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Machine learning Methods in asset pricing 
 Machine learning offers a vast collection of high-dimensional models designed to predict, explain, 

or classify quantities of interest, while imposing regularization to prevent overfitting.

 In empirical finance, machine learning models have been deployed to predict returns, estimate the 
stochastic discount factor (SDF), extract common factors, and test asset pricing models.

 There are many other applications including the study of mutual funds. 

 Machine learning applies to any asset class, including equities, fixed-income securities, 
currencies, and cryptocurrencies. 

 This set of notes comprehensively covers the architecture of various routines and their broad 
implementations in empirical asset pricing. 

 The routines apply to beta-pricing (IPCA, CA) and pricing kernel (Ridge, GAN) representations. 

 The routines can also apply to reduced-form settings (Ridge, LASSO, NN, LSTM, TE, RL), 
whereas the return-generating process does not conform to any structural representation. 

 IPCA, CA, Ridge, GAN, LASSO, NN, LSTM, TE, and RL are all abbreviations for machine 
learning routines to be explained in detail throughout the notes. 

 I will also discuss how ChatGPT works, building on concepts from stock return prediction. 
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Asset pricing models 

We start with a brief review of asset pricing settings. 

 In unconditional asset pricing, stock return moments are fixed. 

 That is, all model parameters are time-invariant. 

 Conditional models formulate time variation. 

 There are different ways to model time-varying moments. 

 First, risk and risk premia can vary with macro variables (e.g., the dividend-to-price 

ratio) or firm characteristics (e.g., size, book-to-market).

 Second, risk and risk premia can follow a latent ARMA process, e.g., AR(1).

 Third, time variation can be captured through high-frequency data in rolling samples. 

 Theoretically, beta pricing and pricing kernel representations are equivalent.

 Empirical tests, however, could be different. 
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Beta pricing representation 

 In beta pricing settings, the expected excess return of asset i at time t is given by

 𝔼 𝑟𝑖,𝑡
𝑒 = 𝛼𝑖 + 𝛽𝑖

′𝔼(𝑓𝑡) 

where 𝑓𝑡 denotes a set of K portfolio spreads, 𝛽𝑖 is a 𝐾 vector of factor loadings, and 𝛼𝑖 

reflects the expected return component unexplained by factors, or model mispricing.

 The aim is to identify economic (ICAPM) or statistical  (APT) factors that eliminate 

mispricing.

 Absent alpha, the expected return differential across assets is triggered by factor 

loadings only. 

 The presence of model mispricing could give rise to additional cross-sectional effects. 

 The alpha-beta debate: does an anomaly represent a risk factor or instead mispricing?

 An anomaly can also reflect false discovery; hence, t-ratio thresholds should be higher. 
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Pricing kernel representation 

 The pricing kernel representation for asset pricing can be formulated through the Hansen-

Jagannathan equation:

 𝑀𝑡= 1 − 𝑏′(𝑟𝑡 − 𝜇),

     where 𝜇 is an N−vector of expected return and 𝑟𝑡 is an N-vector of realized returns. 

 The unobservable pricing kernel is projected on the space of demeaned returns. 

 Identification of the projection slopes is feasible through the first-order conditions.

 FOCs are also known as the Euler Equation, E(𝑀𝑡 𝑟𝑡)=1, where 1 is an N−vector of ones.

 There are three plausible formulations for the N-vector of slope coefficients. 
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Pricing kernel parameters 

 First, 𝑏 can be constant – amounting to unconditional models. 

 Moreover, b can also vary with macro conditions or firm characteristics. 

 To illustrate, consider variation with firm characteristics.

 We have 𝑏𝑡−1 = 𝐶𝑡−1𝑑, where 𝐶𝑡−1 is an 𝑁 × 𝐻 matrix, 𝐻 characteristics (e.g., size, 

profitability, past returns) for each of the 𝑁 stocks, and 𝑑 is an H× 1 vector.

 Plugging 𝑏𝑡−1 into the pricing kernel yields 

     𝑀𝑡 = 1 − 𝑑′ 𝐶𝑡−1
′ 𝑟𝑡 − 𝐸𝑡−1 𝐶𝑡−1

′ 𝑟𝑡 .

 The quantity 𝐶𝑡−1
′ 𝑟𝑡 can be interpreted as H returns on managed portfolios. 

 Conceptually, the pricing kernel is now projected on the space of H demeaned managed 

portfolio returns. 
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OLS
 Prior to delving into machine learning methods, we start, for perspective, with 

ordinary least squares (OLS).

 OLS is the best linear unbiased estimator of the regression coefficients.

 BLUE=Best Linear Unbiased Estimate. 

 Regression errors do not have to be normal, nor do they have to be 
independently and identically distributed.

 But errors have to be zero mean, serially uncorrelated, as well as homoscedastic.    

 In the presence of heteroskedasticity or autocorrelation, OLS is no longer BLUE.

 We can still use OLS estimators by finding heteroskedasticity-robust estimators 
of the variance, or we can devise an efficient estimator by re-weighting the data 
appropriately to incorporate heteroskedasticity. 

 Similarly, with autocorrelation, we can find an autocorrelation-robust estimator 
of the variance, or we can devise an efficient estimator by re-weighting the data 
appropriately to account for autocorrelation
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Is BLUE so promising?  

 Requiring linearity is binding since nonlinear estimators do exist.

 This is where nonparametric Lasso and neural networks (NN) come to play.

 Likewise, requiring unbiasedness is crucial since biased estimators do exist.

 This is where shrinkage methods come into play: the OLS estimator's variance 

can be too large as OLS coefficients are unregulated. 

 If judged by Mean Squared Error (MSE), alternative biased estimators could be 

more effective if they produce substantially smaller variance within the set of 

linear models. 

 Recall that MSE = Variance + Biased Squared. 

 Likewise, alternative non-linear estimators could be more effective within the 

set of unbiased models. 

 The MSE of an OLS estimate is computed on the next page.
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MSE of OLS  

 Let 𝛽 denote the true regression coefficients and let መ𝛽 = (𝑋′𝑋)−1𝑋′𝑌, where 𝑋 is a 𝑇 × 𝑀 

matrix of de-meaned predictors and 𝑌 is a 𝑇 × 1 vector of the dependent variable. 

 Both 𝛽 and its estimate መ𝛽 are vectors of dimension M.

 The mean squared error (MSE) of the OLS estimate is given by

MSE መ𝛽 = 𝐸 መ𝛽 − 𝛽
′ መ𝛽 − 𝛽

 = 𝐸 tr መ𝛽 − 𝛽
′ መ𝛽 − 𝛽

 = 𝐸 tr መ𝛽 − 𝛽 መ𝛽 − 𝛽
′

 = tr 𝐸 መ𝛽 − 𝛽 መ𝛽 − 𝛽
′

 = tr[ 𝑋′𝑋 −1 𝜎2]

 = 𝜎2tr[ 𝑋′𝑋 −1]. 

 When predictors are highly correlated, the matrix X’X is ill-conditioned and the expression 

tr 𝑋′𝑋 −1  quickly explodes. 
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Shortcomings of OLS  
 In the presence of many predictors, OLS delivers nonzero estimates for all coefficients – thus 

it is difficult to implement variable selection when the true data-generating process is sparse. 

 Interpretation becomes challenging, as even insignificant coefficients contribute to the 

predicted value. 

 The OLS solution is unique only if the design of X is full rank.

 The OLS does not handle potential nonlinearities and interactions between predictors. 

 In summary, OLS is restrictive, often yields poor predictions, may overfit, does not penalize 

model complexity or large coefficients, and can be difficult to interpret.

 Bayesian perspective: one can introduce informed priors on regression coefficients to shrink 

slopes toward zero or values implied by economic theory or sound intuition. 

 Classical perspective: shrinkage methods penalize complexity and impose regularization. 

 Nonlinearities and interactions between predictors can also be accounted for. 

 Such objectives are accomplished through an assortment of machine-learning methods. 
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Stock return Predictability: Economic restrictions on OLS

 Still, there are two easy-going ways to possibly improve OLS estimates. 

 Source: Gu, Kelly, and Xiu (2019). 

 Base case: the pooled OLS estimator corresponds to a panel (balanced) regression of future returns on firm 

attributes, where T and N represent the time-series and the cross-section dimensions. 

 The objective is formulated as

ℒ 𝜃 =
1

𝑁𝑇
෍

𝑖=1

𝑁

෍

𝑡=1

𝑇

𝑟𝑖,𝑡+1 − 𝑓 𝑥𝑖,𝑡; 𝜃
2

 where 𝑟𝑖,𝑡+1 is stock return at time t+1 per firm i, f= 𝑥𝑖,𝑡
′ 𝜃 is the corresponding predicted return, 𝑥𝑖,𝑡  is 

a set of firm characteristics, and 𝜃 stands for model parameters. 

 Predictive performance could be improved using optimization that value weights, rather than 
equal weights, stocks based on market size, inverse volatility (precision), inverse credit risk, etc.
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Stock return Predictability: Economic restrictions on OLS

 An alternative optimization takes account of the heavy tail displayed by stocks and the potential 
harmul effects of outliers. 

 The objective is formulated such that squared (absolute) loss is applied to small (large) errors:

ℒ 𝜃 =
1

𝑁𝑇
෍

𝑖=1

𝑁

෍

𝑡=1

𝑇

𝐻 𝑟𝑖,𝑡+1 − 𝑓 𝑥𝑖,𝑡; 𝜃 , 𝜉

 where 𝜉 is a tuning hyper-parameter and

𝐻 𝑦, 𝜉 =
𝑦2, if 𝑦 ≤ 𝜉

2𝜉 𝑦 − 𝜉2, if 𝑦 > 𝜉

 The hyper-parameter 𝜉 is determined by model performance in a validation sample.

 Later, the selection of hyperparameters is described in detail. 

 At this point, we are ready to proceed with machine learning methods, starting from Ridge. 
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Ridge Regression  

 Ridge is one of several shrinkage methods. 

 Hoerl and Kennard (1970a, 1970b) introduce the Ridge regression

min (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) s. t.  σ𝑗=1
𝑀 𝛽𝑗

2 ≤ 𝑐

 The minimization can be rewritten as 

ℒ 𝛽 = 𝑌 − 𝑋𝛽 ′ 𝑌 − 𝑋𝛽 + 𝜆(𝛽′𝛽)

 We get 
መ𝛽ridge = (𝑋′𝑋 + 𝜆𝐼𝑀)−1𝑋′𝑌

    where 𝐼𝑀  is the identity matrix of order 𝑀. 

 A first-order benefit is that the regression coefficients can be expressed analytically. 

 Notice that including 𝜆 makes the problem nonsingular even when 𝑋′𝑋 is noninvertible.

 𝜆 is a hyperparameter that controls for the amount of regularization.
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Ridge Regression  

 As 𝜆 → 0, the OLS estimator obtains. 

 As 𝜆 → ∞, we have መ𝛽ridge = 0.

 Ridge regressions do not have a sparse representation (dropping irrelevant predictors), so 

using model selection criteria to pick 𝜆 is infeasible. 

 Instead, validation methods are employed.

 In particular, split the sample into three intervals: training, validation, and testing.

 The training sample considers various values for 𝜆 each of which delivers a prediction. 

 The validation sample chooses 𝜆 which provides the smallest MSE. 

 Hence, both training and validation samples are used to pick 𝜆. 

 Then, the experiment is assessed through out-of-sample predictions given the choice of 𝜆. 
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Ridge Regression  

 As shown below, in a Bayesian setting, the parameter 𝜆 denotes the prior precision of beliefs 

that regression slope coefficients are all equal to zero.  

 Precision is the inverse of the variance. 

 Classical perspective: the ridge estimator is essentially biased: 

𝐸 መ𝛽ridge ≠ 𝛽

 There is no bias from a Bayesian perspective because 𝐸 መ𝛽ridge  is the posterior mean of 𝛽.

 The Bayesian analysis combines informed prior views with the likelihood function. 

 The posterior mean is the weighted average of (i) the prior mean and (ii) the sample mean, 

with weights reflecting the precisions of (i) the prior and (ii) the sample estimate, respectively. 
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Interpretations of the Ridge Regression
Interpretation #1: Data Augmentation

 The Ridge-minimization problem can be formulated as

෍

𝑡=1

𝑇

(𝑦𝑡 − 𝑥𝑡
′𝛽)2 + ෍

𝑗=1

𝑀

0 − 𝜆𝛽𝑗

2

 Thus, the Ridge-estimator is the usual OLS estimator where the data is transformed such that

𝑋𝜆 =
𝑋

𝜆𝐼𝑀
, 𝑌𝜆 =

𝑌
0𝑀

      where 0M is an M-vector of zeros. 

 Then, it follows that 
መ𝛽ridge = 𝑋𝜆

′𝑋𝜆
−1𝑋𝜆

′𝑌𝜆

               = (𝑋′𝑋 + 𝜆𝐼𝑀)−1𝑋′𝑌
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Interpretations of the Ridge Regression

Interpretation #2: Informative Bayes Prior

 Suppose the prior on 𝛽 is of the form:

𝛽~𝑁 0,
1

𝜆
𝐼𝑀

 Then, the posterior mean of 𝛽 is:

(𝑋′𝑋 + 𝜆𝐼𝑀)−1𝑋′𝑌

 Bayesian methods are quite useful in asset pricing. 

 For instance, consider the time-series asset pricing regression

𝑟𝑡 = 𝛼 + 𝛽𝑟𝑚𝑡 + 𝜀𝑡

 From a Bayesian perspective, we can formulate informed prior on mispricing

α|𝑉~𝑁 0,
𝜎2

𝑠2 𝑉𝜂

     where V is the covariance matrix of the residuals in time-series asset pricing regressions, 𝑠2 = 𝑡𝑟𝑎𝑐𝑒 𝑉  =
σ𝑗=1

𝑁 𝜆𝑗  and the 𝜆𝑗 − 𝑠 are eigenvalues of 𝑉.
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Interpretations of the Ridge Regression

Interpretation #2: Informative Bayes Prior

 Notice that we can decompose the positive define matrix V as

                                 V= Q𝛬Q’

 Q  is a matrix of ordered eignevectors that are orthogonal and 𝛬 is a diagonal matrix with the 
corresponding ordered eigenvalues.

 Then,  𝑡𝑟𝑎𝑐𝑒 𝑉 = 𝑡𝑟𝑎𝑐𝑒 𝑄𝛬𝑄′ = 𝑡𝑟𝑎𝑐𝑒 𝛬𝑄′𝑄 = 𝑡𝑟𝑎𝑐𝑒 𝛬 = σ𝑗=1
𝑁 𝜆𝑗

 𝜎2 controls for the degree of confidence in the prior, tuned by 𝑡𝑟𝑎𝑐𝑒 𝑉 . 

 Limit cases: zero 𝜎2 means dogmatic beliefs while infinitely large 𝜎2 amounts to noninformative priors. 

 The case 𝜂 = 1 resembles the asset pricing prior of Pastor (2000) and Pastor and Stambaugh (2000).

 The PS prior is flexible since factors are prespecified and are not ordered per their importance, yet there are 

also merits for the 𝜂 = 2 case, which applies to factors that are principal components, as discussed below. 
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Interpretations of the Ridge Regression

 Source: Kozak, Nagel, and Santosh (2020).

 To continue the Bayesian interpretation, consider the Hansen-Jagannathan representation of the 
pricing kernel 

𝑀𝑡 = 1 − 𝑏′ 𝑟𝑡 − 𝜇

                                                                   = 1 − 𝜇′𝑉−1 𝑟𝑡 − 𝜇
 = 1 − 𝜇′𝑄Λ−1𝑄′ 𝑟𝑡 − 𝜇

 = 1 − 𝜇𝑄
′ Λ−1 𝑄𝑡 − 𝜇𝑄

 = 1 − 𝑏𝑄
′ 𝑄𝑡 − 𝜇𝑄

     where the second equation follows by the Euler equation -- E[𝑀𝑡(𝑟𝑡 − 𝜇)]=0. 

 Assuming 𝜇~𝑁 0,
𝜎2

𝑠2 𝑉𝜂 , it follows that 𝜇𝑄 = 𝑄′𝜇 has the prior distribution (V is assumed known)

𝜇𝑄 = 𝑄′𝜇 ~ 𝑁 0,
𝜎2

𝑠2 𝑄′𝑽𝜼𝑄

 ~ 𝑁 0,
𝜎2

𝑠2 𝑄′𝑸𝜦𝜼𝑸′𝑄

 ~ 𝑁 0,
𝜎2

𝑠2 Λ𝜂
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Interpretations of the Ridge Regression
 As 𝑏𝑄 = Λ−1𝜇𝑄, its prior distribution is formulated as (Λ is assumed known):

𝑏𝑄 = Λ−1𝜇𝑄 ~ 𝑁 0,
𝜎2

𝑠2 Λ𝜂−2

 For 𝜂 < 2, the variance of the 𝑏𝑄 coefficients associated with the smallest eigenvalues explodes.

 For 𝜂 = 2, the pricing kernel coefficients 𝑏 = 𝑉−1𝜇 have the prior distribution 

𝑏~𝑁 0,
𝜎2

𝑠2 𝐼𝑁

 Picking 𝜂 = 2 makes the prior of 𝑏 independent of 𝑉.

 Let us stick to this prior and further formulate the likelihood for 𝑏 as

𝑏~𝑁 𝑉−1 ො𝜇,
1

𝑇
𝑉−1

     where ො𝜇 is the sample mean return.

