
Errata for
Synchronization Algorithms and Concurrent Programming

Gadi Taubenfeld∗

November 19, 2017

In the first edition of a book with more than 400 pages, a couple of typos are bound to
slip in. The errata below list the mistakes that I will fix in the next printing of the book. If
you see errors not noted below, please send me mail at: tgadi@idc.ac.il. Please feel free
to contact me with any criticism or comments which might help to improve any future
version of this book. I would be glad to hear from you!

Visit the Companion Website at http://www.faculty.idc.ac.il/gadi/book.htm to find valu-
able online resources.

∗The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel. tgadi@idc.ac.il

1



Chapter 1

p.4 lines 5-6, “can not” should be “cannot”
p.7 lines 3, “than” should be “then”
p.8 line 3, “can not” should be “cannot” ; line 14: “assumption” should be “assumptions”
p.12 line 4, “sometime” should be “sometimes” ; lines -8,-13: “can not” should be “cannot”
p.14 Informally, absence of contention means that no other process is in the midst of

preforming it entry/cs/exit code. line -1: “time” should be “times”
p.17 line -8, “issue” should be “issues”
p.21 line -10, “all variables are” should be “variable x is”
p.23 line 13, “briefly only” should be “only briefly”

Chapter 2

p.33 Figure 2.1, in the oval, b[i] should be b[j]
p.37 line 6, construction of
p.38 line # 11 of the algorithm, should be “node := bi/2levelc”
p.43 line 3-4: remove “, or the critical section is occupied”
p.44 line 4, “in absence” should be “in the absence”; line 24: remove “and the”
p.56 line # of the algorithm, false in italic
p.58 line -9, remove “(1) No”, and renumber the 4 remaining answers
p.67 line -6, replace “never” with “always”
p.69 line 10, “x or” should be “xor”
p.75 line 10, “1.20)” should be “1.20.)”
p.79 line 6, replace “k” with “turn ”
p.85 problem 2.42, line #4 of the algorithm should be “await number[j] 6= −1”
p.92 line 3 (line # 9 of the algorithm), “if” should be “fi”

Chapter 3

p.107 Figure 3.3, it says “await(b = 0 or z = 1)” and should be “await(b = 1 or z = 1)”
p.112 Figure 3.5, the direction of the bottom arrows should reversed
p.120 line 8, “then” should be “than”
p.139 line -6, delete the “a”
p.142 line #1 of the algorithm, “%” should be “/*”

Chapter 4

p.155 line #4 of the algorithm “=” should be “6=”
p.173 line D4, “lhead” should be “lhead.ptr”

lines E13, E17, D13: “O” should be “Q”
p.177 line 9, “general operation” should be “general semaphore”
p.189 line -17, delete the word “the”
p.192 line 11, delete the word “for”
p.200 line $ of the algorithm, move comment to the right side

2



Chapter 5

The power-point presentation at the companion website (http://www.faculty.idc.ac.il/gadi/book.htm)
includes the full correct versions of the algorithms.

p. 205 In line #6 of version #2 of the algorithm, “await(local.go 6= go)” should be
“await(local.go = go)”

p.205-206 In the three algorithms in Sections 5.2.1 and 5.2.2, replace lines 2 and 3 with:
2 local.counter := fetch-and-increment(counter)
3 if local.counter + 1 = n then

p.207 Replace line 6 of the algorithm with:
6 then go := 1− local.go fi

p.208-209 In both algorithms in Section 5.3, counter should be defined as a test-and-test-and-set bit,
and line 5 should be replaced with:
6 await (counter = 1) fi

p.209 lines 10,11,12 of the algorithm should be renumbered as 9,10,11, respectively.
p.211 In the algorithm in Section 5.4, replace lines 2 and 3 with:

2 local.counter := fetch-and-increment(counter[level, node])
3 if local.counter + 1 = degree then

p.212-213 In the algorithm, replace go[1..n] with go[2..n]
In lines: 4, 10, and 13 of the algorithms, in the assignments, use = instead of :=

p.213 line −9, “from process i+ 2r(mod n)” should be “from process i− 2r(mod n)”

p.213 last line, “from process i+ 2r(mod n)” should be “from process i− 2r(mod n)”
In the algorithm, the intial value of sense is 1 (instead of 0)

p.217 Update Rule 5 with as follows:
Rule 5: Applicable if scheduled process notices that the go bit has been flipped
(relative to its local.go, that is, go 6= local.go).
The process knows that everybody has arrived and continues past the barrier

p.217-218 See next page for an updated version of the See-Saw Barrier.

p.218 Token invariant: Assume that at the beginning of an episode of the see-saw barrier
the state of each process is never-been-on. Then, until the go bit is flipped,
the number of tokens in the system is either 2n or 2n+ 1.
Balanced invariant: Assume that at the beginning of an episode of the see-saw barrier
the state of each process is never-been-on. Then, until the go bit is flipped, the number
of the left and right side of the see-saw is either perfectly balanced or favors the
down-side of the see saw by one process.

