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Abstract

This paper reviews the literature on Bayesian portfolio analysis.

Information about events, macro conditions, asset pricing theories,

and security-driving forces can serve as useful priors in selecting

optimal portfolios. Moreover, parameter uncertainty and model

uncertainty are practical problems encountered by all investors.

The Bayesian framework neatly accounts for these uncertainties,

whereas standard statistical models often ignore them. We review

Bayesian portfolio studies when asset returns are assumed both

independently and identically distributed as well as predictable

through time. We cover a range of applications, from investing in

single assets and equity portfolios to mutual and hedge funds.

We also outline challenges for future work.
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1. INTRODUCTION

Portfolio selection is one of the most important problems in practical investment manage-

ment. The first papers in the field go back at least to the mean-variance paradigm of

Markowitz (1952), which analytically formalizes the risk-return trade-off in selecting

optimal portfolios. Even when the mean variance is a static one-period model, it has widely

been accepted by both academics and practitioners. The latter-developed intertem-

poral capital asset pricing model (ICAPM) of Merton (1973) accounts for the dynamic

multiperiod nature of investment-consumption decisions. In an intertemporal economy,

the overall demand for risky assets consists of both the mean-variance component as well

as a component hedging against unanticipated shocks to time-varying investment opportu-

nities. Empirically, for a wide variety of preferences, hedging demands for risky assets are

typically small, even nonexistent (see also Ait-Sahalia & Brandt 2001, Brandt 2009).

We review Bayesian studies of portfolio analysis. The Bayesian approach is potentially

attractive. First, it can employ useful prior information about quantities of interest. Sec-

ond, it accounts for estimation risk and model uncertainty. Third, it facilitates the use of

fast, intuitive, and easily implementable numerical algorithms in which to simulate other-

wise complex economic quantities. In addition, three building blocks underly Bayesian

portfolio analysis: First is the formation of prior beliefs, which are typically represented

by a probability density function on the stochastic parameters underlying the stock-return

evolution. The prior density can reflect information about events, macroeconomy news,

asset pricing theories, as well as any other insights relevant to the dynamics of asset returns.

Second is the formulation of the law of motion governing the evolution of asset returns,

asset pricing factors, and forecasting variables. Third is the recovery of the predictive

distribution of future asset returns, analytically or numerically, incorporating prior infor-

mation, law of motion, as well as estimation risk and model uncertainty. The predictive

distribution, which integrates out the parameter space, characterizes the entire uncertainty

about future asset returns. The Bayesian optimal portfolio rule is obtained by maximizing

the expected utility with respect to the predictive distribution.

Zellner & Chetty (1965) pioneer the use of predictive distribution in decision making in

general. Appearing during the 1970s, the first applications in finance are entirely based on

uninformative or data-based priors. Bawa et al. (1979) provide an excellent survey on such

applications. Jorion (1986) introduces the hyperparameter prior approach in the spirit of

the Bayes-Stein shrinkage prior, whereas Black & Litterman (1992) advocate an informal

Bayesian analysis with economic views and equilibrium relations. Recent studies by Pástor

(2000) and Pástor & Stambaugh (2000) center prior beliefs around values implied by asset

pricing theories. Tu & Zhou (2010) argue that the investment objective provides a useful

prior for portfolio selection.

Whereas all the above-noted studies assume that asset returns are identically and inde-

pendently distributed through time, Kandel & Stamabugh (1996), Barberis (2000), and

Avramov (2002) account for the possibility that returns are predictable by macro variables

such as the aggregate dividend yield, the default spread, and the term spread. Incorporating

predictability provides fresh insights into asset pricing in general and Bayesian portfolio

selection in particular.

We review Bayesian portfolio studies when asset returns are assumed to (a) be indepen-

dently and identically distributed (IID), (b) be predictable through time by macro conditions,

and (c) exhibit regime shifts and stochastic volatility. We cover a range of applications, from
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investing in the market portfolio, equity portfolios, and single stocks to investing in mutual

funds and hedge funds. We also outline existing challenges for future work.

The paper is organized as follows: Section 2 reviews Bayesian portfolio analysis when

asset returns are independently and identically distributed through time. Section 3 surveys

studies that account for potential predictability in asset returns. Section 4 discusses alter-

native return-generating processes. Section 5 outlines ideas for future research, and Section

6 concludes.

2. ASSETALLOCATION WHEN RETURNS ARE INDEPENDENTLY
AND IDENTICALLY DISTRIBUTED

ConsiderNþ 1 investable assets, one of which is riskless and the other is risky. Risky assets

may include stocks, bonds, currencies, mutual funds, and hedge funds. Denote by rft and rt
the returns on the riskless and risky assets, respectively, at time t. Then, Rt � rt � rft1N is

anN-dimensional vector of time t excess returns on risky assets, where 1N is anN-vector of

ones. The joint distribution of Rt is assumed IID through time with mean m and covariance

matrix V.

For analytical insights, it is useful to review the mean-variance framework pioneered

by Markowitz (1952). In particular, consider an optimizing investor who chooses at

time T portfolio weights w so as to maximize the quadratic objective function

U(w) ¼ E½Rp� � g
2
Var½Rp� ¼ w0m� g

2
w0Vw, ð1Þ

where E and Var denote the mean and variance of the uncertain portfolio rate of return

Rp ¼ w0RTþ1 to be realized at time Tþ 1, and g is the relative risk-aversion coefficient.

When both m and V are known, the optimal portfolio weights are given by

w* ¼ 1

g
V�1m, ð2Þ

and the maximized expected utility is

U(w*) ¼ 1

2g
m0V�1m ¼ y2

2g
, ð3Þ

where y2 ¼ m0V�1m is the squared Sharpe ratio of the ex ante tangency portfolio of the

risky assets.

In practice, it is impossible to compute w* because both m and V are essentially

unknown. One approach is to apply the mean-variance theory in two steps. In the first

step, the mean and covariance matrix of asset returns are estimated on the basis of the

observed data. Specifically, given a sample of Tobservations on asset returns, the standard

maximum likelihood estimators are

m̂ ¼ 1

T

XT
t¼1

Rt ð4Þ

and

V̂ ¼ 1

T

XT
t¼1

(Rt � m̂)(Rt � m̂)0: ð5Þ
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Then, in the second step, these sample estimates are treated as if they were the true

parameters and are simply plugged into Equation 2 to compute the estimated optimal

portfolio weights

ŵML ¼ 1

g
V̂

�1
m̂: ð6Þ

The two-step procedure gives rise to a parameter-uncertainty problem because it is the

estimated parameters, not the true ones, that are used to compute optimal portfolio

weights. Consequently, the utility associated with the plug-in portfolio weights can be

substantially different from the true utility, U(w*). In particular, denote by y the vector of

the unknown parameters m and V. Mathematically, the two-step procedure maximizes the

expected utility conditional on the estimated parameters, denoted by ŷ, being equal to the

true ones

max
w

½U(w) j y ¼ ŷ�: ð7Þ

Thus, estimation risk is altogether ignored.

