)

′
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 Finally, we get 

𝑔𝑇(෡Θ) = 𝐷𝑇෡Θ − 𝜄𝑁 ⊗ ሜ𝑿 ,

where 

෡Θ = (𝐷𝑇
′𝐺𝑇

−1𝐷𝑇)
−1𝐷𝑇

′𝐺𝑇
−1 𝜄𝑁 ⊗ ሜ𝑿 ,

ሜ𝑿 =
1

𝑇
σ𝑡=0
𝑇−1𝑿𝑡 .

HJ distance measure vs. the standard GMM
 Both the GMM and HJ distance measure are cross sectional tests of asset pricing models. 

1. Since the distance measure is formed using a weighting matrix that is invariate across 

competing SDF candidates it can be used to compare the performance of nested and non-

nested asset pricing models. 

2. In the standard GMM the optimal weighting matrix 𝑆−1 varies across competing 

specifications. 

3. Therefore, the standard GMM cannot be used for comparing misspecification across 

competing models. 
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4. The HJ distance measure avoids the pitfall embedded in the standard GMM of favoring pricing models 

that produce volatile pricing errors. 

5. In the HJ distance measure the weighting matrix is not a function of the parameters, which may result 

in a more stable estimation procedure. 

6. On the other hand, the optimal GMM provides the most efficient estimate among estimates that use 

linear combinations of pricing errors as moments, in the sense that the estimated parameters have the 

smallest asy. covariance

7. While the idea looks neat be careful using the HJ distance measure. 

8. For one, the more factors you throw in (as meaningless as they can get) the smaller the distance to the 

extent that artificial factors are not rejected by the test.

9. Moreover, if one model displays smaller distance it is considered better. That is imprecise as the gap of 

distance measures is a random quantity.

10. Indeed, the HJ statistic applies to large samples while small sample performance is troublesome. 

11. In my opinion, Bayesian methods are more plausible to test and compare models. See in particular, 

Avramov and Chao (2006). 

12. Bayesian econometrics is coming up next. 
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Spectral Analysis in Asset Pricing



 For a comprehensive coverage of the econometrics of spectral analysis it is suggested to 
consult the textbook of John H. Cochrane 
http://faculty.chicagobooth.edu/john.cochrane/research/papers/time_series_book.pd. 

 Surprisingly, there are only a few papers in asset pricing implementing spectral analysis 

 One of the first studies goes back to Daniel and Marshall (1998) – henceforth DM.

 There is a nice follow up work by Yu (2012).

 Here is the motivation of both studies.  

 The sample correlation between the market excess return and consumption growth (on a 
quarterly frequency) is only 0.15. 

 Such low correlation makes it difficult for consumption based models to match the data.

 Low correlation is often attributed to short term frictions including transaction and 
adjustment costs.

 Such factors could be meaningful in high frequencies (short horizons) but they should not 
interrupt the model over low frequencies (long horizons) 

 DM and Yu perform coherence analysis of the consumption growth and excess market return

 Essentially, what the coherence analysis does is to split each of the two series into a set of 

Fourier (periodic) components at different frequencies, and then to determine the correlation 

of a set of Fourier components for the two series around each frequency. 
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 Such correlation is not a single number but rather varies at each frequency

 Since coherence is always positive, the sign of the correlation at different frequencies cannot be 
determined from the coherence spectrum. 

 To identify the sign of the correlation, the co-spectrum can be examined. 

 The co-spectrum at frequency 𝝎 can be interpreted as the portion of the covariance between 
consumption growth and asset returns that is attributable to cycles with frequency 𝝎.

 Since the covariance can be positive or negative, the co-spectrum can also be positive or negative. 

 Spectral analysis also yields the phase relation between the two series, which is a measure of how 

far the series must be shifted to maximize the correlation of the sets of Fourier components.

 The slope of the phase spectrum at any frequency 𝝎 is the group delay at frequency 𝝎 and 

precisely measures the number of leads or lags between consumption growth and asset returns. 

 When this slope is positive, consumption leads the market return and vice versa.

 Therefore, the coherence, co-spectrum, and phase spectrum provide a convenient tool for 
analyzing the lead-lag relation and the correlations at different frequencies between time series.

