
Science of Computer Programming 6 (1986) 35-88
North-Holland

35

SCRIPT: A C O M M U N I C A T I O N A B S T R A C T I O N M E C H A N I S M
A N D ITS V E R I F I C A T I O N *

Nissim FRANCEZ
Department of Computer Science, The Technion, Haifa 32000, Israel

Brent HAILPERN
IBM Thomas J. Watson Research Center, Yorktown Heights, N Y 10598, U.S.A.

Gadi TAUBENFELD
Department of Computer Science, The Technion, Haifa 32000, Israel

Communicated by M. Sintzoff
Received October 1983
Revised December 1984

Abstract. In this paper, we introduce a new abstraction mechanism, called a script, which hides
the low-level details that implement patterns of communication. A script localizes the communica-
tion between a set of roles (formal processes), to which actual processes enroll to participate in
the action of the script. The paper discusses the addition of scripts to the languages CSP and
ADA, and to a shared-variable language with monitors. Proof rules are presented for proving
partial correctness and freedom from deadlock in concurrent programs using scripts.

1. Introduction

Abstraction mechanisms have been widely recognized as useful programming
tools and have been incorporated into modem programming languages [4, 11, 19,
20, 25, 27]. The main subjects of abstraction suggested so far are
- con tro l s e q u e n c i n g a b s t r a c t i o n s , which hide sequences of elementary transfers of
control, such as looping constructs, if statements, procedures, and exception hand-
ling statements,
- d a t a abs t rac t i ons , as manifested in abstract data types, which hide the concrete
representation of abstract objects (for example, is a stack implemented by a linked
list with pointers or by an array?), and
- s y n c h r o n i z a t i o n a b s t r a c t i o n s , as manifested in monitors and the like, which hide
details of low-level mechanisms for enforcing mutual exclusion.

* Earlier versions of parts of this paper were presented at the Second ACM Symposium on Principles
of Distributed Computing, Montreal, August 1983 and at the FSE-TCS, Bangalore, India, December
1984. This paper was originally published by Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, in
the NATO ASI Series Vol. F 13. Nissim Francez was a WTVS at IBM Research (Yorktown) while on
a sabbatical leave from the Technion, Haifa, Israel.

0167-6423/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

36 N. Francez, B. Hailpern, G. Taubenfeld

Besides hiding low-level information, abstraction mechanisms also restrict the use
of such information to patterns that are generally recognized as well structured.

They also save programming effort by enabling a single description to be used many
times.

Recently, another low-level mechanism has emerged as playing an important role
as a programming tool, namely inter-process communication. Several modern pro-
gramming languages [4, 11, 14, 19, 20, 25, 27] support multiprocessing and dis-
tributed processing in one way or another. Every such language has a construct to
support inter-process communications; some of the constructs are slightly higher-
level than others, but all can be considered low-level because they handle some
primitive communication between two partners at a time.

The purpose of this paper is to introduce an abstraction mechanism, whose subject
is communications. To our knowledge, no such abstraction has been proposed. Such
a mechanism will

- allow the hiding of low-level details concerning sequencing of communications,
choice of partners, and larger scale synchronization (involving more than just a pair
of processes),

- restrict the patterns of communication, which are arbitrary in current languages,

to well-structured patterns, and

- enable a single definition of frequently used patterns, for example various buffering
regimes.

Even when such well-structured patterns are identified and added as primitive

constructs (as happened in the case of looping), it is still useful to permit a user to
define, in an application-oriented way, his own abstractions. A trend toward such

well-designed patterns exists already, for example ' idioms' [12].

In designing our communicat ion abstraction mechanism, which we call a script,
we adhered to the following design goals and restrictions:
- The abstraction will be designed in a context of a f ixed network. Thus, we shall
not deal in this paper with dynamic concurrency, where processes are dynamically
generated, destroyed, or reconfigured;
- The abstraction should be modular and the behavior of an instance of an abstrac-

tion should not depend on the context of use, except by a predefined interface

mechanism. We chose 'parameters passing' for our interface;
- The abstraction should be modularly verifiable [10, 18];
- The abstraction mechanism is biased toward models of disjoint processes (that
is, no shared variables). Communicat ion is achieved by some message passing
actions or remote procedure calls.

We would like to emphasize that some techniques, with other goals, concerned

with abstracting communication exist in the literature. For example, a general module
interface hides the specific communication primitive being used from the user:
procedure call (either local or remote), coroutine, message transfer, and so on [15,
23]. These techniques, however, are interested in encapsulating a single communica-

Script: Communication abstraction and verification 37

tion, while we are interested in encapsulating patterns o f communication involving
many primitive communication actions and many participants.

The rest of the paper is organized as follows. In Section 2, we informally describe
the structure of the suggested communication abstraction mechanism and we discuss
several alternatives regarding possible semantics. Some example scripts are infor-
mally described. In Section 3, we present the examples in a Pascal-like syntax. In
Section 4, one of the example scripts, broadcast, is developed in three host languages:
CSP, ADA 1, and a shared-memory language with monitors. Section 5 presents proof
rules for partial correctness of programs using scripts. Section 6 extends the proof
system toward proving absence of deadlocks. Section 7 concludes with some dis-
cussion of future work.

2. Scripts

In this section we introduce the script, the suggested mechanism to abstract from
the internal details of the implementation of patterns of communication. Basically,
a script is a parameterized program section, to which processes enroll in order to

participate. The guiding idea behind the concept of enrollment is that the execution
of the role (in a given script instance) is a logical continuation of the enrolling
process, in the same way that a sequential subroutine is a continuation of the
execution of its caller. If each process is allocated to a different processor, the role
should be executed by the same processor on which the main body of the enrolling
process is executed. Thus, no changes in the underlying communication network
are needed to execute a script.

2.1. The structure o f a script

A script consists of the following components:
- Roles: these are formal process parameters, to which (actual) processes enroll.
We shall discuss the enrollment below. We also permit indexed families o f roles in
analogy to such families of actual processes.
- Data parameters: these are ordinary formal parameters (as in ordinary pro-
cedures); however, they are associated with the roles. Thus, each group of formal
data parameters is bound at enrollment time to the corresponding actual parameters

supplied by the enrolling process.
- Body: this is a concurrent program section, where for each role there is a
corresponding part of the body, a process. All the roles are considered to be
concurrent. The body describes the details of sequences of basic communications
among the various roles. Thus, the body specifies the scenario in which the roles
take place.

ADA is a registered t rademark o f the U.S. Depar tment o f Defense.

38 N. Francez, B. Hailpern, G. Taubenfeld

As a typical example, we may consider a script implementing a scenario of

(software) broacast. In this scenario, there is a role of a transmitter, with which is

associated a (value) data parameter, x, to be transmitted. There is also a group of
recipient roles, with each is associated a (result) data parameter, which will be
assigned the value of x after the appropriate communication. The externally observ-
able behavior of the script is that the value of x is passed to all the recipients and
assigned to their corresponding data parameters.

The body of the script could hide the various broadcast strategies:

- A star-like pattern where the transmitter communicates directly with each
recipient, either in some pre-specified order, or non-deterministically;
- A spanning tree, generating a wave of transmissions, where every role, on receiving
x from its parent role, transmits it to every one of its descendant roles (again with

different orderings);

- Others; see [24, 26] for a discussion of various broadcast patterns and their relative
merits.

Sections 3 and 4 show how a broadcast script could be coded in our target
languages.

One immediate question raised by considering the broadcast example is "how
generic should a script be?" Should the type of x, in the broadcast script, be allowed
to vary, or should a different script be needed to broadcast an integer, a stack, and

so on? We shall not commit ourselves to a definite answer to these questions. Rather,

we use the principle that a script is as generic as its host programming language
allows. In a language that admits other forms of generic constructs, such as ADA,
we could allow the script to contain the same.

Our second example is a replicated and distributed data base lock manager script.

Consider n nodes in a network, each of which can hold a copy of a database. At
any one time k nodes hold copies. The membership of this set of active nodes may

change, but it always has k members. Readers and writers attempt to interact with

this database through a lock manager script. The roles in this script consist of the
k lock managers, a reader (possibly an indexed family of readers), and /o r a writer.
This script can hide various read/write locking strategies:
- Lock one node to read, all nodes to write;
- Lock a majority of nodes to read or write;
- Multiple granularity locking as described in [16].

The third example introduces a script that causes the rotation of data
values around a ring of processes. The script hides the direction of rotation, the

number of rotation steps, and the details of the rotation handling. We show in this
example how different enrollment patterns to the same script achieve different

effects.
Our next example is the remote server facility of the Accent operating system

[22]. Accent is a communication-oriented operating system for a collection of
processors connected by a network. The operating system attempts to make the

location of resources in the system transparent to the user. All processes communicate

Script: Communication abstraction and verification 39

through local ports, with network servers to perform the actual communication
across the network. We will model this port communicat ion facility.

Our final example is a recursive script implementing the winning strategy for the
Tower of Hanoi game. This example also shows the use of nested enrollments, where
an enrollment to one script occurs within the body of another script.

2.2. Script enrollment

We next describe several possibilities for the semantics of enrollment of a process

in an instance of a script.
Obviously, a process has to name the instance of the script in which it enrolls,

and the name of the role it wishes to play. Furthermore, the process must supply
actual data parameters for the formal parameters associated with that role. For the
sake of verifiability, we assume that the data parameter passing modes are value,

result, and value-result. The usual aliasing-preventing restrictions will be imposed.

We want to distiguish between two kinds of enrollment, based on the relationship

between processes enrolling in the same (instance of a) script.
- Partners-named enrollment. A process not only names the role in which it enrolls,

but also names the identities of (some or all of) the other processes it wants to
communicate with in the script. Thus a process T may specify that it wishes to
enroll in a broadcast script as a transmitter, while it wishes to see process P, Q, and

R enroll as recipients in the same instance of the script. Similarly, process P might

specify its enrollment in the broadcast script as a recipient with T as the transmitter.
In such cases, the processes will jointly enroll in the script only when their enrollment
specifications match, that is they all agree on the binding of processes to roles. It

is also possible to have more elaborate naming conventions, for example by specify-
ing that a given role should be fulfilled by either process A or process B. The
partners-named enrollment generalizes the naming conventions of the host language

for primitive communications, as in CSP's ! and ? or ADA's entry call.

- Partners-unnamed enrollment. Sometimes, a process does not care about, or does

not need to know, the identities of its communicat ion partners. In such a case, it
will specify only its own role during enrollment; no matching is then needed for
joint enrollment. In the broadcast example, a process T may wish to broadcast x
to any process interested in receiving the value. Another reason for unnamed
enrollment is that the host language may permit unnamed primitive communications:

for example the accept statment in ADA, which accepts an entry call from any

potential caller. A similar extension of the CSP primitives is proposed in [6].
Note that a mixture of the two enrollment regimes is also possible, where only a

partial naming is supplied. In the broadcast example, P may specify the transmitter

T, but not care about the other recipients.
If more than one process tries to enroll in the same role of the same instance of

a script (each matching the naming conventions), then the choice of which process

is actt/ally enrolled is nondeterministic.

40 N. Francez, B. Hailpern, G. Taubenfeld

We impose the following stucture on enrollments, avoiding some ambiguities
because of complex scoping: all processes enrolling to (the same instance of) a
script must be roles in (an instance of) another script. As a result, the main program
is regarded as a script. This restriction, together with another one imposed on basic
communication within the bodies of the roles (described later) ensure that no process
not enrolled in a script can affect the computations of that script.

2.3. Nes ted enrollments

If a group of roles in (an instance of) a script S~ enroll into (an instance of)
another script $2, the corresponding part of the performance of S~ is delayed until
the performance of $2 terminates.

In particular, in the recursive case, a new instance is opened upon a recursive
enrollment. In direct recursion, all the roles of S must enroll (in some permutation)
back into S. Mutual recursion is also permitted. Note that in direct recursion a role

can recursively enroll into any role of the script. Thus, in a recursive enrollment,
the new roles always form a permutation of the current roles.

2.4. Script initiation and termination

A basic question related to the execution of a script is "when will it start?" Again,
two major possibilities can be distinguished.
- Delayed initiation. According to this method, processes must first enroll in all the
roles of a given instance of a script; only then the execution of the script may begin.
A process enrolled in a given role is delayed until all other partners are also
enrolled. In the broadcast script, a delayed initiation will activate the script only
after the transmitter and all recipients have enrolled. This method enforces global
synchronization between large groups of processes (as a possible extension to CSP's
synchronized communication between two processes). A consequence of this initi-
ation strategy is that there is a one-to-one correspondence between (formal) roles
and (actual) enrolling processes. No process may enroll in more than one role in
one activation (of an instance) of a script.
- Immedia te initiation. The script is activated upon the enrollment of its first
participating process. Other processes may enroll while the script is in progress. A
role is delayed only if it attempts to communicate with an unfilled role. This method
may be easier to .implement in existing host languages. Thus, in the broadcast
example, after a transmitter has enrolled, each enrolling recipient may receive x
independently of any other recipient having enrolled. This has a consequence that
no role may assume that its script partner has sensed any effects of the script, unless
it has communicated directly with that partner.