 Then, the posterior mean of 𝑏 is given by  𝐸 𝑏 = 𝑉 + 𝜆𝐼𝑁
−1 ො𝜇 where 𝜆 =

𝑠2

𝑇𝜎2.

 Ridge regression pricing kerenl projected on 𝑁 demeaned returns  with a tuning parameter 𝜆 would deliver 

     the same E(b) coefficient. 

 Or the Ridge (biased) coefficient is equal to the Bayesian posterior mean.  
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Interpretations of the Ridge Regression
 The prior expected value of the squared Sharpe ratio (SR) is given by (V is assumed known):

𝐸 𝑆𝑅2 = 𝐸 𝜇′𝑉−1𝜇
 = 𝐸 𝜇′𝑄Λ−1𝑄′𝜇

 = 𝐸 𝜇𝑄
′ Λ−1𝜇𝑄

 = 𝐸 𝑡𝑟𝑎𝑐𝑒 𝜇𝑄
′ 𝛬−1𝜇𝑄

 = 𝑡𝑟𝑎𝑐𝑒 𝛬−1𝐸 𝜇𝑄𝜇𝑄
′

 =
𝜎2

𝑠2 𝑡𝑟𝑎𝑐𝑒 𝛬𝜂−1

 The Pastor-Stambaugh type prior (𝜂 = 1 ) tells you that

𝐸 𝑆𝑅2 =
𝜎2

𝑠2 𝑡𝑟𝑎𝑐𝑒 𝐼𝑁 = 𝑁
𝜎2

𝑠2

 Thus, each principal component portfolio has the same expected contribution to the Sharpe ratio.

 If 𝜂 = 2, then 

𝐸 𝑆𝑅2 = ෍

𝑗=1

𝑁
𝜎2

𝑠2 𝜆𝑗 = 𝜎2

 Thus, the expected contribution of each PC is proportional to its eigenvalue.

 The derivations are based on knowing V,  the covariance matrix, while a full Bayesian approach would 
formulate the inverted Wishart distribution for V. Then, the entire derivations will be different. 
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Interpretations of the Ridge Regression
Interpretation #3: Eigen-values and Eigen-vectors

 The singular value decomposition (SVD) is the basis for techniques in dimensionality reduction. 

 By the unique SVD, we can express 𝑋 as

𝑋𝑇×𝑀 = 𝑈𝑇×𝑀Λ𝑀×𝑀
0.5 𝑉𝑀×𝑀

′

where 𝑈 = [𝑈1, … , 𝑈𝑀] is a 𝑇 × 𝑀 orthonormal matrix, Λ0.5 =
𝜆1

0.5 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑀

0.5
 is an 𝑀 × 𝑀 matrix 

so that 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑀, and 𝑉 = 𝑉1, 𝑉2, … , 𝑉𝑀  is an 𝑀 × 𝑀 orthonormal matrix.

 As 𝑋′𝑋 = 𝑉Λ𝑉′, the columns of V are the eigenvectors of 𝑋′𝑋 and (𝜆1, … , 𝜆𝑀) are the corresponding 
eigenvalues.

 As 𝑋𝑋′ = 𝑈Λ𝑈′, the columns of U are the eigenvectors of 𝑋𝑋′.

 The SVD facilitates dimensionality reduction by allowing us to focus on the most 
significant components. 

 By retaining only the largest singular values (and their corresponding singular vectors), 
we can approximate the original matrix with lower rank, capturing the essential 
structure while reducing noise and complexity.
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OLS – Eigen-values and Eigen-vectors based analysis
 By the singular value theorem, the OLS estimate can be reformulated as

                                                                    መ𝛽OLS = 𝑋′𝑋 −1𝑋′𝑌

                  = 𝑉Λ𝑉′ −1𝑉Λ0.5𝑈′𝑌

                                                                      = 𝑉Λ−1𝑉′𝑉Λ0.5𝑈′𝑌

 = 𝑉Λ−0.5𝑈′𝑌

= 𝑉 𝑑𝑖𝑎𝑔 𝜆1
−0.5, 𝜆2

−0.5, … , 𝜆𝑀
−0.5 𝑈′𝑌

 The fitted value is
෠𝑌OLS = 𝑋 መ𝛽OLS

= 𝑈Λ0.5𝑉′𝑉 𝑑𝑖𝑎𝑔 𝜆1
−0.5, 𝜆2

−0.5, … , 𝜆𝑀
−0.5 𝑈′𝑌

= 𝑈Λ0.5Λ−0.5𝑈′𝑌
= 𝑈𝑈′𝑌

= ෍
𝑗=1

𝑀

(𝑈𝑗 𝑈𝑗
′) 𝑌

 Interpretation: we project 𝑌 on all the M columns of U.

 For comparison, as we show on the next pages, Ridge gives stronger prominence for columns 
in U associated with higher eigen values, while PCA considers only the first K<M columns.
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Interpretations of the Ridge Regression
 We examine how the predicted value of Y is related to the eigen vectors.

 First, we would like to find the eigenvectors and eigenvalues of the matrix 𝑍

          𝑍 = 𝑋′𝑋 + 𝜆𝐼𝑀

 We know that for every j=1,2…,M, the following holds by definition

𝑋′𝑋 𝑉𝑗 = 𝜆𝑗𝑉𝑗

 Thus

𝑋′𝑋 + 𝜆𝐼𝑀 𝑉𝑗 = 𝑋′𝑋 𝑉𝑗 + 𝜆𝑉𝑗

 = 𝜆𝑗𝑉𝑗 + 𝜆𝑉𝑗

= 𝜆𝑗 + 𝜆 𝑉𝑗

 Telling you that 𝑉 still denotes the eigenvectors of 𝑍 while 𝜆𝑗 + 𝜆 is the 𝑗-th eigenvalue.

 Notice now that if 𝐴 = 𝑉Λ𝑉′ then 𝐴𝐿 = 𝑉Λ𝐿𝑉′, while L can be either positive or negative.

 Hence, there are the same eigenvectors while eigenvalues are raised to the power of 𝐿. 
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Interpretations of the Ridge Regression

 Then, the inverse of the matrix Z is given by

𝑍−1 = 𝑉 𝑑𝑖𝑎𝑔
1

𝜆1 + 𝜆
,

1

𝜆2 + 𝜆
, … ,

1

𝜆𝑀 + 𝜆
𝑉′

 The Ridge regression coefficients are 
መ𝛽ridge = 𝑍−1𝑋′𝑌

= 𝑋′𝑋 + 𝜆𝐼𝑀
−1𝑋′𝑌

 = 𝑉 𝑑𝑖𝑎𝑔
𝜆1

0.5

𝜆1 + 𝜆
,

𝜆2
0.5

𝜆2 + 𝜆
, … ,

𝜆𝑀
0.5

𝜆𝑀 + 𝜆
𝑈′𝑌

 And the fitted value is

෠𝑌ridge = 𝑋 መ𝛽ridge

= ෍
𝑗=1

𝑀

(𝑈𝑗

𝜆𝑗

𝜆𝑗 + 𝜆
𝑈𝑗

′) 𝑌

= 𝑈 𝑑𝑖𝑎𝑔
𝜆1

𝜆1 + 𝜆
,

𝜆2

𝜆2 + 𝜆
, … ,

𝜆𝑀

𝜆𝑀 + 𝜆
𝑈′𝑌

 Ridge regression projects 𝑌 onto components with large 𝜆𝑗, shrinking the coefficients of 
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PCA Vs. OLS Vs. Ridge Regressions

 In a principal components analysis (PCA) setup, we project 𝑌 on a subset of 𝑈𝑗, 𝑗

= 1,2, … , 𝐾 < 𝑀.

 Notice that 𝑈𝑗’s are ordered per their corresponding eigenvalues in a descending order.

 The 𝑋′𝑋 expression is approximated by using the 𝐾 largest eigenvectors and eigenvalues

𝑋′𝑋 = 𝑉Λ𝑉′ ≈ ෨𝑉෩Λ ෨𝑉′ = 𝑉1, … , 𝑉𝐾, 0𝑀×(𝑀−𝐾) 𝑑𝑖𝑎𝑔 𝜆1, 𝜆2, … , 𝜆𝐾, 0(𝑀−𝐾)×1

𝑉1′
⋮

𝑉𝐾′
0(𝑀−𝐾)×𝑀

 Then,

 መ𝛽PCA= ෨𝑉෩Λ ෨𝑉′ −1
𝑉Λ0.5𝑈′𝑌

 = ෨𝑉෩Λ−1 ෨𝑉′𝑉Λ0.5𝑈′𝑌 

= ෨𝑉෩Λ−1 𝐼𝐾×𝐾 0𝐾×𝑀−𝐾

0𝑀−𝐾×𝐾 0𝑀−𝐾×𝑀−𝐾
Λ0.5𝑈′𝑌

 = ෨𝑉 𝑑𝑖𝑎𝑔 𝜆1
−0.5, 𝜆2

−0.5, … , 𝜆𝐾
−0.5, 0,0, . . 𝑈′𝑌
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PCA – the predicted value 
 The PCA predicted value is

                                                                  ෠𝑌PCA = 𝑋 መ𝛽PCA

                                                                           = 𝑈Λ0.5𝑉′𝑉 𝑑𝑖𝑎𝑔 𝜆1
−0.5, 𝜆2

−0.5, … , 𝜆𝐾
−0.5, 0,0, . . 𝑈′𝑌

                                                                           = 𝑈 𝑑𝑖𝑎𝑔 1,1, … , 1,0,0, . . 𝑈′𝑌

                                                                           = σ𝑗=1
𝐾 (𝑈𝑗 𝑈𝑗

′) 𝑌

 PCA projects Y on the K first columns of U, rather than the entire M columns. 

 Later in the notes, I discuss non-linear ways of extracting factors including autoencoder, conditional 

autoencoder (CA), and LSTM.

 Keep in mind that PCA seeks to maximize the variance within the predictors only, without 

considering the relationship with the response variable, aiming to reduce dimensionality while 

retaining as much variance as possible from X. 

 Partial Least Squares (PLS), on the other hand, maximizes the covariance between the predictors and 

the response variables; more on the next slide. 
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Partial Least Squares(PLS)

 The PLS components are called latent variables.

 They are derived from both X and Y and are designed to maximize the correlation 

between X and Y. 

 This makes PLS more effective for predictive modeling because it aligns 

the dimensionality reduction with the prediction task

 PLS Latent Variable Extraction works as follows.

 Let 𝑡1 = X 𝑤1, where  𝑡1is the first latent variable and 𝑤1 is the weight vector.

 The first component 𝑤1 maximizes Cov(X𝑤1, Y)

 It is given by 𝑤1= X’Y; see the solution on the next page.
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Derivation of wᵢ using Lagrange Multiplier

 The objective is to maximize Cov(X 𝑤1, Y) = 𝑤1' X’ Y subject to a unity norm constraint.

 The Lagrangian is given by:

               𝓛(𝑤1, λ) = 𝑤1' X' Y - λ(𝑤1′ 𝑤1 - 1)

 Taking the derivative

          ∂𝓛/∂𝑤1 = X' Y - 2λ𝑤1 = 0

 Solving gives: 𝑤1∝ X’ Y

 The second component is found similarly with the additional orthogonality constraint w.r.t. 

the first component.

 The third component has two orthogonality conditions and so on.
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PLS Regression and Solution for Slope 

 After extracting the latent variables, PLS regresses Y on these components:

        Y = T  C + E, where T is the matrix of latent components, C is the regression 

coefficients, and E is the error 

  The solution for the slope coefficients is given by:

          C = (T'T)⁻¹ T'Y

 This is analogous to the Ordinary Least Squares (OLS) solution but uses the latent 

components instead of the original X matrix.
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PLS – Summary 

 PLS is a dimensionality reduction technique that projects predictors 

(independent variables) and responses (dependent variables) onto a new space, 

maximizing covariance between them.

 Key Features:

1. Correlation Maximization: PLS finds latent components (factors) that explain 

the maximum covariance between the predictors and response variables.

2. Dimensionality Reduction: Like PCA, PLS reduces the number of predictors, 

but it focuses on those that are most predictive of the response.

3. Handling Multicollinearity: PLS is particularly effective when predictors are 

highly collinear, as it constructs orthogonal latent variables that summarize the 

predictor space.

4. Predictive Power: By focusing on the relationship between predictors and 

responses, PLS enhances predictive power compared to methods like PCA that 

ignore the response.
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IPCA: Instrumental Principal Component Analysis 

 IPCA, per Kelly, Pruitt, and Su (2017, 2019), is conceptually closer to PLS than to PCA because 

both IPCA and PLS are supervised methods that incorporate the relationship between the 

predictors and the target variables.

 The factor model for excess returns is formulated as

𝑟𝑖,𝑡+1 = 𝛽′𝑖,𝑡𝑓𝑡+1 + 𝜖𝑖,𝑡+1

𝛽′𝑖,𝑡 = 𝑥′𝑖,𝑡Γ𝛽

 where 𝑓𝑡+1 is a K-vector of latent factors.

 The loadings depend on observable asset characteristics contained in the 𝑀 × 1 vector 

𝑥𝑖,𝑡 the first element is one for the intercept , while Γ𝛽 is an 𝑀 × 𝐾 matrix. 

 Motivation: Gomes, Kogan, and Zhang (2003) formulate an equilibrium model where beta 

varies with firm level predictors, such as size and book-to-market.

 Avramov and Chordia (2006) show empirically that conditional beta that varies with firm 

characteristics improves model pricing abilities. 

 Characteristics can simply reflect covariances, or risk sources. 
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IPCA

 Rewriting the model in a vector form (collecting all the assets at time t):

𝑟𝑡+1 = 𝑋𝑡Γ𝛽𝑓𝑡+1 + 𝜖𝑡+1

 where 𝑟𝑡+1 is an 𝑁 × 1 vector of excess returns (number of assets can be time varying), 𝑋𝑡 is 𝑁 × 𝑀 

matrix of the characteristics, and 𝜖𝑡+1 is an 𝑁 × 1 vector of residuals.

 The estimation objective is to minimize

min
Γ𝛽 ,𝐹

෍

𝑡=1

𝑇−1

𝑟𝑡+1 − 𝑋𝑡Γ𝛽𝑓𝑡+1 ′ 𝑟𝑡+1 − 𝑋𝑡Γ𝛽𝑓𝑡+1

 From the first order condition, we get that for 𝑡 = 1 , 2, … , 𝑇 − 1

መ𝑓𝑡+1 = ෠Γ𝛽′𝑋𝑡′𝑋𝑡
෠Γ𝛽

−1 ෠Γ𝛽
′
𝑍𝑡′𝑟𝑡+1

 and

𝑣𝑒𝑐 ෠Γ𝛽′ = σ𝑡=1
𝑇−1 𝑋𝑡

′𝑋𝑡⨂ መ𝑓𝑡+1
መ𝑓𝑡+1′

−1
σ𝑡=1

𝑇−1 𝑋𝑡⨂ መ𝑓𝑡+1′ ′𝑟𝑡+1 .
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IPCA

 Estimating the IPCA parameters can efficiently be conducted through Bayesian Gibbs Sampling.

 The Bayesian approach is extremely convenient and moreover you can adopt economically 

meaningful prior beliefs on the various coefficients. 

 Kelly, Pruitt, and Su (2017) propose ways of solving the system as well as they give a plausible 

managed portfolio-based interpretation to the problem. 

 Notice that in a static latent factor model, stock returns are formulated as

𝑟𝑡 = 𝛽𝑓𝑡 + 𝜖𝑡

    and the PCA factor solution is

መ𝑓𝑡 = (𝛽′𝛽)−1𝛽′𝑟𝑡

 IPCA is analogous, while it accounts for dynamic instrumented betas. 
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IPCA

 One can also allow for mispricing, where the intercepts in the unrestricted factor model 

vary with the same firm characteristics.

 Then, the model is formulated as
𝑟𝑖,𝑡+1 = 𝑥′𝑖,𝑡Γ𝛼 + 𝑥′𝑖,𝑡Γ𝛽𝑓𝑡+1 + 𝜖𝑖,𝑡+1

 where Γ𝛼 is an 𝐿 × 1 vector.

 Let ෨Γ = Γ𝛼, Γ𝛽  and let ሚ𝑓𝑡+1 = 1, 𝑓𝑡+1′ ′. 

 The model can be rewritten in a matrix form

𝑟𝑡+1 = 𝑋𝑡
෨Γ ሚ𝑓𝑡+1 + 𝜖𝑡+1

 From the first-order minimization condition, we get for 𝑡 = 1 , 2, … , 𝑇 − 1

መሚ𝑓𝑡+1 = ෠෨Γ𝛽′𝑋𝑡′𝑋𝑡
෠෨Γ𝛽

−1
෠෨Γ𝛽

′
𝑋𝑡′ 𝑟𝑡+1 − 𝑋𝑡

෠෨Γ𝛼

 and

𝑣𝑒𝑐 ෠෨Γ′ = σ𝑡=1
𝑇−1 𝑋𝑡′𝑋𝑡⨂ መሚ𝑓𝑡+1

መሚ𝑓𝑡+1′
−1

σ𝑡=1
𝑇−1 𝑋𝑡⨂ መሚ𝑓𝑡+1′ ′𝑟𝑡+1 .
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Lasso(Least Absolute Shrinkage and Selection Operator)

 Tibshirani (1996) was the first to introduce Lasso.

 Lasso simultaneously performs variable selection and coefficient estimation via shrinkage.

 While the ridge regression implements an 𝑙2-penalty, Lasso is an 𝑙1-optimization:

min (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) s. t. ෍

𝑗=1

𝑀

|𝛽𝑗| ≤ 𝑐

 The 𝑙1 penalization approach is called basis pursuit in signal processing. 