 DM show that while there is a complete lack of correlation between asset returns and 

consumption growth at high frequencies, the coherence/correlation between the two series at 

lower frequencies is above 60%. 
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 Yu shows how the presence of a persistent habit process leads to an attenuated correlation 

between consumption and returns at low frequencies. 

 Specifically, he shows that as long as the external habit model produces a countercyclical risk 

premium or a pro-cyclical price-dividend ratio, the model implies that the covariation between 

consumption and returns is greater in high-frequency components, whereas in the data, the 

opposite occurs.

 Parker and Julliard (2006) build on the long run correlation to revive the CCAPM in the cross 

section of average return.

 Rather than measuring risk by the contemporaneous covariance of an asset’s return and 

consumption growth, they measure risk by the covariance of an asset’s return and consumption 

growth cumulated over many quarters. 

 They find that while contemporaneous consumption risk explains little of the variation in 

average returns across the 25 Fama-French portfolios, their measure of ultimate consumption 

risk at a horizon of three years explains a large fraction of this variation

 While they don’t use spectral analysis their paper is motivated by the findings of DM

 Otrok, Ravikumarb, and Whiteman (2002) is another paper that implements spectral analysis 

to habit-formation preferences. 
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 They show that habit agents are much more averse to high-frequency fluctuations than to low-

frequency fluctuations, and further, the relatively high equity premium in the habit model is 

determined by a relatively insignificant amount of high-frequency volatility in U.S. consumption.

 Otrok, Ravikumar, and Whiteman (2002) and Yu (2012) basically ask how the price of a 

consumption claim depends on the spectral density of consumption and its relation with returns. 

 As noted by Dew-Becker and Giglio (2016) since the price of the asset reflects a combination of 

preferences and dynamics, it is impossible to evaluate the relative importance of the two.

 Instead, Dew-Becker and Giglio quantify preferences over the dynamics of shocks by deriving 

frequency-specific risk prices that capture the price of risk of consumption fluctuations at each 

frequency

 The frequency-specific risk prices are derived analytically for leading models. 

 The decomposition helps measure the importance of economic fluctuations at different 

frequencies

 They precisely quantify the meaning of long-run in the context of Epstein-Zin preferences and 

measure the exact relevance of business-cycle fluctuations. 

 Last, they estimate frequency-specific risk prices and show that cycles longer than the business 

cycle long-run risks are significantly priced in the equity market
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 Recall, following the notation of Bansal and Yaron (2004) the consumption and dividend 

dynamics are 

𝑥𝑡+1 = 𝜌𝑥𝑡 + 𝜑𝑒𝜎𝑒𝑡+1
𝑔𝑐,𝑡+1 = 𝜇 + 𝑥𝑡 + 𝜎𝜂𝑡+1

𝑔𝑑,𝑡+1 = 𝜇𝑑 + 𝜙𝑥𝑡 + 𝜑𝑑𝜎𝑢𝑡+1

 Then we can show that when Epstein-Zin (1989) recursive preferences excess return on the 

dividend claim can be written as:

𝑟𝑡+1
𝑒 ≈ 𝑟 +

𝜙 −
1
𝜓

1 − 𝑘1𝑚𝜌
𝑘1𝑚𝜑𝑒𝜎𝑒𝑡+1 + 𝜑𝑑𝜎𝑢𝑡+1

where 𝜓 is the IES, 𝑘𝑖𝑚 is the constant in the CS log linearization and 𝜌 = 𝑐𝑜𝑟𝑟(𝜂𝑡+1, 𝑢𝑡+1)

The cospectrum, phase, and long run risk (based on Jianfeng, Yu 2012)
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 The spectral representations of 𝑔𝑐,𝑡 , 𝑟𝑡
𝑒𝑥 , 𝑥𝑡 , 𝑒𝑡 , 𝑢𝑡 , 𝑎𝑛𝑑 𝜂𝑡 are

𝑑𝑍𝑔𝑐 = 𝑒−𝑖𝜆𝑑𝑍𝑥 + 𝜎𝑑𝑍𝜂

𝑑𝑍𝑥 = 𝜌𝑒−𝑖𝜆𝑑𝑍𝑥 + 𝜑𝑒𝜎𝑑𝑍𝑒

𝑑𝑍𝑟 =
𝜙−

1

𝜓

1−𝑘1𝑚𝜌
𝑘1𝑚𝜑𝑒𝜎𝑑𝑍𝑒 + 𝜑𝑑𝜎𝑑𝑍𝑢

 Define 𝐴1𝑚 =
𝜙−

1

𝜓

1−𝑘1,𝑚𝜌
rearrange, and solve for 𝑑𝑍𝑔𝑐 and 𝑑𝑍𝑟 to obtain:

𝑑𝑍𝑔𝑐 =
𝜑𝑒𝜎𝑒

−𝑖𝑤

1 − 𝜌𝑒−𝑖𝑤
𝑑𝑍𝑒 + 𝜎𝑑𝑍𝜂

𝑑𝑍𝑟 = 𝑘1𝑚𝐴1𝑚𝜑𝑒𝜎𝑑𝑍𝑒 + 𝜑𝑑𝜎𝑑𝑍𝑢
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 Thus, the multivariate spectrum is given by

𝑓𝑟𝑟 = 𝑘1𝑚𝐴1𝑚𝜑𝑒𝜎
2 + 𝜑𝑑𝜎

2

𝑓𝑔𝑔 = 𝑒−𝑖𝜆
𝜑𝑒𝜎

1−𝜌𝑒−𝑖𝑤

2

+ 𝜎2

𝑓𝑔𝑟 =
𝑒−𝑖𝑤

1−𝜌𝑒−𝑖𝑤
𝑘1𝑚𝐴1𝑚𝜑𝑒

2𝜎2 + 𝜑𝑑𝜎
2𝜌𝜂𝑢

=
𝑒−𝑖𝑤−𝜌

1+𝜌2−2𝜌𝑐𝑜𝑠 𝑤
𝑘1𝑚𝐴1𝑚𝜑𝑒

2𝜎2 + 𝜑𝑑𝜎
2𝜌𝜂𝑢

 Solving for the cospectrum 𝐶𝑠𝑝 𝑤 , the real part of the cross spectrum 𝑓12 𝑤 , yields:

𝐶𝑠𝑝 𝑤 =
𝑐𝑜𝑠 𝑤 − 𝜌

1 + 𝜌2 − 2𝜌𝑐𝑜𝑠 𝑤
𝑘1𝑚𝐴1𝑚𝜑𝑒

2𝜎2 + 𝜑𝑑𝜎
2𝜌𝜂𝑢
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 Taking the derivative and rearranging the equation yield

𝐶′𝑠𝑝 𝑤 =
𝑠𝑖𝑛 𝑤 𝜌2 − 1

1 + 𝜌2 − 2𝜌𝑐𝑜𝑠 𝑤
2 ∙

𝜙 −
1
𝜓

1 − 𝑘1𝑚𝜌
𝑘1𝑚𝜑𝑒

2𝜎2

 From the expression of 𝑓𝑔𝑟 - under the assumption of 𝜌𝜂𝑢 = 0, we can solve for the phase 

spectrum 𝜙12 𝑤 :

𝑡𝑎𝑛 𝜙12 𝑤 =
−𝑠𝑖𝑛 𝑤 − 𝜌

𝑐𝑜𝑠 𝑤 − 𝜌

 Thus, taking the derivative, it follows that

𝜙′12 𝑤 ∝
ð
−𝑠𝑖𝑛 𝑤 −𝜌

𝑐𝑜𝑠 𝑤 −𝜌

𝜕𝑤

∝ −𝑐𝑜𝑠 𝑤 2 + 𝜌 𝑐𝑜𝑠 𝑤 − 𝑠𝑖𝑛 𝑤 2 − 𝜌𝑠𝑖𝑛 𝑤

= 𝜌 𝑐𝑜𝑠 𝑤 − 𝑠𝑖𝑛 𝑤 − 1 < 0

where ′ ∝ ′ denotes that both sides of ′ ∝ ′ have the same sign. Thus, the phase spectrum is 

always decreasing
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The cospectrum, phase, and Habit formation (based on Jianfeng, Yu 

2012)

 The growth of log consumption is modeled as

𝑔𝑐,𝑡 = 𝜇𝑐 + 𝜀𝑐,𝑡

 The approximated excess return on dividend claim is

𝑟𝑡+1
𝑒 ≈ 𝛼 − 𝛽𝑆෍

𝑗=1

∞

𝜙𝑠
𝑗−1

𝑔𝑐,𝑡+1−𝑗 + 𝛽𝑐𝜀𝑐,𝑡+1 + 𝛽𝛿𝜀𝛿,𝑡+1

 Now let us understand the cospectrum and phase of the joint consumption return process.