2.1. The Bayesian Framework

The Bayesian approach treats y as a random quantity. One can infer only its probability

distribution function. Following Zellner & Chetty (1965), the Bayesian optimal portfolio

is obtained by maximizing the expected utility under the predictive distribution. In

particular, the utility maximization is formulated as

ŵBayes ¼ argmaxw

Z
RTþ1

~U(w)p(RTþ1 jFT)dRTþ1

¼ argmaxw

Z
RTþ1

Z
m

Z
V

~U(w)p(RTþ1, m,V jFT )dmdVdRTþ1,

ð8Þ

where ~U(w) is the utility of holding a portfoliow at time Tþ 1 andFT is the data available

at time T. Moreover, p(RTþ1 jFT) is the predictive density of the time Tþ 1 return, which

integrates out m and V from

p(RTþ1, m,V jFT ) ¼ p(RTþ1 j m,V,FT) p(m,V jFT), ð9Þ
where p(m,V jFT) is the posterior density of m and V. To compare the classical and Bayesian

formulations in Equations 7 and 8, notice that expected utility is maximized under the

conditional and predictive distributions, respectively. Unlike the conditional distribution,

the Bayesian predictive distribution accounts for estimation errors by integrating over the

unknown parameter space. The degree of uncertainty about the unknown parameters will

thus play a role in the optimal solution.

To gain a better understanding of the Bayesian approach, we consider various specifi-

cations for prior beliefs about the unknown parameters. We start with the standard diffuse

prior on m and V. The typical formulation is given by

p0(m,V) / jVj�Nþ1
2 : ð10Þ

Then, assuming that returns on risky assets are jointly normally distributed, the poste-

rior distribution is given by (see, e.g., Zellner 1971),
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p(m,V jFT) ¼ p(m jV,FT )� p(V jFT ) ð11Þ
with

p(m jV,FT ) / jVj�1=2 exp � 1

2
tr½T(m� m̂)(m� m̂)0V�1�

� �
, ð12Þ

P(V) / jVj�n
2 exp � 1

2
trV�1(TV̂)

� �
, ð13Þ

where tr denotes the trace of a matrix and n ¼ T þN. Moreover, the predictive distribution

obeys the expression

p(RTþ1 jFT) / j V̂ þ (RTþ1 � m̂)(RTþ1 � m̂)0=(T þ 1) j�T=2, ð14Þ
which amounts to a multivariate t-distribution with T � N degrees of freedom.

Although recognized by Markowitz (1952), the problem of estimation error did not

receive serious attention until the 1970s. Winkler (1973) and Winkler & Barry (1975) are

early examples of Bayesian studies on portfolio choice. Brown (1976, 1978) and Klein &

Bawa (1976) independently lay out the Bayesian predictive density approach, with Brown

(1976) giving an especially thorough explanation of the estimation error problem and the

associated Bayesian approach. Bawa et al. (1979) provide an excellent review of the early

literature.

Under the diffuse prior in Equation 10, it is known that the Bayesian optimal portfolio

weights are

ŵBayes ¼ 1

g
T �N � 2

T þ 1

� �
V̂

�1
m̂: ð15Þ

Similar to the classical solution ŵML, an optimizing Bayesian agent holds the port-

folio that is also proportional to 1
g V̂

�1
m̂, in which the coefficient of proportion is

(T �N � 2)=(T þ 1). This coefficient can be substantially smaller than one whenN is large

relative to T. Intuitively, the assets are riskier in a Bayesian framework because parameter

uncertainty is an additional source of risk and this risk is accounted for in the portfolio

decision. As a result, in the presence of a risk-free security, the overall positions in risky

assets are generally smaller in the Bayesian versus classical frameworks.

However, the Bayesian approach based on diffuse prior does not yield significantly

different portfolio decisions compared with the classical framework. In particular, ŵML is

a biased estimator of w*, whereas the classical unbiased estimator is given by

�w ¼ 1

g
T �N � 2

T
V̂

�1
m̂, ð16Þ

which is a scalar adjustment of ŵML and differs from the Bayesian counterpart only by a

scalar T/(Tþ 1). The difference is independent of N, and is negligible for all practical

sample sizes. Moreover, optimal portfolios formed on the basis of both the maximum

likelihood and Bayesian procedures imply the same relative proportions among the

N risky assets.

One setting in which diffuse priors do yield considerably different results is when

some of the N risky assets have longer histories than others (Stambaugh 1997). Other-

wise, incorporating parameter uncertainty makes little difference if the diffuse prior is
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used. Indeed, to exhibit the decisive advantage of the Bayesian portfolio analysis, it is

generally necessary to elicit informative priors that account for events, macro condi-

tions, asset pricing theories, as well as any other insights relevant to the evolution of

stock prices.

2.2. Performance Measures

How can one argue that an informative prior is better than the diffuse prior? In general, it

is difficult to make a strong case for a prior specification, because what is good or bad has

to be defined and the definition may differ among investors. Moreover, ex ante, knowing

which prior is closer to the true data-generating process is also difficult.

Following McCulloch & Rossi (1990), Kandel & Stambaugh (1996), and Pástor &

Stambaugh (2000), we focus on utility differences for motivating a performance metric. To

illustrate, let ~wa and ~wb be the Bayesian optimal portfolio weights under priors a and b,

and let Ua and Ub be the associated expected utilities evaluated by using the predictive

density under prior a. Then the difference in the expected utilities,

CER ¼ Ua �Ub, ð17Þ
is interpreted as the certainty equivalent return (CER) loss perceived by an investor who

is forced to accept the portfolio selection ~wb even when ~wa would be the ultimate

choice. The CER is nonnegative by construction. Indeed, the essential question is how big

this value is. Generally speaking, values over a couple of percentage points per year are

deemed economically significant.

However, the CER does not say prior a is better or worse than prior b. It merely

evaluates the expected utility differential if prior b is used instead of prior a, even

when prior a is perceived to be the right one. Recall that the true model as well as

which one of the priors is more informative about the true data-generating process are

unknown.