Similar considerations apply to the problem of terminating a script. A delayed

termination will free (together) all the process enrolled in a script after all the roles
are finished. An immediate termination will free each process when it completes its
role. This distinction is crucial if script enrollment is to be allowed to act as a guard.

Script: Communication abstraction and verification 41

Note that immediate initiation combined with immediate termination allows a

given process to enroll in several roles of the same script, where those roles do not

communicate directly. With the combination of delayed initiation and delayed
termination, the body of the script is treated as a closed concurrent block, similar
to a eobegin . . . [I---I1. , . eoend construct. Delayed initiation is the more natural
choice for partners-named enrollment. The kind of initiation and termination strategy

used has consequences on the possibility of deadlock, as discussed in Section 7.
The declaration section of each script specifies the kind of initiation and

termination strategies used in that script.

We call the collective activation of all the roles of an instance of a script
a performance. If a performance has begun and some other process attempts to
enroll in the script, a new instance of the script is invoked: a parallel performance

begins.
We make no requirements about the fairness of script enrollments in the case of

repeated attempts to enroll. We assume that the fairness properties are inherited
from the host language. For example, in CSP no fairness is assumed. In ADA,

repeated enrollments are serviced in order of arrival.

2.5. Critical role set

For a performance of a script, it may not be necessary that all roles of the script
is filled. Different subsets of the roles could participate in different performances.
For example, in the database example, it is sufficient that all the lock-manager roles
be filled, as well as either the reader or the writer (or both). So that such partially-

filled performances do not conflict with the initiation and termination strategies,
we add the critical role set to the declaration of the script. It specifies the possible
subsets of roles that will enable a performance to begin. Thus the initiation and
termination policies are always considered as relative to the appropriate critical role
sets. If no such set is specified, it is taken to mean that the entire collection of roles

is critical.
For example, consider a script S with roles p, q, and r and delayed initiation. If

the critical role sets are (p, q) OR (q, r), then should processes enroll in p and q,

then the performance could begin, with no r. If instead the roles are filled in the
order p, r, q, then all the roles would be filled before the performance begins.

The critical role sets creates a problem: when can a performance, which was
initiated upon enrollment of a critical set, be terminated? In principle, the perform-
ance would wait, possibly forever, for the enrollment of processes to the roles not

in the critical set. We therefore assume a critical moment, after which no further

enrollments to the current performance are allowed. This moment succeeds, but
does not necessarily coincide with, the moment all processes in the critical role set
have enrolled. Termination will depend only on roles that have enrolled up to that
critical moment. A role not fulfilled up to the critical moment is considered to have

terminated.

42 IV. Francez, R Hailpern, G. Taubenfeld

The use of critical role sets introduces yet another problem: individual roles do
not know which of their partner roles are participating in a particular performance.

• When some of the roles of a script are not filled, then attempts to communicate

with the unfilled roles would block. Similarly, roles waiting to service requests from
unfilled roles would never terminate.

There are many solutions to this problem, none of which are fully satisfying. If
a centralized mechanism is controlling enrollments and performances, then it could
inform the active roles of the names of the inactive roles. 2 Alternatively, attempting
to communicate with an unfilled role could return a distinguished value. Our database

example will follow the latter solution.

2.6. Inter-role communication

Communica t ion among the various roles of a script is described using the inter-

process communicat ion primitives of the host language. Every communication
between roles causes, at run time, a corresponding communicat ion among the
processes enrolled to the roles. In particular, the naming conventions of the host-

languages apply to the roles: a role may name another role explicitly, or may

communicate with an anonymous role in exactly the same way that actual processes

d o .

Note. We prohibit roles from communicating with any process other than the roles
of the script. This restriction is intended to avoid the deadlock caused by a role
trying to communicate with itself as the enrolling process.

3. Sample scripts

In this section we present several example scripts. Our language is Pascal-like
with extensions for communicat ion (synchronized send and receive with the same
semantics as the ! and ? instructions of CSP) and non-deterministic guarded
commands (if and do). Role parameters will be designated I N for value parameters,
O U T for result parameters, and I N O U T for the value-result parameters. Comments

will use the PL/1 and C convention o f / * * / . Sets are indicated by braces { }.

3.1. Synchronized star broadcast

Our first example provides for a simple extension of the synchronized send and
receive in the host language; it is shown in Fig. 1. The broadcast script has one
transmitter and five recipients; a more general example would use a general indexed
family of recipients. The script is fully synchronized, because of the initiation and
termination clauses. When all participants are enrolled, theda ta passed to the sender

2 The not ion o f a central adminis t ra tor for a script, however, does not preserve our goal of not
generat ing addi t ional processes when executing a script.

Script: Communication abstraction and verification 43

SCRIPT StarBroadcast ;
I N I T I A T I O N : D E L A Y E D ;
T E R M I N A T I O N : D E L A Y E D ;

ROLE transmitter (IN r: item);
B E G I N

S E N D r TO recipient1;
S E N D r TO recipient2;
S E N D r TO recipient3;
S E N D r TO recipient4;
S E N D r TO recipient5

E N D transmitter;

5

ROLE recipient~ (OUT t: item);
i=1

B E G I N

RECEIVE t FROM transmitter
E N D recipient

END StarBroadcast

Fig. 1. Synchronized star broadcast.

is sent, in turn, to each of the recipients. All wait until the last copy is sent. Note
that the sender is never blocked while waiting for a recipient, because all the

recipients are available and not waiting for any other I / O operations. The notation

5
ROLE recipienti (. • .)

i = l

is an abbreviation for five copies of the recipient role. Within the role, i is replaced

by the actual index.

A process would enroll as the transmitter by

ENROLL IN broadcast AS transmitter(expression);

A process would enroll as the first recipient by

ENROLL IN broadcast AS recipientl(variable);

3.2. Pipeline broadcast

Our second example, shown in Fig. 2, is simila~ to the first in form, but not in

action. Here the sender gives the message to the first recipient and is then finished.
The first recipient waits for the second recipient to arrive, passes the message along,
and finishes, and so on. The immediate initiation and termination permit processes

44 N. Francez, B. Hailpern, G. Taubenfeld

SCRIPT PipeBroadcast ;
I N I T I A T I O N : IMMEDIATE;

T E R M I N A T I O N : I M M E D I A T E ;

C O N S T n = 5;

ROLE transmitter(IN t: item);
B E G I N

S E N D t TO recipient~
E N D transmitter;

ROLE recipientl(OUT rl: item);
B E G I N

RECEIVE r~ FROM transmitter;
S E N D r~ TO recipient2

E N D recipientl ;

n- -1

ROLE recipienti(OUT ri: item);
i = 2

B E G I N
RECEIVE ri FROM recipient~_~;
S E N D r~ TO recipient~+l

E N D recipient2...._~ ;

ROLE recipient,,(OUT r,: item);
B E G I N

RECEIVE r. FROM recipient._~
E N D recipient.

E N D PipeBroadcast

Fig. 2. Pipeline broadcast.

to spend much less time in the script, than in the previous example. However, this
technique allows roles to block at send or receive operations if the neighboring role
is not available.

3.3. Database

Our third example implements a distributed, replicated data base locking scheme.

The script consists of k lock managers roles, one reader role, and one writer role.
Each lock manager maintains a table of locks granted. Readers and writers can
request or release lock on data items. Depending on the locking scheme, readers

and writers may need permission from more than one lock manager to access a

particular da ta item. Our example requires one lock to read, k locks to write. One

Script: Communication abstraction and verification 45

SCRIPT lock;
INITIATION: IMMEDIATE;
TERMINATION: IMMEDIATE;

CRITICAL ROLES: (managerl...k, reader) OR (managerl...k, writer);

k
ROLE manageri (IN OUT LockTable: LockType);

i = l

BEGIN

DO 9(reader. terminated AND writer, terminated) ->
IF RECEIVE release(data, id) FROM reader-->

Lock Table.ReadUnlock(data, id)
[] RECEIVE release(data, id) FROM writer->

Lock Table. Write Unlock(data, id)
[] RECEIVE lock(data, id) FROM reader->

IF Lock Table.Able ToRead (data) ->
Lock Table.ReadLock(data, id) ;
SEND granted TO reader

[] --1LockTable. Able To Read(da ta) -->
SEND denied TO reader

FI

[] RECEIVE lock(data, id) FROM writer->
IF Lock Table.AbleTo Write (data) ->

Lock Table. WriteLock(data, id) ;
SEND granted TO writer

[] --7 Lock Table.AbleTo Write(data) ->
SEND denied TO writer

FI

FI
OD

END manager;

Fig. 3. Database lock manager.

performance of this script would result in either a reader or a writer (or both)
attempting to lock or release a data item.

Between performances of the script the identity of the lock managers may change,

but we assume that the lock tables are preserved by such a change (so that, for
example, i f a reader is granted a read lock in one performance, some lock manager
will have a record of that lock on a subsequent performance). There would be a

separate script for lock managers to negotiate the entering and leaving of the active
set. The database example is shown in Fig. 3 through Fig. 5.

46 N. Francez, B. Hailpern, G. Taubenfeld

ROLE reader (IN id : Processld ; IN data:object ; IN request : (lock, release);

OUT status : (granted, denied));

VAR

done : A R R A Y [1 . . . k] OF boolean ;

B E G I N

done := fa l s e ; / *ar ray ass ignment* /

IF request = release -->
k

DO [] -adone[i]; S E N D release(data, id) TO manager~ ->
i = l

done[i] := true

OD

[] request = lock -->

status := denied ;
k

DO [] (status ~ granted) ^ ~done[i];
i = 1

S E N D lock(data, id) TO manageri->

R E C E I V E status FROM manageri;

done[i] := true

OD

FI

E N D reader;

Fig. 4. Database lock manager (continued).

We assume that t h e ' l o c k tables are abstract data types with the appropr ia te

funct ions to lock and release entries in the table and to check whether read or write

locks on a piece of data may be added. We also assume that each processor, when

enroll ing provides its un ique processor identifier, so that locks may be identified

unambiguously .

In Section 2 we discussed critical role sets and the terminat ion problem. In this

example we have made avai lable the funct ion r.terminated, which returns true if

role r has te rminated or if the role r will not be filled. Before the critical role set

is filled, r.terminated is false for all unfil led roles. Once the critical set is filled, all

unfilled roles have r.terminated set to t rue)

3.4. Accent port communication facility

Our final example models the Accent port communica t ion facility [22] as specified

and verified in [10]. Accent is a communica t ion-or ien ted operat ing system for a

3 We make no claim that this termination function would be simple to implement without a central
administrator for the script.

Script: Communication abstraction and verification 47

ROLE writer (IN id " Processld; IN data 'objec t ; IN request: (lock, release);

OUT status" (granted, denied));

VAR
done : ARRAY [1 . . . k] OF boolean ;

w h o ' S E T OF [1 . . . k];

B E G I N

done := f a l s e ; / *ar ray assignment*/

IF request = release -->
k

DO [] 7done[i] ; SEND release(data, id) TO manageri-->
i = l

done[i] := true

OD
[] request = lock -->

who := 0;
k

DO [] 7done[i] ; S E N D lock(data, id) TO manager~-->
i = 1

RECEIVE status FROM manager~;

done[i] := true;

IF status = granted -~ who := whow{ i}

[] status = denied --> done := t r u e / * o n e denial implies failure*/

FI

OD;

IF status = denied -->
k

DO []
i----I

i ~ who; SEND release(data, id) TO manageri -> who := who - {i}
OD

[] s t a t u s = granted --> SKIP
FI

FI

E N D writer

E N D lock

Fig. 5. Database lock manager (continued).

collection of processors connected by a network. Many processes can exist at each

node (processor). Three goals of Accent are
(1) the location of resources in the distributed system should be transparent,
(2) it should be possible for any feature provided by the operating system kernel

to be provided instead by a process, and

(3) all services, except the basic communication primitives, should appear to

processes as being provided through a message-passing interface.

48 N. Francez, B. Hailpern, G. Taubenfeld

Processes communicate through ports. Associated with each port is a queue of

messages sent to that port, but not yet received. Only one process at a time can

have received access to a given port, though many processes can have send access
to it. We do not deal here with process or port creation or destruction. We assume

the existence of processes and ports. We also assume there is a static binding between

process and ports. We will implement ports as scripts.

Because messages are sent to ports, rather than to processes, intermediate processes
can be used to manage communicat ion between distinct process groups. A prime

example is a network server: if process A runs on node X and process B runs on

node Y, the network server N can provide mirror ports in X and Y so that A and

B can communicate. Consider the situation of A sending a message to B. The

network server N on X has an alias port BN also on X. Process A believes that
BN belongs to B, but in fact it belongs to N. Messages sent to BN are read by N
and forwarded to the actual input port of B on Y.

The example specified in [10] deals with a distributed virtual memory system.

That is, paging can be done across the network. We will restrict our discussion to

the port and network server portions of this system.

A port is a F IFO buffer that accepts transmissions from any number of senders,

but sends them onto a single receiver. Hence, two-way communication requires two

ports. We model the FIFO buffer portion of the port as a queue process. The
communication portion of the port is implemented as a script. This port script has

three roles: sender, buffer, and receiver. We associate the identity of the port with

the queue process. That is to select a port, the sender or receiver names the queue

process in a partners-named enrollment. Simultaneous non-interfering communica-

tions are allowed through parallel performances.