 We first replace the consumption and return dynamics using inverse FT

𝑑𝑍𝑔𝑐 𝑤 = 𝑑𝑍𝜀𝑐 𝑤

𝑑𝑍𝑟 𝑤 = −𝛽𝑆෍

𝑗=1

∞

𝜙𝑠
𝑗−1

𝑒𝑥𝑝 −𝑖𝑗𝑤 𝑑𝑍𝑔𝑐 𝑤 +𝛽𝑐𝑑𝑍𝜀𝑐 𝑤 + 𝛽𝛿𝑑𝑍𝜀𝛿 𝑤
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 Notice that

෍

𝑗=1

∞

𝜙𝑠
𝑗−1

𝑒𝑥𝑝 −𝑖𝑗𝑤 =
𝑒𝑥𝑝 −𝑖𝑤

1 − 𝜙𝑠𝑒𝑥𝑝 −𝑖𝑤

 So:

𝑑𝑍𝑟 𝑤 =
−𝛽𝑆𝑒𝑥𝑝 −𝑖𝑤

1−𝜙𝑠𝑒𝑥𝑝 −𝑖𝑤
+ 𝛽𝑐 𝑑𝑍𝜀𝑐 𝑤 + 𝛽𝛿𝑑𝑍𝜀𝛿 𝑤

 Then, the multivariate spectrum is given by

2𝜋𝑓11 𝑤 = 𝜎𝑐
2

2𝜋𝑓22 𝑤 =
−𝛽𝑆𝑒𝑥𝑝 −𝑖𝑤

1 − 𝜙𝑠𝑒𝑥𝑝 −𝑖𝑤
+ 𝛽𝑐

2

𝜎𝑐
2 + 𝛽𝛿

2𝜎𝛿
2

+2𝑅𝑒
−𝛽𝑆𝑒𝑥𝑝 −𝑖𝑤

1 − 𝜙𝑠𝑒𝑥𝑝 −𝑖𝑤
+ 𝛽𝑐 𝛽𝛿𝜎𝑐𝛿
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2𝜋𝑓12 𝑤 =
−𝛽𝑆𝑒𝑥𝑝 −𝑖𝑤

1−𝜙𝑠𝑒𝑥𝑝 −𝑖𝑤
+ 𝛽𝑐

′

𝜎𝑐
2 + 𝛽𝛿𝜎𝑐𝛿

=
𝛽𝑆 𝜙𝑠 − 𝑒𝑥𝑝 𝑖𝑤

1 + 𝜙𝑠
2 − 2𝜙𝑠𝑐𝑜𝑠 𝑤

+ 𝛽𝑐 𝜎𝑐
2 + 𝛽𝛿𝜎𝑐𝛿

 For the cospectrum 𝐶𝑠𝑝 𝑤 the real part of the cross spectrum 𝑓12 𝑤

2𝜋𝐶𝑠𝑝 𝑤 =
𝛽𝑆 𝜙𝑠 − 𝑐𝑜𝑠 𝑤

1 + 𝜙𝑠
2 − 2𝜙𝑠𝑐𝑜𝑠 𝑤

+ 𝛽𝑐 𝜎𝑐
2 + 𝛽𝛿𝜎𝑐𝛿

 Therefore, the derivative of the cospectrum is

𝐶𝑠𝑝
′ 𝑤

= 𝛽𝑆𝜎𝑐
2
𝑠𝑖𝑛 𝑤 1 + 𝜙𝑠

2 − 2𝜙𝑠𝑐𝑜𝑠 𝑤 + 2𝜙𝑠𝑠𝑖𝑛 𝑤 𝑐𝑜𝑠 𝑤 − 𝜙𝑠

1 + 𝜙𝑠
2 − 2𝜙𝑠𝑐𝑜𝑠 𝑤

2

=
𝛽𝑆𝜎𝑐

2𝑠𝑖𝑛 𝑤

1+𝜙𝑠
2−2𝜙𝑠𝑐𝑜𝑠 𝑤

2 1 − 𝜙𝑠
2 2 ≥ 0

and the portion of covariance contributed by components at frequency w is increasing in 

the frequency w.
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 By definition, the coherence and the phase are, respectively

