
What Processes Know: Definitions and Proof Methods

(Preliminary Version)

by

Shmuel Katz and Gadi Taubenfeld

Computer Science Department

Technion, Haifa 32000

Israel

ABSTRACT

The importance of the notion of knowledge in
reasoning about distributed systems has been recently
pointed out by several works. It has been argued that a
distributed computation can be understood and
analyzed by considering how it affects the state of
knowledge of the system. We show that there are a
variety of definitions which can reasonably be applied
to what a process can know about the global state. We
also move beyond the semantic definitions, and present
the first proof methods for proving knowledge asser-
tions. Both shared memory and message passing
models are considered.

1. INTRODUCTION

In this paper we will show how to prove

knowledge assertions about both distributed and shared

memory parallel programs. Before describing the

proof methods we consider the fundamental question of

"what is the meaning of knowledge in concurrent pro-

grams?" Put another way, what does it mean for (an

observer of) a process to know something? Other

tempting questions immediately arise: What does a pro-

cess always know? What does a process know when-

ever it terminates? What does it know at a certain

moment during a given execution?

A number of successful attempts have been made

in order to formally capture various notions of

knowledge [HM1,HM2,FHV,Le]. Some other recent

works are directly connected to a concurrent program-

ruing environment. In [CM] a characterization is

described of the minimum information flow necessary

for a process to gain or lose knowledge about the sys-

tem. The results are appfied for proving lower bounds

on the number of messages required to solve certain

problems. In It-IF] a formal model that relates the con-

cepts of knowledge, action and communication in dis-

tributed systems is presented. An impossibility proof

for the well known coordinated-attack problem is

presented. In [PR] a connection between distributed

systems and the logic of knowledge is established. A

set of axioms which this knowledge must obey is

presented.

We first motivate our approach to knowledge.

Consider a concurrent program which is frozen at some

point during its execution. Let b stand for a predicate

defined on the global state of that program. Now, sup-

pose you are interested in knowing whether predicate b

is true when the program is suspended. For this task,

you are allowed to use certain global information

which is assumed to be known a priori. Such infon'na-

tion might be, for example, an invariant of the program,

certain properties of the processes, or properties of the

model. In addition it is possible that you have access to

2z~9

the following local information about the behavior of

process i.

case one: no additional information.

case two: the control position of process i.

case three: the complete visible state of process i.

case four: the complete history of process i.

For a distributed model, a process' visible state is

identical to its local state. In the shared variable model,

a process' visible state refers to all variables it can test.

The history of a process means the sequence of all

events in which it has participated.

We say that process i knows b when the pro-

gram is suspended, if using the above information it is

possible to prove that b holds. Thus a process'

knowledge is always defined with respect to some

given information. Note that the global information is

static, in the sense that it does not change during an

execution, while the local information is dynamic. We

call the available global and local information, the

knowledge assumption.

In this paper we assume the (entire) text of the

program and its input specification as the a priori global

information of a process. The opposite extreme would

be to assume no global information. This case is of lit-

tle interest since extremely limited knowledge is possi-

ble when even the properties of the model are not

known a prior. A less extreme case, where nothing is

assumed about some of the processes, is of greater

interest. A possible application for such a case is the

Byzantine Generals Problem, where the protocol which

a faulty Byzantine process is following is not available.

However, it follows from [LSP] that in order for the

processes to know the agreed value, it must be part of

the global information that over two thirds of the

processes are following a protocol which is known. An

intermediate level is also possible, in which only cer-

tain properties of the program are assumed to be known

a priori. This level would be appropriate during pro-

gram development. In [I-IF] it is not assumed that the

text is given.

Given our assumption of maximal global infor-

mation, the above four cases of local information are

considered to define different types of knowledge.

Cases one and four represent opposite extremes from

process i's point of view. In case one, called invariant

knowledge, no local information at all is available, and

thus process i may know only 'general things' like 'the

program terminates' and all safety properties. In case

four, called history knowledge, all possible local infor-

marion is available, which of course, leads to the

strongest type of knowledge. Numerous intermediate

levels, where only a partial history is given, can be

defined between those extremes. Examples are cases

two and three, called location and state knowledge,

respectively. Previous papers [CM,HF,PR] refer to

(variants of) the concept of history knowledge. They all

mention state knowledge as an additional option.

Location knowledge refers to the knowledge of a pro-

cess at a certain point for all possible computations. We

establish in the sequel a connection between fundamen-

tal verification concepts such as proof outline, interfer-

ence freedom and cooperation [AFR,OG] and the con-

cepts of knowledge. A method for proving knowledge

assertions of all types is presented.