A (generic) queue process, contains a F IFO data structure (assumed to be a

primitive data type of the language). The process repeatedly enrolls in the port

script, in case its sender or receiver are attempting to speak with it. Optionally, it

could name the receiver process in its enrollment. For the sake of simplicity, we
will leave the naming of the queue to the sender and receiver processes. The body

of the queue process is

TYPE PROCESS QUEUE:

VAR q : F I F O _ B U F F E R OF BaseType;
B E G I N

q : = empty;
W H I L E true DO

E N R O L L IN PortScript AS buffer(q);
E N D ;

The port script allows enrollment in pairs: serlder and buffer, receiver and buffer.
It must allow also for the case that all three roles are filled. As in the database
example, we use the terminated attribute of a role name to determine if that role is

Script: Communication abstraction and verification 49

SCRIPT PortScript ;
INITIATION: IMMEDIATE;
TERMINATION: IMMEDIATE;

CRITICAL ROLES (sender, buffer) OR (receiver, buffer);

ROLE sender(IN d : BaseType; OUT success:boolean);
BEGIN

SEND d TO buffer;
RECEIVE success FROM buffer

END sender;

ROLE receiver(OUT d : BaseType ; OUT success : boolean);
BEGIN

SEND 'fetch" TO buffer;
RECEIVE (d, success) FROM buffer

END receiver;

ROLE buffer(IN OUT q:FIFO_BUFFER OF BaseType);
VAR d : BaseType;
BEGIN

DO-1sender.terminated; RECEIVE d FROM sender-->
IF q.full ~ SEND fa l se /* fa i led*/TO sender
[] -lq.full->

q.enque(d) ;
SEND t r u e / * o k * / T O sender

FI

[] -1receiver.terminated; RECEIVE 'fetch" FROM receiver-->
IF q.empty-* SEND (empty, fa l se) /* fa i led*/TO receiver
[] -lq.empty ~

q.deque(d) ;
SEND (d, true) /*ok*/ TO receiver

FI
OD

END buffer
END PortScript

Fig. 6. Accent port script.

inactive. The port script is shown in Fig. 6. It should be reasonably clear that the
port script maintains the FIFO property of the underlying buffer data type and that
the script will not deadlock on empty or full buffers. The most important feature

of the port script, from the Accent point of view, is that the identities of the sender
and receiver are hidden from each other.

50 N. Francez, B. Hailpern, G. Taubenfeld

The implementat ion of the net server is now straightforward. If we assume one

net server per remote node, then each server scans through the ports it maintains.
If a message appears it appends the true location of the server (at the remote node)
and passes that message to the network interface (through a port). If the net server
detects a message from the network interface, it strips off the destination address

and puts the message in the appropriate user port. If we are permitted only one net

server on each node, then it must also maintain a table corresponding to its input
ports, of the destination node id of the remote server.

4. Sample script in CSP, ADA, and with monitors

In this section, we describe how scripts could be added to existing programming

languages. The rules and example given are intended to be existence proofs that

such additions could be made without extending the base language in any way. As
a result, not every language supports all features. Ideally, scripts would be added
as an integral part of the base languages; these scripts would support all the options
and features described above. In each of the examples of this section we extend
the syntax of the native language to include scripts. These extensions include script

declarations, role declarations, and enrollment statements. The syntax of these

extensions were intended to conform to the normal syntax of the language.

4.1. Scripts in CSP

CSP [14] imposes strict naming conventions, where in every communication both
parties explicitly name each other. We, therefore, adopt a restricted named-
enrollment policy: each process, besides naming the role to which it enrolls, names
the processes for all other roles in the script with which the role will directly

communicate. All inter-role communication will also use explicit role naming.

The initiation policy will be immediate initiation, because CSP cannot synchronize
more than two processes at a time. Similarly, the termination policy will be immedi-
ate. We will use the ability of CSP to define named arrays of processes that know
their indices, to ' implement ' arrays of roles. We take some notational liberties
considering whole-array assignments. Figure 7 shows a broadcast script in CSP.

Now consider a parallel command [. . . [[pl[.. . Ilqll-. 3, where p contains an

enrollment of the form

ENROLL IN broadcast AS transmitter(exp) WITH

[qa AS recipients, qb AS recipient2, q AS recipient3,
qd AS recipient4, qe AS recipients];...

Here qa, qb, qd, and qe are other process names in the same concurrent command.
In process q, we will have the following enrollment

ENROLL ~[N broadcast AS recipient3(u)
WITH p AS transmitter;...

Script: Communication abstraction and verification 51

SCRIPT broadcast::
I N I T I A T I O N : I M M E D I A T E ;
T E R M I N A T I O N : I M M E D I A T E ;

[ROLE transmitter(x: item):: VAR sent: ARRAY[1 .. 5] OF boolean := 5*false;
5

* [[] -asent[k];recipientk!x-~ sent[k] := true]
k = l

II
5

ROLE recipient~ (y: item):: transmitter ?y
i = l

].

Fig. 7. Broadcast in CSP.

The use of arrays of roles here is rather strict: a process always enrolls to a specific

role in an array. A suggestive idea is to allow the en block enrollment of an array

of processes to an array of roles. The explicit, strict naming conventions make it

difficult to hide details of communication. For example, if the body of the broadcast

script were to be implemented as a pipeline, where recipienti (1 < i < 5) receives the

value of x from recipient~_~ and transfers it to recipient~+~ and recipient~ receives x

from the transmitter, then the enrollment would have to be different.

4.2. Translation into CSP

We now show that scripts with the restrictions mentioned above, do not transcend
the direct expressive power of CSP. Since CSP is not explicit about local

(intraprocess) procedures, we use an in-line translation. To avoid unintended

matching between communication commands arising from the translation, we shall

use unique, new message tags, which are assumed not to occur anywhere in the

original program. Because CSP does not have instances of processes, we cannot

implement parallel performances, instead we cause each performance of a script to

execute separately. We therefore associate with each script s another process p_s,
which will coordinate enrollments to s. Since this translation is only for the sake of

proving expressibility in CSP, the centralized nature of the resulting implementation

does not imply that the actual implementation needs to be centralized. One of the
major directions of future research is to discover distributed algorithms to achieve

such multiple synchronization based on a generalization of the current distributed

algorithms for binary handshaking.

Consider P = [p, II .--lip.3 and a script s, with roles r l , . . . , rm.

Rules of translation: Replace every enrollment within a process pi of the form

E N R O L L IN s AS r(params) WITH [Pi, AS rx; . . . pi, AS rm]

52 N. Francez, B. Hailpern, G. Taubenfeld

p_s:: ready: ARRAY[1 . . . m] of boolean := m* true;
done: ARRAY[1 . . . m] of boolean := m,false;

m n

[ready[k] ;pj ? start_s() --> ready[k] :=false
[]

7ready[k] ;pj ? end_s()-> done[k] := true
]

m

[] /~ done[k]-> ready:= m'true; done:= m'false
k = l

].

Fig. 8. CSP script supervisor.

by the following:
(1) An output command p_s !start_s();
(2) The body of role r (in script s) with

(a) each role name ~ replaced by process name Pij according to the correspon-
dence specified in the enrollment,

(b) the actual parameters, params, substituted for the formal script data
parameters (as in call-by-value-result semantics),

(c) every communication command tagged with the script name, for example,
rl!(x + y) becomes pi~!s(x+ y) and r2?u becomes p~2?s(u);

(3) An output command p_s!end_s().
The process p_s will be concurrently composed with the enrolling processes, and

is defined in Fig. 8. Note that the script supervisor p_s must address all other
processes, since every process is a potential enroUer to every role. This is another
example of the usefulness of the extended naming conventions described in [6].

We defer discussion of enrollments with unspecified parties to the next section.
It describes the incorporation of scripts in ADA, where such enrollments fit more
naturally.

4.3. Scripts in ADA

One feature that distinguishes CSP from ADA is that ADA supports server tasks
that need not know the names of the processes that call them, whereas in CSP each
process must know the name of every process with which it communicates. We
extend this notion of a server task to a server script, that is a script with a
partners-unnamed enrollment policy. Of course, the partners-named policy could
be accomplished in ADA as in CSP, using local procedures to represent the roles

and a supervising task to coordinate entries.
Figure 9 shows a broadcast script in ADA. The script consists of six roles: a

sender and five recipients. The recipients all share the same code, so a template

Script: Communication abstraction and verification 53

SCRIPT broadcast IS

I N I T I A T I O N : IMMEDIATE;

T E R M I N A T I O N : IMMEDIATE;

ROLE sender(data : IN item);
ROLE TYPE recipient(data : OUT item) ;
r l , r2, r3, r4, r5:recipient;

END SCRIPT:

SCRIPT BODY broadcast IS

ROLE sender(data: IN item) IS

ENTRY receive(d : OUT item) ;
completed : integer := 0;

BEGIN

WHILE completed < 5 LOOP

ACCEPT receive(d :OUT item) DO

d := data ;
END;

completed := completed + 1 ;
END LOOP;

END sender;

ROLE recipient(data:OUT item) IS

BEGIN

sender, receive (da ta) ;
END broadcast;

TASK s I S . . . ENROLL IN broadcast AS sender(expression);. . .
END s ;

TASK r I S . . . ENROLL IN broadcast AS r l (v a r i a b l e) ; . . . END r;

Fig. 9. Broadcast in ADA.

(role type) is used. Note that the script body contains a 'reverse broadcast ' because

the recipients call the transmitter, rather than the other way around. This is a result

of ADA's naming conventions: calls to a task must name that task. But receptions

of calls (entries) do not name the calling task. In addition, selections between

alternative entries are allowed, but not selections between alternative calls. See [7]

for the problems caused by the absence of such selections.

4.4. Translation into ADA

We now show how a subset of scripts can be added to ADA with the following

translation to ADA (without scripts). Each role becomes a task and one additional

54 N. Francez, B. Haiipern, G. Taubenfeld

TASK s_supervisor IS
ENTRY start(1.., m);
ENTRY stop(1 . . . m) ;

END s_supervisor;

TASK BODY s_supervisor IS

ready:ARRAY (1 . . . m) OF boolean := (1 . . . m~true) ;
done:ARRAY (1 . . . m) OF boolean:= (1 . . . m~false) ;
all_done :ARRAY (1 . . . m) of boolean := (1 . . . m~true) ;
BEGIN

LOOP
SELECT
W H E N ready(1)~ACCEPT start(l) DO ready(1):=false; E N D ;

O R . . .

OR W H E N ready(m)~ACCEPT start(m) DO ready(m):=false; END;
OR W H E N - ldone(1)~ACCEPT stop(l) DO done(l):= true; END;
O R . . .
OR W H E N - ldone(m)~ACCEPT stop(m) DO done(m):= true; END;
OR W H E N done = all_done~

done := (1 . . . m~false) ;
ready := (1 . . . m~true);

END SELECT;
END LOOP:

END s_supervisor;

Fig. 10. ADA script supervisor.

task is created to coordinate the enrollments. Because each role is representd by a
task, the other roles can know its name. Each role is given a number, which it uses

to call the start and stop (family of) entries of the supervisor. Figure 10 gives the

general form of the supervisor, for a script s, where m is the number of roles in the
script. We assume that the 'macro expansion' prevents ADA tasks from calling any
task of the script except through enrollment. This task per role translation is similar
to the procedure per role translation to provide ADA procedure variables in [17].

Consider processes P l , . . . , P, and script instance s, with roles r l , . . . , rm.

Rules of translation:
(1) Replace every enrollment with a process p of the form

ENROLL IN s AS r(in-param, out-param, inout-param);

by the following:

s_ r.start (in-par.am, inout-param);
s_ r.stop (out-param, inout-param) ;

Script: Communication abstraction and verification 55

ROLE r~(vl :IN t l ; v2 :OUT t2; v3 : IN OUT t3) IS
ENTRY e(parameter_list);... ~entr ies to be called by other roles
v4: t4 := value4;.. . ~ l o c a l variables
B E G I N . . .

ACCEPT e(b,c) D O . . . END; entry
t) .x(y,z);. . . ~ c a l l to entry in another role

END ri ;

ADA Role (before translation)

LOOP
v4 := value4; --initialize local variables
s_supervisor.start(i); msynchronize with supervisor
ACCEPT start(v1: IN tl ; v3 : IN t3) DO msynchronize with

v 1' := v I; enrolling task
v3' := v3;

END;
B;
ACCEPT stop(v2:OUT t2; v3:OUT t3) DO nsynchronize with

v2 := v2'; ---enrolling task
v3 := v3',

END;
s_supervisor(i).stop; nsynchronize with supervisor

END LOOP;

ADA Role (after translation)

Fig. 11. ADA Role--Before and after.