ℎ 𝑤 =
𝑓12

𝑓11𝑓22

𝑡𝑎𝑛 𝜙12 𝑤 =

𝛽𝑆𝑠𝑖𝑛 𝑤
1 + 𝜙𝑠

2 − 2𝜙𝑠𝑐𝑜𝑠 𝑤
𝜎𝑐
2

𝛽𝑆 𝜙𝑠 − 𝑐𝑜𝑠 𝑤

1 + 𝜙𝑠
2 − 2𝜙𝑠𝑐𝑜𝑠 𝑤

+ 𝛽𝑐 𝜎𝑐
2 + 𝛽𝛿𝜎𝑐𝛿

 At the frequency w= 0, the cospectrum is

𝐶𝑠𝑝 0 = −𝛽𝑆
1−𝜙𝑠

1+𝜙𝑠
2−2𝜙𝑠

+ 𝛽𝑐 𝜎𝑐
2 + 𝛽𝛿𝜎𝑐𝛿

= 1 − 𝑎1𝑘1 −
𝑎1 1 − 𝑘1

𝑆 1 − 𝜙𝑠
𝜎𝑐
2 + 𝛽𝛿𝜎𝑐𝛿
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 Therefore, the low-frequency correlation between consumption growth and asset returns is 

negative if and only if

1 − 𝑎1𝑘1 −
𝑎1 1 − 𝑘1

𝑆 1 − 𝜙𝑠
+ 𝛽𝛿

𝜎𝑐𝛿

𝜎𝑐
2 < 0

 By differentiating the following equation

𝑡𝑎𝑛 𝜙12 𝑤 =

𝛽𝑆𝑠𝑖𝑛 𝑤
1 + 𝜙𝑠

2 − 2𝜙𝑠𝑐𝑜𝑠 𝑤
𝜎𝜀
2

𝛽𝑆 𝜙𝑠 − 𝑐𝑜𝑠 𝑤

1 + 𝜙𝑠
2 − 2𝜙𝑠𝑐𝑜𝑠 𝑤

+ 𝛽𝑐 𝜎𝑐
2 + 𝛽𝛿𝜎𝑐𝛿

the sign of the slope of the phase spectrum can be examined
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 To see this, start with

𝜙′12 𝑤

∝ − 𝛽𝑠 𝜙𝑠 − 𝑐𝑜𝑠 𝑤 𝜎𝑐
2 + 𝛽𝑐𝜎𝑐

2 + 𝛽𝛿𝜎𝑐𝛿 1 + 𝜙𝑠
2 − 2𝜙𝑠𝑐𝑜𝑠 𝑤 ∙ 𝛽𝑠𝑐𝑜𝑠 𝑤

+𝛽𝑠𝑠𝑖𝑛 𝑤 𝛽𝑠𝑠𝑖𝑛 𝑤 𝜎𝑐
2 + 2𝜙𝑠 𝛽𝑐𝜎𝑐

2 +𝛽𝛿 𝜎𝑐𝛿 𝑠𝑖𝑛 𝑤

where ∝ denotes that both sides of ∝ have the same sign. 

 Rearrange and simplify to obtain

𝜙′12 𝑤

∝ −
𝑎1 𝑘1𝜙𝑠 −1

𝑆
+ 2𝜙𝑠 1 + 𝑎1𝑘1

1−𝑆

𝑆
+ 2𝜙𝑠𝛽𝛿

𝜎𝑐𝛿

𝜎𝑐
2

− 1 + 𝑎1𝑘1
1 − 𝑆

𝑆
+ 𝛽𝛿

𝜎𝑐𝛿

𝜎𝑐
2 + 𝜙𝑠

2 +
−𝑎1𝑘1𝑆 𝜙𝑠

2

𝑆
+
𝑎1𝜙𝑠

𝑆
+ 𝛽𝛿𝜙𝑠

2
𝜎𝑐𝛿

𝜎𝑐
2 𝑐𝑜𝑠 𝑤

≥ − 1 − 𝑎1𝑘1 − 𝑎1
1−𝑘1

𝑆 1−𝜙𝑠
+ 𝛽𝛿

𝜎𝑐𝛿

𝜎𝑐
2 1 − 𝜙𝑠

2
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 The inequality above requires the assumption

1 − 𝑎1𝑘1 1 + 𝜙𝑠
2 +

𝑎1𝑘1

𝑆
+
𝑎1𝜙𝑠

𝑆
+ 𝛽𝛿 1 + 𝜙𝑠

2
𝜎𝑐𝛿

𝜎𝑐
2 > 0

which is true if the correlation between the innovations of return and consumption is 

positive.