2. THE MODEL

A concurrent program is a collection of a finite

set of processes operating asynchronously, which may

communicate with each other in one of the following

ways, (a)asynchronously using send and receive,

(b)synchronously, as in CSP, also using send and

receive commands, or (c) by setting shared variables.

An event is the basic unit in the behavior of a

process. It describes a change in the environment dur-

ing the process' execution. An event occurs on a pro-

cess, by executing an atomic command of that process.

An execution of an atomic command includes execut-

ing a skip or assignment command, a loop exit, evalua-

tion of a boolean expression, or execution of a corn-

250

munication. 1 The same atomic commands executed in

different environments correspond to different events.

A behavior of a process can be described as a finite

sequence of events on that process. This is known as a

trace [BHR,M]. A process is characterized by a

(prefix-closed) set of all its possible traces. By general-

izing the above, a concurrent program P is defined.

Assuming an interleaving semantics, we are only

interested in the relative order in which events occur.

No clock is assumed. A trace t of P is a finite

sequence of events on processes of P satisfying the

conditions:

(1) Any subsequence of t which consists of all

events on a process which belongs to P , is a

trace of that process.

(2) Asynchronous communication: for every event

of 'receiving message m ' there is a correspond-

ing 'send message m' event which occurs earlier.

(2') Synchronous communication : for every event of

'send message m' there is a corresponding

'receive message m' event which occurs immedi-

ately after, i.e, no other event occurs between

those events (those two events can be considered

to be a single one).

A concurrent program is characterized as the set of all

possible traces of the program.

A trace can also be seen as a transition from the

initial state of the program into a unique state of the

program, which in addition records all the "history" of

how it reached that state. Each such state contains two

kinds of information: the exact values of the program

variables and the control position of each process (the

value of the program counter).

To be able to express the control position, we

assume that all commands are uniquely labeled. By

saying that (the control of) a process is after c, we

mean that the command labeled c was the last one to

be executed in that process. In addition the labels

t The language may also contain selection statments with local

initl initn are used to label dummy commands

placed at the beginning of each process. I f (control of)

process i is after initi, execution of process i has not

yet started. 2

With each trace t we associate a (trace) predicate

st which expresses the values of all the variables

(including the control) after a computation described

by t took place. This predicate depends on a given ini-

tial state. For the rest of the paper let li stand for a

label of a command from process Pi (i=l . .n) . Let C

be a function from traces into n-tuples of labels.

Definition : C (t) = (ll In) iff after a compu-

tation described by t the control of processes

Pl Pn is after 11 In respectively.

A location set T[t t.) is defined to be a set of

traces such that: T(t i.) ~ { t I C (t)=(l 1 In) }.

Thus location set T(t t,) describes the set of traces

w h i c h leave the control of the program after

(lt ln). It easy to see that the number of such

location sets is exactly the product of the number of

labels in each process. They correspond to all possible

positions of the control of the program during an exe-

cution.

For the rest of the paper, let lc denote an n-

taple of labels (I t I n). With each location set Ttc

we associate a location predicate S~. Sic is defined to

be the disjunction of all st such that t belongs to Ttc. If

T~ is an empty set (i.e for no execution is the control

after lc), then St~ is false. Assume that the control of a

program is after lc. The state of a specific execution at

this point refers to the exact values of all program (and

environment) variables. The location predicate Szc at

this point refers to all possible values of the variables,

without committing to a certain execution. Sic is actu-

ally the strongest predicate which is true when the con-

trol is after lc.

nondeterminism, but this will not be atomic.
2 In ease that e and d denote two different labels of distinct

commands belonging to the same process, then the assertion
after (c) ^ after (d) equals false.

251

Example 1: Consider the (shared variable) pro-

gramP: : [P1 l] P2] where:

P 1:: end1: x :=x+l
P2:: end2: x :=2*x

Assume that the initial state is x=2.

The possible events are: (1) end1 executes first, (2)

end 2 executes first, (3) endl executes second, (4) end 2

executes second.

The predicates associated with the traces

<>,<1>,<2>,.~2,3>,<1,4> are:

s<,~. x=2 ^ after (initl,init2),

s < I>=- x =3 ^ after (end 1,init 9 ,

s < 2>--- x =4 ^ after (init x,end 2),

s < 2,3 >--- x =5 ^ after (end x,end 2),

s< 1,4,- = x =6 ^ after (end 1,end2), respectively.