(2) Replace each role ri of script s by a task s_ri.
(a) The role ri has the form shown in the top half of Fig. 11 ;
(b) Task s_r~ has all the entries of ri plus two additional entries

ENTRY start(v1 : IN t l ; v3 : IN t3);
ENTRY stop(v2 : OUT t2; v3 : OUT t3);

(c)

(3) Let
(a)
(b)
(c)
(d)

Task s_ri has all the local variables of ri, without initialization, and one
new local variable, vl ' , v2', v3', for each formal parameter of the start/stop
entry calls, v l, v2, v3.
B bet the body of r~.
The body of sSi'i is shown in the bottom half of Fig. 11 ;
In the body B, occurrences of vl, v2, v3 are replaced by vl ' , v2', v3';
Calls to role entry ri.x(y, z) becomes calls to task entry s_rj.x(y, z),
Accept statements of the body undergo no special change.

56 N. Francez, B. Hailpern, G. Taubenfeld

This translation has two unfortunate consequences. First, the number of processes

grows from n (in the script) to n + m + 1 in the translation; this growth makes it

difficult to associate the execution of a role with the same processor that enrolls in
the script. Second, the translation can convert a terminating program into a non-
terminating one, because of the infinite loops in the role tasks. A realistic implementa-
tion would also require non-centralized coordination of roles, as mentioned in the
section on CSP.

4.5. Scripts with monitors

Monitors can serve two purposes: encapsulation (abstraction) of information and
mutual exclusion. Using monitors for data abstraction may lead to unnecessary
restrictions on concurrency. Combining scripts and monitors allows the programmer
to have the advantages of abstraction, without sacrificing all concurrency to the
single-thread control of the monitor.

Consider a broadcast with mailboxes for each recipient. There are two monitor

implementations of this scheme: the first uses a single monitor to house all the

mailboxes, the second uses one monitor per mailbox. The first implementat ion is a
unified abstraction, all details hidden in a single black box, but all access to any

mailbox is serialized. The second implementation eliminates the unnecessary concur-
rency restrictions, but the components of the broadcast are no longer packaged
together. Our script solution follows the multiple monitor scheme, but with the
script providing the top-.level packaging. The monitor implementat ion of a star

broadcast, similar to Fig. 2 is shown in Fig. 12. Note that in this implementation,

we assume that the critical role set includes the sender and all five recipients; this
prevents the sender f rom waiting on a full mailbox. A monitor-based supervisor
would most easily implement immediate initiation and termination. No translation
rules are given, as they would be similar to those for ADA and CSP.

5. Proof rules for partial correctness of scripts

In this section we present a more formal definition of the script concept. We
define proof rules for proving partial correctness assertions about concurrent pro-
grams using scripts. There are two main aspects of the script that dictate an approach
toward the formulation of the required rules.

(1) The script, viewed as an abstraction, is a multi-party communicat ion and
synchronization construct. It generalizes the primitives found in most concurrent

languages that involve binary communication and synchronization.
(2) The (joint) script enrollment of processes to roles in a script can be viewed

as a generalization of the procedure-call mechanism. In the script case, a distributed
call consists of each process calling its piece of a procedure, namely a role in the
script. The overall effect of a script is achieved through parameter passing.

Script: Communication abstraction and verification 57

SCRIPT broadcast;

TYPE mailbox: M O N I T O R
VAR contents : item ;

status : (full, empty);
PUBLIC P R O C E D U R E put(i : item);

BEGIN

WAIT UNTIL status = empty;

contents := i;
status := full;

E N D put;

PUBLIC F U N C T I O N get : item ;
BEGIN

WAIT UNTIL status =full;
get := i;

status := empty;
E N D get;

BEGIN
status := empty;

E N D mailbox;

ROLE sender(data : item) ;

VAR k : integer;

BEGIN

FOR k:= 1 TO 5 DO recipientk.mbox.put(data);
END sender;

5

ROLE recipienti(VAR data : item);
i=1

VAR PUBLIC mbox : mailbox;

BEGIN
mbox.get(data) ;

E N D recipient;

END broadcast;

Fig. 12. Mailbox broadcast.

The task is to find a proper amalgam of proof rules, dealing with concurrency,

communication, and procedures, to form a uniform proof system defining the script

construct.
As far as concurrency and communicat ion are involved, our system is a natural

extension of what is known as cooperation proofs. We generalize both the sequential
proof rules for a process (role), to deal with enrollment, and the notion of cooper-
ation, to deal with concurrent composition. A major design goal is to introduce into

58 N. Francez, R Hailpern, G. Taubenfeld

the proof system the same degree of modularity induced by the script construct on

the program.
We adopted the idea, derived from the proof theory of procedures, to prove a

parametric assertion about a script which is then adapted to the enrolling environment

by a generalization of a rule for procedure calls.
This section consists of two parts. The first part presents the verification ideas in

a way that is independent of the host language. In the second part, we assume that

CSP is the host language, and consider an augmentation of the proof system
presented in [1] to our needs. CSP was chosen because of its natural suitability for

our context, the availability of established proof system for it, and our familiarity

with both. We devote a small discussion to adapting the ideas to a subset of ADA
that deals with concurrency, for which cooperating proofs also exist. Nowhere is

the dependency on the host language essential.
Because of the similarity between our proof sysem and that of CSP, we will use

a more CSP-like notation for scripts, for the rest of the paper. In particular, note

that roles are treated syntactically as processes; they are prefixed with name:: and

are separated by II.
In this section we assume that the actual parameters, transferred by an actual

process to a role, are expressions referring to distinct identifiers, thereby avoiding
atiasing. We will not treat the case where both initiation and termination are
immediate. We do not assume CSP's convention for distributed termination of loops.

Finally, to avoid cumbersome presentation, we consider only scripts that use
exclusively either inter-role communication or enroll commands (not both in the

same script). External processes can communicate only by enroll commands. The
extension to any mixture of primitive inter-process communicat ion and script enroll-

ment is possible, but rather technical. The possibility of having nested enroll
commands within the body of an accept in the extension to arbitrary mixtures when
using ADA is discussed at the end of the section.

5.1. Proving properties of script bodies

The way we intend to prove partial correctness of programs that use scripts is

closely related to the way procedures are treated in [2, 9, 13]. For each body of a

script some assertion, relating pre- and p0st-conditions, is proved. Using these
script assertions, an assertion about the main program is proved.

In case of nested enrollments, a script regards another script that enrolls in it as
main program, while it is regarded as a main program by a script it enrolls in. Hence
to avoid the artificial distinction, we use only the term script. Everything we say

about it relates to the main program as well.
With each script we associate an invariant SI called the script invariant. Each SI

expresses global information about its script. A script invariant may refer to the
formal parameters and local variable of all the roles in the script.

When a script uses only primitive inter-role communication, the pre- and post-
assertions associated with its body are proved using a proof system for the host

Script: Communication abstraction and verification 59

language. When it uses enroll commands (that is, there are nested enrollments) the
system described below is used.

The procedure inference rule [13] is used as the interface between the procedure
call and its body. Similarly, we present a new proof rule for scripts that is a
generalization of the procedure rule.

The notation

ROLE ~)(IN ~s; IN OUT)Ts; OUT ~): :B s

defines a role rj with value (IN) parameters ~j, value-result (IN OUT) parameters)~,
result (OUT) parameters ~, and body Bj. For a script s with roles as defined above, we
use the notation

SCRIPT s(~,)7, f)::B~

to define a script. Here x, y, z denote the formal parameters of the roles
2~ , . . . , 2,s ;)Ta,--.,)7,s ; 5~ , . . . , f,,, respectively, where ns = Isl denotes the number

gl$

of roles in the script s. Also, B~ denotes the script body (llj=,
As mentioned above, as assertion

{pre(s)} B~ {post(s)}

can be associated with any given script s. Both pre(s) and post(s) are constructed
by conjoining, respectively, the preconditions and postconditions of the various
roles with the script invariant.

The formal data parameters referred to by the predicates pre(s) and post(s) may
only be 2,)7 and)7, f, respectively. The predicates may also refer to constants and
free variables to describe initial and final values (called logical variables in [9]).
Note that :~ must be initialized inside B~, which explains why pre(s) may not refer
to the result parameters. After termination of a performance, the value parameters,
2, have 'returned' to their initial state. Hence, they can not affect the final values
of the script. Therefore, post (s) may not refer to the value parameters. Note that
the initial value of the value parameters can be accessed by post(s) through free
variables. These restrictions are motivated similarly to the analogous restrictions
regarding procedures and do not restrict generality.

When applying the proof system presented in [1] (summarized in an appendix)
to a script s, which uses CSP's primitive communication commands, the script roles
and the predicate pre(s) correspond, respectively, to the processes and a precondition
over the initial state in CSP programs. Consider again the broadcast example with
only two recipient roles. Using the proof system for CSP described in [1], we may
prove

{xl = C } Bbroad=st {Z2 = Z3 = C } .

See Fig. 13 for a proof outline. The free variable C freezes the initial value of the
transmitter and final values of all the roles. Because {xt = C} Bbroad¢~st {Z2 = Z3 = C}

60 N. Francez, B. Hailpern, G. Taubenfeld

[ROLE rl ::{x~ = C} sent[2 . . . 3] :=false;
LI: {xl = C}

3

*[k~__2 ~sent[k]; rk!Xl--> sent[k] := true {LI}

{LI}

II
3

ROLE r~ ::{true} rl?zi {z~ = C}
i = 2

]
In this case, SI-= true.
For estabishing cooperation we have to prove (for k = i):
{x 1 = C} rk lxlllrl ? zi {xl = C ^ Zi = C}
which is done by applying
- communication and preservation axioms,

- c o n j u n c t i o n , parallel composition, and consequence rules.

Fig. 13. Broadcast proof.

is universally true, C may be replaced by any term to yield another universally true
statement.

A process Pi can enroll as role rj in script s using the command E](~i,/~i, ~),
where the variables di,/~, and ~, are the arguments corresponding to the parameters
xJ, 4, and ~, respectively. The value arguments ti~ can be expressions. The notation
E] is shorthand for ENROLL IN s AS i).

We define E ~ , . . . , E ~ to be (syntactically) matching enrollments. By the assump-
tion that initiation and termination are not both immediate, no two E~, El, i ~ j
belong to the same process. This notion is a natural generalization of matching
communication commands, used in verifying CSP programs [1]. Recall that by the
restriction of enrollments in the script definition, matching enrollments consist only
of enroll commands that are all made by roles from the same script.

We now introduce a new inference rule used as an interface between the enrolling
processes and the script. This rule naturally generalizes the procedure rule [2, 9, 13].

Enrollment Rule. For a script s and matching enrollments E ~ , . . . , E~,s,

{pre(s)} Bs {post(s)}
i i i

Lj-~I

where ~, b, ~ denote (dk, , . . . , ak.~), (bk,, . . . , 6k~), (Ck,,..., Cko~), respectively. By
definit ion all the processes Pkj (kj = 1 , . . . , n) and the roles rj (j = 1 , . . . , ns) are

Script: Communication abstraction and verification 61

disjoint. Here p[a/~] denotes the assertion obtained from p by substituting (simul-
taneously) 12 for all free occurrences of ~.

In other words, the script s operates on the actual parameters ti; b; 6 in exactly
the same way as the body Bs would do with the formal parameters x; y; z. Thus
it is expected that post(s)[l~; 6/j7; 5] i s true after execution of the script if
pre(s)[a; b/x; y] was true beforehand.

Furthermore, let SI be the script invariant for Bs referring to the formal parameters.
Then after passing the actual parameters, SI remains invariant (that is, parameter
passing does not affect the invariance of SI).

As an example consider a program P::[P, IIP21IP3] using the broadcast script
specified above, where PI:-E~(5);/)2:'E2(c2); Ps::E3(c3). Let E abbreviate E br°ad~st.
We can prove

{ true} [P, IIP211P~3 {c2= c~= 5}.

Using the proof that

{X 1 = C } Bbroadeas t {Z 2-~ Z 3 = C }

which was given before. We take C to be 5 and get

{X 1 = 5} Bbroadcas t {Z2 = Z3 = 5 } .

By the enrollment rule we get

{X1 = 5} nbroadcas t {Z 2 = Z 3 = 5}

{ xl = 5[5 / x~]} [E~ (5)11E2(c=)II E~ (c~)] { z= = z~ = 5[c=, c3/z=, z~]}"

After substitution we obtain

{5 = 5} [E1(5)11E2(c=) II E3(c3)] {c== c~ = 5},

which completes the proof.
Note that, like the procedure-call rule [9], the enrollment rule is independent of

the script body. It depends only on the specification of the body, namely the pre-
and post-conditions of the script body. This is a strong argument supporting the
use of scripts as an abstraction mechanism.

Before continuing, we would like to examine the meaning of the enrollment rule
as a semantic definition of enrollments. As the rule uses substitutions into global
states, one may falsely conclude that both delayed initiation and delayed termination
are implied.

Enrolling processes need to be synchronized in order for such a global state to
be an actual state in the computation. The actual state satisfies the script invariant
(after substitution), so that the usual inductive argument can be applied to deduce
the invariant upon total termination.

62 N. Francez, B. Hailpern, G. Taubenfeld

We need not, however, require synchronization at both initiation and termination.
It suffices that at least one event, either initiation or termination, be delayed (syn-
chronized). The other one may be immediate. The argument for showing this is a
variation on the one used in [5], as each performance of a script under such
conditions satisfies similar properties to those of communication-closed layers. The
only difference is that these layers do not form a cross-section of the whole program,
only of the participating processes. We refer the reader to [5] for further discussions.