p.219 line 2, 2k should be k.
The semaphores arrive1 and arrive2 are initially both 0 (and not 1)

p.220 In lines 2 & 5 of the first alg. and lines 2 & 5 of the second alg., = should be :=
p.221 line 5: “There dozens” should be “There are dozens”
p.224 “5.15 ... algorithm” should be “5.15 ... algorithms”
p.225 line 10 of the algorithm, “counter = n should be “counter = 0

3



The code of the See-Saw Barrier. We use token, see-saw and go to designate the first, second and
third components, respectively, of the ordered triple stored in the 8-valued RMW register (3 bits). We
emphasis that accessing the RMW register is done in one atomic action.

THE SEE-SAW BARRIER: program of a process /* there are n processes */

type token.states = ranges over {token-present, no-token-present}
see-saw.states = ranges over {left-side-down, right-side-down}

shared (token, see-saw, go): RMW ranges over token.states × see-saw.states × {0,1}
local mystate: 4-valued register, ranges over {never-been-on, on-left-side, on-right-side, got-off}

mytokens: register, ranges over {0, ..., 2n+ 1}
local.go: bit, ranges over {0, 1}

R(·) is the reflection function on {left-side-down, right-side-down}

1 local.go := go /* remember current value (a RMW operation)*/
2 mystate := never-been-on
3 mytokens := 2 /* enters with two tokens */
4 repeat

/* beginning of a RMW operation */
5 if local.go 6= go then mystate := got-off /* last with one token? */

6 elseif mystate = never-been-on then /* Rule 1: Start */
7 if see-saw = left-side-down then /* gets on the up-side */
8 mystate := on-right-side
9 else mystate := on-left-side fi
10 see-saw := R(see-saw) fi /* flips the See-Saw bit */

/* Rule 2: Emitter */
11 elseif token = no-token-present and /* token bit empty? */
12 ((mystate = on-left-side and see-saw = left-side-down) or /* on the */
13 (mystate = on-right-side and see-saw = right-side-down)) then /* down-side? */
14 token := token-present /* emit a token */
15 mytokens := mytokens− 1 /* one token less */
16 if mytokens = 0 then /* no more tokens? */
17 mystate := got-off /* gets off the See-Saw */
18 see-saw := R(see-saw) fi fi /* flips the see-saw bit */

/* Rule 3: Absorber */
19 elseif token = token-present and /* token bit full? */
20 ((mystate = on-left-side and see-saw = right-side-down) or /* on the */
21 (mystate = on-right-side and see-saw = left-side-down)) then /* up-side? */
22 token := no-token-present /* absorb a token */
23 mytokens := mytokens+ 1 fi /* one token more */

/* Rule 4: Leader */
24 elseif (mytokens ≥ 2n) or /* all n processes */
25 (mytokes = 2n− 1 and token = token-present) then /* have arrived? */
26 go := 1− local.go /* notifies all */
27 mystate := got-off fi /* gets off the See-Saw */
28 fi /* end of a RMW operation */
29 until (mystate = got-off)
30 await (local.go 6= go) /* a RMW operation; Rule 5: End */

4



Chapter 7

p.263 line -9, “a L-type” should be “an L-type”
p.264 line 7, “its” should be “his”
p.270 line -5, “By 7.16” should be “By Lemma 7.16”
p.272 line 4, “it” should be “he” (twice)
p.273 line 6, “left” should be “left” (i.e., italic)

Chapter 8

p.288 line 19, remove “the”
p.290 line -7, “the new” should be “some”

Chapter 9

p.309 line -3, “p2” should be “pi”
p.324 Figure 9.4, “proofs” should be “proof”; (a), (b), and (c) should be in roman type
p.338 line 14 (declaring turn), “values” should be “value”

add then, at the end of line #4 of the program for process 1

Bibliography

p.373 ref. [1], “per registers” should be “per register”
p.376 ref. [28], “J. Anderson” should be “J.H. Anderson”
p.389 ref. [127], “Gary” should be “Gray”
p.394 ref. [169], “page 522” should be “page 522-529”
p.397 ref. [192], “LNCS 674” should be “LNCS 647”

Add the following new paragraph at the end of Page xiv:

Acknowledgements
Thanks to all who have sent us errata to improve this book, including: Yehuda Afek, Itai Avrian,
Angelo Borsotti, Peter A. Buhr, Kai Engelhardt, Denis Golyanov, Danny Handler, Frédéric Haz-
iza Shachar Gidron, Marios Mavronicolas, Yoram Moses, Francisco Solsona, Edward Strassberger,
Michel Raynal.

5