 Thus, the phase spectrum is increasing as long as

1 − 𝑎1𝑘1 −
𝑎1 1 − 𝑘1

𝑆 1 − 𝜙𝑠
+ 𝛽𝛿

𝜎𝑐𝛿

𝜎𝑐
2 + 𝛽𝛿

𝜎𝑐𝛿

𝜎𝑐
2 < 0

and the correlation between the innovations of return and consumption is positive

395 Professor Doron Avramov: Topics in Asset Pricing



Appendix 
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Quality Investing using Return on Invested Capital 

 The Little Book That Beats the Market - by Joel Greenblatt: The idea here is to 

combine only two financial ratios – earnings yield (EBIT / enterprise value) and return on 

capital (EBIT/net fixed assets plus working capital). Greenblatt suggests the “magic 

formula”: purchasing 30 cheap stocks with a high earnings yield and a high return on capital. 

The receipt is below. 

1. Decide on minimum market capitalization (usually greater than $50 million).

2. Exclude utility and financial stocks.

3. Exclude foreign companies (American Depositary Receipts).

4. Compute company's earnings yield = EBIT / enterprise value.

5. Compute company's return on capital = EBIT / (net fixed assets + working capital).

6. Rank all companies above the threshold market capitalization by highest earnings yield 

and highest return on capital. 

7. Invest in 20–30 highest ranked companies.

8. Re-balance portfolio once per year, selling losers one week before the year-mark and 

winners one week after the year mark.
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Quality investing based on the G Score
 G Score: The G-Score is due to Mohanram (2005). It combines traditional fundamentals, such as 

earnings and cash flows, with measures tailored for growth firms, such as earnings stability, growth 

stability and intensity of R&D, capital expenditure and advertising. A long–short strategy based on 

GSCORE earns significant excess returns, though most of the returns come from the short side. 

Thus, to form an attractive trading strategy one could take long positions based on the F-Score or 

the F-score combined with the book-to-market ratio and short positon based on the G-score.

 The formation of the G-score based on 8 binary variables as follow:

 G1 is equal 1 if a firm’s ROA is greater than the contemporaneous median ROA for all low BM 

firms in the same industry and 0 otherwise. ROA, defined as the ratio of net income before 

extraordinary items scaled by average total assets.

 G2=1 if a firm’s cash flow ROA exceeds the contemporaneous median for all low BM firms in the 

same industry and 0 otherwise. Cash flows ROA is similar to the above-defined ROA except that 

operating cash flows replace net income.

 G3=1 if a firm’s cash flow from operations exceeds net income and 0 otherwise. 
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Quality investing based on the G-Score

 G4= 1 if a firm’s earnings variability is less than the contemporaneous median for all low BM 

firms in the same industry and 0 otherwise.

 G5 = 1 it a firm’s sale growth variability is less than the contemporaneous median for all low 

BM firms in the same industry and 0 otherwise. 

 G6, G7 and G8 are defined to equal 1 if a firm’s R&D, capital expenditure and advertising 

intensity respectively, are greater than the contemporaneous medians of the corresponding 

variables for all low BM firms in the same industry and 0 otherwise. The intensity of R&D, 

capital expenditure and advertising are measured by deflating these variables by beginning 

assets.

 The signals relating to profitability and cash flows (G1:G3) as well as those related to conservatism 

(G6:G8) are created using the annualized financials. The two signals earnings variability and sales 

growth variability (G4,G5) are generated from quarterly financials of the past 4 years, with the 

constraint that at least six quarters information be available. While quarterly information might 

induce variability owing to seasonality, the industry adjustment should mitigate this.
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External Financing
 Richardson and Sloan (2003) nicely summarize all external financing transactions in one measure. 

 They show that their comprehensive measure of external financing has a stronger relation with future 
returns relative to measures based on individual transactions. 

 The external financing measure, denoted by Δ𝑋𝐹𝐼𝑁 is the total cash received from issuance of new 
debt and equity offerings minus cash used for retirement of existing debt and equity. All components 
are normalized by the average value of total assets.