The possible location sets are:

T (initz~nit,)E{ < > } , T (,nd,:,at~)-={ < l > } ,

T ci~it~,,~)---{ < 2 > } , T cend,,~)---{ < 2,3 > , < l ,4 > }.

The possible location predicates are:

S (init~:,at~) ~ x =2 ^ after (init 1 ,init 2),

S(,~,i~/t2) --- x=3 ^ after (end x,init2),

Sci~it,,,~) ~ x=4 ^ after (iniq,end2),

S (~ , , , ~) -= ((x =5)v(x =6)) ^ after (end 1,endg.

We will also assume that each process i has a

local history named h i . The history will presumably be

accumulated in a variable which records the sequence

of all events in which process i has participated. As

mentioned in [HF] "This is certainly not a reasonable

assumption", because it assumes that a process has

unbounded storage space to record its history. A trace

t matches h i (match (t ,h i)) iff ti, the subsequence of t

which consists of all events on process i , equals h i .

Similarly h i matches location set T~: iff it matches

with some trace belonging to T~:.

A history location predicate - Shtc - associated

with location set Tt~ and history h, is defined as the dis-

junction of all (trace) predicates st such that t belongs

to Tt~ and match (t ,h) . If no such traces exist then

S h t ~ f a l s e . The predicate She is, by definition, the

strongest predicate known to be true after lc when

only h is known.

Example : If the local history h of P 1 was empty

(no events have yet occurred), then that history

matched the first and third traces given above. The

possible history location predicates in that case are:

Sh (i,at,,i,at2) --- x=2 ^ after (init l,init 2),

Sh Ce~dl~,at2) -= fa l se ,

Sh (initz,,~2) --- x =4 ^ after (init 1,end2),

Sh (end~,end~) •- false.

3. DEFINITION OF K N O W LED G E

The (global) trace which corresponds to the exe-

cution up to any moment, belongs to exactly one loca-

tion set (called the actual location set). Informally, we

will say that process i knows b i f f b is true in all loca-

tion sets that process i considers possible candidates to

be the actual one.

In the first case where no additional local infor-

marion is given, process i must consider all location

sets which are possible under the global a priori infor-

marion. When, in case two, process i knows the exact

position of its control, the possible location sets reduce

to those for which I i corresponds to i ' s actual position.

With the additional assertion giving the exact visible

state of process i , in case three, the above possible

location sets reduce to those where the location predi-

cate of the location sets does not contradict the asser-

tion about the actual visible state. Finally, with the his-

tory of process i, only those location sets which match

that local history are possible.

For now, we restrict the language so that no

knowledge operator appears within the scope of

another. Let c be a label of a command in process i , s

be an assertion describing a visible state of process i

(including the control of process i), and h be a history

of process i .

252

P ::[P iIIP2] where:

P1 ::

a: [a l : true .-->x :=l [I a2: true--~x:=2];

b : P 2 l x ;

c: P2?x

Figure 1. Simple CSP Program.

P2 ::

d: [true -->y :=1 fl true -->y :=2 fl true-..~y :=3];

e : P2?z ;

f : P 2!(Y +z)

The notations KIi (b), KLf(b), KSf(b), KHih(b) are

used for: process i knows b, process i knows b

after c, process i knows b with s , process i knows b

with h, respectively. Recall that lc is an n-tuple of

labels.

Definition:

(1) Invariant knowledge:

KI i (b) iff V lc .Stc --~ b .

(2) Location knowledge:

KLf(b) iff V lc . (St~ A after (c)) ~ b .

(3) State knowledge:

KS:(b) iff 'Vlc . (Stc ^ s) --~ b.

(4) History knowledge:

KHih(b) iff V lc . Shtc ---~ b. 3

Let Ki denote all knowledge types. The following pro-

perties are over all labels, visible states and histories.

Properties:

(I) (Ki(b) A (b ---~ b')) --.~ Ki(b').

(2) Ki(b)AKi(b") iff Ki(b Aft).

(3) (K i (b) v Ki(b ')) -->Ki(b v b ') .

(4) (K~(b ~ b ') AK~(b))~K~(b')).

(5) KLfi(after (c)).

(6) KS:(s) .

3 An alternative equivalent
KHih(b) iff V t . match (t , h) . s, ~ b.

definition is,

(7) (KL:(b) A (s ~ after (c))) ~ KS:(b ^ s).