Following the statistical decision literature (see, e.g., Lehmann & Casella 1998), we

can nevertheless use a loss function approach to distinguish the outcomes of using

various priors. The prior that generates the minimum loss is viewed as the best one. In the

portfolio choice problem here, the loss function is well defined. Because any estimated

portfolio strategy, ~w, is a function of the data, the expected utility loss from using ~w rather

than w* is

r(w*, ~w j m,V) � U(w*)� E½U(~w) j m,V�, ð18Þ
where the first term on the right-hand side is the true expected utility based on the true

optimal portfolio. Hence, r(w*, ~w j m,V) is the utility loss if one plays infinite times the

investment game with ~w, whether estimated via a Bayesian or a non-Bayesian approach. In

particular, the difference in expected utilities between any two estimated rules, ~wa and ~wb,

should be

Gain ¼ E½U(~wa) j m,V� � E½U(~wb) j m,V�: ð19Þ
This is an objective utility gain (loss) of using portfolio strategy ~wa versus ~wb. It is

considered to be an out-of-sample measure because it is independent of any single set

of observations. If the measure is, say, 5%, then using ~wa instead of ~wb would yield a

5% gain in the expected utility over repeated use of the estimation strategy. In this
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case, if ~wa is obtained under prior a and ~wb is obtained under prior b, one could

consider prior a to be superior to prior b. The loss or gain criterion is widely used in

the classical statistics to evaluate two estimators. Brown (1976, 1978), Jorion (1986),

Frost & Savarino (1986), and Stambaugh (1997), for example, use r(w*, ŵ) to evalu-

ate portfolio rules.

One cannot compute the loss function exactly because it depends on unknown true

parameters. Nevertheless, it is widely used in two major ways. First, alternative estimators

can be assessed in simulations with various assumed true parameters. Second, a

comparison of alternative estimators can often be made analytically without any

knowledge of the true parameters. For example, Kan & Zhou (2007) show that the

Bayesian solution ŵBayes dominates �w given in Equation 16, by having positive utility gains

regardless of the true parameter values. However, the Bayesian solution is dominated by

yet another classical rule:

ŵc ¼ c

g
Ŝ

�1
m̂, c ¼ (T �N � 1)(T �N � 4)

T(T � 2)
: ð20Þ

This again calls for the use of informative priors in Bayesian portfolio analysis.

2.3. Conjugate Prior

The conjugate prior, which retains the same class of distributions, is a natural and common

informative prior on any problem in decision making. In our context, the conjugate

specification considers a normal prior for m (conditional on V) and inverted Wishart prior

for V. The conjugate prior is given by

m jV � N(m0,
1

t
V) ð21Þ

and

V � IW(V0, n0), ð22Þ
where m0 is the prior mean, t is a parameter reflecting the prior precision of m0, and n0 is a
similar prior precision parameter on V. Under this prior, the posterior distribution of m and

V obeys the same form as that based on the conjugate prior, except that now the posterior

mean of m is given by a weighted average of the prior and sample means

~m ¼ t
T þ t

m0 þ
T

T þ t
m̂: ð23Þ

Similarly, V0 is updated as

~V ¼ T þ 1

T(n0 þN � 1)
V0 þ TV̂ þ Tt

T þ t
(m0 � m̂)(m0 � m̂)0

� �
, ð24Þ

which is a weighted average of the prior variance, sample variance, and deviations of

m̂ from m0.
Frost & Savarino (1986) provide an interesting application of the conjugate prior,

assuming a priori that all assets exhibit identical means, variances, and patterned covari-

ances. They find that such a prior improves ex post performance. This prior is related the

well-known 1/N rule that invests equally across the N assets.
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2.4. Hyperparameter Prior

Jorion (1986) introduces hyperparameters � and l that underlie the prior distribution of m.
In particular, the hyperparameter prior is formulated as

p0(m j �, l) / jVj�1 exp � 1

2
(m� �1N)

0(lV)�1(m� �1N)

� �
: ð25Þ

Then, employing diffuse priors on both � and l and integrating these parameters out

from a suitable distribution, the predictive distribution of the future portfolio return can be

obtained following Zellner & Chetty (1965). In particular, Jorion’s optimal portfolio rule

is given by

wPJ ¼ 1

g
(V̂

PJ
)�1m̂PJ, ð26Þ

where

m̂PJ ¼ (1� v̂)m̂þ v̂m̂g1N, ð27Þ

V̂
PJ ¼ 1þ 1

T þ l̂

� �
�V þ l̂

T(T þ 1þ l̂)

1N1
0
N

1
0
N
�V
�1
1N

, ð28Þ

v̂ ¼ N þ 2

(N þ 2)þ T(m̂� m̂g1N)
0 �V�1

(m̂� m̂g1N)
, ð29Þ

l̂ ¼ (N þ 2)=½(m̂� m̂g1N)
0 �V�1

(m̂� m̂g1N)�, ð30Þ

�V ¼ TV̂=(T �N � 2), ð31Þ
and

m̂g ¼ 10N �V
�1m̂=10N �V

�1
1N: ð32Þ

This hyperparameter portfolio rule can be motivated on the basis of the following

Bayes-Stein shrinkage estimator (see, e.g., Jobson et al. 1979) of expected return

m̂BS ¼ (1� v)m̂þ vmg1N, ð33Þ

where mg1N is the shrinkage target, mg ¼ 10NV
�1m=10NV

�11N, and v is the weight given to

the target. Jorion (1986) as well as subsequent studies find that wPJ improveswML substan-

tially, implying that it also outperforms the Bayesian strategy based on the diffuse prior.

2.5. The Black-Litterman Model

Markowitz’s portfolio rule ŵML typically implies unusually large long and short positions

in the absence of portfolio constraints. Moreover, it delivers many zero positions when

short sales are not allowed. Black & Litterman (1992) provide a novel solution to this

problem. They assume that the investor starts with initial views consistent with market

equilibrium and then updates those views with his own views via the Bayesian rule. For

instance, if the market equilibrium views are based on the CAPM, the implied optimal

32 Avramov � Zhou
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portfolio is the value-weighted index. If the investor has views identical to the market, the

market portfolio will be the ultimate choice.

However, what if the investor has different views? Black & Litterman (1992) propose a

way to update market views with the investor’s own views. Let us formalize the Black-

Litterman model. Based on market views, expected excess returns are given by

me ¼ gVwe, ð34Þ
where we denotes the value-weighted weights in the stock index and g is the market risk-

aversion coefficient. Assume that the true expected excess return m is normally distributed

with mean me,

m ¼ me þ ee, ee � N(0, tV), ð35Þ
where ee, the deviation of m from me, is normally distributed with zero mean and covariance

matrix tV in which t is a scalar indicating the degree of belief in how close m is to the

equilibrium value me. In the absence of any views on future stock returns, and in the special

case of t ¼ 0, the investor’s portfolio weights must be equal to we, the weights of the value-

weighted index.