 This measure considers all sorts of equity offerings including common and preferred stocks as well as 
all sorts of debt offerings including straight bonds, convertible bonds, bank loans, notes, etc. Interest 
payments on debt as well as dividend payments on preferred stocks are not considered as retiring debt 
or equity. However, dividend payments on common stocks are considered as retiring equity. In 
essence, dividends on common stocks are treated as stock repurchases.

 The Δ𝑋𝐹𝐼𝑁 measure can be decomposed as

Δ𝑋𝐹𝐼𝑁 = Δ𝐶𝐸𝑞𝑢𝑖𝑡𝑦 + Δ𝑃𝐸𝑞𝑢𝑖𝑡𝑦 + Δ𝐷𝑒𝑏𝑡

where: 

 Δ𝐶𝐸𝑞𝑢𝑖𝑡𝑦 is the common equity issuance minus common equity repurchase minus dividend 

 Δ𝑃𝐸𝑞𝑢𝑖𝑡𝑦 is the preferred equity issuance minus retirement and repurchase of preferred stocks 

 Δ𝐷𝑒𝑏𝑡 is the debt issuance minus debt retirement and repurchase
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Downside Risk

 Downside risk is the financial risk associated with losses. 

 There are various down side risk measures which quantify the risk of losses, the 

expected loss given the realization of a loss, or even the worst case scenario 

characterizing a particular investment. 

 All down side risk measures exclusively focus on the left tail of the return distribution, 

whereas volatility measures are both about the upside and downside outcomes. 

 Typical downside risk measures include the Value at Risk (VaR), expected shortfall, 

semi-variance, maximum drawdown, downside beta, and shortfall probability. To 

establish the trading strategy one can focus on VaR, which is a very well-used measure 

in risk management. 

 Down side risk measures are often positively and often negatively associated with 

average returns. 
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Tail risk as a common factor and equity premium predictor 

 Kelly and Jiang (2014) propose the tail exponent as both a common factor and a predictor of the 

equity premium. 

 The tail exponent is an aggregate variable constructed based on daily returns.  

 In particular, consider daily returns of all stocks within a particular month and identify the 5th

percentile of the cross sectional distribution or the return threshold. 

 Then only for those daily returns which fall below the return threshold take the simple average of 

the natural log of return divided by the return threshold

𝜆𝑡 =
1

𝑘𝑡
෍

𝑘=1

𝑘𝑡
𝑙𝑛
𝑟𝑘𝑡
𝑢𝑡

where 𝑘𝑡 is the number of exceedances, 𝑢𝑡 is the return threshold, 𝑟𝑘𝑡 is the daily return that 

falls below the threshold. 

 Perhaps an open question would be how tail risk is associated with other anomalous patterns in 

the cross section of average returns. 
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Proof of result on the maximum Sharpe ratio

 If the SDF is conditionally log-normally distributed, hence we can apply the general formula:

𝑆𝑅𝑡 = 𝑒𝑥𝑝 𝑉𝑎𝑟𝑟 𝑙𝑜𝑔𝑀𝑡+1 − 1 ≈ 𝜎𝑡 𝑙𝑜𝑔𝑀𝑡+1

Proof: use the log-normal formula

𝐸 𝑒𝑥𝑝 𝑋 = 𝑒𝑥𝑝 𝐸 𝑋 +
1

2
𝑉𝑎𝑟 𝑋

and compute

𝐸𝑡 𝑀𝑡+1 = 𝑒𝑥𝑝 𝐸𝑡 𝑙𝑜𝑔𝑀𝑡+1 +
1

2
𝑉𝑎𝑟𝑡 𝑙𝑜𝑔𝑀𝑡+1

𝑉𝑎𝑟𝑡 𝑀𝑡+1 = 𝐸𝑡 𝑀𝑡+1
2 − 𝐸𝑡 𝑀𝑡+1

2

= 𝑒𝑥𝑝 2𝐸𝑡 𝑙𝑜𝑔𝑀𝑡+1 + 2𝑉𝑎𝑟𝑡 𝑙𝑜𝑔𝑀𝑡+1

−𝑒𝑥𝑝 2𝐸𝑡 𝑙𝑜𝑔𝑀𝑡+1 + 𝑉𝑎𝑟𝑡 𝑙𝑜𝑔𝑀𝑡+1

The result follows. 
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