The restrictions we have presented induce a pattern of execution: processes do
local activities until all face enrollments, then, a whole group, forming a matching
enrollment, advances in one 'big step'. This generalizes the execution of CSP
programs induced by the [1] system, where processes are advanced one pair at the
time. For a proof that an arbitrary execution is equivalent to such a serialized one,
see [3].

Next we add an inference rule to deal with recursive scripts, it is a natural
generalization of the rule for recursive procedures [13, 2]. Consider a (recursive)
script declaration

SCRIPT s(~, 33, ~)::B,,

where B~ may include recursive enrollments. The rule refers to recursive script s
and matching enrollments E l , . . . , E~s.

Recursion Rule.

{pre(s) ["~
j 1

{pre(s)} [Ti
L j = 1

That is, we infer

{pre(s)} [Ti E;(Scj, yj, ~)] {post(s)}
L j = I

E](~j, yj, ~)] {post(s)} ~ {pre(s)} B, {post(s)}

E](~j, y~, ~)] {post(s)}

from the fact that {pre(s)} Bs {post(s)} can be proved (using the other rules and
asxioms) from the assumption

{pre(s)} [ii E~(±~, yj, £3)] {post(s)}.
t . j = 1

This is the usual circularity encountered when treating recursion. The generalization
to mutual recursion is clear.

Finally, we introduce two new proof rules which are also a natural generalization
of those for procedures. The names chosen for the rules are the same as those used
for procedures [2]. Both of them refer to script s and matching enrollments

En$- E~,

Script: Communication abstraction and oerification 63

Parameter Substitution Rule.

fir
L j = 1

L j = 1

where var(d; ~; f) n free(p, q)c_ {~, fi, ~.}.
p[d; ~/~; fi] stands for simultaneous substitution of the expressions from d and

6 for the variables ~ and ~,
vat(d; ~; f) denotes the set of all variables appearing in d, 4, and
free(p, q) denotes the set of all free variables of p and q. A similar restriction

appears and is explained in [2, p. 464].

Variable Substitution Rule.

L j = I

I _ j = l

where var(t'; F) c~ oar(6; 6; ~) = O.

The variable substitution rule is used to rename free variables which are not used
as actual parameters. Those free variables are typically used to freeze the value of
the parameters before enroll command.

Both rules are necessary only when recursion is allowed. Examples using the
rules appear below.

5.2. Proving properties of enrollments

We now introduce the method for proving pre- and post-assertions about a script
that uses enroll commands. This proof system is structured similarly to the one for
CSP introduced in [1].

We use the term process for both a role and an external process. A proof of pre-
and post-assertions about a script is done in two stages:
(1) Separate proofs are constructed in isolation for each component process;
(2) The separate proofs are combined by showing that they cooperate.

To generate separate proofs for each process we need the following axiom:

Enrollment Axiom. Let E denote any enroll command

{p} E {q}.

where p and q refer only to variables local to the process from which E is taken.

64 N. Francez, B. Hailpern, G. Taubenfeld

This axiom implies that any post-assertion q can be deduced after an enroll
command. Note, however, that q cannot be arbitrary since at stage (2) it must pass
the cooperation test. This axiom is a natural generalization of the input/output
axioms introduced for CSP's communication commands [1]. There the arbitrariness
of q is explained in more detail.

Using the enrollment axiom and the first eight rules of inference (I1-I8), which
are listed in the appendix, we can establish separate proofs for each process. This
is presented, as in [21], by a proof outline in which each sub-statement of a process
is preceded and followed by a corresponding assertion.

In this proof outline a process guesses the value its parameters will receive after
enrollment. When the proofs are combined, these guesses have to be checked for
consistency using a cooperation test.

Note the role of the 'guess' in this proof rule. We may distinguish three levels of
'guessing':

(1) 'small guess'mas present in proof system for CSP in the form of a communica-
tion axiom [1]. The 'guess' is over the effect of a single communication.

(2) 'moderate guess '--as presented in the proof system for' an ADA subset (for
concurrency) using the call-accept primitives [8]. Here the 'guess' is over a chain
of entry calls, when an accept or call appears within the body of another accept.

(3) 'big guess'mas present in our system, where we 'guess' the effect of an
enrollment, which may involve an unbounded number of primitive communications.

We now explain how, at stage (2), the separate proofs are combined. First we
need the concept of bracketing. We define a process Pi to be bracketed if the brackets
'(' and ')' are interspersed in its text so that

(1) for each program section (B), B is of the form B~; E; B~ where B~ and B~
do not contain any enroll commands, and

(2) all enroll commands appear only within brackets as above.
The purpose of the brackets is to delimit the script sections within which the

script invariant need not necessarily hold. Again, a generalization of the situation
in the script-free programs is easily recognizable [1].

With each proof of {p} [;111...11 Pn] {q} we associate a script in variant sI and an
appropriate bracketing. The proof rule concerning parallel composition has the
following form:

Parallel Composition Rule.

proofs of {pi} Pi {qi}, i = 1 , . . . , n, cooperate

{p~ ^ - - . ^ p,, ^ SI} [P~I[.--IIP,] {q~ ^ " " ^ q, A SI}

provided no variable free in SI is subject to change outside a bracketed section.

Intuitively proofs cooperate if each performance of a script validates all the
post-assertions ('guesses') of the enroll-commands enrolling in this performance.

Script: Communication abstraction and verification 65

We now define precisely when proofs cooperate. Assume a given bracketing of
a script [P ll...llP] and a script invariant SI associated with it. We define
(B~), . . . , (B,s) to be matching bracketed sections if they contain matching enrollment
E ~ , . . . , E ~ to some script s.

We further define the proofs {Pi} P~ {qi}, i= 1 , . . . , n, to cooperate if
(1) the assertions used in the proof of {p~} P~ {q~} have no free variables suject

to change in Pj for i # j,
(2) the statement

]{- 1 pre(Bj) ^ SI Bj A=, post(Bj) ^ SI
\ j = 1 L j = 1 j

holds for all matching bracketed sections (B~), . . . , (B,,).
The following axiom and proof rules are needed to establish cooperation: enroll-

ment axiom, enrollment rule, recursion rule, parameter substitution rule, and variable
substitution rule as described above.

Rearrangement Rule.

{p} B1;. . . ; B,s {p~}, {p~} [i i E~.] {P2}, {P2} B ~ ; . . . ; B ' s {q}
I..j= 1 d

L j = 1

provided B~, B~ , . . . , B,~, B'~ do not contain any enroll commands and E l , . . . , E~,~
above are matching enrollments.

The rearrangement rule reduces the proof of cooperation to sequential reasoning,
except for an appeal to the enrollment rule. Note that the rearrangement to
B I , . . . , B,~, and B~, . . . , B'~ is arbitrary, since they are disjoint in variables. This
is a generalization of the binary rearrangement used for CSP, called the 'formation
rule' in [1].

For proving cooperation we also need the preservation rule (I9, in the appendix).
Finally to complete the proof system the substitution rule (I10) and the auxiliary
variable rule (I l l) are needed.

For example, consider the program P::[PlII/211P3], where

Pl::E2(al)

P2::a2 := 5 ; E l (a 2 + 1)

P3::E3(a3).

For the rest of the section E -- E br°ad~st.
Note that P2 enrolls as the transmitter and P~, P3 enroll as recipients. Using the

system above we can prove:

{true} [P lIP211P3] {a~ = a3 = 6 ^ a2= 5}.

66 N. Francez, B. Hailpern, G. Taubenfeld

The proof outline is:

PI: {true} E2(al){al =6}

P2: {true} a2:-- 5 {a2= 5} El(a2+ 1) {a2 = 5}

P3: {true} E3(a3){a3 = 6}

and we may choose S I - t r u e . There is only one matching enrollment, so
cooperation we must prove

{a2 = 5} [El(a2+ 1)llE2(al)llE3(a3)] {a~ = a3=6 ^ a2 = 5}.

Using the proof that

{x, = C} Bbroad~t {Z2 = Z3 = C}

which was given above, we take C to be 6 and get

{x~ =6} Bbroadeas t {Z2----- Z3 = 6}.

By the enrollment rule we get

{x, = 6} Bbroadcas t {Z2----- z 3 = 6 }

for

{xl=6[a2+ l/x1]} [E~(a2+ 1)llE2(al)llE3(a3)] {z2= z3 = 6[al, a3/z2, z3]}

and after substitution

{a2 + 1 =6} [E~(a2 + 1)llE2(a~)llE3(a~)] = a3 = 6}.

By the preservation axiom, we can prove

{a2= 5} [E,(a2+ 1)llE2(a,)llE3(a3)] {a:= 5}.

Using the conjunction rule the required cooperation is obtained. The proof is finished
by applying the parallel composition rule.

The cooperation test between proofs requires comparisons of all syntactically
matching enrollments, even though some of them will never take place during any
performance of the script considered.

In this context, the main role of the script invariant SI is to carry global information
helping to determine which of the syntactic matches also match semantically. This
information is expressed using auxiliary variables (different from the program
variables) [21].

Consider the enrollments shown in Fig. 14. In this example there are four
syntactically matching enrollments (denoted 1, 2, 3, 4). Two of them, namely 3 and
4, are not semantically matching enrollments (that is, they will never take place).
The other two, namely 1 and 2, are semantically matching. To verify the program,
three auxiliary variables i, j, and k are used. See the proof outline in Fig. 15. We
choose S I - i = j = k.

We now show that the two semantically matching enrollments (1,2) pass the
cooperation test. In the other syntactic matching enrollment (3,4), the conjunction

Script: Communication abstraction and verification 67

P,'" 1 /'2:" 1 /,3::
E,(5) ; 3 E2(a2), 3-. / / 4 E3(a3) ,

/ "- .. E3(a3) E2(al) 4 E l (a2+ 1) .. "~"
2 2

Fi.g. 14. Matching enrollments.

of the preconditions contradicts the invariant, so it trivially passes the cooperation

test.
(1) We must prove

{SIAi=j=k=O}

[(E,(5); i:= 1)llE2(a2);j:= 1)ll(E3(a3); k:= 1)]

{SI^ az=5A i = j = k = 1}.

Taking C to be 5, we get by the enrollment rule

{true} [E,(5)llE2(a2)llE3(a3)] {a2 = as = 5}.

By the assignment and preservation axioms.

{a2 = 5} i := 1 ; j : = 1; k : = 1 { i = j = k = 1 ^ a2 = 5}.

By applying the consequence and rearrangement rules the proof of (1) is finished.

(2) We must prove

{SI ^ a2=5 ^ i = j = k = 1}

[(E , (a2+ 1))ll(E2(al))ll(E3(a3))]

{SI ^ a, = a3 = 6 A a2 = 5}.

From the previous example, we know that

(a2= 5} [E,(a2+ 1)llE2(a,)llE~(a~)] {al = a 3 = 6 ^ a2 = 5}.

pi . . p~.. p ; . .

{i=0} {j '= O} , {k=O}
(E,(5) ; {true}i := 1) 1 3 (E2(a2) , {a2= 5}j := 1) ~ \ f / / - (E 3 (a 3) , {true} k : = 1)
{ i = 1 } { a 2 = 5 ^ j = 1} / 1 / " { k = l }
(E2(a,)) 4 -(E,(a:+ 1)). ~ ~ "..3 \ (E3(a3)) 2
{ a, = 6} {a2 = 5} 2 {a 3 = 6}

Fig. 15. Proof outline for bracketed program.

68 N. Francez, R Hailpern, G. Taubenfeld

We finish the proof of (2) by applying the preservation axiom and the conjunction

rule. Hence, by the parallel composition, consequence, and auxiliary variables rules

{i=O A j = O ^ k=O} [PIIIP IIPd = a3=6 A a2 = 5}.

Finally by applying the substitution rule we obtain

{ true} [Pl II P=II P3] {al = a3 = 6 ^ a2 = 5},

which completes our proof.
Before ending this section we want to clarify a point concerning the extension of

the proof system for ADA [8], to any mixture of primitive call-accept communica-

tions and script enrollments. Such an extension enables the possibility of having

occurrences of enroll commands within the body of an accept; such a phenomenon
is not possible in extending the rule to mixtures in CSP.

A similar problem, of having occurrences of calls or accepts, within the body of

another accept, was resolved in [8, Section 3] by restricting the notation of
bracketing in such a way that the invariant also holds when such inner calls or

accepts are reached.

Applying that method in exactly the same way to enroll commands nested
within accept gives an easy and smooth solution. We present below a modified
definition for a bracketed task; the rest of the details in the extension are rather
technical.

A task is called bracketed i f the brackets '(' and ')' are interspersed in its text, so

that
(1) for each bracketed section, (B), B is of the form

(a) B1; CALL T.a(arguments); B2,
(b) B~; ENROLL IN s AS ~(arguments); B2,
(c) ACCEPT b(parameters) DO B1,
(d) B2 E N D A C C E P T ;

where B1 and B2 do not contain any entry call or accept or enroll, and may be null

statements,
(2) each call, accept and enroll is bracketed as above.