We give a proof of property (7):

(1) KLf(b) . [Assumption]

(2) s ~ after (c). [Assumption]

(3) V lc . (Stc ^ after (c)) ---~ b.
[(1), Def. of location knowledge]

(4) Vlc. (Sic AS) ---~ b. [(2), (3)]

(5) KS:(b). [(4), Def. of state knowledge]

(6) KS:(b A S). [(5), properties 2 & 6]

[]

Example 2: Consider the (CSP) program, shown

in figure 1. Let s describe a local state of P1,

s_--{x=3 A after(c)}, Let h be a history of P1. Assume

that it implies that the current local state is the one

described by s, and that the first event on P1 occurred

by executing command a 1. The following knowledge

assertions are then true:

(1) K I l (y = l v 2 v 3 v U n d e f i n e d) , (2) KL~(y=lv2v3),

(3) KS~ (y=lv2). (4)Kn~(y=2).

In the next section, we formally prove all these

knowledge assertions.

4. THE PROOF METHOD

In this section a method for proving knowledge

assertions about a program is presented. We initially

establish a connection between location knowledge

and various verification methods. The method for

253

proving location knowledge assertions is then

developed based on existing verification methods. For

proving history knowledge assertions, an original

method is developed, based on the new notion of

history outline. For now, we restrict a process to

know only predicates which do not contain temporal

operators. In the future we intend to relax that restric-

tion.

From the variety of verification methods avail-

able [B], we choose two proof systems [AFR,OG]

which we consider representative. Both systems are

designed to prove partial correctness, one for CSP and

the other for a shared variable model. A stronger sys-

tem, such as [eLI, which can be used for proving live-

ness properties, should be considered when temporal

operators are incorporated.

In each of the two systems, a partial correctness

proof of a program is done in two stages: (1) separate

proofs are constructed in isolation for each component

process, (2) the separate sequential proofs are com-

bined by showing that they are interference-free [OG]

or cooperate [AFR].

The separate proofs, in the first stage, are

presented by a proof outline in which each statement

of a process is preceded and followed by a correspond-

ing assertion. Next, in the second stage it is proved that

the possible interactions do not invalidate the sequen-

tial proofs. In the shared variable model, it is necessary

to show that the assertions used in the proof outline of

each process are left invariantly true under parallel exe-

cution of the other processes. This is done by proving

interference-freedom. In the distributed model, when

establishing the separate proofs, a process 'guesses' the

value its parameters will receive upon communication.

When the proofs are combined, these guesses have to

be checked for consistency using the cooperation test.

In order to combine the separate sequential proof out-

lines, a parallel composition (meta) rule is used.

Both proof systems use additional auxiliary vari-

ables for the correctness proof. In [AFR] the notion of

brackets is introduced, in order to delimit the sections

within which an invariant need not necessarily hold.

Here we assume that an interleaving can occur between

every two atomic statements, so that all possible states

after an atomic action must be considered in deciding

what is known. For this reason, a bracketed section is

restricted to contain exactly one basic command (i.e a

command which does not refer to auxiliary variables).

This does not affect the completeness as is shown in

[Ap]. An await statement (for the shared-memory

model) or a bracketed section is considered as an

atomic action. For later reference, we denote a pro-

gram P with additional auxiliary variables by P'.

In the proof outline for process i , post (li) stands

for the post assertion of a command labeled by I i . A

global invariant which may be used for the proof is

denoted by I , while post (l 1 In) is an abbreviation
Pl

for i__AlPOSt.__ (li) A I A after (l I In).

4.1 LOCATION KNOWLEDGE

We now present a proof method for proving

location knowledge assertions. First, a theorem which

links the definition of location knowledge and that of

interference free (cooperating) proof outlines is formu-

lated. Then we give the proof method itself.

Lemma 1: Assume a program with a locally

correct sequential proof outline for each process. If the

proof outlines of the individual processes are

interference-free (cooperate) then for every label li of

process i (i=l. .n), KLi~(post (ll)), i.e, process i knows

(location knowledge) post (li) after li .4

Proof: Assume to the contrary that for some li,

KLi~(post(li)) does not hold. This means that there

exists a trace t such that C (t) = (ll In) and its

associated predicate st does not imply post (ll), which

immediately contradicts the soundness [Ap,Ow] of the

proof systems. U

4 Here and afterwards only executions which start in an initial
state satisfying p o s t (ini t I initn) are considered.

254

Remark: Let us define the assertions of (anno-

tated) process i as a correct sequential location outline

iff for every label Ii of process i, KLi~(post(li)). We

claim that in order to prove partial correctness of a pro-

gram, it is sufficient to establish such a location outline

for each process, and then apply to them a (modified)

parallel composition (meta) rule without further use of

interference-freedom, cooperation or any other test.