Black & Litterman (1992) consider views about the relative performance of stocks that

can be represented mathematically by a single vector equation,

Pm ¼ mv þ ev, ev � N(0,O), ð36Þ
where P is a K � N matrix summarizing K views, mv is a K-vector summarizing the prior

means of the view portfolios, and ev is the residual vector. The views may be formed on the

basis of news, events, or analysis on the economy and investable assets. The covariance

matrix of the residuals, O, measures the degree of confidence the investor has in his own

views. Applying Bayes’ rule to the beliefs in the market equilibrium relationship and the

investor’s own views, as formulated in Equations 35 and 36, Black & Litterman (1992)

obtain the Bayesian updated expected returns and risks as

�mBL ¼ ½(tV)�1 þ P0O�1P��1½(tV)�1me þ P0O�1mv� ð37Þ
and

�V
BL ¼ V þ ½(tV)�1 þ P0O�1P��1: ð38Þ

Replacing V by V̂ and plugging these two updated estimates into Equation 6, one

obtains the Black-Litterman solution to the portfolio choice problem.

Note that the Black-Litterman expected return, �mBL, is a weighted average of the equilib-

rium expected return and the investor’s views about expected return. Intuitively, the less

confident the investor is about his views, the closer �mBL is to the equilibrium value, and so

the closer the Black-Litterman portfolio is to we. He & Litterman (1999) mathematically

show this is the case. Hence, the Black-Litterman model tilts the investor’s optimal portfolio

away from the market portfolio according to the strength of the investor’s views. Because the

market portfolio is a reasonable starting point that takes no extreme positions, any suitably

controlled tilt should also yield a portfolio without any extreme positions. This property is

one of the major reasons the Black-Litterman model is popular in practice.

Whereas the Black-Litterman model is considered to be a Bayesian approach, it is

not entirely Bayesian. For one, the data-generating process is not spelled out explicitly.

Moreover, the Bayesian predictive density is not used anywhere. Zhou (2009) treats the
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investor’s view as yet another layer of priors and combines this and the equilibrium prior

with the data-generating process, resulting in a formal Bayesian treatment and an exten-

sion of the Black-Litterman model.

2.6. Asset Pricing Prior

Pástor (2000) and Pástor & Stambaugh (2000) introduce interesting priors that reflect an

investor’s degree of belief in the ability of an asset pricing model to explain the cross

sectional dispersion in expected returns. In particular, let Rt ¼ (yt, xt), where yt contains

the excess returns of m nonbenchmark positions and xt contains the excess returns of

K (¼ N � m) benchmark positions. Consider a factor-model multivariate regression

yt ¼ aþ Bxt þ ut, ð39Þ
where ut is an m � 1 vector of residuals with zero means and a nonsingular covariance

matrix S ¼ V11 � BV22B
0. Notice that a and B are related to m and V through

a ¼ m1 � Bm2, B ¼ V12V
�1
22 , ð40Þ

where mi and Vij (i, j ¼ 1, 2) are the corresponding partitions of m and V,

m ¼ m1
m2

� �
, V ¼ V11 V12

V21 V22

� �
: ð41Þ

A factor-based asset pricing model, such as the three-factor model of Fama & French

(1993), implies the restrictions a ¼ 0 for all nonbenchmark assets.

To allow for mispricing uncertainty, Pástor (2000) as well as Pástor & Stambaugh

(2000) specify the prior distribution of a as a normal distribution conditional on S,

a jS � N 0, s2a
1

s2S
S

� �� �
, ð42Þ

where s2S is a suitable prior estimate for the average diagonal elements of S. The above

alpha-Sigma link is also explored by MacKinlay & Pástor (2000) in a classical framework.

The magnitude of sa represents an investor’s level of uncertainty about the pricing ability

of a given model. On the one hand, when sa ¼ 0, the investor believes dogmatically in the

model and there is no mispricing uncertainty. On the other hand, when sa ¼ 1, the

investor disregards the pricing model as entirely useless.

This asset pricing prior also has the Bayes-Stein shrinkage interpretation. In particular,

the prior on a implies a prior mean on m, say m0. Accordingly, the predictive mean is

mp ¼ tm0 þ (1� t)m̂, ð43Þ
where t inversely depends on the sample size and positively on the level of prior confidence

in the pricing model. Similarly, the predictive variance is a mixture of prior and sample

variances.

2.7. Objective-Based Prior

Priors are generally placed on the parameters m and V, not on the optimal portfolio

weights. Indeed, a diffuse prior on the parameters may be interpreted as a diffuse prior

on the optimal portfolio weights as well. However, in various applications, seemingly

innocuous diffuse priors on some basic model parameters can actually imply rather strong
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prior convictions about particular economic dimensions of the problem. For example, in

the context of testing portfolio efficiency, Kandel et al. (1995) find that a diffuse prior on

model parameters implies a rather strong prior on inefficiency of a given portfolio. Klein &

Brown (1984) provide a generic way to obtain an uninformative prior on nonprimitive

parameters, which can potentially be applied to derive an uninformative prior on effi-

ciency. In the context of return predictability, Lamoureux & Zhou (1996) find that the

diffuse prior implies a prior concentration on either high or low degrees of return pre-

dictability. Thus, it is important to form informative priors on the model parameters that

can imply reasonable priors on functions of interest.

Tu & Zhou (2010) advocate a method for constructing priors on the unobserved pa-

rameters based on a prior on the solution of an economic objective. In maximizing an

economic objective, a Bayesian agent may have some idea about the range for the solution

even before observing the data. Thus, the aim is to form a prior on the solution, from

which the prior on the parameters can be backed out. For instance, the investor may have a

prior corresponding to equal or value-weighted portfolio weights. The prior on optimal

weights can then be transformed into a prior on m and V. Such priors on the primitive

parameters are called objective-based priors.

Formally, the objective-based prior starts from a prior on w,

w � N(w0,V0V
�1=g), ð44Þ

where w0 and V0 are suitable prior constants with known values and then back out a prior

on m,

m � N gVw0, s2r
1

s2
V

� �� �
, ð45Þ

where s2 is the average of the diagonal elements of V. The prior on V can be taken as the

usual inverted Wishart distribution.