 There is, again, a non-negative tuning parameter 𝜆 that controls for the amount of 

regularization:

ℒ 𝛽 = 𝑌 − 𝑋𝛽 ′ 𝑌 − 𝑋𝛽 + 𝜆 ෍

𝑗=1

𝑀

|𝛽𝑗|

 Both Ridge and Lasso have solutions even when 𝑋′𝑋 may not be of full rank (e.g., when there are more 

explanatory variables than time-series observations) or ill conditioned. 
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Lasso – Sparsity 

 Unlike Ridge, the Lasso coefficients cannot be expressed in closed form.

 However, Lasso generates sparse solutions, retaining the variables that matter most.

 This improves the interpretability of regression models. 

 Large enough 𝜆 will set some coefficients exactly to zero.

 To understand why, notice that LASSO can be casted as having a Laplace prior on 𝛽 

     𝑃 𝛽 𝜆 ∝
𝜆

2𝜎
exp −

𝜆 𝛽

𝜎

 Lasso obtains by combining Laplace prior and normal likelihood. 

 Like the normal distribution, Laplace is symmetric.

 Unlike the normal distribution, Laplace spikes at zero (first derivative is discontinuous) and 

it concentrates its probability mass closer to zero than does the normal distribution.

 This explains why Lasso sets some coefficients to zero, while Ridge (normal prior) does not.
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Lasso – picking the shrinkage intensity 

 Because LASSO imposes sparsity, you can use model selection criteria to pick 𝜆

 Can also use a validation sample, as in Ridge. 

 Examples of model selection criteria include AIC, BIC, FIC, and PIC.

Model selection criterion consists of (i) goodness-of-fit and (ii) a penalty factor that 

gets larger as the number of retained variables increases. 

 Occam’s razor: the law of parsimony – thinner models are preferred. 

 Bayesian information criterion (BIC) is often used:

  𝐵𝐼𝐶 = 𝑇 × 𝑙𝑜𝑔
𝑅𝑆𝑆

𝑇
+ 𝑙 ×  𝑙𝑜𝑔 𝑇 , where 𝑙 𝑖s the number of variables retained.

 Different values of lambda affect the optimization in a way that a different set of 

characteristics is retained. 

 You choose 𝜆 as follows: initiate a range of values, compute BIC for each value, and 

pick the one that minimizes BIC. 
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The Spike and Slab Regression

 In all fields of econometrics, there is large uncertainty about whether the true 

underlying model is sparse (as in Lasso) or dense (as in Ridge) —whether only a few 

predictors truly matter, or if many variables have non-trivial influence.

 A spike-and-slab prior introduces a Bayesian framework that addresses this 

uncertainty by learning from the data whether the model is sparse or dense. 

 This dual prior allows the combination of sparse and non-sparse representations.

 The steps are provided below, assuming M candidate predictors of future returns. 

 Consider a binary inclusion vector γ = (γ1, γ2, … γ𝑀)′ where γ𝑖 = 1 indicates the 

inclusion of the i-th variable in the model, and γ𝑖 = 0 indicates its exclusion. 

 In the absence of compelling prior information, we assign a Bernoulli prior with 

probability p to each variable, determining the subset of variables retained in the 

model and the subset that is excluded. 
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The Slack and Slab Regression

 The 'spike' component of the prior concentrates mass at zero for coefficients 

associated with γ𝑖 = 0.

 Conditional on γ, we draw the regression coefficients β from a multivariate normal 

prior, typically with zero mean and a large variance ('slab'), which allows for non-

zero effects when variables are included. 

 The posterior distribution of both the inclusion vector γ and the coefficients β is 

updated using Gibbs Sampling, a type of Markov Chain Monte Carlo (MCMC) 

method. 

 This algorithm iterates between updating γ and β in a stepwise manner based on their 

conditional posterior distributions. 

40 Professor Doron Avramov, IDC, Israel



Step-by-Step Procedure 

 Sample γ𝑖: For each variable, given the current value of β and the observed data, the 

probability that γ𝑖  is updated using the Bernoulli distribution:

         P(γ𝑖  = 1 | β, y, X) ∝ P(y | X, β) P(β | γ)

 Sample β: Conditional on the sampled γ, the regression coefficients are drawn from a 

multivariate normal distribution:

          β | γ, y, X ∼ N (μβ, Σβ)

 These steps are repeated iteratively across thousands of iterations, yielding the 

posterior distributions of γ and β, approximating the true posterior.
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The Spike and Slab Prior Explained 

 The spike component enforces sparsity by placing mass on zero for coefficients 

where the inclusion indicator γ𝑖  = 0. 

 It models the probability that a given variable does not influence the dependent 

variable.

 For variables with γ𝑖  = 1, the corresponding β coefficients are drawn from a normal 

distribution. 

 The variance of this slab prior reflects our belief that included variables can have 

significant but varying effects.

 The combination of spike and slab allows the model to infer which variables should 

be included (sparsity) and which should have non-zero effects (inclusion) based on 

the posterior probability of the coefficients.
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The Spike and Slab - Advantages 

 The spike-and-slab prior adapts to both sparse and dense models, allowing for efficient 

variable selection in high-dimensional settings where the true model structure is uncertain.

 Using Gibbs sampling, we can draw inferences from the posterior distributions of the model 

parameters, accounting for uncertainty in both inclusion (via γ) and coefficients (via β).

 Bayesian econometrics provides a natural framework for incorporating prior beliefs about 

model structure, whether based on theoretical considerations or previous empirical studies. 

 Prior knowledge about the importance of certain variables can be encoded into the model via 

the prior distribution.

 The spike-and-slab prior helps avoid overfitting by penalizing the inclusion of irrelevant 

variables, improving the model's inferences.
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The Adaptive Lasso
 Revisiting LASSO, the approach forces coefficients to be equally penalized.

 One modification is to assign different weights to different coefficients:

     ℒ 𝛽 = 𝑌 − 𝑋𝛽 ′ 𝑌 − 𝑋𝛽 + 𝜆 σ𝑗=1
𝑀 𝑤𝑗|𝛽𝑗|

 It can be shown that if the weights are data driven and are chosen in the right way, the weighted LASSO can have 

the so-called oracle properties even when the LASSO does not have the oracle property. 

 This is the adaptive LASSO.  

 For instance, 𝑤𝑗 can be chosen such that it is equal to one divided by the absolute value of the corresponding 

OLS coefficient raised to the power of 𝛾 > 0. That is, 𝑤𝑗 =
1

𝛽𝑗
𝛾 for 𝑗 = 1, … , 𝑀, where 𝛽𝑗 comes from 

unconstrained optimization (OLS). 

 The adaptive LASSO estimates are given by 

     ℒ 𝛽 = 𝑌 − 𝑋𝛽 ′ 𝑌 − 𝑋𝛽 + 𝜆 σ𝑗=1
𝑀 𝑤𝑗|𝛽𝑗|

 Hyper-parameters 𝜆 and 𝛾 can be chosen using model selection criteria. 

 The adaptive LASSO is a convex optimization problem and thus does not suffer from multiple local minima.

 Later, I describe how adaptive LASSO has been implemented in asset pricing through an RFS paper. 
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Bridge Regression 

 Frank and Friedman (1993) introduce the bridge regression.

 This specification generalizes for ℓq penalty.

 The optimization is given by

     ℒ 𝛽 = 𝑌 − 𝑋𝛽 ′ 𝑌 − 𝑋𝛽 + 𝜆 σ𝑗=1
𝑀 𝛽𝑗

𝑞

 Notice that 𝑞 = 0, 1, 2, correspond to OLS, LASSO, and Ridge, respectively. 

 Moreover, the optimization is convex for 𝑞 ≥ 1 and the solution is sparse for 0
≤ 𝑞 ≤ 1.

 Eventually, q is a hyperparameter to be selected. 

 So, there are two hyperparameters. 

 When the solution is sparse – use model selection criteria to pick 

hyperparameters.

 Otherwise, use a validation sample. 
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The Elastic Net
 The elastic net is yet another regularization and variable selection method.

 Zou and Hastie (2005) describe it as stretchable fishing net that retains “all big fish.”

 Using simulation, they show that it often outperforms Lasso in terms of prediction 

accuracy.

 The elastic net encourages a grouping effect, where strongly correlated predictors tend to 

be in or out of the model together.

 The elastic net is particularly useful when the number of predictors is much larger than 

the number of observations. 

 The naïve version of the elastic net is formulated through

ℒ 𝛽 = 𝑌 − 𝑋𝛽 ′ 𝑌 − 𝑋𝛽 + 𝜆1 ෍
𝑗=1

𝑀

|𝛽𝑗| + 𝜆2 ෍
𝑗=1

𝑀

𝛽𝑗
2

 Thus, the elastic net combines 𝑙1 and 𝑙2 norm penalties.

 It still produces sparse representations.

 Thus, can use model selection to pick the hyperparameters. 
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The Group Lasso

 Suppose the 𝑀 predictors can be classified into L-representing groups.

 In financial economics, you can divide predictive characteristics into 

accounting versus market or technical versus fundamental. 

 Or you can divide the characteristics into valuation ratios, profitability, 

investment, and liquidity.

 Let 𝑀𝑙 denote the number of predictors per group 𝑙.

 Let Xl represent the predictors corresponding to the 𝑙-th group, while 𝛽𝑙 is 

the corresponding coefficient vector.

 Then, 𝛽=[𝛽1
′ , 𝛽2

′ , … , 𝛽𝐿
′ ]’, which amounts to a restricted regression with M 

coefficients but L distinct coefficients. 
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The Group Lasso

 The group Lasso solves the convex optimization problem.

ℒ 𝛽 = 𝑌 − ෍

𝑙=1

𝐿

𝑋𝑙𝛽𝑙

′

𝑌 − ෍

𝑙=1

𝐿

𝑋𝑙𝛽𝑙 + 𝜆 ෍

𝑙=1

𝐿

𝛽𝑙
′𝛽𝑙

1
2

 The group Lasso yields sparsity across the groups, in that some groups are excluded. 

 However, there is no sparsity within a group: if a group of parameters is nonzero, all the 

group members are nonzero.

 The sparse group Lasso criterion yields sparsity

ℒ 𝛽 = 𝑌 − ෍

𝑙=1

𝐿

𝑋𝑙𝛽𝑙

′

𝑌 − ෍

𝑙=1

𝐿

𝑋𝑙𝛽𝑙 + 𝜆1 ෍

𝑙=1

𝐿

𝛽𝑙
′𝛽𝑙

1
2

+ 𝜆2 ෍

𝑗=1

𝑀

𝛽𝑗
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Nonparametric-nonlinear methods 

 Lasso, Adaptive Lasso, Group Lasso, Ridge, Bridge, and Elastic net are all linear or 

parametric approaches for shrinkage.

 Some other parametric approaches (uncovered here) include the smoothed clip absolute 

deviation (SCAD) penalty of Fang and Li (2001) and Fang and Peng (2004) and the 

minimum concave penalty of Zhang (2010). 

 In many applications, however, there is little a priori justification to assume that the 

effects of covariates take a linear form or belong to other known parametric families. 

 Huang, Horowitz, and Wei (2010) thus propose to use a nonparametric approach: the 

adaptive group Lasso for variable selection.

 This approach is based on a spline approximation to the nonparametric components.

 To achieve model selection consistency, they apply Lasso in two steps. 

 First, they use group Lasso to obtain an initial estimator and reduce the dimension of 

the problem. 

 Second, they use the adaptive group Lasso to select the final set of nonparametric 

components. 
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 Cochrane (2011) notes that portfolio sorts are equivalent to nonparametric cross section regressions.

 Following Huang, Horowitz, and Wei (2010), Freyberger, Neuhier, and Weber (2017) study this equivalence formally.

 The cross section of stock returns is modelled as a nonlinear function of firm characteristics: 

𝑟𝑖𝑡 = 𝑚𝑡 𝐶1,𝑖𝑡−1, … , 𝐶𝑆,𝑖𝑡−1 + 𝜖𝑖𝑡 

 Notation: 

 𝑟𝑖𝑡 is the return on firm i at time t.

 𝑚t is a function of S firm characteristics 𝐶1, 𝐶2, … , 𝐶𝑆. 

 Notice, 𝑚t itself is not stock specific but firm characteristics are, just like slopes in cross section regressions

 Consider an additive model of the following form

 𝑚𝑡 𝐶1, … , 𝐶𝑆 = σ𝑠=1
𝑆 𝑚𝑡,𝑠(𝐶𝑠)

 As the additive model implies that 
𝜕2𝑚𝑡 𝑐1,…,𝑐𝑆

𝜕𝑐𝑠𝜕𝑐𝑠′
=0 for 𝑠 ≠ 𝑠′, apparently there should not be no cross dependencies 

between characteristics.

 Such dependencies can still be accomplished through producing more predictors as interactions between characteristics. 

Nonparametric Models in asset pricing 
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 For each characteristic s, let 𝐹𝑠,𝑡 ∙  be a strictly monotone function and let 𝐹𝑠,𝑡
−1 ∙  denote its inverse. 

 Define ሚ𝐶𝑠,𝑖𝑡−1 = 𝐹𝑠,𝑡 𝐶𝑠,𝑖𝑡−1  such that ሚ𝐶𝑠,𝑖𝑡−1  ∈ 0,1 .

 That is, characteristics are monotonically mapped into the [0,1] interval.

 An example for 𝐹𝑠,𝑡 ∙  is the rank function:  𝐹𝑠,𝑡 𝐶𝑠,𝑖𝑡−1 =
𝑟𝑎𝑛𝑘 𝐶𝑠,𝑖𝑡−1

𝑁𝑡
, where 𝑁𝑡 is the total number of firms at time t.

 The aim then is to find  ෥𝑚𝑡 such that

𝑚𝑡 𝐶1, … , 𝐶𝑆 = ෦𝑚𝑡
ሚ𝐶1,𝑖𝑡−1, … , ሚ𝐶𝑠,𝑖𝑡−1

 In particular, to estimate the ෦𝑚𝑡 function, the normalized characteristic interval 0,1  is divided into L subintervals 

(L+1 knots): 0 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝐿−1 < 𝑥𝐿 = 1.

 To illustrate, consider the equal spacing case. 

 Then, 𝑥𝑙 =
𝑙

𝐿
 for l=0,…,L-1 and the intervals are:

 ෩𝐼1 = 𝑥0, 𝑥1 , ෩𝐼𝑙 = 𝑥𝑙−1, 𝑥𝑙  for l=2,…,L-1, and ෩𝐼𝐿 = [𝑥𝐿−1, 𝑥𝐿]

Nonparametric Models
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 Each firm characteristic is transformed into its corresponding interval.

 Estimating the unknown function ෥𝑚𝑡,𝑠 nonparametricaly is done by using quadratic splines.

 A quadratic spline is a differentiable piecewise quadratic function.

 The function ෥𝑚𝑡,𝑠 is approximated by a quadratic function on each interval ෩𝐼𝑙.

 Quadratic functions in each interval are chosen such that ෥𝑚𝑡,𝑠 is continuous and differentiable in the whole 

interval 0,1 .

 ෥𝑚𝑡,𝑠 ǁ𝑐 = σ𝑘=1
𝐿+2 𝛽𝑡𝑠𝑘 × 𝑝𝑘 ǁ𝑐 , where 𝑝𝑘 ǁ𝑐  are basis functions and 𝛽𝑡𝑠𝑘  are estimated slopes.

 In particular, 𝑝1 𝑦 = 1, 𝑝2 𝑦 = 𝑦, 𝑝3 𝑦 = 𝑦2, and 𝑝𝑘 𝑦 = max 𝑦 − 𝑥𝑘−3, 0 2 for 𝑘 = 4, … , 𝐿 + 2

 In that way, you can get a continuous and differentiable function.

 To illustrate, consider the case of two characteristics, e.g., size and book to market (BM), and 3 intervals.

 Then, the ෥𝑚𝑡 function is:
෥𝑚𝑡 ǁ𝑐𝑖,𝑠𝑖𝑧𝑒 , ǁ𝑐𝑖,𝐵𝑀 =

= 𝛽𝑡, 𝑠𝑖𝑧𝑒, 1 × 1 + 𝛽𝑡, 𝑠𝑖𝑧𝑒, 2 × ǁ𝑐𝑖,𝑠𝑖𝑧𝑒 + 𝛽𝑡, 𝑠𝑖𝑧𝑒, 3 × ǁ𝑐𝑖,𝑠𝑖𝑧𝑒
2 + 𝛽𝑡, 𝑠𝑖𝑧𝑒, 4 × max ǁ𝑐𝑖,𝑠𝑖𝑧𝑒 − 1/3,0

2
+ 𝛽𝑡, 𝑠𝑖𝑧𝑒, 5 × max ǁ𝑐𝑖,𝑠𝑖𝑧𝑒 − 2/3,0

2

+ 𝛽𝑡, 𝐵𝑀, 1 × 1 + 𝛽𝑡, 𝐵𝑀, 2 × ǁ𝑐𝑖,𝐵𝑀 + 𝛽𝑡, 𝐵𝑀, 3 × ǁ𝑐𝑖,𝐵𝑀
2 + 𝛽𝑡, 𝐵𝑀, 4 × max ǁ𝑐𝑖,𝐵𝑀 − 1/3,0

2
+ 𝛽𝑡, 𝐵𝑀, 5 × max ǁ𝑐𝑖,𝐵𝑀 − 2/3,0

2

Nonparametric Models
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 The estimation of ෥𝑚𝑡 is done in two steps:

 First step, estimate the slope coefficients 𝑏𝑠𝑘 using the group Lasso routine:

෡𝛽𝑡 = argmin
𝑏𝑠𝑘:𝑠=1,…,𝑆;𝑘=1,…,𝐿+2

෍

𝑖=1

𝑁𝑡

𝑟𝑖𝑡 − ෍

𝑠=1

𝑆

෍

𝑘=1

𝐿+2

𝑏𝑠𝑘 × 𝑝𝑘
ሚ𝐶𝑠,𝑖𝑡−1

2

+ 𝜆1 ෍

𝑠=1

𝑆

෍

𝑘=1

𝐿+2

𝑏𝑠𝑘
2

1/2

 Altogether, the number of 𝑏𝑠𝑘 coefficients is 𝑆 × 𝐿 + 2 .