5.3. Example: Rotate

We now present a script and two different patterns of enrollment to this script,
yielding two different effects in the enrolling program. The script Rotate consists
of m roles arranged as a ring configuration. Each role Ri has a formal parameter
xi with an initial value denote by the free variable C~. Each role R~ non-deterministi-
cally sends its own initial value to its right neighbor R~+~ and receives the initial
value of its left neighbor R~_~. (In this section, + and - are interpreted cyclically
in { 1 , . . . , m}). The effect of each role transferring its initial value to its fight neighbor

is called rotate right. The script is shown in Fig. 16.

Script: Communication abstraction and verification 69

SCRIPT rotate::

m

[ROLE Ri (IN OUT x~" integer)::
i = l

VAR sendi, receivei : boolean ; tempi: integer;

sendi :=false; receive~ :=false;

*[Tsendi; Ri+l !x~ ~ sendi := true
[]

-Treceivei; Ri_I ?tempi ~ receivei := true
];

Xi := tempi
]

Fig. 16. Rotate script.

Using the CSP proof system, we prove

{i~=l (Xi~-Ci)l grotate{i~=l (xi~ Ci-1) I.
To verify the script, two auxiliary variables si and ri are introduced for each role

Ri. The proof outline for the rotate script is shown in Fig. 17. We choose the script
invariant to be

m

S I - A [(si A r i + l) ~ tempi+~ = Ci] .
i = l

Note that SI can refer to local variables. The meaning of SI is 'whenever Ri has
sent and R~+~ has received, then tempi+~ holds the value C~".

R, : {xi = C~ ^ si = ri = fa l se}

sendi := fa l se; receivei := fa lse ;

LIi : {xi = Ci ^ sendi = si ^ receivei = ri}

* [~sendi; (Ri÷~!xi ~ si := true; sendi := true){LIi}
[]

7receivei; (R~_~ ?tempi-~ ri := true; receive~ := true>{LIi}
]{LI, ^ receivei ^ sendi}

xi := tempi{s~ ^ ri ^ xi = tempi}

Fig. 17. Proof outline for rotate

70 N. Francez, B. Hailpern, G. Taubenfeld

Matching bracketed sections consist of the first alternative of some Ri and the

second alternative of Ri+~, so for estabishing cooperation we have to prove

{~send i A ~receivei+l A LIi ^ LIi+l ^ SI}

[(Ri+~! xi ~ S~ := true; send~ := true) ll (Ri ? temp~ + l ~ r~ + l := true; receive~ + l := true)]

{LIi A LIi+l A SI}.

By the arrow rule [1], it remains to be proved that

{~send~A~receivei+~ ^ LI, ^ LIi+l A ~ [(sj ^ ~ + l) ~ tempj+l = Cj] A temp,+l = x , }
j = l
j ~ i

s~ := true; send~ := true; ri+~ := true; receive~+l := true

{LIi A LIi+l ^ SI}

holds, where the above precondit ion is the postcondition of Ri+~!x~llRi? temp~+~. It

is inferred from the axioms of communicat ion and preservation.
Using the assignment axiom and consequence rule the required cooperation is

obtained. By using the parallel composition rule we obtain

SI ^ A [xi = c i A si = ri = false Brotate SI A [r i A S~ ̂ X~ = tempi .
i=1 i=1

m
The post-assertion (SI A Air1 [ri A s, ^ xi = tempi]) implies (A~=~ [Xi = Ci--1])" S o ,

finally, by the consequence, auxiliary variables, and substitution rules the required

result is obtained.
We now show two enrollment patterns of m processes arranged as a ring configur-

ation. In the first program, using the rotate-script, the effect of 'rotate right' is

achieved. In the second program, using a different pattern of enrollment to the

rotate-script, the effect of 'rotate left' is achieved. For the rest of this section let
E -= E r°tate.

Rota te right

The rotate right enrollment is

P, :: a, := i; Ei(ai)

We prove that

Script: Communication abstraction and verification 71

The proof outline is

Pi : { true } a, := i { a, = i} E, (a,) { a, = i - 1 }

and we may choose SI =- true.

For cooperatior~ we must prove

{ , ~ l (a , = i ' } [i ~ l E i (a ,)] { , ~ (a i = i - 1) } "

We take C~ to be i and get

= (xi i . (X, i) Brotate - - - - - 1)
i= l

By the enrollment rule, we obtain

(x , = i) [a i / x ,] II E,(a,) (x , = i - 1) [a , / x ,]
i=1 i=1 i=1

which after substitution yields the required result. By the parallel composition rule
the proof is finished.

Rotate left
The rotate left enrollment is

Pi :: ai := i; Em-i+l(ai)

For simplicity, we denote m - i + 1 by ~. Note that { k l , . . . , k~} is a permutation
of { 1 , . . . , m}, so P has exactly one matching enrollment.

We prove that

{ t r u e } P { i = ~ (a, = i+1)} .

The proof outline is

Pi : {true} ai "= i { ai = i} Ek, (ai) { ai = i+ 1}

and we may choose S I - true.
Note that [][~'=1 Ek,(ai)] is the same as [[[7'=1 E,(ak,)], so we can interchange them.
For cooperation we must prove

72 N. Francez, B. Hailpern, G. Taubenfeld

We take C~ to be k~ and get

A (x,=k,_, .
i = l

Because ki-1 = m - (i - 1) + l =/q.+ 1,

By the enrollment rule, we obtain

{i~l(X'=~)[aki/X']}[,~lEi(ak,)]{,~l(x'=k'+l)[ak,/Xi]}"

After substitution we get

(,~l(ak,=lq)}[,!lE'(ak,)]{,~l(ak,=k'+l) }

which is clearly the same as the required conclusion. The proof is finished by the
parallel composition rule.

Other definitions o f /q can cause interesting results, such as rotate k positions.

5.4. A recursive example: The Towers of Hanoi

The Towers of Hanoi is a game played with three poles, named source, destination,
and spare, and a set of discs. Initially all the discs are on the source pole such that
no disc is placed on top of a smaller one. The purpose of the game is to move all

of the discs onto the destination pole. Each time a disc is moved from one pole to
another, two constrains must be observed:

(1) Only the top disc on a pole can be moved;

(2) No disc may be placed on top of a smaller one.

The spare pole can be used as temporary storage.

The well-known conventional solution to the game makes use of a recursive

procedure with four parameters. Three of the parameters represent the poles and
the fourth is an integer specifying the number of discs to be moved. The algorithm

consists of three steps. In step one, N - 1 discs are moved, using a recursive call,
from the source to the spare using the destination as temporary. In step two, a single

disc is moved from the source to the destination. In step three, N - 1 discs are

moved, using a recursive call, from the spare to the destination, using the source
as temporary.

Script: Communication abstraction and verification 73

We now introduce a solution using a recursive script. It is similarly structured to
the conventional one, and makes use of the same three steps. Although it is

distributed, no parallel computation is involved. Parallel computation may take
place in a generalization of the game where more than three poles are allowed.

The recursive script, named hanoi, implementing a winning strategy for the game,

is defined as follows. Each one of the three poles is 'in possession' of a different
role, represented as a stack of discs. Due to this stack representation the first
constraint is observed trivially. Each of the three roles has two parameters. The first
parameter is the number of discs to be moved and the second parameter is the stack
itself. We also use an auxilary simple script named move, which has two roles,
named give and take. Each move role has one parameter of type stack of disks. The

purpose of this script is to move a single element (disc) from the give-role stack

onto the take-role stack.
The strategy of the hanoi script with three roles (named source, destination, and

spare) and N discs is described by the same three steps used in the conventional
solution.

(1) If N > 1 then N - 1 discs are moved from the source to the spare using the
destination as temporary. This is done by the source, destination, and spare roles

recursively enrolling to the source, spare, and destination roles respectively, with

first parameter equal to N - 1, while the second parameter is the stack that the role
possesses.

(2) A single disc is moved from the source to the destination. This is done by

the source and destination roles respectively enrolling to the give and take roles in
the move script.

(3) If N > 1 then N - 1 discs are moved from the spare to the destination, using
the source as temporary. This is done by the source, destination, and spare roles

recursively enrolling to the spare, destination, and source roles respectively, with
first parameter equal N - 1 , the second parameter, as before, is the stack.

The hanoi script is shown in Fig. 18. The move script is shown in Fig. 19.
We now verify this example. First consider the script move. Using the proof system

for CSP [1], we can prove

{ X = s" Xo^ Y = Yo} Bodymo,,~ { X = Xo^ Y = s . Yo},

where X0 and Yo represent ordered stacks of discs and s denotes a single disc. They

are used to freeze the initial state of stacks X and Y. By s . Xo we mean that s is

placed on top of the stack of discs denoted by X0.
It is required that the s disc be smaller than any disc in the stacks Xo or Yo and

that initially no disc is placed on top of a smaller one. Note that those requirements
are satisfied (by the actual parameters) when the move script is. used (in Step 2) by
the hanoi script. The proof outline of move is shown in Fig. 20. It is simple to see
that the constraint that "no disc may be placed on top of a smaller one" is observed
by this script if the initial requirements are satisfied.

74 N. Francez, B. Hailpern, G. Taubenfe ld

SCRIPT hanoi::
INITIATION : DELAYED;

TERMINATION: DELAYED;

[ROLE source(IN n~: integer, IN OUT A: stack of discs)::

[hi ~ 1 --* ENROLL IN hanoi AS source(n~- 1, A) [] n~ = 1 --* skip];

ENROLL IN move AS give(A);

[n~ ~ 1 ~ ENROLL IN hanoi AS spare(n~ - 1, A) [] n~ = 1 ~ skip]

II
ROLE destination(IN hE: integer, IN OUT B: stack of discs)::

[hE ~ 1 ~ ENROLL IN hanoi AS spare(n2 - 1, B) [] n2 = 1 --> skip];

ENROLL IN move AS take (B);

[n2 ~ 1 ~ ENROLL IN hanoi AS destination(nE- 1, B) [] n2 = 1 -* skip]

II
ROLE spare(IN n3: integer, IN OUT C :(stack of discs)::

In3 ~ 1 ~ ENROLL IN hanoi AS destination(hE- 1, B) [] n 3 = 1 ~ skip];
[n 3 ~ 1 ~ ENROLL IN hanoi AS source(n3- 1, C) [] n 3 = 1 ~ skip]

].

Fig. 18. Towers of Hanoi script.

SCRIPT move::

INITIATION: DELAYED;

TERMINATION: DELAYED;

[ROLE give(IN OUT X :stack of discs)::
VAR temp~ : integer;

temp~ := pop(X);

take ! tempi

II
ROLE take(IN OUT Y: stack of discs)::

VAR tempE: integer;

give ? tempE;

push(Y, tempE)
11

Fig. 19. Move script.

Script: Communication abstraction and verification 75

[give : { X = s . Xo}
temp~ := p o p (X) ;

{ tempi = s A X = Xo}
take ! temp~

{X=Xo}
II
take: { Y = Yo}

give ? temp2 ;

{ temp2 = s A Y = Yo}
push(Y, temp2)

{ Y = s " Yo}
].
The script invariant is SI ~ true.

Cooperat ion is proved easily using:

the communicat ion axiom, the preservation axiom, and the consequence rule.
All that remains is the application of the parallel composition rule.

Fig. 20. M o v e scr ipt p r o o f outl ine.

Finally we verify the hanoi script. We first prove

{ A = A [1 . . W] ^ B = Bo^ C = Co^ n1= n2= n3= N }

r , h a n o i / hanoi ~-- hanoi/
~souree[nl, A)llEdest (n2, B)ll a o n3, c)] (,)

{ A = A [N + I . . I V J A B = A [1 . . N] . BoA C = C o A n I = n 2 = n 3 = N }

where A[1 .. W], Bo, Co are used to freeze the initial state of the stacks ,4, B, and

C. The term A [1 . . W] denotes an ordered stack of W discs, where for each i, j
such that 1 <~ i <j<~ W, disc A[i] is smaller than disc A[j] . The term N is an integer

such that 1 <~ N <~ W.
For the sake of the proof we assume that any one of the A[1 . . W] discs is smaller

than any disc of Bo or Co. Later we explain why that assumption can be removed.
Based on the game definition we assume that, initially, no disc is placed on top of

a smaller one.

By the recursion rule it suffices to prove that

(.) ~- { A = A [1 . . W] A B = B o A C = C o A n ~ = n 2 = n 3 = N }

B o d y h a n o i

{A = A[N + I . . W] A B = A [1 . . N] . BoA C = CoA nl = n2= n3 = N}.

The proof outline o f the hanoi script is given in Fig. 21.
There are exactly three matching enrollments corresponding to Steps 1-3, which

must be shown to pass the cooperation test.

76 N. Francez, B. Hailpern, G. Taubenfeld

Assume (,).
Let a (k) - A = A (k . . . W] a 11, = N.

/ 3 1 - B = Bo A n2= N.

/33--
T1 -=

B = A [N] * Bo ^ n2 = N .

B = A [1 . . . N] . Bo ^ 112 = N .

C = C o ^ 1 1 3 = N .

C = A [1 . . . N - 1] - C o ^ n3 = N.