Using monthly returns on the Fama-French 25 size and book-to-market portfolios and

three factors from January 1965 to December 2004, Tu & Zhou (2009) find that invest-

ment performance under objective-based priors can be significantly different from that

under diffuse and asset pricing priors, with differences in annual certainty-equivalent

returns greater than 10% in many cases. In terms of the loss function measure, portfolio

strategies based on the objective-based priors can substantially outperform both strategies

under the alternative priors.

3. PREDICTABLE RETURNS

So far, asset returns are assumed to be IID and thus unpredictable through time. However,

Keim & Stambaugh (1986), Campbell & Shiller (1988), and Fama & French (1989)

identify business-cycle variables, such as the aggregate dividend yield and the default

spread, that predict future stock and bond returns. Such predictive variables, when

incorporated in studies that deal with the time-series and cross-sectional properties of

expected returns, provide fresh insights into asset pricing and portfolio selection. In asset

pricing, Lettau & Ludvigson (2001) and Avramov & Chordia (2006a) show that factor

models with time-varying risk premia and/or risk are reasonably successful relative to their

unconditional counterparts. Focusing on portfolio selection, Kandel & Stambaugh (1996)

analyze investments when returns are potentially predictable.
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3.1. One-Period Models

In particular, consider a one-period optimizing investor who must allocate at time T funds

between the value-weighted NYSE index and one-month Treasury bills. The investor

makes portfolio decisions based on estimating the predictive system

rt ¼ aþ b0zt�1 þ ut ð46Þ
and

zt ¼ yþ rzt�1 þ vt, ð47Þ
where rt is the continuously compounded NYSE return in month t in excess of the contin-

uously compounded T-bill rate for that month, zt�1 is a vector of M predictive variables

observed at the end of month t�1, b is a vector of slope coefficients, and ut is the regression

disturbance in month t. The evolution of the predictive variables is essentially stochastic.

Typically, a first-order vector autoregression is employed to model that evolution.

The residuals in Equations 46 and 47 are assumed to obey the normal distribution. In

particular, let �t ¼ ½ut, vt0 �0 then �t � N(0,S), where

S ¼ s2u suv
svu Sv

� �
: ð48Þ

The distribution of rTþ1, the time T þ 1 NYSE excess return, which is conditional on

data and model parameters, is N(aþ b0zT , s2u). Assuming an inverted Wishart prior distri-

bution for S and a multivariate normal prior for the intercept and slope coefficients in the

predictive system, the Bayesian predictive distribution P rTþ1 jFTð Þ obeys the student t

density. Then, for a power utility investor with a parameter of relative risk aversion

denoted by g, the optimization problem is

o* ¼ argmax
o

Z
rTþ1

(1� o)exp(rf )þ o exp(rf þ rTþ1)
� 	1�g

1� g
P rTþ1 jFTð ÞdrTþ1, ð49Þ

subject to o being nonnegative. An analytic solution for the optimal portfiolio is

unfeasible, but a proper solution can easily be obtained numerically. In particular, given G

independent draws for RTþ1 from the predictive distribution, the optimal portfolio is found

by maximizing the quantity

1

G

XG
g¼1

(1� o)exp(rf )þ o exp(rf )þ R
(g)
Tþ1)

n o1�g

1� g
ð50Þ

subject to o being nonnegative. Kandel & Stambaugh (1996) show that even when the

statistical evidence on predictability is weak, as reflected through the R2 in the regression in

Equation 46, the current values of the predictive variables, zT, can exert a substantial

influence on the optimal portfolio.

3.2. Multiperiod Models

Whereas Kandel & Stambaugh (1996) study asset allocation in a single-period frame-

work, Barberis (2000) analyzes multiperiod investment decisions, considering both a

buy-and-hold investor as well as an investor who dynamically rebalances the optimal
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stock-bond allocation. Implementing long-horizon asset allocation in a buy-and-hold

setup is straightforward. In particular, let K denote the investment horizon; then

RTþK ¼ PK
k¼1rTþk is the cumulative (continuously compounded) return over the invest-

ment horizon. Avramov (2002) shows that the distribution for RTþK conditional on the

data (denoted FT) and set of parameters (denoted Y) is given by

RTþKj,Y,FT � N l,Uð Þ, ð51Þ
where

l¼Kaþb0 (rK�IM)(r�IM)�1
� 	

zTþb0 r rK�1�IM

 �

(r�IM)�1�(K�1)IM
� 	

(r�IM)�1y,

ð52Þ

U ¼ Ks2u þ
XK
k¼1

d(k)Svd(k)
0 þ

XK
k¼1

suvd(k)
0 þ

XK
k¼1

d(k)svu, ð53Þ

and

d(k) ¼ b0 rk�1 � IM
� 


(r� IM)�1
h i

: ð54Þ

Drawing from the Bayesian predictive distribution is done in two steps. First, draw

the model parameters Y from their posterior distribution. Second, conditional on model

parameters, draw RTþK from the normal distribution formulated in Equations 51–54. The

optimal portfolio can then be found using Equation 50 with RTþK replacing RTþ1 and Krf
replacing rf.

Incorporating dynamic rebalancing, intermediate consumption, and learning could

establish a nontrivial challenge for recovering the optimal portfolio choice. Brandt

et al. (2005) nicely address the challenge using a tractable simulation–based method.

Pástor & Veronesi (2009) comprehensively survey the literature on learning in financial

markets.

Essentially, the IID setup corresponds to b ¼ 0 in the predictive regression (Equation 46),

which yields liid ¼ Ka and Uiid ¼ Ks2u in Equations 52 and 53. The conditional mean and

variance in an IID world increase linearly with the investment horizon. Thus, there is no

horizon effect when (a) returns are IID and (b) estimation risk is not accounted for, as shown

by Samuelson (1969) and Merton (1969) in an equilibrium framework. Incorporating esti-

mation risk, Barberis (2000) shows that the allocation to equity diminishes with the invest-

ment horizon, as stocks appear to be riskier in longer horizons. Accounting for both return

predictability and estimation risk, Barberis (2000) shows that investors allocate more heavily

to equity the longer their horizon.

Although estimation risk plays virtually no role in the single-period case, it plays an

important role in long-horizon investment decisions. Barberis shows that a long-horizon

investor who ignores it may overallocate to stocks by a sizeable amount. Even when the

predictors evolve stochastically, both Kandel & Stambaugh (1996) and Barberis (2000)

assume that the initial value of the predictive variables z0 is nonstochastic. With a stochas-

tic initial value, the distribution of future returns conditioned on model parameters no

longer obeys a well-known distributional form. Stambaugh (1999) addresses this problem

by implementing the Metropolis Hastings algorithm, a Markov chain Monte Carlo proce-

dure introduced by Metropolis et al. (1953) and generalized by Hastings (1970). Several

other powerful numerical Bayesian algorithms exist, including the Gibbs sampler and data
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augmentation (see a review by Chib & Greenberg 1996), which make the Bayesian

approach broadly applicable. Additional advantages of the Bayesian approach are the

ability it gives a Bayesian investor to incorporate model uncertainty as well as to consider

prior views about the degree of predictability explained by asset pricing models. The latter

two advantages of the Bayesian approach are explained below.