 The second expression is a penalty term applied to the spline expansion.

 𝜆1 is chosen such that it minimizes the Bayesian Information Criterion (BIC).

 Each characteristic represents a group. 

 The essence of group Lasso is to either include or exclude all L+2 spline terms associated with a given characteristic.

 While this optimization yields a sparse solution there are still many characteristics retained.

 To include only characteristics with strong predictive power the adaptive Lasso is then employed. 

Adaptive group Lasso
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 To implement adaptive group Lasso, define the following weights using estimates for 𝑏𝑠𝑘 from the first step:

𝑤𝑡𝑠 =

෍

𝑘=1

𝐿+2

෨𝑏𝑠𝑘
2

−
1
2

𝑖𝑓 ෍

𝑘=1

𝐿+2

෨𝑏𝑠𝑘
2 ≠ 0

∞ 𝑖𝑓 ෍

𝑘=1

𝐿+2

෨𝑏𝑠𝑘
2 = 0

 Then, estimate again the coefficients 𝑏𝑠𝑘 using the above-estimated weights 𝑤𝑡𝑠

෡𝛽𝑡 = argmin
𝑏𝑠𝑘:𝑠=1,…,𝑆;𝑘=1,…,𝐿+2

෍

𝑖=1

𝑁𝑡

𝑟𝑖𝑡 − ෍

𝑠=1

𝑆

෍

𝑘=1

𝐿+2

𝑏𝑠𝑘 × 𝑝𝑘
ሚ𝐶𝑠,𝑖𝑡−1

2

+ 𝜆2 ෍

𝑠=1

𝑆

𝑤𝑡𝑠 ෍

𝑘=1

𝐿+2

𝑏𝑠𝑘
2

1/2

 𝜆2 is chosen such that it minimizes BIC.

 The above formulation of weights 𝑤𝑡𝑠 guarantees that the second step does not pick characteristics that are 

excluded in the first step.

Adaptive group Lasso
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Regression Trees

 Regression trees are a nonparametric machine learning technique used to model decisions 
based on input variables, resulting in a tree-like structure where each decision (or split) is 
made based on specific criteria. 

 They are particularly useful when predicting outcomes that depend on multiple interacting 
variables and when the relationship between predictors and outcomes is nonlinear.

 In the context of asset returns, a regression tree can be used to decide whether to sort stocks 
by a particular characteristic. 

 If sorting by that characteristic is not effective, the tree can then ask whether another 
characteristic might be more useful. 

 At each decision point (or node), the tree asks whether a cut-off at a specific value of the 
chosen variable would help divide the stocks into two groups—each with similar 
characteristics.

  For example, the tree might ask if sorting stocks by market capitalization and then applying 
a cut-off at a particular value could create two distinct portfolios.
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Regression Trees

 The tree is built by selecting splits that minimize prediction error. 

 Specifically, at each node, the dataset is divided into two subsets that 

minimize the mean squared error (MSE) of predicted returns:

ℒ 𝐶, 𝐶𝑙𝑒𝑓𝑡 , 𝐶𝑟𝑖𝑔ℎ𝑡 =
1

𝑁𝑙𝑒𝑓𝑡
෍ 𝑟𝑖,𝑡+1 − 𝜃𝑙𝑒𝑓𝑡

2
+

1

𝑁𝑟𝑖𝑔ℎ𝑡
෍ 𝑟𝑖,𝑡+1 − 𝜃𝑟𝑖𝑔ℎ𝑡

2

 Notation: C denotes the data set from the preceding step, while the new bins are 𝐶𝑙𝑒𝑓𝑡 and 

𝐶𝑟𝑖𝑔ℎ𝑡 , and the 𝑁 − s are the corresponiding number of observations. 

 The predicted return is the average of returns of all stocks within the group 

𝜃𝑙𝑒𝑓𝑡 =
1

𝑁𝑙𝑒𝑓𝑡
෍

𝑧𝑖,𝑡∈𝐶𝑙𝑒𝑓𝑡

𝑟𝑖,𝑡+1 ; 𝜃𝑟𝑖𝑔ℎ𝑡 =
1

𝑁𝑟𝑖𝑔ℎ𝑡
෍

𝑧𝑖,𝑡∈𝐶𝑟𝑖𝑔ℎ𝑡

𝑟𝑖,𝑡+1
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Pros of Regression Trees

 Simplicity and Interpretability:

• Regression trees are intuitive and easy to interpret. Each split represents a simple decision rule that 
can be visualized, making it easy to understand the relationship between variables and outcomes.

 Nonlinearity and Interactions:

• They naturally capture nonlinear relationships and interactions between predictors without requiring 
complex transformations or assumptions about the underlying data distribution.

 Versatility:

• Regression trees can be used for both regression and classification tasks, making them versatile across 
different domains.

 Handle Missing Data:

• They can handle missing values by splitting the data based on available information, without requiring 
imputation or removal of missing cases.

 No Assumptions on Data Distribution:

• Unlike linear models, regression trees do not require any assumptions about the linearity or normality 
of the data, allowing them to adapt to complex datasets.

 Variable Importance:

• Trees naturally rank variables by importance, as splits are based on the variable that most reduces the 
prediction error at each step.
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Cons of Regression Trees
 Prone to Overfitting:

• Without proper tuning, regression trees can easily overfit the training data, capturing noise rather than underlying patterns. This 
happens when the tree grows too deep with too many nodes.

 Instability:

• Small changes in the data can result in entirely different trees being generated, making them unstable. This is because the splits at 
each step are highly sensitive to variations in the data.

 Bias Toward Dominant Features:

• Regression trees can be biased toward features with more levels or categories. Features with more unique values are more likely to be 
chosen for splits, which may not always reflect true predictive power.

 Limited Predictive Power:

• While easy to interpret, single regression trees often lack predictive accuracy, especially when compared to more sophisticated models 
like random forests, gradient boosting, or neural networks.

 Difficulty Capturing Smooth Relationships:

• Since regression trees use step functions to make predictions, they may struggle to capture smooth relationships between the 
independent and dependent variables.

 Greedy Algorithm:

• The algorithm makes locally optimal decisions at each split, without considering the overall structure of the tree. This can lead to 
suboptimal trees, which might not represent the best global model.

 Need for Pruning:

• To combat overfitting, trees often need to be pruned (i.e., removing branches that add complexity without improving accuracy) , which 
can be computationally intensive and adds an additional layer of complexity.
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Random Forest

 A random forest is an ensemble learning method that combines multiple decision trees to 
improve prediction accuracy and control for overfitting. 

 While a single decision tree may be prone to overfitting by learning too much from the 
training data, a random forest builds several trees using random subsets of the data and 
features, and then aggregates their predictions.

 The process works as follows:

1. Bootstrap Sampling: Each tree in the random forest is trained on a randomly sampled 
subset (with replacement) of the original data.

2. Feature Randomness: At each node within a tree, only a random subset of the features 
is considered for splitting. This increases diversity among the trees and prevents any 
single variable from dominating the predictions.

3. Averaging Predictions: Once all trees are built, the final prediction is made by 
averaging the predictions of each individual tree (in the case of regression) or by 
majority voting (in the case of classification).

 Random forests improve prediction performance by reducing variance. 

 The individual trees might have high variance (i.e., they could overfit the training data), 
but when their predictions are averaged together, the variance is reduced, leading to 
more accurate and robust predictions.
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Neural Networks

 All upcoming machine learning routines will utilize Neural Networks (NN) with varying levels 
of complexity. 

 NNs form the foundation of deep learning and are highly capable of approximating complex 
functions in high-dimensional spaces, as well as capturing intricate time dependencies (e.g., 
LSTM, Transformer Encoders).

 Inspired by the structure of the human brain, NNs consist of layers of "neurons" connected by 
"synapses" that transmit signals between layers.

 NN models ingest data, learn to recognize patterns, and produce predictions.

 NNs have diverse applications, including facial recognition, time series forecasting (e.g., stock 
returns, rainfall), music composition, and self-driving cars.

 The network processes information from an input layer, through one or more hidden layers, 
to an output layer—a structure often called a Feed-Forward Network (FFN).

 The output layer makes predictions similar to fitted values in regression analysis.

 Most data processing occurs in the hidden layers, which consist of interconnected neurons that 
extract complex features.
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Fully connected (dense layer) Network
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Neural Networks
 Each neuron applies a nonlinear activation function f  to its aggregated signal before sending its output to the next layer

 𝑥𝑘
𝑙 = 𝑓(𝜃0 + ෍

𝑗

𝑧𝑗𝜃𝑗)

where 𝑥𝑘
𝑙  corresponds to neuron 𝑘 ∈ 1,2, … , 𝐾𝑙  in the hidden layer 𝑙 ∈ 1,2, … , 𝐿.

  The activation function (or the threshold function) is usually one of the following 

  Sigmoid 𝜎 𝑥 =
1

(1+𝑒−𝑥)

  tanh 𝑥 = 2𝜎 𝑥 − 1

 𝑅𝑒𝐿𝑈(𝑥) = ቊ
0 𝑖𝑓 𝑥 < 0

𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 The sigmoid function is between 0 and 1

 The hyperbolic tangent is between -1 and  1 

 The result of the activation function determines whether the particular neuron will get activated. 

 An activated neuron transmits data to the neuron of the next layer over the channel – forward propagation – data propagates 
through the network. 

 NN is essentially a nonlinear nonparametric regression.

 With a linear activation function, NN boils down to OLS.
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Neural Networks

  For the ReLU activation function, we can rewrite the neural network function as:

𝑜𝑢𝑡𝑝𝑢𝑡 =  max max max 𝑋𝑊hl 
1 , 0 𝑊

hl 

2
, 0 … 𝑊hl 

n , 0 𝑊output

where X is the input, 𝑊hl 
𝑖  are the weight matrix of the neurons in hidden layer

𝑖 ∈ 1, … , 𝑛, n is the number of hidden layers, and 𝑊output are the weighs of the output layer.

 In NN, slopes are termed weights while intercepts are termed biases. 

 Then, run an optimization to minimize the loss function.

 When the predicted variable is continuous, mean squared errors (MSE) can be used for the 
loss function.

 To predict probability or for classification purposes, can use Softmax loss function. 

 If the activation function is linear – simply ignore the MAX operator in the above equation.

 Then the output is XW – boiling down to OLS. 
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 Let us assume two inputs only: market cap and BM (book to market)

 One hidden layer with three neurons: A, B, and C

 W’-s are the slops (weights) while b-s are the intercepts (biases).

 𝑖𝑛𝑝𝑢𝑡𝐴 = 𝑠𝑖𝑧𝑒 × 𝑊𝑠𝑖𝑧𝑒
𝐴 + 𝐵𝑀 × 𝑊𝐵𝑀

𝐴 + 𝑏𝐴

 𝑜𝑢𝑡𝑝𝑢𝑡𝐴 = 𝑚𝑎𝑥 𝑖𝑛𝑝𝑢𝑡𝐴, 0

 𝑖𝑛𝑝𝑢𝑡𝐵 = 𝑠𝑖𝑧𝑒 × 𝑊𝑠𝑖𝑧𝑒
𝐵 + 𝐵𝑀 × 𝑊𝐵𝑀

𝐵 + 𝑏𝐵

 𝑜𝑢𝑡𝑝𝑢𝑡𝐵 = 𝑚𝑎𝑥 𝑖𝑛𝑝𝑢𝑡𝐵, 0

 𝑖𝑛𝑝𝑢𝑡𝐶 = 𝑠𝑖𝑧𝑒 × 𝑊𝑠𝑖𝑧𝑒
𝐶 + 𝐵𝑀 × 𝑊𝐵𝑀

𝐶 + 𝑏𝐶

 𝑜𝑢𝑡𝑝𝑢𝑡𝐶 = 𝑚𝑎𝑥 𝑖𝑛𝑝𝑢𝑡𝐶 , 0

 Output layer (ol):  𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑜𝑢𝑡𝑝𝑢𝑡𝐴 × 𝑊𝐴
𝑜𝑙 + 𝑜𝑢𝑡𝑝𝑢𝑡𝐵 × 𝑊𝐵

𝑜𝑙+𝑜𝑢𝑡𝑝𝑢𝑡𝐶 × 𝑊𝐶
𝑜𝑙+𝑏𝑜𝑙

 The output is the predicted return.

 Implement that procedure for any stock while the parameters are identical across stocks. 

 To find the parameters, you minimize the sum squared errors (realized versus predicted returns) 
by aggregating across all stocks and all months. 

A simple example with ReLU

size

BM

input 

layer

hidden 

layer

output 

layer

A

B

C

ol
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The output Layer – Interpretation

 The output layer is interpreted based on the particular experiment. 

 In supervised learning, the output tries to come close to the label.

 If the label is return, as in the previous example, the output is predicted return.

 If the label is about identifying the top decile of stocks (ones versus zeros), the 

output is about the predicted probability of belonging to the top.

 Further, while in the previous example, the output reflects a scalar, it can also be a 

vector of dimension d. 

 For instance, you apply different weights and biases to predict future returns – 

hence, there are multiple return predictions per stock. 

 Then, if there are 1000 stocks, the intermediate output is 1000 by d matrix.

 You have to convert that matrix to a vector of dimension 1000 by multiplying the 

matrix by a vector of order d, which is yet another set of parameters to estimate. 
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Hyperparameters 

 The number of hidden layers and the number of neurons per layer are both hyperparameters.

 The regularization (next page) parameters are also hyperparameters. 

 The learning rate (coming up soon) establishes yet another hyperparameter.  

 Can split the sample into three pieces: training, validation, and testing. 

 To illustrate, suppose the sample spans the January 1981 till the end of 2024.

 Use the first twenty years as training – January 1981 till December 2000. 

 Use the next ten years as validation – January 2001 till December 2010.

 Then, generate one year of monthly predictions – for the year 2011.

 Next…

 Training sample becomes January 1981 till December 2001.

 Validation sample becomes January 2002 till December 2011.

 Generate yet another year of monthly predictions – for the year 2012. 

 And so on. ..

 The training sample is expanding.

 The validation sample is rolling. 
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Regularization 
 Machine learning methods are subject to overfitting; hence, regularization is essential.

 You can implement LASSO on the weights and biases when minimizing the loss function.

 Lasso will mute some of the coefficients. 

 However, it won’t essentially mute a variable or variables, as in Lasso regressions.

 You can also implement Ridge or Elastic Net.

 Batch normalization: Normalizes the inputs to each layer by adjusting the mean and variance of 

the mini-batch, which helps stabilize training, allows for higher learning rates, and provides 

some regularization benefits.

 Early stopping: Stops training once the model's performance on a validation set starts to 

deteriorate, preventing the network from overfitting to the training data.

 There are many more regularization methods. 

 One useful and intuitive approach is dropout, to be explained on the next page.
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Dropout 
 Dropout works by randomly "dropping out" a fraction of the neurons in the network during training. 

 This prevents the network from relying too heavily on any one neuron and forces the model to learn 

more robust features.

 Here’s how dropout works in practice:

1. Training Phase: During each iteration, which consists of a forward pass followed by a backward pass, a 

fraction of the neurons (e.g., p=20% or 50%) is randomly selected and dropped out. These neurons are 

ignored during both the forward pass (when activations are calculated) and the backward pass (when 

gradients are computed), so their weights do not get updated. The remaining neurons continue to process 

the data. Each time a new batch of data is processed in an iteration, a different random set of neurons is 

dropped out.

2. Inference Phase: During testing or validation, all the neurons are active, but their outputs are scaled 

down by the same fraction that was used during training. This adjustment ensures that the output remains 

consistent and accounts for the randomness introduced during training.

 The key benefit of dropout is that it reduces the risk of overfitting by preventing the network from 

relying too much on specific neurons. By forcing the network to use different subsets of neurons in each 

iteration, dropout helps create a more generalized model.
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Training the network  
 Training a neural network involves minimizing a loss function, quantifying the sum 

(across time and assets) differences between predicted and actual values. 

 This is achieved through gradient descent, an optimization technique that updates the 
network's weights iteratively.

• Weights are typically initialized and updated using gradient descent.

• In each step, weights are adjusted as follows:
new weight = old weight - (learning rate × gradient of the loss w.r.t to the weight)

• The learning rate is a crucial hyperparameter that controls the step size.

• If it is too large, the network may overshoot the minimum.

• If it is too small, training can be slow or get stuck in local minima.

• AdaTune is an adaptive learning rate algorithm that adjusts the learning rate 
dynamically during training, allowing for faster and more stable convergence.

• The training process aims to move in the direction of the steepest descent of the loss 
function, using the gradient (or its approximation) at each point to guide the updates.
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Training the network  
 Backpropagation is the key algorithm used to train neural networks by calculating the gradients required for 

updating weights.

 It works by applying the chain rule to compute the gradient of the loss w.r.t. each weight, starting from the output 
layer and propagating backward through the network.