[source : { a (1)}
lL -hano i / _ [h i# l "> .-.sour~t n~ - l , A) { a (N) }

[] n , = 1 -> skip {or(N)}
] {,~(N)}
Eg'~,,~e(a) ; { a (N+ 1)}

h a n o i / [111 ~ 1-->/:~spare ~111- 1, A) {a(N + 1)}
[] n~= l-> skip { a (N + l) }
] { a (N + 1)}

II
dest : { ill}

• ", h a n o i [In2# 1--> e,par~tn2-1, B) {/31}
[] n= = 1 --> skip {/31}

] {/31}
E m o v e { A 1 .

t ake ~1"x] , { # 2 }
- - - h a n o i z [n2# 1--> ede,t tn=- l , B) {/32}

[] n2= 1 -~ skip {/33}
] {/3v,}

II
spare :{3'1}

r- , h a n o i / [n3~ 1->t:d,~, in3-1, C){Y2}
[] n3 = 1 --> skip { g2}
] {~=}
[/ 1 3 ~ 1 "+ £7 h a n o i / _ • -,sourc¢~ n3- - 1, C) {Yl}
[] n 3 = 1 --> skip {yl}
] {y,}

].
The script invariant is SI--- true.

Fig. 21. Hanoi script proof outline.

Script: Communication abstraction and verification 77

Step 1. We must prove

{ A = A [1 . . W] A B = BoA C = CoA nl = n2= n3= N }

[~ h a n o i (n I __ 1, A) v - , h a n o i / h a n o i
- - s o u r c e , /~dest [n3--1, C)HEspare(n2-1, B)] (1)

{ A = A [N . . W] A B = Bo A C = A l l . . N - 1]. Co A n 1 = / 1 2 = n 3 --- N}.

The proof starts with (*).
By the variable substitution, preservation, conjunction, and consequence rules

(exchanging N with N - 1) ,

{ A = A [1 . . W] A B = B o A C = C o A n l = n 2 = n 3 = N - 1 }

- - -hano i / h a n o i h a n o i r.sourcAnx, A)llE,~e~t (n2, C)] B)llE~pare(n3,
{ A = A [N . . W] A B = A [1 .. N - l] - BoA C = Coy nl = t 1 2 = r 1 3 = N - l } .

Now by the parameter substitution rule (B, C, n2, n 3 for C, B, n3, n2) and variable
substitution rule (Bo, Co for Co, Bo),

{A = A[1 .. W] A B = BoA C = Co^ nl = n2 = n3= N - 1}

- - , hano i / h a n o i , ,"- ,hanoi/ sou oo n,, A)II Ed st (n3, c)ll sparo ,n2, B)]

{ A = A[N . . W] A B = Bo A C = A [1 . . N - 1] . Co A n~ = n2 = n3 = N - 1 } .

Finally, by the parameter substitution rule (n~- 1, n2-1, n3- 1 for nl, n2, n3), the
required result is obtained.

Step 2. We must prove

{ A = A [N . . W] A B = BoA nl = n 2 = N}

[Eg~°'~e(a)llEt'~'~¢(B)] (2)

{ A = A [N + I . . W] A B = A (N) " BoA n l= n2 = N}.

Using the proof that

{ X = s " Xo A Y = Yo} Bodymove { X = Xo A Y = s . Yo},

which was given earlier, we take s, Xo, Yo to be A [N] , A (N + 1 .. W], Bo, and get

{X = A[N . . W] A Y = Bo} Bodymov¢ { X = A[N + 1 . . W] A Y = A (N) . Bo}.

Note that A(N) , A (N + 1 . . W] , Bo satisfy the precondition of the move script. By
the enrollment rule we get

{X = A [N . . W] A Y-- Bo} Bodymov~ {X = A [N + 1 . . W] A Y = A [N] " Bo}
{X = A[N . . W] ^ Y = Bo[A, B/X, Y]}

[E gm,o~¢(A)11 E tma~:~ (B)]

{ X = A [N + I . . W] A Y = A [N] . B o [A , B / X , Y]}

78 N. Francez, B. Hailpern, G. Taubenfeld .

and after substitution

{A = A[N . . W] A B = B0}

[Egmv°~¢ (A) I I E ~ (B)]

{ A = A[N + I . . W] B = A [N] - Bo}.

By the preservation axiom

{n, = n2= N } [Eg~v~e(A)llEtm~ve(B)] {n~ = n2= N} .

Using the conjunction rule, the required cooperation is obtained.
Step 3. We must prove

{A = A [N + 1 .. W] A B = A (N) " Bo A C = A[1 .. N - 1]- Co ^ nl = n2 = n3 = N}

[r h a n o i t r - h a n o i / hano i
/ ~ souree~/13 - - 1, C)ll - 1 - / ~ d e s t t n 2 ,B)llE~pa,,~(nx 1 , A)]

{ A = A [N + I . . W] A B = A [1 . . N] . B o A C = C o A n ~ = n 2 = n 3 = N } . (3)

The proof starts with (1).
By the parameter substitution rule (A, B, C for B, C, A and nl, r12, 113 for n2, 113,

nl) and the variable substitution rule (A [N + I , . . W], A [n] . Bo, Co for Bo, Co,

A [N . . W]) the required result is obtained.
By applying the parallel composition rule, the required result about the body of

the hanoi script is obtained. Finally by the recursion rule, the proof of (*) is obtained.

Consider, again, the constraint that no disc may be placed on top of a smaller
one. The only place where that constraint has to be checked is within the move
script. It was pointed out that if the initial requirements of the move script are
satisfied, this constraint is observed. Furthermore, the requirements (Step 2) are
always satisfied. Thus we informally proved that the constraint is observed within

the hanoi script, which means that it is an invariant.

Consider, again, the definition of the game. The claim we have just proved is
stronger than needed. So, if we now take (*) and use the consequence rule and
variable substitution rule to substitute, 'empty, empty, empty' for A [N + 1 . . W],

Bo, Co, where 'empty' denotes an empty stack, we get

{ A = A [1 .. N] A B = C = e m p t y ^ nl = n2= n3= N}

r r h a n o i / AXl t - , h a n o i / h a n o i
/'/ source[rll ,)1 dest tn2, B)llEspare(n3, C)]

{A = empty ^ B = A[1 .. N] ^ C = empty}

which is exactly what was defined as the objective of the game.
Note that the last formula cannot be proved directly using the recursion rule

because of Step 3. Note also that when we have assumed empty stacks for Bo and
Co, the assumption that any one of the A[1 .. W] discs is smaller than any disc of

Bo or Co is vacuous.

Script: Communication abstraction and verification 79

6. Deadlock freedom

In this section we deal only with the case where both initiation and termination
are delayed. When there exist matching enrollments to a script, one of its instances

(transparent to the enrolling processes) starts a performance, despite the possibility

that other performances of that script are taking place at this moment. From the
enrolling processes point of view the script is aways available, and there is no need
to wait till one performance terminates in order to start a new one. The multiplicity
of instances is essential for the deadlock-freedom proof system presented below.

We show how the proof system can be used for proving deadlock freedom of a
given program. We assume that there exists a deadlock freedom proof system for

the host language (for example, the proof systems presented in [1, 8] for CSP and

ADA, respectively).
As in [8] we use a notion called frontiers of computation (f.o.c), which characterizes

the set of all commands executing at a given moment. Note that these commands
may belong to different scripts. Their number is bounded by the number of the
(main) program processes. No two commands may belong to the same process. A
script that started a performance and has not terminated yet is called an active
script. A process of an active script, which has not terminated yet, is called an active
process.

Deadlock means a state in which execution cannot proceed, although the program
is still active. In the context of scripts this means that at least one process is active,
each active process waits in front of a communication command (either an enroll
command or a communicat ion primitive of the host language), and no process can
proceed. Thus, at the f.o.c., neither primitive communication nor matching enroll-

ment are present in a deadlock.

We define a program P to be deadlock free relative to a precondition p if no
execution of P, starting in an initial state satisfying p, ends in a deadock. The
approach we use in proving freedom of deadlock is similar to that of the previous
section. Each script s is proved to be deadlock free relative to some assertion denoted

by df(s).
Note that df(s) and pre(s) (from the partial correctness proof) need not be the

same. For example for each script s, {true} s {true} holds but if there exist an initial

state in shich s ends in a deadlock, then for proving deadlock freedom, df(s) has
to be stronger then 'true'. As with pre(s), the df(s) predicate may refer only to value
parameters, value-result parameters and constants. It may not refer to free variables.

The approach we introduce is slightly different from the one introduced in [1, 8,
21] where, in order to prove deadock freedom, first all possible deadlock situations
(also called blocked situation in [1, 21] and blocked f.o.c, in [8]) are showed to be

unreachable. Using such a method would have forced us to give up modularity

handling all the scripts at once instead of separating them, as we wish.
The main idea is that before a script can end in a deadlock it has to pass through

a situation which we call a potentially blocked situation (p.b.s.). A necessary condition

80 N. Francez, B. Hailpern, G. Taubenfeld

SCRIPT s::

[ROLE rl (IN OUT Xl: integer)::
[xl > 5-* r2!xl [] x~ <- 5~ r2?x~]

II
ROLE r2 (IN OUT x2: integer)::

[x2 > 5 ~ r~ ?x2 [] x2 ~< 5 ~ rl lx2]
].

Fig. 22. Demonstrating df(s).

(but not sufficient) for a situation to be p.b.s, is that each of the script's own active
processes is waiting in front of an enroll command. Note that in contradiction with
the f.o.c., which may include commands from different scripts, the p.b.s, is character-

ized only by the processes belonging to one script. We prove deadlock freedom of

a script by identifying all its p.b.s, and showing that they are unreachable.

When a script uses only primitive inter-role communication its deadlock-freedom

proof is done using a proof system for the host language. In case it uses an enroll
command, the system described below is used.

An example, shown in Fig. 22, will demonstrate a df(s) predicate associated with
a script s that uses CSP's primitive communication only. It is also used later to

illustrate the concept of p.b.s: Using the CSP proof system it is easy to prove that

s is deadlock free relative to

df(s) - (xl> 5^x2> 5)v(x l <-5^x2 <~5).

The rest of this section is devoted to the formulation of a theorem which provides
a sufficient condition for a script, using enroll commands, to be deadlock free. We
assume that a specific proof outline is given for each process Pi, i = 1 , . . , n, and SI
is the script invariant associated with that proof.

We define a matching enrollment, E'~, . . , E',,, to be a df-matching enrollment if

r t t

A [pre(El(ak,, bk,, ^ SI,
i = 1

(the conjunction of all the preassertions of the enroll commands and the script
invariant of the enrolling processes) implies

df(t)[a ,g/~, :] .

It is easy to see that a performance initiated by a df-matching enrol lment will not
end in a deadlock.

We define (B1), . . , (B.s) to be df-matching bracketed sections, i f they contain a
$ df-matching enrollment (E l , . . , E.~) to some script s.

We now introduce the concept of potential blocking. Consider a situation of an
active script where each of its own active processes waits in front of an enrollment

Script: Communication abstraction and verification 81

command. Although the processes cannot continue at the moment, the state is not
necessarily a deadlock because there may be matching enrollments among the enroll
commands.

Such a situation is characterized by an n-tuple of enrollment capabilities (e.c.)
associated with the corresponding processes and defined as follows:

Assume that each process waits in front of enroll command or has terminated; then
(1) If it has terminated, its e.c. is empty;
(2) If it waits in front of an enroll command, then its e.c. consists of the bracketed

section surrounding this enroll command.
The bracketed sections forming an t-tuple may be partitioned in different ways

to form matching bracketed sections. Such a composition of bracketed sections is
called a combination. A number of different combinations may be obtained from an
n-tuple, each one indicating a possible path of execution. Note that a combination
which does not include any df-matching bracketed sections indicates an execution
path which may end in a deadlock, where the script is still in the same situation.

A situation, as described above, is called a p.b.s, if the following two conditions
hold

(1) Among the combinations obtained from the n-tuple of an e.c. there exists a
combination that does not include any df-matching bracketed sections;

(2) Not all processes have empty e.c.'s.
Formally, condition (1) of p.b.s, is

3C ~ combination(n_tuple) V (B1) , . . , (B , t)e C
m a t c h

n t -1 A,---I (pre((B,)))^SI-~df(t)

where combination (n_t@le) is the set of all combinations obtained from the n-tuple
of e.c.'g that characterize the above situation, C describes one of those combinations
and (B1), . . , (Bnt) are some matching bracketed sections belonging to C.

To illustrate the concept of potential blocking, consider the following examples
with their proof outlines. All the enroll commands refer to the script s intoduced
in the previous example. The invariant is identically true in all the examples. In all
the examples we consider the situation in which each process waits to enroll, so
condition (2) holds trivially.

(1) Let P::[{al=6} El {true}l[{a2=6} EE{true}]. There exists one combination
only, including a matching enrollment which is a df-matching enrollment. Hence,
condition (1) does not apply, and it is not a p.b.s.

(2) Let P : : [{a l=6} E1 {true}li{a2=6} El {true}]. There exists one combination
only, which does not include any matching enrollments. Hence, condition (1) holds,
and the situation is a p.b.s.

(3) Let e::[{al=6} El{true}[l{a2=4 } E2{true}]. There exists one combination
only, including a matching enrollment, which is not a df-matching enrollment.
Hence, condition (1) holds, and again we have a p.b.s.