3.3. Model Uncertainty

As noted above, financial economists have identified economic variables that appear to

predict future asset returns. However, the “correct” predictive regression specification

has remained an open issue for several reasons. For one, existing equilibrium pricing

theories are not explicit about which variables should enter the predictive regression.

This ambiguity is undesirable, as it renders the empirical evidence subject to data-

overfitting concerns. Indeed, Bossaerts & Hillion (1999) confirm in-sample return pre-

dictability but fail to detect out-of-sample predictability. Moreover, the multiplicity of

potential predictors also makes the empirical evidence difficult to interpret. For example,

one may find an economic variable statistically significant on the basis of a particular

collection of explanatory variables, but often not on the basis of a competing specifica-

tion. Given that the true set of predictive variables is unknown, the Bayesian methodol-

ogy of model averaging described below is attractive, as it explicitly incorporates model

uncertainty in asset allocation decisions.

Bayesian model averaging has been used to study heart attacks in medicine, traffic

congestion in transportation economy, hot hands in basketball, and economic growth in

the macroeconomy literature. In finance, Bayesian model averaging facilitates a flexible

modeling of investors’ uncertainty about potentially relevant predictive variables in fore-

casting models. In particular, it assigns posterior probabilities to a wide set of competing

return-generating models (overall, 2M models). It then uses the probabilities as weights on

the individual models to obtain a composite-weighted model. This optimally weighted

model is then employed to investigate asset allocation decisions. Bayesian model averaging

contrasts sharply with the traditional classical approach of model selection. In the latter

approach, one uses a specific criterion (e.g., adjusted R2) to select a single model and then

operates as if that selected model is correct. Implementing model-selection criteria, the

econometrician views the selected model as the true one with a unit probability and

discards the other competing models as worthless, thereby ignoring model uncertainty.

Accounting for model uncertainty, Avramov (2002) shows that Bayesian model averaging

outperforms, ex post out-of-sample, the classical approach of model-selection criteria,

generating smaller forecast errors and being more efficient. Ex ante, an investor who

ignores model uncertainty suffers considerable utility loses.

The Bayesian weighted predictive distribution of RTþK averages over the model space

and integrates over the posterior distribution that summarizes the within-model parameter

uncertainty about Yj :

P RTþK jFTð Þ ¼
X2M
j¼1

P Mj jFT


 �Z
Yj

P Yj jMj,FT


 �
P RTþK jMj,Yj,FT


 �
dYj, ð55Þ

where j is the model identifier, P Mj jFT


 �
is the posterior probability that model Mj is

the correct one, and Yj denotes the parameters of model j. Drawing from the weighted

38 Avramov � Zhou

A
nn

u.
 R

ev
. F

in
. E

co
n.

 2
01

0.
2:

25
-4

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 7

9.
17

9.
10

6.
15

4 
on

 1
1/

08
/1

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



predictive distribution is done in three steps: First, draw the model from the distribution of

models. Then, conditional upon the model, implement the two steps noted above for

drawing future returns from the model-specific Bayesian predictive distribution.

3.4. Prior About the Extent of Predictability Explained by Asset Pricing Models

As noted above, the Bayesian approach facilitates incorporating economically motivated

priors. In the context of return predictability, the classical approach has examined whether

predictability is explained by rational pricing or whether it is due to asset pricing misspeci-

fication (see, e.g., Campbell 1987, Ferson & Korajczyk 1995, Kirby 1998). Studies such as

these approach finance theory by focusing on two polar viewpoints: rejecting or not

rejecting a pricing model based on hypothesis tests. The Bayesian approach incorporates

pricing restrictions on predictive regression parameters as a reference point for a hypothet-

ical investor’s prior belief. The investor uses the sample evidence about the extent of

predictability to update various degrees of belief in a pricing model and then allocates

funds across cash and stocks. Pricing models are expected to exert stronger influence on

asset allocation when the prior confidence in their validity is stronger and when they

explain much of the sample evidence on predictability.

Avramov (2004) models excess returns on N investable assets as

rt ¼ a(zt�1)þ bft þ urt, ð56Þ

a(zt�1) ¼ a0 þ a1zt�1, ð57Þ

ft ¼ l(zt�1)þ uft, ð58Þ
and

l(zt�1) ¼ l0 þ l1zt�1, ð59Þ
where ft is a set of K monthly excess returns on portfolio-based factors, a0 stands for an

N-vector of the fixed component of asset mispricing, a1 is an N � M matrix of the time-

varying component, and b is an N � K matrix of factor loadings. A conditional version of

an asset pricing model (with fixed beta) implies the relation

E(rt j zt�1) ¼ bl(zt�1) ð60Þ
for all t, where E denotes the expected value operator. Equation 60 imposes restrictions on

the parameters and the goodness of fit in the multivariate predictive regression

rt ¼ m0 þ m1zt�1 þ vt, ð61Þ
where m0 is anN-vector and m1 is anN �Mmatrix of slope coefficients. In particular, note

that by adding to the right-hand side of Equation 61 the quantity b ft � l0 � l1zt�1ð Þ,
subtracting the (same) quantity buft, and decomposing the residual in Equation 61 into

two orthogonal components as vt ¼ buft þ urt, we reparameterize the return-generating

process (Equation 61) as

rt ¼ (m0 � bl0)þ (m1 � bl1)zt�1 þ bft þ urt: ð62Þ
Matching the right-hand-side coefficients in Equation 62 with those in Equation 56

yields

m0 ¼ a0 þ bl ð63Þ
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and

m1 ¼ a1 þ bl1: ð64Þ
The relation in Equation 64 indicates that return predictability, if it exists, is due to the

security-specific model mispricing component (a1 6¼ 0) and/or the common component in

risk premia that varies (l1 6¼ 0). When mispricing is precluded, the regression parameters

that conform to the asset pricing model are

m0 ¼ bl0, ð65Þ

m1 ¼ bl1: ð66Þ
Avramov (2004) shows that asset allocation is extremely sensitive to the imposition of

model restrictions on predictive regressions. Indeed, an investor who believes those restric-

tions are perfectly valid but is forced to allocate funds while disregarding the model’s

implications faces an enormous utility loss. Furthermore, asset allocations depart consid-

erably from those dictated by the pricing models when the prior allows even minor devia-

tions from the underlying models.