 The chain rule allows efficient computation by breaking the gradient into simpler components at each layer.

 Backpropagation stores intermediate results, so gradients for previous layers don't need to be recalculated, making 
the process efficient.

 The goal is to minimize the loss by updating the weights based on these gradients. 

 However, challenges arise due to:

• Non-convexity: The loss function often has many local minima and saddle points, making it hard to find the global 
minimum.

• Vanishing gradients: In deep networks, gradients can become very small as they propagate backward, slowing 
down learning.

 Common activation functions like ReLU (Rectified Linear Unit) help mitigate vanishing gradients by introducing 
non-linearity and maintaining strong gradient signals.

 Different optimizers can be used for training:

• Stochastic Gradient Descent (SGD): Simple and widely used, but can be slow to converge.

• Adam: An adaptive optimizer that combines the benefits of momentum and learning rate adaptation for faster 
convergence.
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Reconciling Classical Theory with Deep Learning

 Traditionally, it is expected that larger models should eventually underperform 
due to overfitting. 

 However, modern deep-learning models challenge this conventional wisdom.

 So, which is correct—common wisdom or the empirical evidence from deep 
learning?

 The two perspectives can be reconciled:

• Under-Parameterized Models: As model complexity increases, test error 
decreases (following traditional bias-variance tradeoff).

• Over-Parameterized Models: Surprisingly, further increasing complexity still 
reduces test error, defying traditional overfitting concerns.

• Critically-Parameterized Models: At critical points, increasing complexity can 
either increase or decrease test error, leading to unpredictable behavior.

 In the under-parameterized regime, test error follows a U-shaped curve as 
model complexity increases, in line with classical bias-variance tradeoff 
predictions.
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Autoencoding: nonlinear dimension reduction

 Autoencoders are a type of unsupervised learning model that perform dimensionality 

reduction by compressing input data into a lower-dimensional representation, then 

reconstructing the original input from this compressed version. 

 This process is highly useful in extracting latent features from complex data, such as in 

asset pricing applications.

 Autoencoders consist of two main steps:

• Encoding: The input data is compressed into a smaller, lower-dimensional 

representation. The goal is to capture the most important features of the data using 

fewer variables.

• Decoding: The compressed representation is then transformed back into the original 

input space. This step evaluates how well the autoencoder can reconstruct the input 

data, making it useful for tasks like denoising.
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Comparision with PCA

 Both autoencoders and Principal Component Analysis (PCA) perform 
dimensionality reduction, but there are key differences:

• PCA is a linear technique that reduces dimensions by projecting data onto 
orthogonal axes, retaining as much variance as possible.

• Autoencoders, by contrast, use nonlinear neural networks. This enables them 
to capture more complex patterns in the data that PCA may miss.

 Nonlinearity through Neural Networks

 The use of nonlinear activation functions like ReLU (Rectified Linear Unit) 
in autoencoders allows them to map input data through complex 
transformations, making them more versatile than PCA. For example, in 
financial data where relationships between variables are often nonlinear, 
autoencoders can uncover hidden factors that explain more variance than 
traditional linear methods.

 Loss Function and Reconstruction Error

 The primary goal of the autoencoder is to minimize the reconstruction error, 
which measures how different the original input is from the reconstructed 
output. This is achieved by training the network to optimize a loss function, 
typically the mean squared error between the input and the output.
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Applications in Asset Pricing 

 In asset pricing, autoencoders can be used to extract nonlinear factors 

that are better suited for complex market behaviors than traditional 

factor models. 

 These latent factors, derived from the encoding process, capture hidden 

relationships between stock returns and firm characteristics, leading to 

better predictions and a deeper understanding of asset risk.

 The next slide provides a clear implementation of the routine in a simple 

one-layer setup. 

 The next-next slide provides a color scheme that helps visualize the 

compression (encoding) and decompression (decoding) processes that are 

core to the autoencoder structure.
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The structure of an autoencoder 

 Green Circles (Input Layer): These circles represent the original input 
variables or features. In the context of asset pricing, these inputs could be the 
returns or characteristics of multiple assets that are to be compressed.

1. Purple Circles (Hidden Layer): These circles represent the hidden layer 
neurons. This hidden layer performs the "encoding" step, where the input data is 
transformed into a lower-dimensional, compressed representation. The use of 
nonlinear activation functions (like ReLU) allows the autoencoder to capture 
complex patterns in the data.

2. Red Circles (Output Layer): The red circles represent the "decoded" output, 
which is a reconstruction of the input variables. The goal is for the output to 
closely match the original input after passing through the bottleneck (hidden 
layer), minimizing reconstruction error.

3. Transition Between Layers:

1. The transition from the green to purple layer represents the encoding process, where the 
input is compressed into latent factors.

2. The transition from purple to red circles represents the decoding process, where the 
compressed representation is expanded back into the original form.
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Autoencoding: unconditional asset pricing 
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Autoencoding with Multiple Layers

 There may be cases where an autoencoder includes multiple hidden layers. When 
this happens:

• The encoding layers (compressing the data) have a decreasing number of neurons 
as the model goes deeper, condensing the input data into fewer dimensions.

• Conversely, the decoding layers (reconstructing the data) have an increasing 
number of neurons as they attempt to recover the original data from the 
compressed representation.

 In this setup, the encoding phase identifies the essential lower-dimensional latent 
factors from the input data. These latent factors are key to understanding the 
underlying patterns.

 In the particular example provided, there are three latent factors (K = 3), which 
means the autoencoder has reduced the input to just three key features.

 The model is unconditional, meaning that the factor loadings (which map input 
features to latent factors) are fixed and do not change over time.

 The model's parameters are optimized by minimizing the sum of squared 
errors between the actual returns and the reconstructed returns, ensuring that the 
model accurately captures the key features while reducing dimensionality.
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Conditional Autoencoding (CA)

78

 Gu, Kelly, and Xu (2019) implement autoencoding in a setup where betas vary non-linearly with 
firm characteristics. 

 Beta variations characterize conditional asset pricing models. 

 The conditional autoencoder extends IPCA in which loadings are a linear function of firm 
characteristics. 

 So, we have the two pairs {PCA, autoencoder} and {IPCA, CA) reflecting linear versus nonlinear 
activation functions, while the first (second) pair refers to unconditional (conditional) asset pricing. 

 The figure on the next page describes CA. Source: Gu, Kelly, and Xu (2019). 

 The left side of the network models factor loadings as a nonlinear function of predictive 
characteristics, while the right-side network formulates factors as portfolios of individual stock 
returns.

 Let us start with the left-hand-side.

 The yellow level describes a panel of predictive characteristics – N stocks P characteristics per 
stock.

 Characteristics are transformed through s hidden layers to form intermediate outputs – factor 
loadings.

 The right side is about constructing factors through autoencoder. 

 Factors and loadings are interacted to form the eventual output layer – predicted returns. 
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CA: beta pricing
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Recurrent NN (RNN)

 A significant extension of neural networks (NNs) is the recurrent neural network 

(RNN).

 To illustrate, imagine observing a snapshot of a flying ball and being asked to 

predict its future location.

 Without prior information about its motion or history, any prediction would be 

purely a guess.

 The flying ball is an example of a sequence, where past information influences 

future outcomes.

 Other common examples include:

• Audio, which is a sequence of sound waves;

• Text, a sequence of characters or words;

• Genetic data and EKG signals are also sequential.

➢ In all these cases, a sequence is defined by its order: one event follows another.
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Recurrent NN (RNN)

 In financial economics, time-series data with short- or long-run dependencies are 

examples of sequences.

 For instance, asset returns exhibit short- and long-term serial dependencies, such 

as short-term reversals, long-term reversals, and intermediate-term momentum.

 Can traditional NNs predict the outcome of sequences?

 Standard NNs lose effectiveness when dealing with sequentially dependent 

inputs.

 This is because they map a fixed and static input into a fixed and static output, 

ignoring the temporal relationships between data points.

 To address this, deep sequence models like RNNs are used.

 RNNs take into account the temporal dimension by relating the output to both (i) 

the current input and (ii) the prior history, stored as a latent cell state.
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Recurrent NN (RNN)
 The current cell state in an RNN depends on both the input and the past state

                               ℎ𝑡  =G(𝑥𝑡, ℎ𝑡−1)

 For instance,

                               ℎ𝑡 = 𝑡𝑎𝑛ℎ 𝑊ℎ𝑥𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ  

 The output is then given by

 ොy𝑡= 𝑊𝑦ℎℎ𝑡+ 𝑏𝑦

 In an RNN, only the last hidden state is used to generate the output at time t. 

 The loss is the forecast error, or the difference between 𝑦𝑡 and ොy𝑡 .

 The total loss is the sum of forecast errors squared throughout the sample and experiments 
(e.g., N stocks). 

 Estimate the model parameters by minimizing the loss function. 

 The model parameters are common across the sequence. 

 There are three weight matrices

 𝑊ℎ𝑥 defines how the inputs at each time step are being transformed 

 𝑊ℎℎ defines the relationship between the prior and current hidden states 

 𝑊𝑦ℎ transforms the hidden state to the output at a particular time step 
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Simple RNN structure (left side) and its unfolded representation (right side) 

 A key feature of RNNs is their ability to handle sequences of arbitrary length.

 For example, consider predicting the next word in a text.

 In a feedforward neural network (FFN), the input text must be of a fixed size (e.g., 30 words), which complicates 

processing longer or shorter sequences.

 While the last word is critical, its importance depends on its relationship with prior words in the sequence—a 

relationship that FFNs cannot handle effectively.

 In contrast, RNNs process sequences step-by-step, making them versatile for predicting word sequences, stock 

returns, and other financial applications.
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RNNs can be thought of as analogous to traditional time-series analysis in 
econometrics, as both aim to model patterns in sequential data. 

However, RNNs are more flexible, as they uncover these patterns in a data-
driven and highly nonlinear manner, often involving many hidden states.

 In summary, RNNs: 

a. Handle variable-length sequences, making them versatile for different 
types of sequential data; 

b. Capture long-term dependencies, though this may be challenging for 
vanilla RNNs, which can suffer from vanishing gradients; 

c. Retain information about the order of elements within a sequence, which is 
essential for tasks requiring sequential context; 

d. Share parameters across the sequence, allowing the model to generalize 
across different parts of the sequence effectively.
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RNN – a caveat
 Feed-forward networks are trained using the backpropagation 

algorithm. The process involves taking a set of inputs, making a forward 

pass through the network (from input to output), and then adjusting the 

weights through backpropagation. Specifically, the derivative of the loss 

with respect to each weight parameter is calculated, and the weights are 

updated to minimize the loss function.

 In RNNs, the forward pass occurs through time, and backpropagation is 

also through time, referred to as backpropagation through time 

(BPTT). This means errors are propagated back from the most recent time 

step to the beginning of the sequence, tracing through all previous steps. As 

this happens, the gradients are multiplied by the same weight matrix 

repeatedly.

 This recursive multiplication introduces a significant challenge: exploding 

gradients or, more commonly, vanishing gradients. 
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RNN – a caveat
 To illustrate:

• If you keep multiplying 0.9 by itself, the sequence eventually approaches zero 
(vanishing gradient).

• Conversely, multiplying 2 by itself leads to an explosive increase (exploding 
gradient).

 When the gradients become too small, the network struggles to learn long-term 
dependencies because the contribution of earlier time steps diminishes rapidly. 
This results in biases toward short-term dependencies, even when long-term 
ones are important. On the other hand, if the gradients explode, the model 
becomes unstable and fails to converge.

 Due to this vanishing gradient problem, standard RNNs are often ineffective 
at learning from long-range dependencies in sequences. This issue motivated the 
development of more sophisticated architectures, like Long Short-Term 
Memory (LSTM) and Gated Recurrent Units (GRUs), which are designed to 
mitigate these challenges by preserving information over longer periods in a 
sequence.
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LSTM: Maintaining Gradient Value in Backpropagation

 Problem with RNNs: As noted, in traditional RNNs, gradients tend to 

vanish or explode during backpropagation, especially over long sequences, 

which limits their ability to capture long-term dependencies.

 Solution – LSTM Cell:

• LSTM replaces the simple RNN cell with a more sophisticated structure 

that includes multiple gates:

• Forget Gate: Controls how much of the past information to stored.

• Input Gate: Decides which parts of the new input to incorporate into the memory.

• Output Gate: Determines how much of the cell’s state to pass to the output.

• This structure allows LSTM to effectively preserve gradients, enabling 

learning over longer periods.
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LSTM: Maintaining Gradient Value in Backpropagation

 Input-Output Transformation:

• LSTM transforms time-series inputs (of dimension d) into time-series outputs (of 
dimension h).

• This ability to manage dependencies across time makes LSTM especially suited for 
financial time series with low signal-to-noise ratios, which often exhibit both short-term 
volatility and long-term trends.

 Recent Advances:

• Attention Mechanisms: More recent models, such as Transformer architectures, 
leverage attention mechanisms to focus on relevant parts of the input sequence, allowing 
them to outperform LSTMs in many tasks, including natural language processing (NLP) 
and translation.

 Relevance to Finance:

• Despite these advances, LSTM remains a valid approach for predicting stock returns and 
financial outcomes, especially when signal-to-noise ratios are low.

• For a detailed comparison of deep sequence models, refer to "Deep Sequence Modeling: 
Development and Applications in Asset Pricing" by Cong, Tang, Wang, and Zhang (2020), 
which compares various deep sequence models in predicting future returns.
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Key Parts of an LSTM Cell:

A cell state (c)– Represents long-term memory, holding all accumulated 

learning from previous steps.

Three regulators (“gates”) that control the flow of information inside the 

LSTM unit:

Input gate (i) -Controls how much of the new information should 

be allowed into the cell state.

Forget gate  (f) -Decides which parts of the previous cell state 

should be discarded.

Output gate (o) - Determines what information should be passed 

to the next time step as output.
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LSTM Unit functionality 

 The gates regulate the flow of information into and out of the cell, ensuring 

the LSTM can maintain long-term dependencies while filtering out 

irrelevant details.

 In particular, 

• Forget Irrelevant Information: The forget gate decides how much of the 

previous memory should be kept. It controls what portion of the previous 

cell state continues to the next step and what portion is discarded.

• Store Relevant New Information: The input gate decides what new information to 

retain.

• Update the Cell State: The cell state gets updated with the combination of previous 

and new information.

• Generate Output: The output gate decides what part of the memory and new input 

should be output at the current time step.
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A schematic figure for an LSTM unit

 𝑥𝑡 is the input consisting of time series observations 

 ℎ𝑡 is an hidden state

 𝑐𝑡 is the long term memory, maintaning new relevant information while discarding irrelevant 

information  

 𝑖𝑡, 𝑜𝑡, and 𝑓𝑡 are the gates

 ෩𝐶𝑡 is the candidate cell state. 
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The LSTM – Math Representation
 The functions are defined as follows

𝑓𝑡 = 𝜎𝑔 𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓

𝑖𝑡 = 𝜎𝑔 𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖

ሚ𝐶𝑡 = tanh 𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐

𝑪𝒕 = 𝒇𝒕 ∘ 𝑪𝒕−𝟏 + 𝒊𝒕 ∘ ෩𝑪𝒕

𝑜𝑡 = 𝜎𝑔 𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜

𝒉𝒕 = 𝒐𝒕 ∘ 𝐭𝐚𝐧𝐡 𝑪𝒕

where ∘ is an element-by-element product, and 𝐶0 and ℎ0 are initial values (can set to zero)

 The new cell state is updated by two main components:

1. A portion of the previous cell state, which is kept or discarded based on the decision of the forget gate. 
This gate controls how much of the old information should be retained.

2. The new candidate cell state, which is introduced through the input gate. The input gate controls how 
much of the new information should be added to the cell's memory.

Variables: 𝑥𝑡 ∈ ℝ𝑑is the intput vector, 𝑓𝑡 ∈ ℝℎ is the forget gate, 𝑖𝑡 ∈ ℝℎ is the input update gate, 𝑜𝑡
∈ ℝℎ is the ouptut gate, ሚ𝐶𝑡 (𝑐𝑡) ∈ ℝℎ  is the cell input (state) vector, 𝑊 − 𝑠 ∈ ℝℎ×𝑑 and 𝑈 − 𝑠 ∈ ℝℎ×𝑑  are 
weight matrices, and  b−s ∈ ℝℎ are intercept vectors, all of which are learnt during the training stage, and 
d is the pre-specified number of input feature. Input and output can have different dimensions.
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LSTM dynamics and hyperparameters  

 Role of Gates:

 Larger f: Indicates a decision to retain more of the previous cell state, giving greater 

importance to past information.

 Larger i: Implies more weight is given to the new input, allowing the current values to 

have a stronger impact on the cell state.

 Independence of f and i: They function separately, meaning they do not act as explicit 

complementary weights, and their weights in the cell state do not sum up to one. 

 Hyperparameters:

 h: Represents the number of hidden units, which controls the output dimension of the 

LSTM. This is a key hyperparameter that defines the model's capacity to learn patterns.

 LASSO Regularization: Adding LASSO during optimization introduces another 

hyperparameter, which controls how much regularization is applied to prevent 

overfitting.

 Hyperparameter Tuning: validation sample. 
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Key Aspects of LSTM Architecture
• Maintain a Separate Cell State: The cell state is updated across time steps to store long-term information.

• Gates to Control Information Flow:

• Forget Gate: Discards irrelevant information.

• Input Gate: Stores relevant information from the current input.

• Cell State Update: Selectively updates the cell state based on the input gate.

• Output Gate: Returns a filtered version of the cell state as output.