82 N. Francez, B. Hailpern, G. Taubenfeld

(4) Let P::[ia~=4} E~ {true}l[{a2=6} E1 {true}l[{a3=6} E2 {true}]. Two combina-
tions can be obtained. In the first combination, the third and second processes form

a df-matching enrollment, while in the second combination the third and first
processes can also form a matching enrollment, which is not a df-matching enroll-
ment. Hence condition (1) holds, and it is a p.b.s.

(5) Let

P::[{al=4} El {true}ll{a2=4} El{true}ll{a3=6} E2 {true}ll{a4=6} E2 {true}].

Two combinations can be obtained, both include exactly two matching enrollments,

which are not df-matching enrollments. Hence condition (1) holds, and it is a p.b.s.
(6) Let

P::[{a~=6} El {true}[la2=4} E1 {true}ll{a3=6} E2 {true}[[{a4=6} E2 {true}].

Two combinations can be obtained, both include exactly two matching enrollments
where one of them is a df-matching enrollment. Hence condition (1) does not hold,
and it is not a p.b.s.

(7) Let

P: : [{al = 4} El {true}ll{a2=6} E1 {true}[[{a3=4} E2 {true}ll{a4=6} E2 {true}].

Two combinat ions can be obtained. In the first combination, the first and third

processes and the second and fourth processes form two df-matching enrollments,

but the second combination includes two matching enrollments which are both not
df-matching enrollments. Hence condition (1) holds, and it is a p.b.s.

Note that i f the n-tuple may form only one combination, which does not include
any matching bracketed sections, then it is a state of deadlock (as in example (2)).

With each p.b.s, we associate an n-tuple of assertions, consisting of the assertions

associated with the corresponding processes. The assertion Pi is associated with a

blocked process Pi is either post (Pi) if it has an empty e.c. or it is the preassertion
of the bracketed section in front of which it waits. We call an n-tuple (P l , . . , P,)
of assertions associated with a p.b.s, a potentially-blocked n-tuple.

It is now clear that a script has to pass through a p.b.s, before it can end in
deadlock. Thus, if it can be proved that all p.b.s.'s are not reachable then deadlock
cannot occur and the script is proved to be deadlock free. This argument is formally

expressed in a theorem (similar to Theorem 1 in [1, Section 4]).

Theorem. Given a proof of {df(s)} s {q} with a script invariant SI, s is a deadlock
free (relative to df(s)) if for every potentially blocked n-tuple (pl,.. ,Pn),

n

-~/~ i=1 Pi ^ SI) holds.

This theorem provides a method for proving deadlock freedom. The expressed

condition is not a necessary one since it depends on a given proof.
In order to prove that s is deadlock free, we have to identify all potentially

blocked n-tuples, and the SI should be such that a contradiction can be derived

Script: Communication abstraction and verification 83

from the conjunction of the SI and the given potentially blocked n-tuple. The
arguments supporting this theorem are similar to those appearing in previous
discussions of proof of absence of deadlocks [1, p. 378].

In the recursive case, we must show how to prove that a recursive script s is
deadlock free relative to some assertion df(s). The problem that arises is how to
decide if a recursive matching enrollment is a df-matching enrollment. Such a
decision is based on knowing the assertion relative to which the script is deadlock
free, where 'the script' is the one the matching enrollments enroll to. In the case of
recursive matching enrollments, df(s) is the assertion that must be proved. The
solution is the standard one when treating recursion: permit the use of the desired
conclusion about an enrollment as an assumption in the proof of the body.

Thus to decide if a recursive matching enrollment to script s is a df-matching
enrollment, we assume that s is deadlock free relative to df(s). After all the recursive
matching enrollments have been decided, we 'forget' the assumption and continue
as usual. If from that point, using the known proof system, it is provable that s is
deadlock free relative to df(s), then indeed it is.

7. Future work

More work needs to be done with scripts to explore their potential for simplifying
the programming of concurrent systems. Other issues such as distributed control of
performances and practical implementation within various host languages have to
be addressed.

There are many natural extensions to scripts. One such is a dynamic arrays of
roles, where the number of roles is not fixed until run-time. We term these dynamic
arrays open-ended scripts. They would allow different instances of a script to take
place with somewhat different role structures. The question of the completeness of
the proof system and the extension of the system for proving termination should
be studied. Another issue involves extending the enrollment mechanism to serve as
a guard. Enrolling to computed scripts, extending [6], is worth considering.

Appendix

Notation

S: script named S.
IS[, ns: number of roles in the script S.
ES(ti): enroll in S as Rj(ti).
RS(~): role Rj in script S with formal data parameters ~j, and body Bj.

Bs: body of s(II;L, Bj).
pre(RS): pre-condition of R s.
post(RS): post-condition of R s.

84 N. Francez, B. Hailpern, G. Taubenfeld

SI: script invariant.
pre(S): pre-condition of Bs.

N $

post(S): post-condition of Bs (Aj=~ post(Rs) A SI--> post(S)).
df(S): predicate relative to which S is proved to be deadlock free.

Axioms and proof rules

I1. Assignment Axiom.

{pi t /x]} x: = t {p}.

12. Skip Axiom.

{p} skip {p}.

13. Alternative Command Rule.

{p ^ b,} Si {q}, i= 1 , . . . , m

I"] {p} [] b,->S, {q}
i = l

14. Repetitive Command Rule.

{p A b,} S, {p}, i= 1 , . . . , m

{p}*[~,~, b,~ S,] {p ^-a(b~ v. . . v b~)}

15. Composition Rule.

{p} $1 {q}, {q} $2 {r}
{p} Sl; $2 {r}

16. Consequence Rule.

p-> pl, {p~} S~ {q,}, q~-> q
{p} S {q}

17. Conjunction Rule.

{p} s {q}, {p} s {r}
{p} S {q A r}

18. Disjunction Rule.

{pl} s {q}, {p2} s {q}
{p, v p2} s {q}

Script: Communication abstraction and verification 85

19. Preservation Axiom.

{p} s {p}

provided no free variable of p is subject to change in S. Note that the skip axiom

is subsumed by the preservation axiom.

I10. Substitution Rule.

{p} s {q}
{p[t/z]} S {q}

provided z does not appear from in S and q. The substitution rule is needed to
eliminate auxiliary variables from the pre-assertion.

I11. Auxiliary Variables rule. Let AV be a set of variables such that x e AV implies
x appears in S' only in assignments y := t, where y e A V. Then, if q does not contain
free any variables from A V, and S is obtained from S' by deleting all assignments
to variables in A V,

{p} s' {q}
{p}S{q}

112. Communication Axiom.

{true} Pi?xll Pj !y {x = y}

provided Pi ?x and Pj !y are taken from Pj and P~, respectively.

113. Arrow Rule.

{p} (~, s)llsl {q}
{p} (~-~ S)llS, {q}

where a stands for any input/output command.

I14. Parallel Composition Rule.

proofs of{p~} Pi {q~}, i = 1, . . . , n, cooperate

{p~ ^ - - . ^ p,, ^ S I } [Pi l l . . . l iP .] {q , ^ " - ^ q. ^ s i }

New rules

Enrollment Rule. For a script s and matching enrollments E l , . . . , E~s,

{pre(s)} Bs {post (s)}

{pre(s)[~; /~/~; y]} j~l ES(ak" Gk~, Ckj) {post(s)[b; ~/)7; ~]}

86 N. Francez, B. Hailpern, (7. Taubenfeld

Parameter Substitution Rule.

y, e)] {q}

{p[d;e/i;37]}[Ti =-] Ej(dke eks, fk ,) {q[e; f /Y
I . . j = 1

where vat(d; e; f) n free(p, q) ~ {~, fi, e}.

;e]}

Variable Substitution Rule.

I . . j= 1

where oar({; P) n oar(~ ; b; ~) =0.

Enrollment Axiom.

{p} E {q}.

Rearrangement Rule.

I . j = 1 .1

Recursion Rule.

{pre(s)} [ii
L j = I

L j = I

E;(~j, ~j, ~)] {post(s)} ~- {pre(s)} Bs {post(s)}

{pre(s)} [i[E](xs, Yj, ~)] {post(s)}
L j---- 1

Acknowledgment

We would like to thank the attendees of the 1983 IFIP Working Group 2.2 Meeting
on Formal Description of Programming Concepts for their comments and sugges-
tions on a early draft of this report. We also thank Shmuel Katz and Amir Pnueli
for various discussions concerning the proof rules. Thanks are also due to K. R.
Apt and an anonymous referee for their comments on an earlier draft of this paper.

Part of the first author's work was supported by the fund for the promotion of
research, the Technion.

Script: Communication abstraction and verification 87

References

[1] K.R. Apt, N. Francez and W.P. De Roever, A proof system for communicating sequential process,
ACM Trans. Programming Languages and Systems 2(3) (1980) 359-385.

2] K.R. Apt, Ten years of Hoare logic: A survey (part 1), ACM Trans. Programming Languages
and Systems 3(4) (1981) 431-483.

[3] K.R. Apt, Formal justification of a proof system for communicating sequential processes, J. ACM
30(1) (1983) 197-216.

[4] P. Brinch Hansen, The programming language Concurrent Pascal, IEEE Trans. Software Engrg.
1(2) (1975) 199-207.

[5] T. Elrad and N. Francez, Decomposition of distributed programs into communication-closed layers,
Sci. Comput. Programming 2(3) (1982) 155-173.

[6] N. Francez, Extended naming conventions for communicating processes, Proc. 9th Annual ACM
Symposium on Principles of Programming Languages, Albuquerque (1982) 40-45.

[7] N. Francez and S. Yemini, A fully abstract and composable inter-task communication construct,
ACM Trans. Programming Languages and Systems (1985), to appear.

[8] R. Gerth and W.P. de Roever, A proof system for concurrent ADA programs, Sci. Comput.
Programming 4(2) (1984) 159-204.

[9] D. Gries and G. Levin, Assignment and procedure call proof rules, ACM Trans. Programming
Languages and Systems 2(4) (1980) 564-579.

[10] B. Hailpern and S. Owicki, Modular verification of concurrent programs, Proc. 9th ACM Syposium
on Principles of Programming Languages, Albuquerque (1982) 322-336.

[11] P. Hilfinger, G. Feldman, R. Fitzgerald, I. Kimura, R.L. London, K.V.S. Prasad, V.R. Prasad,
J. Rosenberg, M. Shaw; and W.A. Wulf (Ed.), An informal definition of Alphard (preliminary),
Technical Report CMU-CS-78-105, Carnegie-Mellon University, February 1978.

[12] P.N. Hilfinger, Implementation strategies for Ada tasking idoms, Proc. ACM-AdaTEC Conference
on Ada, Arlington (1982).

[13] C.A.R. Hoare, Procedures and parameters: An axiomatic approach, in: E. Engeler, Ed. Symposium
on Semantics of Algorithmic Languages, Lecture Notes in Mathematics 188 (Springer, Berlin, 1971)
102-116.

[14] C.A.R. Hoare, Communicating sequential processes, Comm. ACM 21(8) (1978) 666-677.
[15] M. Joseph, Schemes for communication, Technical Report CMU-CS-81-122, Carnegie-Mellon

University, June 1981.
[16] H.F. Korth, Edge locks and deadlock avoidance in distributed systems, Proc. ACM Symposium on

Principles of Distributed Computing, Ottawa (1982) 173-182.
[17] D.A. Lamb and P.N. Hilfinger, Simulation of procedure variables using Aria tasks, IEEE Trans.

Software Engrg. 9(1) (1983) 13-15.
[18] L. Lamport, Specifying concurrent program modules, ACM Trans. Programming Languages and

Systems 5(2) (1983) 190-222.
[19] B.H. Liskov, R.A. Atkinson, T. Bloom, J.E. Schaffert, R.W. Scheifler and A. Snyder, CLUReference

Manual, Lecture Notes in Computer Science 114 (Springer, Berlin, 1981).
[20] J.G. Mitchell, W. Maybury and R. Sweet, Mesa language manual (version 5.0), CSL-79-3, Xerox

Palo Alto Research Center, April 1979.
[21] S.S. Owicki and D. Gries, An axiomatic proof technique for parallel programs, Acta Informat. 6

(1976) 319-340.
[22] R. Rashid and G. Robertson, Accent: A communication oriented network operating system kernel,

Proc. 8th ACM Symposium on Operating Systems Principles, Asilomar (1981) 64-75.
[23] L.G. Reid, Control and communication in programming systems, Technical Report CMU-CS-80-142,

Carnegie-Mellon University, ~ptember 1980.
[24] J. Skansholm, Multicast and synchronization in distributed systems, Research Report, Department

of Computer Science, University of Goteborg, 1981.
[25] United States Del~rtrnent of Defense, Reference manual for the Ada programming language,

ACM-AdaTEC, July 1982.

88 N. Francez, B. Hailpem, G. Taubenfeld

[26] D.W. Wall, Mechanisms for broadcast and selective broadcast, Ph.D. Thesis, Stanford University,
1980. Available as technical Report 190, Computer Systems Laboratory, Stanford University, June
1980.

[27] N. Wirth, Modula: A language for modular multiprogramming, Software Practice and Experience
7(l) (1977) 3-35.