3.5. Time-Varying Beta

Although the above discussion assumes that beta is constant, accounting for time-varying

beta is straightforward. Avramov & Chordia (2006b) model the N � K matrix of factor

loadings as

b(zt) ¼ b0 þ b1 IK � ztð Þ, ð67Þ
where� denotes the Kronecker product. These authors show that the mean and covariance

matrix of asset returns in the presence of time-varying alpha, beta, and risk premia (assum-

ing informative priors) can be expressed as

mT ¼ â(zT)þ b̂(zT)(âf þ Âf zT), ð68Þ
and

ST ¼ P1b̂(zT )Ŝff b̂(zT)
0 þ P2Ĉ, ð69Þ

where the x̂ notation stands for the maximum likelihood estimators, Sff is the covariance

matrix of uft, andC is the covariance matrix of urt, assumed to be diagonal. The predictive

variance in Equation 69 is larger than its maximum likelihood analog as it incorporates the

factors P1 and P2, where P1 is a scalar greater than one and P2 is a diagonal matrix such

that each diagonal entry is greater than one.

3.6. Out-of-Sample Performance

Stock return predictability continues to be a subject of research controversy. Skepticism

exists as a result of concerns relating to data mining, statistical biases, and weak out-

of-sample performance of predictive regressions. Foster et al. (1997), Bossaerts & Hillion

(1999), and Stambaugh (1999) address such concerns. Moreover, if firm-level pre-

dictability indeed exists, it is not clear whether it is driven by time variation in alpha, beta,

or the equity premium.
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Relative to the IID setup, incorporating predictability does improve performance of

investments in equity portfolios, single stocks, mutual funds, and hedge funds. Focusing

on equity portfolios, Avramov (2004) shows that optimal portfolios based on dogmatic

beliefs in conditional pricing models deliver the lowest Sharpe ratios. In addition,

completely disregarding pricing-model implications results in the second lowest Sharpe

ratios. Much higher Sharpe ratios are obtained when asset allocations are based on the so-

called shrinkage approach, in which inputs for portfolio optimization combine the under-

lying pricing model and the sample evidence on predictability.

Avramov&Chordia (2006b) show that incorporating business-cycle predictors benefits

a real-time optimizing investor who must allocate funds across 3123 NYSE-AMEX stocks

and cash. Investment returns are positive when adjusted by the Fama-French and momen-

tum factors as well as by size, book-to-market, and past-return characteristics. The inves-

tor optimally holds small-cap, growth, and momentum stocks and loads less (more) heavily

on momentum (small-cap) stocks during recessions. Returns on individual stocks are pre-

dictable out-of-sample due to alpha variation. In contrast, beta variation plays no role.

Whereas Avramov (2004) and Avramov & Chordia (2006b) focus on multisecurity para-

digms, Wachter & Warusawitharana (2009) document the superior out-of-sample perfor-

mance of the Bayesian approach in market timing. That is, the equity premium is also

predictable by macro conditions.

3.7. Investing in Mutual and Hedge Funds

In an IID setup, Baks et al. (2001) explore the role of prior information about fund

performance in making investment decisions. These authors consider a mean-variance

optimizing investor who is skeptical about the ability of a fund manager to pick

stocks and time the market. They find that even with a high degree of skepticism

about fund performance the investor would allocate considerable amounts to actively

managed funds.

Baks et al. (2001) define fund performance as the intercept in the regression of the

fund’s excess returns on excess return of one or more benchmark assets. Pástor &

Stambaugh (2002a, 2002b), however, recognize the possibility that the intercept in such

regressions could be a mix of fund performance and model mispricing. In particular,

consider the case wherein benchmark assets used to define fund performance are unable

to explain the cross-section dispersion of passive assets, that is, the sample alpha in the

regression of nonbenchmark passive assets on benchmarks assets is nonzero. Then model

mispricing emerges in the performance regression. Thus, Pástor & Stambaugh (2002a,

2002b) formulate prior beliefs on both performance and mispricing.

Geczy et al. (2005) apply the Pástor-Stambaugh methodology to study the cost of

investing in socially responsible mutual funds. Comparing portfolios of these funds to

those constructed from the broader fund universe reveals the cost of imposing the socially

responsible investment constraint on investors seeking the highest Sharpe ratio. This

socially responsible investment cost depends crucially on the investor’s views about the

validity of asset pricing models and managerial skills in stock picking and market timing.

Busse & Irvine (2006) also apply the Pástor-Stambaugh methodology to compare the

performance of Bayesian estimates of mutual fund performance with standard classical-

based measures using daily data. They find that Bayesian alphas based on the CAPM are

particularly useful for predicting future standard CAPM alphas.

www.annualreviews.org � Bayesian Portfolio Analysis 41

A
nn

u.
 R

ev
. F

in
. E

co
n.

 2
01

0.
2:

25
-4

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 7

9.
17

9.
10

6.
15

4 
on

 1
1/

08
/1

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



Baks et al. (2001) and Pástor & Stambaugh (2002a, 2002b) assume that the prior on

alpha is independent across funds. However, as shown by Jones & Shanken (2005), under

the independence assumption, the maximum posterior mean alpha increases without

bound as the number of funds increases and “extremely large” estimates could randomly

be generated, even when fund managers have no skill. Instead, Jones & Shanken (2005)

propose incorporating prior dependence across funds. Then, investors aggregate informa-

tion across funds to form a general belief about the potential for abnormal performance.

Each fund’s alpha estimate is shrunk toward the aggregate estimate, mitigating extreme

views.

Avramov & Wermers (2006) and Avramov et al. (2010) extend the Avramov (2004)

methodology to study investments in mutual funds and hedge funds, respectively, when

fund returns are potentially predictable. Avramov & Wermers (2006) show that long-

only strategies that incorporate predictability in managerial skills outperform their

Fama-French and momentum benchmarks by 2–4% per year by timing industries over

the business cycle, and by an additional 3–6% per year by choosing funds that

outperform their industry benchmarks. Similarly, Avramov et al. (2010) show that

incorporating predictability substantially improves out-of-sample performance for the

entire universe of hedge funds as well as for various investment styles. The major

source of investment profitability is again predictability in managerial skills. In partic-

ular, long-only strategies that incorporate such predictability outperform their Fung &

Hsieh (2004) benchmarks by more than 14% per year. The economic value of pre-

dictability emerges for different rebalancing horizons and alternative benchmark

models. It is also robust to adjustments for backfill bias, incubation bias, illiquidity,

and style composition.