• Backpropagation Through Time: Ensures uninterrupted gradient flow for learning long-term dependencies.

 Three Important Caveats About LSTM:

1. High Memory Requirement: Due to its complex architecture, LSTMs require more memory.

2. Training Challenges: LSTMs face difficulties during training because of long gradient paths, similar to training a 

100-layer neural network on a 100-word document.

3. Activation Functions:

1. Sigmoid & Tanh: Can be difficult to work with due to saturation issues.

2. ReLU (Rectified Linear Unit): Less sensitive to random initialization, allowing neurons to express strong 

opinions.
94 Professor Doron Avramov, IDC, Israel



LSTM: Example and factor extraction 

Let firm i have M characteristics whose time t realizations are denoted by 𝑥𝑡
𝑖

. 

At time t, we use the most recent K periods to predict the next period return Ƹ𝑟𝑡+1
𝑖

.

The input is the series 𝑥𝑡−𝐾+1
𝑖

, … , 𝑥𝑡
𝑖

 while the final output, ℎ𝑡
𝑖

 generates the 

prediction Ƹ𝑟𝑡+1
𝑖

.

LSTM parameters are estimated by minimizing the loss function 

     ℒ = σ𝑖=1
𝑁 σ𝑡=1

𝑇 𝑟𝑖,𝑡+1 − ℎ𝑡
𝑖

2

 In that setup, it is assumed that the output is a single number per stock, predicted return.

 If  ℎ𝑡
𝑖

 is a vector of length h, the output is given by ෨ℎ𝑡
𝑖

= 𝑊ℎℎ𝑡
𝑖

, while ෨ℎ𝑡
𝑖

 

is replacing ℎ𝑡
𝑖

 in the loss function above. 

Notice that the estimated parameters are identical across stocks. 
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LSTM factors
LSTM can also be applied to a large set of macro variables where lower-

dimension state cells summarize the short and long-run dependencies. 

Hidden State (𝒉𝒕) as Dynamic Factors:

 The hidden state in an LSTM cell represents the output at each time step, capturing the 

most relevant features from the input sequence.

 The hidden states can be interpreted as a set of dynamic factors that evolve, reflecting 

immediate influences on the time-series data, such as market sentiment or short-term 

economic fluctuations.

Cell State (𝑪𝒕) as Long-Term Factors:

 The cell state carries the long-term memory of the LSTM, accumulating and retaining 

information across time steps.

 The cell state can be viewed as encapsulating long-term factors, such as persistent 

macroeconomic trends or underlying market conditions, that affect the sequence over a 

more extended period.
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Factor Extraction through LSTM
• Unlike traditional linear factor models, LSTMs can capture complex, 

nonlinear dependencies in the data, providing a richer, more refined 

understanding of the underlying factors.

• By processing sequences of macro predictors or other time-series data, 

LSTMs dynamically extract and update factors that are crucial for predicting 

future outcomes.

Complementing Other Factor Models:

• PCA: Linear extraction of static factors.

• IPCA: Instrumental PCA with varying loadings based on characteristics.

• Autoencoder: Nonlinear, unsupervised factor extraction.

• CA: Conditional Autoencoder capturing nonlinear conditional relationships.

• LSTM: Adds the temporal dimension, capturing both short-term and long-

term dependencies in a dynamic, data-driven manner.
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RNN and LSTM – attention mechanism 
Let us revisit RRN, recall that the latent states are denoted by 

ℎ1 ,ℎ2, … , ℎ𝑇.

Notice that ℎ𝑡 is perceived to contain all the abstract features in the 

entire sequence.

As all hidden states before t are not involved directly in generating the 

output, the old information is washed out after being propagated over 

multiple time steps.

LSTM has the same drawback.

To address this issue, the attention mechanism is proposed (Chaudhari 

et al., 2019). 

With attention, not only ℎ𝑡 but also all the hidden states play a role. 

 I will later explain the attention mechanism in the context of TE.
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Machine Learning versus Economic Restrictions
 Are machine learning methods lead to better forecasts of future stock returns? 

 Avramov, Cheng, and Metzker (2021) show that deep learning signals, such as those 
described earlier, confront similar caveats as individual anomalies. 

 Investment performance considerably deteriorates when distressed stocks are excluded.

 Likewise, performance is vastly stronger during high limits-to-arbtirage market states, such 
as high market volatility (VIX).

 In addition, the stochastic discount factor estimated by NKS is taking extreme long and short 
positions that cannot be practically implemented in real-time.

 As noted by Chen, Pelger, and Zhu (2021), it is a natural idea to use machine learning 
techniques, such as deep neural networks, to deal with the high dimensionality 
and complex functional dependencies of input data. 

 However, machine-learning tools are designed to work well for prediction tasks 
in a high signal-to-noise environment.

 As asset returns seem to be dominated by unforecastable news, it is hard to 
predict their risk premia with off-the-shelf methods. 

 The presentation of the Avramov et al (2021) paper is in the appendix to the class notes.
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Machine Learning versus Economic Restrictions
 On the other hand, Avramov, Kaplanski, and Subrahmanyam (2021) apply LASSO, Ridge, and 

Elastic Net techniques (shallow learners) to newly defined variables and document robust 
performance. 

 In particular, they consider all COMPUTAT items and compute, per item, the distance between 
current values and moving averages over past quarters. 

 Such deviations predict future stock returns to economically significant degrees.

 The rule based on their Fundamental Deviation Index (FDI) survives recent years, excluding 
microcaps, long positions only, all market states, and reasonable trading costs. 

 They attribute their findings to investor’s anchoring. 

 Avramov, Cheng, Metzker, and Voigt (2021) show the robust prediction ability of Bayesian 
Model Averaging (BMA).

 Asset pricing inferences in BMA draw on an integrated model that weights individual models 
based on posterior probabilities.

 Is there hope for deep learning signals? 

 In what follows, two state-of-the-art approaches are explained, Reinforcement Learning (RL) 
and adversarial GMM – both can be potentially useful. 
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Reinforcement Learning (RL)

 RL is based on two key ideas: trial-and-error learning and delayed reward.

 It focuses on solving problems rather than using specific methods. 

 Any method that fits the problem can be considered RL.

 Difference from Supervised Learning:

• In supervised learning, labeled examples are provided by an external supervisor.

• RL involves learning from interaction with the environment, where the agent must 

explore and exploit based on feedback.

 Exploration vs Exploitation:

• RL agents need to balance exploiting known rewards and exploring 

unknown actions for potentially better outcomes.

• This is especially important in dynamic and uncertain environments
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Core Elements of RL

• Policy: The agent's strategy for selecting actions based on the current state.

• Reward Function: Defines the immediate feedback for an action, signaling good or 

bad outcomes.

• Value Function: Estimates the long-term reward from a state, considering future 

potential rewards.
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Q Learning 

• A model-free RL algorithm where the agent learns the optimal action for 

each state through trial and error.

• The agent updates its "Q-values" (estimates of the action's value) based on 

feedback from the environment.

 Example:

• A chess-playing agent improves over time by learning which moves lead to 

victories (rewards) and which do not, adjusting its policy to maximize long-

term success.
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Reinforcement Learning in Asset Pricing
• Reinforcement Learning (RL) in asset pricing was pioneered by Wang, 

Zhang, Tang, Wu, and Xiong (2021).

• RL incorporates three components for return prediction, while the RL aspect 

focuses on forming optimal portfolios based on these predictions.

1. Step 1: Use LSTM or Transformer-Encoder to generate a representation for 

each asset based on its historical state.

2. Step 2: Introduce a Cross Asset Attention Network (CAAN), which utilizes 

these asset representations to extract interrelationships among the assets.

3. Step 3: Employ a portfolio generator, which uses a scalar winner score for 

each asset from CAAN to derive optimal portfolio weights.

• RL models the joint distribution of asset returns, observing trading actions, 

testing a range of actions (portfolio weights), and exploring a high-dimensional 

parameter space to maximize the Sharpe ratio.

104 Professor Doron Avramov, IDC, Israel



Transformer Encoder (TE)

 LSTM is effective but limited due to its sequential processing and lack of an 

attention mechanism.

 The TE is a deep learning model that incorporates an attention mechanism, which 

assigns different levels of importance to each part of the input data.

 Applications: TE is widely used in fields such as Natural Language Processing 

(NLP) and Computer Vision (CV), including tasks like self-driving cars and 

interactive gaming.

 Like RNNs, Transformer Encoders aim to process sequential input data.

 Unlike RNNs, TEs do not process the data in a strict sequence order, allowing for 

more flexibility.

 The attention mechanism provides context to any position within the input 

sequence, making it highly efficient for complex tasks.

 Example: In a sentence, the Transformer does not need to process the beginning 

before the end—it can analyze the entire input simultaneously.
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TE: Key Features

 Instead of sequentially processing the data, the TE identifies the context 

that gives meaning to each word or element in the sequence.

 This feature allows for parallelization, which significantly reduces training 

times compared to sequential models like LSTMs.

 TEs have become the model of choice for NLP tasks, replacing LSTMs due 

to their efficiency and scalability.

 Parallel processing enables TEs to handle much larger datasets.

 TEs also overcome vanishing and exploding gradient problems, which 

are common in RNNs.

 The success of transformers has led to the development of pre-trained 

models such as BERT (Bidirectional Encoder Representations from 

Transformers) and GPT (Generative Pre-trained Transformer), both trained 

on massive datasets like Wikipedia and fine-tuned for specific tasks.
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TE: Architecture 

 The transformer uses an encoder-decoder architecture.

 The encoder consists of multiple layers that process the input data iteratively, one layer 
at a time. Similarly, the decoder processes the encoded output.

 Each encoder layer identifies which parts of the input are most relevant and generates a 
compressed representation.

 The output of each encoder layer is passed to the next layer for further processing.

 The decoder layers operate in reverse: they use contextual information to produce an 
output sequence from the encoded data.

 Both the encoder and decoder rely on the attention mechanism, which assigns 
different weights to parts of the input data based on relevance.

 For each input, attention determines which other inputs are most important for 
producing the final output.

 Each decoder layer incorporates an additional attention mechanism that references the 
output from previous decoder layers before drawing from the encoder.

 Both the encoder and decoder layers include feedforward neural networks, residual 
connections, and layer normalization for processing outputs.
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TE in Finance
 Common Applications in general 

1. Translating from one language to another.

2. Generating an answer (output) for a given question (input).

 In Finance, Cong et al. use only the encoder part of the TE.

 The authors also implement LSTM for time series encoding, using the Ct values 

to capture the sequence of stock characteristics.

 Both the TE and LSTM models are referred to as Sequence Representation 

Extraction Models (SREM) in the paper.

 The input for TE or LSTM is the time series of stock characteristics, which 

are encoded into a lower-dimensional representation.

 The encoded data is used to model the cross-sectional interactions between 

stocks using CAAN (Cross Asset Attention Network).

 These interactions are then converted into scores and weights to build portfolios 

aimed at achieving the highest ex-post Sharpe ratio.
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TE in Finance
 The first part of the analysis consists of  time-series encoding. 

 Consider firm i characteristics over past K  months 

𝑋 𝑖 = 𝑥1
𝑖

, … , 𝑥𝑘
𝑖

, … , 𝑥𝐾
𝑖

 In the Cong et al paper, the dimension of the input is K=12, reflecting a one year of monthly 

observations, while there are 51 firm characteristics.

 Thus, 𝑥𝑘
𝑖

 is a vector of dimension 𝑑 = 51, while there are K=12 such vectors. 

 Time-series observations are encoded by TE or LSTM into hidden states 

𝑍 𝑖 = 𝑧1
𝑖

, … , 𝑧𝑘
𝑖

, … , 𝑧𝐾
𝑖

 It is a sequence-to-sequence encoding for each firm separately.

 The dimension of 𝑧𝑘
𝑖

could be equal to or different from the dimension of 𝑥𝑘
𝑖

 

 The hidden states attempt to capture long-range dependencies in the data. 

 Below, I explain encoding – the transition from 𝑋 𝑖  to 𝑍 𝑖  – through TE. 

 LSTM encoding was explained earlier, the system cells (C) contain the encoded information. 
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TE: Self attention

 Again, the inputs for firm i are given by the matrix of characteristics 

            𝑋 𝑖 = 𝑥1
𝑖 , … , 𝑥𝑘

𝑖 , … , 𝑥𝐾
𝑖

 The self-attention unit forms, for each 𝑥𝑘
𝑖 , query - 𝑞𝑘

𝑖
, key - 𝑘𝑘

𝑖
, and value - 𝑣𝑘

𝑖
 vectors. 

 Specifically, the query, key, and value vectors are given by

𝑞𝑘
𝑖 = 𝑊 𝑄 𝑥𝑘

𝑖

𝑘𝑘
𝑖 = 𝑊 𝐾 𝑥𝑘

𝑖

𝑣𝑘
𝑖 = 𝑊 𝑉 𝑥𝑘

𝑖

 The dimensions of 𝑞𝑘
𝑖

 and 𝑘𝑘
𝑖

are equal to 𝑑1, which is is a hyperparameter. 

 The dimension of 𝑣𝑘
𝑖

is also a hyperparameter, say 𝑑2, could be diffferent from 𝑑1. 

 Thus, 𝑊 𝑄  𝑊 𝐾  are 𝑑1 × 𝑑 matrices and 𝑊 𝑉  is a 𝑑2 × 𝑑 matrix (recall, d=51).
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TE: Self attention
Attention is defined as Attention(Q,K,V)=softmax(

𝑸′𝑲

𝒅𝒌
) V, where the product of the 

query and the key represents the relevance and the softmax function is

 𝒔𝒐𝒇𝒕𝒎𝒂𝒙 𝒛𝒌 =
𝒆𝒙𝒑 𝒛𝒌

σ𝒌=𝟏
𝑲 𝒆𝒙𝒑 𝒛𝒌  

𝒇𝒐𝒓 𝒌 = 𝟏, … , 𝑲

Then, the interrelationship between firm i characteristics at different times in the 

historical period (𝑘, 𝑘′) ∈ 1, … , 𝐾 is modeled by the dot product of query 𝑞𝑘
𝑖

 and key, 𝑘𝑘′
𝑖

𝛽𝑘,𝑘′ =
𝑞𝑘

𝑖 ′𝑘𝑘′
𝑖

𝑑1

The attention score for time k is a softmax of the interrelationship

𝑎𝑘
𝑖 =

σ𝑘′=1
𝐾 exp 𝛽𝑘,𝑘′ 𝑣𝑘′

𝑖

σ𝑘′=1
𝐾 exp 𝛽𝑘,𝑘′

Notice that the attention 𝑎𝑘
𝑖  is a vector of dimension 𝑑2 obtained as the weighted average 

(sum of weights is equal one) of the value. 
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Transformer– Self attention

The output of the self-attention process can also be written using a matrix notation as 

𝑍 𝑖 = softmax
𝑋 𝑖

′
𝑊 𝑄 ′𝑊 𝐾 𝑋 𝑖

𝑑1
𝑋 𝑖 ′

𝑊 𝑉  

 𝑍 𝑖 s a 𝐾 × 𝑑2 matrix that collects the K values of 𝑎𝑘
𝑖

The value of each position is calculated by all the positions in the sequence. 

 The output is computed as a weighted sum of the values, where the weight assigned to each 

value is computed by a compatibility function of the query with the corresponding key. 

 So, we can compute the attention function on a set of queries simultaneously, rather than 

period by period. 

 The transition from 𝑋 𝑖  to 𝑍 𝑖  is complete.

 Should do it stock by stock – query, key, and value matrices (W-s) are identical 

across stocks. 
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Transformer– Multi Head Attention

 In order to capture a number of complex interrelations in a sequence, self-

attention units are grouped and connected in parallel. 

 This connected group is termed multi-head attention.

 For instance, if it is about understanding a sentence, different people could 

have different perspectives on that sentence. 

 The multi-head attention unit is a group of four (hyperparameter) self 

attention units each with different weights 𝑊 𝑄 , 𝑊 𝐾 , 𝑊 𝑉 . 

 Each self attention unit has an output 𝑍ℎ, ℎ = 1, … , 4, which is a 𝐾 × 𝑑2 

matrix. 

 Do the same thing 4 times ,and let the network learn four different items to 

pay attention to. 

 All those matrices are concatenated into a new matrix. 

 ෩𝑍 = 𝑍1, … , 𝑍4  is of dimension 𝐾 × 4𝑑2
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Transformer– Multi Head Attention

 Then ෩𝑍 is multiplied from the right by a weight matrix 𝑊𝑜 of dimension  4𝑑2
× 𝑑. 

 The output of the multi-head attention is of dimension 𝐾 × 𝑑, which is (12
× 51) in our case:

ℎ𝑒𝑎𝑑𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑊𝑗
𝑄

, 𝐾𝑊𝑗
𝐾 , 𝑉𝑊𝑗

𝑉

    𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑4)𝑊𝑂

 Notice that ෩𝑍 is computed for each stock. 

 Stocks only differ with about their inputs while the parameters are shared.

 The aim is to transform the observed stock characteristics into hidden states by 
encoding the characteristics through the TE mechanism with multi-head 
attention. 

 Each attention head acts like a "different lens" through which the data is 
viewed, capturing various aspects of the relationships between the elements in 
the sequence. 
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Cross asset attention network (CAAN)
 Up to this stage, we have transformed the real observations 𝑋 𝑖  into hidden states 𝑍 𝑖  for each stock. 

 LSTM is an an alternative way to make that transformation, while the 𝑍 𝑖  are replaced by the cell states.

 The cross-sectional interrelations among firms’ hidden states are modeled by a self attention module, termed 

cross asset attention network (CAAN), similar to the multi-head attention.

  All the vectors of hidden states for firm i, 𝑍 𝑖 = 𝑧1
𝑖

, … , 𝑧𝑘
𝑖

, … , 𝑧𝐾
𝑖

 are concatenated into a vector

𝑦 𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡 𝑧1
𝑖

, … , 𝑧𝑘
𝑖

, … , 𝑧𝐾
𝑖

 𝑦 𝑖  is a vector with length 𝑑 𝐾 that represents firm i 

 The representation 𝑦 𝑖  is used to construct three other representation vectors: query - 𝑞 𝑖 , key - 𝑘 𝑖  and value 

- 𝑣 𝑖 , using the trainable matrices 𝑊CAAN
𝑄

 , 𝑊CAAN
𝐾

, 𝑊CAAN
𝑉

 (during the training process)

𝑞 𝑖 = 𝑊CAAN
𝑄

𝑦 𝑖

𝑘 𝑖 = 𝑊CAAN
𝐾

𝑦 𝑖

𝑣 𝑖 = 𝑊CAAN
𝑉

𝑦 𝑖

 These matrices for query, key, and value are identical across assets.

 𝑊CAAN
𝑄

, 𝑊CAAN
𝐾

 are 𝑑3 × 𝑑𝐾  matrices and 𝑊CAAN
𝑉

 is a 𝑑4 × 𝑑𝐾  matrix
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CAAN

 The interrelationship between stock j and stock i is modeled by the dot product of stock i 

query, 𝑞 𝑖  and stock j key,

𝛽𝑖,𝑗 =
𝑞 𝑖 ′𝑘 𝑗

𝑑3

  Calculating attention score for stock i is a softmax of the interrelationship of stock i  

and j multiplied by stock j value

𝑎 𝑖 =
σ𝑗=1

𝐼 exp 𝛽𝑖,𝑗  𝑣 𝑗

σ𝑗=1
𝐼 exp 𝛽𝑖,𝑗  

 where I is the overall number of stocks and 𝑎 𝑖  is a vector with length 𝑑4.

 Finally, the winner score determining the long short position of stock i in the portfolio is

𝑠 𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊 𝑆 𝑎 𝑖 + 𝑏 𝑆

 where 𝑊 𝑆  is a 1 × 𝑑4 weight vector and 𝑏 𝑆  is the bias.
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Reinforcement Learning Optimization

Given the scores of each stock 𝑠 1 , … , 𝑠 𝑖 , … 𝑠 𝐼  the long and short 

portfolios are constructed by the G extreme scores. 

 Let 𝑜 𝑖  be the rank of stock i in a descending order. 

 Stock i is in the long portfolio 𝑏+ if 𝑜 𝑖 ∈ 1, 𝐺

𝑏+ 𝑖 =
𝑒𝑥𝑝 𝑠 𝑖

σ
𝑜 𝑖′ ∈ 1,𝐺

𝑒𝑥𝑝 𝑠 𝑖′

 Stock i is in the short portfolio 𝑏− if 𝑜 𝑖 ∈ 𝐼 − 𝐺 + 1, 𝐼

𝑏− 𝑖 =
𝑒𝑥𝑝 −𝑠 𝑖

σ
𝑜 𝑖′ ∈ 𝐼−𝐺+1,𝐼

𝑒𝑥𝑝 −𝑠 𝑖′

 Let denote by 𝑏𝑐 the vector of weights for all the I stocks.
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RL: Forming portfolios through winner scores (s)
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Reinforcement Learning

 “Learning what to do – how to map situations into actions – so as to 

maximize a numerical reward signal” (Sutton and Barto, 2008)

 The characteristics 𝑋𝑡
𝑖

= 𝑥1
𝑖

, … , 𝑥𝑘
𝑖

, … , 𝑥𝐾
𝑖

 for the past K periods for 

 𝑖 = 1, … , 𝐼 is the state of environment. 

 The action at time t is the stock weights in the constructed portfolio 𝑏𝑡
𝑐. 

 The reward at time t is the portfolio return at t+1: 𝑟𝑡+1
𝑝

= 𝑟𝑡+1’ 𝑏𝑡
𝑐

 The value is the Sharpe ratio for a sequence of realized returns, say 12 

months

 𝐽 = 𝑆𝑅 𝑟1
𝑝

, 𝑟2
𝑝

, … , 𝑟12
𝑝
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Reinforcement Learning

 Let us denote by 𝜃 the model parameters that affect 𝑏𝑡
𝑐, then the optimization is to find 𝜃∗ 

such that 

𝜃∗ = argmax𝜃  𝐽 𝜃

 To summarize

𝜃 = 𝑊CAAN
𝑄

, 𝑊CAAN
𝐾

, 𝑊CAAN
𝑉

, 𝑊 𝑆 , 𝑏 𝑆 , 4 × 𝑊 𝑄 , 𝑊 𝐾 , 𝑊 𝑉 , 𝑊𝑜

 The collection of hyper-parameters 𝑑, 𝑑1, 𝑑2, 𝑑3, 𝑑4, ℎ, 𝐾, 𝐺  is determined in the test sample. 

 Because reinforced learning is not supervised, there is no training/validation samples. 

 Hyperparameters are determined in the test sample by experimenting on different values.

 The investor is price taker; hence, his action does not affect the evolution of the 
environment.

 Another reinforcement learning techniques and applications in economics, game theory, 
operational research and finance can be found in Charpentier, Elie, and Remlinger (2020)
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Stock return Prediction versus ChatGPT

 ChatGPT, like many advanced language models, relies on the Transformer architecture described earlier. 

 Let’s explore how the same principles apply to generating coherent and contextually appropriate responses in a 

conversation.

 Understanding Transformers in ChatGPT

1. Sequential Data Handling:

o Just as the Transformer Encoder processes sequences of stock characteristics over time, ChatGPT processes 

sequences of words or tokens in a sentence or paragraph. Each word is treated as part of a sequence, with the 

model considering the context provided by all previous words to generate the next word.

2. Self-Attention Mechanism:

o The self-attention mechanism in ChatGPT, like in predicting stock returns, allows the model to weigh the 

importance of different words in a sequence. For example, when predicting the next word in a sentence, the 

model looks at all previous words, determines which ones are most relevant to the context, and uses this 

information to generate the most appropriate next word.

o In ChatGPT, the multi-head attention allows the model to understand different nuances of meaning and 

relationships between words, making it capable of generating contextually accurate and sophisticated 

language.
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Stock return Predictions versus ChatGPT

3. Parallel Processing and Efficiency:

o One of the reasons ChatGPT is so powerful is because of the parallelization capability of transformers. 

Unlike traditional models that process data sequentially (like RNNs), transformers can process multiple parts 

of a sequence simultaneously. This is why ChatGPT can generate responses quickly and handle long 

conversations without losing context.

4. Encoding and Decoding:

o While in stock return prediction, we mainly discussed the encoding part of the Transformer, ChatGPT also 

relies on a decoding process. The encoded information (which represents the understanding of the input text) 

is used by the decoder to generate the response. The decoder works similarly by applying attention 

mechanisms to ensure the generated text is relevant to the input query.

5. Fine-Tuning and Adaptation:

o Just as you might tune a model's parameters to better predict stock returns, ChatGPT is fine-tuned on vast 

amounts of text data. This allows it to adapt to different types of questions, styles of conversation, and even 

specific topics, providing more accurate and relevant responses.
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Stock return Predictions versus ChatGPT

To sum up, ChatGPT works by leveraging the same principles we’ve used in stock 

return prediction with transformers: it processes sequences of data (in this case, words), 

applies self-attention to understand context, and uses this information to generate 

coherent and contextually relevant responses. 

The power of transformers, with their ability to handle long-range dependencies and 

process data efficiently, is what makes models like ChatGPT so effective in natural 

language processing tasks.
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Generative Adversarial Network - GAN

GAN is a setup with two neural networks contesting with each other in a 

(often zero-sum) game.

 For example, let 𝑤 and 𝑔 be two neural networks’ outputs.

 The loss function is defined over both outputs, 𝐿 𝑤, 𝑔 . 

 The competition between the two neural networks is done via iterating 

both 𝑤 and 𝑔 sequentially:

𝑤 is updated by minimizing the loss while 𝑔 is given
ෝ𝑤 = min

𝑤
𝐿(𝑤|𝑔)

 𝑔 is the adversarial and it is updated by maximizing the loss while 𝑤 is given
ො𝑔 = max

𝑔
𝐿(𝑔|𝑤)
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Adversarial GMM

 Chen, Pelger, and Zhu (2019) employ an adversarial GMM to estimate the SDF 

 The CPZ model is formulated as follows.

 For any excess return, no arbitrage suggests that

 Ε𝑡 𝑀𝑡+1𝑅𝑡+1,𝑖
𝑒 = 0, where 𝑀𝑡+1 = 1 − σ𝑖=1

𝑁 𝑤𝑡,𝑖𝑅𝑡+1,𝑖 
𝑒 and 𝑤𝑡,𝑖  is a general function   

 It then follows that Ε𝑡 𝑀𝑡+1𝑅𝑡+1,𝑖
𝑒 𝑔(𝐼𝑡,𝑖 , 𝐼𝑡 ) = 0

 That is because you can multiply the moment conditions with any time t 

measurable function of firm characteristics and macro variables. 

 The unconditional representation follows from the LIE: 𝐸 𝑀𝑡+1𝑅𝑡+1,𝑖
𝑒 𝑔(𝐼𝑡,𝑖 , 𝐼𝑡 ) = 0

 The unconditional moment conditions can be interpreted as the pricing errors for a 

choice of portfolios and times, determined by g(.). 

 The challenge is to find the relevant moment conditions to identify the SDF. 

 Considering only unconditional moments, the g function is constant.
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Adversarial GMM

 Can use the adversarial approach to select the moment conditions that lead to the 

largest mispricing.

 This is a minimax optimization problem. 

m𝑖𝑛
𝑤

max
𝑔

1

𝑁
෍

𝑗=1

𝑁

𝐸 1 − ෍

𝑖=1

𝑁

𝑤 𝐼𝑡 , 𝐼𝑡,𝑖 𝑅𝑡+1,𝑖
𝑒 𝑅𝑡+1,𝑗

𝑒 𝑔 𝐼𝑡 , 𝐼𝑡,𝑗

2

   where ω and g are normalized functions chosen from a specified functional class. 

 These types of problems can be modeled as a zero-sum game, where one player, the 

asset pricing modeler, aims to choose an asset pricing model, while the adversary 

searches for conditions under which the asset pricing model performs badly. 

 This can be interpreted as first finding portfolios or times that are the most 

mispriced and then tuning the asset pricing model to also price these assets. 

 The process is repeated until the adversary cannot find portfolios with large enough 

pricing errors. 
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Adversarial GMM

Note that this is a data-driven generalization for the research protocol 

conducted in asset pricing in the last decades.

 To illustrate, assume that the asset pricing modeler uses the Fama-French 5 

factor model, spanned by the five factors. 

 The adversary might propose momentum sorted test assets, that is g is a 

vector of indicator functions for different quantiles of past returns. 

 As these test assets have significant pricing errors with respect to the Fama-

French 5 factors, the asset pricing modeler needs to revise the candidate 

SDF, for example, by adding a momentum factor. 

Next, the adversary searches for other mispriced anomalies or states of the 

economy, which the asset pricing modeler will exploit in revising the SDF.
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Adversarial GMM

 The adversarial estimation with a minimax objective function is motivated from the insights of Hansen and 

Jagannathan (1997). 

 HJ show that if the SDF implied by an asset pricing model is only a proxy that does not price all possible 

assets in the economy, then minimizing the largest possible pricing error corresponds to estimating the 

SDF that is the closest to an admissible true SDF in a least square distance.

 HJ discuss the estimation of the SDF based on the minimax objective function and compare it with the 

conventional efficient GMM estimation for parametric models with a low dimensional parameter set. 

 They conclude that the minimax estimation has desirable properties when models are misspecified and the 

resulting SDFs have substantially less variation relative to the conventional GMM approach. 

 In CPZ, the SDF is implicitly constrained by the fact that it can only depend on stock specific 

characteristics 𝐼𝑖,𝑡 but not the identity of the stocks themselves and by a regularization in the estimation.

 Hence, even in-sample, the SDF will have non-zero pricing errors for some stocks and their characteristic 

managed portfolios, which naturally puts CPZ into the setup of Hansen and Jagannathan (1997). 

128 Professor Doron Avramov, IDC, Israel



Adversarial GMM

 Choosing the conditioning function g correspond to finding optimal instruments in a 

GMM estimation. 

 The conventional GMM approach assumes a finite number of moments that identify 

a finite dimensional set of parameters.

 In CPZ, there are an infinite number of candidate moments without the knowledge 

of which moments identify the parameters. 

 The parameter set is also of infinite dimension, and, hence, there is not an 

asymptotic normal distribution with a feasible estimator of the covariance matrix.

 The approach thus selects the moments based on robustness. 

 By controlling the worst possible pricing error, the approach aims to choose the test 

assets that can identify all parameters of the SDF and provide a robust fit.

 The conditioning function g generates a very large number of test assets to identify 

a complex SDF structure. 
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Adversarial GMM

 The moment conditions are averaged over the sample of all instrumented 

stocks, that is the loss function is 
1

𝑁
σ𝑖=1

𝑁 σ𝑑=1
𝐷 𝛼𝑖,𝑑

2 , where the moment 

deviation 𝛼𝑖,𝑑 = 𝐸 𝑀𝑡+1, 𝑅𝑖𝑔𝑑(𝐼𝑡 , 𝐼𝑡,𝑖)  can be interpreted as the pricing error of 

stock i instrumented by the element 𝑔𝑑 of the vector valued function g(.).

Note that the instruments 𝑔𝑑 are normalized to be in −1,1 . 

 In their benchmark model, CPZ consider N = 10, 000 stocks and D = 8 

instruments and therefore the total is 80,000 instrumented assets.

Hence, the SDF depends only on information that affects a very large 

proportion of the stocks, amounting to systematic mispricing. 

 This also implies that the adversarial approach will only select instruments 

that lead to mispricing for most stocks. 
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Adversarial GMM

Once CPZ obtain the SDF factor weights, the loadings are proportional to the 

conditional moments 𝐸𝑡 𝐹𝑡+1, 𝑅𝑡+1,𝑖
𝑒 .

 A key element of their approach is to avoid estimating directly conditional 

means of stock returns. 

 CPZ show that they can better estimate the conditional co-movement of 

stock returns with the SDF factors, which is a second moment, than the 

conditional first moment. 
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Adversarial GMM

 The empirical loss function of the model minimizes the weighted sample 

moments which can be interpreted as weighted sample mean pricing errors: 

𝐿 𝜔| ො𝑔, 𝐼𝑡 , 𝐼𝑡,𝑖 =
1

𝑛
෍

𝑖=1

𝑁
𝑇𝑖

𝑇

1

𝑇𝑖
෍

𝑡∈𝑇𝑖

𝑀𝑡+1𝑅𝑡+1,𝑖
𝑒 ො𝑔 𝐼𝑡 , 𝐼𝑡+1

2

 for a given conditioning function ො𝑔 .  and information set. 

 As the convergence rates of the moments under suitable conditions is 1/𝑇𝑖, 

they weight each cross-sectional moment condition  by 1/𝑇𝑖 which assigns a 

higher weight to moments that are estimated more precisely and down-

weights the moments of assets that are observed only for a short time period.
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Adversarial GMM

 For a given conditioning function ො𝑔 .  and choice of information set the SDF 

portfolio weights are estimated by a feedforward network that minimizes the 

pricing error loss ෝ𝜔 = m𝑖𝑛
𝜔

𝐿(𝜔 ො𝑔, 𝐼𝑡 , 𝐼𝑡,𝑖  

 This is the SDF network.

 CPZ then construct the conditioning function ො𝑔 via a conditional network 

with a similar neural network architecture. 

 The conditional network serves as an adversary and competes with the SDF 

network to identify the assets and portfolio strategies that are the hardest to 

explain. 

 The macroeconomic information dynamics are summarized by 

macroeconomic state variables ℎ𝑡 which are obtained by LSTM. 

 The model architecture is summarized on the next page.
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Adversarial GMM
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Appendix

MACHINE LEARNING VERSUS ECONOMIC RESTRICTIONS: 

EVIDENCE FROM STOCK RETURN PREDICTABILITY
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Zoo of Anomalies

136 Source: Harvey, Liu, and Zhu (2016)Professor Doron Avramov, IDC, Israel



Zoo of Anomalies: Challenges

Harvey, Liu, and Zhu (2016): 296 anomalies, 27% to 53% are likely 

to be false discoveries 

Hou, Xue, and Zhang (2020): 452 anomalies, 82% turn insignificant 

upon excluding microcaps + value-weighting

Other challenges: anomaly profits mostly originate from short-leg 

distressed stocks and often disappear in recent years (e.g., Avramov, 

Chordia, Jostova, and Philipov, 2013) 
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Zoo of Anomalies: Challenges

 Traditional methods: 

Portfolio sorts and cross-sectional regressions

Low-dimensional

What needs to be done?

High-dimensional, noisy and correlated predictors

Flexible functional forms

Model selection

Mitigate overfitting biases

Machine Learning: automated detection of complex patterns in data; 

combine multiple weak sources of information into a meaningful 

composite signal

 Growing literature on return prediction and asset pricing models
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FinTech Adoption in Asset Management 
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Research Questions

Two strands of literature: diminishing anomalies vs. increasing 

prominence of ML methods

Do ML methods clear the common economic restrictions in asset 

pricing? 