4. ALTERNATIVE DATA-GENERATING PROCESSES

The data-generating processes for asset returns discussed thus far are either IID normal or

predictable with IID disturbances. Such specifications facilitate a tractable implementation

of Bayesian portfolio analysis. To provide a richer model of the interaction between the

stock market and economic fundamentals, Pástor & Stambaugh (2009a) advocate a pre-

dictive system allowing aggregate predictors to be imperfectly correlated with the condi-

tional expected return. Subsequently, Pástor & Stambaugh (2009b) find that stocks are

substantially more volatile over long horizons from an investor’s perspective, which seems

to have profound implications for long-term investments.

Incorporating regime shifts in asset returns is also potentially attractive, as stock prices

tend to rise or fall persistently during certain periods. Tu (2010) extends the asset pricing

framework (Equation 39) to capture economic regimes. In particular, he models bench-

mark and nonbenchmark assets as

yt ¼ ast þ Bstxt þ ustt , ð70Þ
where ustt is anm�1 vector with zero means and a nonsingular covariance matrix, Sst , and

st is an indicator of the states. Under the usual normal assumption of model residuals, the

regime shift formulation is identical to the specification (Equation 39) in each regime. Tu

(2010) shows that uncertainty about regime is more important than model mispricing.

Hence, the correct identification of the data-generating process can have significant impact

on portfolio choice.
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To incorporate latent factors and stochastic volatility in the asset pricing formulation

(Equation 39), Han (2006) allows xt in

yt ¼ aþ Bxt þ ut ð71Þ
to follow the latent process

xt ¼ cþ CXt�1 þ vt: ð72Þ
In addition, the vector of residuals ut could display stochastic volatilities. In such a

dynamic factor multivariate stochastic volatility model, Han finds that the correspond-

ing dynamic strategies significantly outperform various benchmark strategies out of

sample, and the outperformance is robust to different performance measures, investor’s

objective functions, time periods, and assets. In addition, Nardari & Scruggs (2007) extend

Geweke & Zhou (1996) to provide an alternative stochastic volatility model with latent

asset pricing factors. In their model, mispricing with respect to the arbitrage pricing theory

pioneered by Ross (1976) can be accommodated.

Because the true data-generating process is unknown, there is uncertainty about

whether a given process adequately fits the data. For example, previous studies typically

assume that stock returns are conditionally normal. However, the normality assumption is

strongly rejected by the data. Tu & Zhou (2004) find that the t distribution can better fit

the data. Kacperczyk (2008) provides a general framework for treating data-generating-

process uncertainty.

5. EXTENSIONS AND FUTURE RESEARCH

Even though Bayesian analysis of portfolio selection has impressively evolved over the past

three decades, there is still a host of applications of Bayesian methodologies to be carried

out. For one, the Bayesian methodology can be applied to account for estimation risk and

model uncertainty in managing long-short portfolios, international asset allocation, hedge

fund speculation, defined-benefit pensions, as well as portfolio selection with various risk

controls. In addition, there are still virtually untouched asset pricing theories to be

accounted for in forming informative prior beliefs.

Mean-variance utility has long been the baseline for asset allocation in practice. (See,

for instance, Grinold & Kahn (1999), Litterman (2003), and Meucci (2005), who discuss

various applications of the mean-variance framework.) Indeed, controlling for factor

exposures and imposing trading constraints, among other real-time trading impediments,

can easily be accommodated within the mean-variance framework with either analytical

insights or fast numerical solutions. In addition, the intertemporal hedging demand is

typically small relative to the mean-variance component. Theoretically, however, it would

be of interest to consider alternative sets of preferences.

Employing alternative utility specifications must be done with extra caution. In partic-

ular, as emphasized by Geweke (2001), the predictive density under iso-elastic preferences

is typically student t. Unrestricted utility maximization under the t predictive density

can encounter a divergence problem, but the divergence problem can be addressed by

imposing suitable portfolio constraints. Moreover, the divergence problem disappears

with a suitable adjustment of the degrees of freedom of the t distribution. Harvey et al.

(2004) is an excellent example of portfolio selection with higher moments that has an

interpretation well grounded in economic theory. Ang et al. (2005) and Hong et al. (2007)
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advocate a Bayesian portfolio analysis that allows the data-generating process to be

asymmetric.

A different class of recursive utility functions is found to be useful in accounting for

asset pricing patterns unexplained by the CAPM of Sharpe (1964) and Lintner (1965) and

the consumption-based CAPM (CCAPM) of Rubinstein (1976), Lucas (1978), Breeden

(1979), and Grossman & Shiller (1981). In particular, Bansal & Yaron (2004) utilize

Esptein & Zin (1989) preferences to explain asset pricing puzzles at the aggregate level.

Avramov et al. (2009) consider Duffie & Epstein (1992) preferences to explain the coun-

terintuitive cross-sectional negative relations between average stock returns and the three

apparent risk measures (a) credit risk, (b) dispersion, and (c) idiosyncratic volatility. Recur-

sive preferences are also employed by Zhou & Zhu (2009), who can justify the large

negative market-variance risk premium. Indeed, to our knowledge, there are no Bayesian

studies utilizing the recursive utility framework, nor are there any Bayesian priors that

exploit information on such potentially promising asset pricing models. Future work

should form prior beliefs based on long-run risk formulations.

Finally, portfolio analysis based on specifications that depart from IID stock returns (see

the multivariate process formulated in Sections 3 and 4) is challenging to solve in

multiperiod investment horizons. Much future research in this area is called for.

6. CONCLUSION

In making portfolio decisions, investors often confront parameter estimation errors and

possible model uncertainty. In addition, investors may have prior information about the

investment problem that can arise from news, events, macroeconomic analysis, and asset

pricing theories. The Bayesian approach is well-suited to neatly account for these features,

whereas the classical statistical analysis disregards any potentially relevant prior informa-

tion. Hence, Bayesian portfolio analysis is likely to play an increasing role in making

investment decisions in practical investment management.

Although enormous progress has been made in developing various priors and method-

ologies for applying the Bayesian approach in standard asset-allocation problems, there are

still investment problems that are open for future Bayesian studies. Moreover, much more

should be done to allow Bayesian portfolio analysis to go beyond popular mean-variance

utilities as well as to consider more general and realistic data-generating processes.
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Pástor L, Stambaugh RF. 2009a. Predictive systems: living with imperfect predictors. J. Finance 64:

1583–628
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