Exclude difficult-to-arbitrage stocks

Cannot infer from individual anomalies 

Does the return predictability of ML signals vary over time? 

Exclude market states with high limits to arbitrage

Again, cannot infer…

What are the economic grounds for the seemingly opaque ML 

methods?
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Summary of Machine Learning Methods

Linearity
Asset Pricing 

Model
Testing Asset Predictors

GKX Nonlinear Reduced Form Stock Firm + Macro

CPZ Nonlinear Pricing Kernel Stock Firm + Macro

IPCA Linear Beta Pricing Stock Firm

CA Nonlinear Beta Pricing Stock Firm

KNS Linear Pricing Kernel Portfolio Firm

143

•GKX: Gu, Kelly, and Xiu (2020)

•CPZ: Chen, Pelger, and Zhu (2019)

• IPCA: Kelly, Pruitt, and Su (2019)

•CA: Gu, Kelly, and Xiu (2019)

•KNS: Kozak, Nagel, and Santosh (2020)
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Machine Learning Method I: GKX

Neural network with 3 hidden layers (NN3)

Example: 1 hidden layer with 5 neurons

(4 + 1) × 5 + 6 = 31 parameters
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Machine Learning Method I: GKX

Neural network with 3 hidden layers (NN3)

32, 16, and 8 neurons per layer

Reduced form, no economic restriction

94 firm characteristics + 8 macroeconomic predictors + 74 

industry dummies + interactions 

(8+1) × 94 + 74 = 920 predictors 

Training sample: 18 years, 1957 to 1974

Validation sample: 12 years, 1975 to 1986

Out-of-sample test: 31 years, 1987 to 2017
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Machine Learning Method II: CPZ

Adversarial approach, multiple connected neural networks

Incorporate no-arbitrage condition to estimate SDF and stock 

risk loadings
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Asset 
Pricing 

Modeler

Adversary
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Machine Learning Method II: CPZ

Adversarial approach, multiple connected neural networks

46 firm characteristics + 178 macroeconomic predictors + 
interactions → 10,000+ predictors

Training sample: 20 years, 1967 to 1986

Validation sample: 5 years, 1987 to 1991

Out-of-sample test: 25 years, 1992 to 2016
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Machine Learning Method III: IPCA

Instrumented principal component analysis

𝑟𝑖,𝑡+1 = 𝛼𝑖,𝑡 + 𝛽𝑖,𝑡
′ 𝑓𝑡+1 + 𝜖𝑖,𝑡+1

𝛽𝑖,𝑡
′ = 𝑧𝑖,𝑡

′ Γ𝛽 + 𝜐𝛽,𝑖,𝑡
′

Factor loadings vary with predictive characteristics linearly, 6 

latent factors

Incorporate no-arbitrage condition

94 firm characteristics 

Estimated in each month

Out-of-sample test: 31 years, 1987 to 2017
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Machine Learning Method IV: CA

Conditional autoencoder with 2 hidden layers (CA2)

Factor loadings vary with predictive characteristics nonlinearly 

through neural networks.

32 and 16 neurons per layer, 5 latent factors

Incorporate no-arbitrage condition

94 firm characteristics 

Training sample: 18 years, 1957 to 1974

Validation sample: 12 years, 1975 to 1986

Out-of-sample test: 30 years, 1987 to 2016
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Data

CRSP: daily and monthly stock data

COMPUSTAT: quarterly and annual financial statement data

GKX, IPCA, and CA: all NYSE/AMEX/Nasdaq stocks, set 

missing characteristics to cross-sectional median

21,882 stocks, between 5,117 and 7,877 per month

CPZ: all U.S. stocks from CRSP with available data on firm 

characteristics 

7,904 stocks, between 1,933 and 2,755 per month
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Economic Restrictions

Cross-sectional return predictability is concentrated in 

microcaps and distressed firms 

Exclude microcaps: market cap smaller than the 20th NYSE 

size percentile

Rated firms: firms with data on S&P long-term issuer credit 

rating

Exclude distressed firms: [−12, +12] months around an issuer 

credit rating downgrade
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Subsamples with Economic Restrictions

153

21,882

13,119

4,715 4,499

7,904

5,083

2,436 2,294

0

5,000

10,000

15,000

20,000

25,000

Full Sample Non-Microcaps Credit Rating Sample Non-Downgrades

GKX CPZ

Professor Doron Avramov, IDC, Israel



GKX Portfolio Return Spread: EW vs. VW

154

•VW performance is 48% lower than EW.
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GKX Portfolio Return Spread: Economic Restrictions

155

•Non-microcaps: 48% lower than the full sample; Rated firms: 46% ↓; 
Non-downgrades: 70% ↓

Insignificant after 
excluding 

microcaps or 
distressed firms
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Robustness Test: Train the NN3 Model in Subsamples

156

•Non-microcaps: 37% lower than the full sample; Rated firms: 50% ↓; 
Non-downgrades: 84% ↓
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Robustness Test: Alternative Objective Function

NN3: EW loss function, predict return

NN3-VW: VW loss function, predict FF6 alpha

157

•The seemingly more aligned objective function does not necessarily 
improve the predictive performance. 

0.61

0.99

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Full Sample Non-Microcaps Credit Rating
Sample

Non-Downgrades

NN3-VW NN3

Professor Doron Avramov, IDC, Israel



CPZ Portfolio Return Spread: Economic Restrictions

159

•Non-microcaps: 62% lower than the full sample; Rated firms: 72% ↓; 
Non-downgrades: 65% ↓
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ML Portfolio Return Spread: IPCA vs. GKX vs. CPZ

160

• IPCA underperforms deep learning models in the full sample.
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ML Portfolio Return Spread: IPCA vs. GKX vs. CPZ

161

• IPCA: no material deterioration of performance among the cheap-to-
trade stocks
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CA Portfolio Return Spread: Economic Restrictions

162

•Non-microcaps: 48% lower than the full sample; Rated firms: 75% ↓; 
Non-downgrades: 94% ↓
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Characteristics of ML Portfolios

 ML methods: positive/less negative skewness; smaller maximum drawdown than 

the market; higher return during the crisis period
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Sharpe Ratio Skewness
Excess 

Kurtosis

Maximum 

Drawdown

Return in 

Crisis
Turnover

Panel A: Sorted by NN3-Predicted Return

Full Sample 0.944 0.631 5.222 0.350 4.100 0.976

Non-Microcaps 0.644 0.361 7.062 0.349 3.563 0.869

Panel B: Sorted by Risk Loading

Full Sample 1.225 1.063 5.932 0.209 0.472 1.664

Non-Microcaps 0.839 0.326 1.582 0.246 0.677 1.625

Panel C: Sorted by IPCA-Predicted Return

Full Sample 0.967 -0.449 4.805 0.203 0.574 1.186

Non-Microcaps 0.978 -0.267 5.369 0.234 1.493 1.130

Panel D: Sorted by CA2-Predicted Return

Full Sample 0.784 -0.077 2.418 0.202 -0.047 1.565

Non-Microcaps 0.748 0.291 4.684 0.207 -0.529 1.478

Panel E: Market Portfolio

Full Sample 0.527 -0.978 3.323 0.486 -6.954 0.089

Non-Microcaps 0.530 -0.959 3.222 0.485 -6.907 0.086

Professor Doron Avramov, IDC, Israel



Characteristics of ML Portfolios

 ML methods: require high turnover in portfolio rebalancing

 One-side turnover: < 10% (size, value); 14% to 35% (failure probability, IVOL); > 

90% (short-term reversals, seasonality)
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Sharpe Ratio Skewness
Excess 

Kurtosis

Maximum 

Drawdown

Return in 

Crisis
Turnover

Panel A: Sorted by NN3-Predicted Return

Full Sample 0.944 0.631 5.222 0.350 4.100 0.976

Non-Microcaps 0.644 0.361 7.062 0.349 3.563 0.869

Panel B: Sorted by Risk Loading

Full Sample 1.225 1.063 5.932 0.209 0.472 1.664

Non-Microcaps 0.839 0.326 1.582 0.246 0.677 1.625

Panel C: Sorted by IPCA-Predicted Return

Full Sample 0.967 -0.449 4.805 0.203 0.574 1.186

Non-Microcaps 0.978 -0.267 5.369 0.234 1.493 1.130

Panel D: Sorted by CA2-Predicted Return

Full Sample 0.784 -0.077 2.418 0.202 -0.047 1.565

Non-Microcaps 0.748 0.291 4.684 0.207 -0.529 1.478

Panel E: Market Portfolio

Full Sample 0.527 -0.978 3.323 0.486 -6.954 0.089

Non-Microcaps 0.530 -0.959 3.222 0.485 -6.907 0.086
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Break-Even Transaction Cost 

 Novy-Marx and Velikov (2016): > 0.5% 

 Brandt, Santa-Clara, and Valkanov (2009): 𝑐𝑖,𝑡 = 𝑧𝑖,𝑡 × 𝑇𝑡, where 𝑧𝑖,𝑡 = 0.006 −
0.0025 × 𝑀𝐸𝑖,𝑡

  → 0.67% for the full sample and 0.64% for non-microcaps 
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FF6 Turnover Break-Even Cost 

Panel A: Sorted by NN3-Predicted Return

Full Sample 0.916 0.976 0.94

Non-Microcaps 0.312 0.869 0.36

Panel B: Sorted by Risk Loading

Full Sample 1.867 1.664 1.12

Non-Microcaps 0.548 1.625 0.34

Panel C: Sorted by IPCA-Predicted Return

Full Sample 0.624 1.186 0.53

Non-Microcaps 0.613 1.130 0.54

Panel D: Sorted by CA2-Predicted Return

Full Sample 0.746 1.565 0.48

Non-Microcaps 0.387 1.478 0.26
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ML Portfolio Return Spreads: Non-Microcaps + VW

 Assume transaction cost = 0.5% of the long-short portfolio turnover
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An Alternative ML Method

CPZ: estimate SDF for individual stocks

Kozak, Nagel, and Santosh (2020): estimate SDF for equity 

portfolios, i.e., long-short portfolio return based on predictive 

characteristics 

Minimize the Hansen-Jagannathan (1991) distance 

Ridge regression with three-fold cross-validation

Apply the 94 characteristics in GKX

 In-sample estimation: 1964 to 2004

Out-of-sample test: 2005 to 2017
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CAPM FF6
Sharpe 

Ratio

SDF-Implied MVE Portfolio Weights

Mean 10% 25% Median 75% 90%

Full Sample 3.662*** 3.338*** 2.318 0.083 -1.994 -0.912 0.341 0.964 1.687

(6.01) (5.90)

Non-Microcaps 1.543*** 0.895*** 0.977 0.084 -0.592 -0.238 0.072 0.407 0.647

(3.88) (2.87)

Credit Rating Sample 1.418*** 0.717* 0.898 -0.006 -0.382 -0.137 -0.003 0.187 0.326

(2.97) (1.93)

Non-Downgrades 1.308*** 0.545 0.828 -0.022 -0.370 -0.217 0.004 0.135 0.293

(2.92) (1.59)

Characteristics of SDF-Implied MVE Portfolios
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• Imposing economic restrictions reduces performance, and the odds of 
extreme positions

•Deep learning techniques face the usual challenge of cross-sectional 
return predictability: concentrated in difficult-to-arbitrage stocks + 
sizable trading costs (high turnover and extreme positions)
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Time-Varying Return Predictability: GKX-FF6

Binding limits to arbitrage → more profitable anomaly-based 

trading strategies

High sentiment, high volatility, and low liquidity
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Time-Varying Return Predictability: Full Sample-FF6

 CPZ: outperforms in high limits-to-arbitrage periods

 IPCA and CA: low time series variation, mixed evidence 
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Sorted by NN3-Predicted Return Sorted by Risk Loading

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Constant 0.016 -0.453 0.865 1.252 0.103 -0.081 0.432 0.528

(0.03) (-0.92) (1.14) (1.42) (0.16) (-0.13) (0.32) (0.36)

High SENT 1.534** 1.710** 0.228 -0.005 1.412** 1.395** 1.161* 1.124*

(2.43) (2.51) (0.58) (-0.01) (2.32) (2.23) (1.91) (1.75)

High MKTVOL 0.791 0.959* 0.787 1.065

(1.24) (1.93) (1.29) (1.56)

High VIX 1.851*** 1.647*** 1.255** 1.563**

(2.85) (3.28) (2.09) (2.28)

High MKTILLIQ 0.754 0.529 0.592 0.695 1.828*** 1.918*** 1.609** 1.851**

(1.24) (0.78) (1.37) (1.41) (2.86) (2.89) (2.20) (2.31)

Controls N N Y Y N N Y Y

Time-Varying Return Predictability: GKX and CPZ

 𝐻𝑀𝐿𝑡 = 𝛼0 + 𝛽1𝐻𝑖𝑔ℎ 𝑆𝐸𝑁𝑇𝑡−1 + 𝛽2𝐻𝑖𝑔ℎ 𝑀𝐾𝑇𝑉𝑂𝐿𝑡−1 + 𝛽3𝐻𝑖𝑔ℎ 𝑀𝐾𝑇𝐼𝐿𝐿𝐼𝑄𝑡−1 +

𝛽4𝑀𝑡−1 + 𝑐′𝐹𝑡 + 𝑒
𝑡
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•Controls: down market state, term spread, default spread, Fama-French six 
factors
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Return Predictability in Recent Years: Non-Microcaps

173

•Unlike individual anomalies, most ML signals continue to predict the 
stock returns after 2001.
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Return Predictability in Recent Years: FF6

174

•Unlike individual anomalies, there is no vast drop in trading profits of ML 
signals.
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Deep Learning Models as ‘Black Boxes’

175

•Common features of stocks selected by ML methods 

•Decompose to intra-industry vs. inter-industry strategy

Professor Doron Avramov, IDC, Israel



Stock Characteristics of ML Portfolios

All ML methods identify stocks in line with most anomaly-
based trading strategies. 

Long positions: small, value, illiquid and old stocks with low 
price, low beta, high 11-month return, low asset growth, low 
equity issuance, low credit rating coverage, and low analyst 
coverage.

Exceptions: long stocks with high corporate investment and 
high idiosyncratic volatility

Nonlinear relation, interact with other firm characteristics or 
macro conditions

Advantage: does not require prior knowledge on truly useful 
characteristics and models, avoid the data snooping problem
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ML signals identify mispricing in difficult-to-arbitrage stocks.

 Industry-adjustment controls for firm fundamentals and might better 

predict the subsequent corrections. 

Unconditional strategy: buy market winners and sell market losers

 𝑊𝑀𝐿𝑡+1 =
1

𝐻𝑡
 σ𝑖=1

𝑁𝑡 ෠𝑅𝑖,𝑡 − ෠𝑅𝑚,𝑡 𝑅𝑖,𝑡+1

 𝐻𝑡 =
1

2
σ

𝑖=1
𝑁𝑡 | ෠𝑅𝑖,𝑡 − ෠𝑅𝑚,𝑡|

 ෠𝑅𝑖,𝑡 − ෠𝑅𝑚,𝑡 = ෠𝑅𝑖,𝑡 − ෠𝑅𝑗,𝑡 + ෠𝑅𝑗,𝑡 − ෠𝑅𝑚,𝑡

Intra-Industry vs. Inter-Industry Return Predictability
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 𝑊𝑀𝐿𝑡+1 =
1

𝐻𝑡
 σ𝑖=1

𝑁𝑡 ෠𝑅𝑖,𝑡 − ෠𝑅𝑗,𝑡 𝑅𝑖,𝑡+1 +
1

𝐻𝑡
 σ𝑗=1

𝐿𝑡 ෠𝑅𝑗,𝑡 − ෠𝑅𝑚,𝑡 𝑁𝑗,𝑡𝑅𝑗,𝑡+1

Unconditional = Intra-Industry + Inter-Industry

 Intra-Industry strategy: buy industry winners and sell industry losers

 Inter-Industry strategy: buy winner industries and sell loser industries

Intra-Industry vs. Inter-Industry Return Predictability
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Intra-Industry vs. Inter-Industry Strategy: GKX

 Intra-industry strategy accounts for 84% (93%) of the unconditional payoff in 

raw (risk-adjusted) return across all stocks → stock selection
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Intra-Industry vs. Unconditional Strategy: GKX

180

• Intra-industry strategy improves performance, especially on non-microcaps.

0.00

0.50

1.00

1.50

2.00

2.50

R
et

ur
n

C
A

P
M

FF
C

FF
C

+P
S

FF
5

FF
6

S
Y

R
et

ur
n

C
A

P
M

FF
C

FF
C

+P
S

FF
5

FF
6

S
Y

Full Sample Non-Microcaps

WML WML_INTRA

Professor Doron Avramov, IDC, Israel



ML in Asset Management

Mitigate the downside risk and hedge against crisis

Remain profitable in recent years

Profitable in long positions: e.g., GKX signal, non-microcaps + VW
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Conclusion

 Investments based on deep learning signals extract profitability primarily 

from difficult-to-arbitrage stocks and during high limits-to-arbitrage 

market states. 

 Performance further deteriorates due to sizable trading costs.

 Despite their opaque nature, ML methods generate economically 

interpretable trading strategies and are mostly informative for stock 

selection.

 Beyond economic restrictions, ML signals are profitable in long positions, 

remain viable in recent years, and command low downside risk.

 In  “Post-Fundamentals Drift in Stock Price: A Regression Regularization 

Perspective”, my coauthors and I use easy-going methods to “acceleration” 

in accounting items.

 Investment payoffs do cross all restrictions studied here. 
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