From the above lemma and claim the interference-

freedom test and the cooperation test are viewed as

providing sufficient (but not necessary!) conditions for

a correct sequential proof outline to be also a locadon

outline.

For the rest of the section, we refer to a program with

correct interference-free (cooperating) proof outlines.

In fact, it is sufficient to have correct location outlines.

Corollary 1.1: For any location set Tzc its asso-

ciated predicate S~ implies post (lc).

Proof: The location predicate S~ is the strong-

est predicate true after lc, while it follows from

Lemma 1 that post (lc) is a true predicate after lc. H

Theorem 1: I f c is a label of process i, and ~ (c)

is the disjunction of all assertions post(l 1 In) such

that li-~c, then KLf(~(c)).

Proof :

(1) V l c . (St~ a after (c)) ~ (post (lc) ^ post (c)).
[From corollary 1.1]

(2) V l c .(post (lc) ^ after (c))--->~(c). [Def, of ~(c)]

(3) Vlc .(Stc ^pos t (c)) --> O(c). [(1), (2)]

(4) KL~(dP(c)). [(3), Def. of location knowledge]

fl

The preceding theorems refer to a given program

which, as mentioned, may contain auxiliary variables.

A rule similar to the usual rule lOG) for removing such

variables is used, to refer back to the original program

(i.e without auxiliary variables).

Auxiliary Variables rule:

Let AV be a set of variables such that x e AV

implies x appears in P" only in assignments y :=t,

where y E AV. Then if • does not contain free

any variables from AV, P is obtained from P ' by

deledng all assignments to variables in AV, and

processes i and i are corresponding processes

belonging to P and P ' respectively,

Kt,f,('e)
KL:(W)

Following is a method for proving location knowledge

assertions. Suppose it is to be proved that KLf(b) is

true for a given program P . The proof goes as follows:

(1) Using one of the mentioned proof systems

[AFR,OG] a "strong enough" correctness proof is

established for P'.

(2) Assertion O(c), as defined above, is constructed.

[by theorem 1 KLf, (O(c))].

(3) It is proved that O(c) implies b.

[by property 1 KLf, (b)].

(4) By applying the auxiliary variables rule,

KL[(b) is proved.

Theorem 2 (completeness): If KL:(b) is true

then it can be proved to be true.

Proof: Recall that b is asserted to be non-

temporal, and not to include knowledge assertions. It

must be shown that if KL:(b) is true, then (in step(l)) a

"strong enough" correctness proof can indeed be esta-

blished. From the fact that the proof systems are com-

plete [Ap,Ow], it follows that it is possible (although

not practical) to establish a correctness proof in which

for any n-tuple (ll In), post (l 1 l,,) is the

strongest post assertion possible. Such a correctness

proof is always "strong enough" [].

Example 3: Recall example 2. We prove

KL~ (y=lv2v3)

255

P1 ::

[i=o}
a :[true-->x :=1 fl true ---~x :=2];
{(x=Iv2) ^ i=O}

b :<P2!x ;i :=I>

{i=I}
c :<P i ?x ;i :=2>

{(x =2v3v4v5) ^ i=2}

I ~ i=j ^ (i=2-~x=y+z)

Figure 2. Proof Outline.

P2 ::

[j=O}
d:[true --~y :=1 Q true---~y :=2 0 true--4y :=3];

{(y=lv2v3) ^ j=O}

e : <P 2? z ;j :=l>

{(y=lv2v3) ^ (z =lv2) ^ j=l}

f :<P2!(y+z);j:=2>

{(y=lv2v3) ^ (z =lv2) ^ j=2}

step 1: To verify the program, two auxiliary variables

i , j are used. The proof outline for the brack-

eted program P ' is shown in figure 2.

step 2: ~(c) _= post (c ,init 2) v post (c ,d) v post (c ,e) v
post (c , f)

-: false v false v false v
((x=2v3v4v5) ^ i=2 ^ (y=lv2v3)
^ (z =lv2) ^ j=2 ^ I ^ after (c , f)).

step 3: ~(c) implies y=lv2v3, by property 1

KL'~" (y = lv2v3).

step 4: By applying the auxiliary variables rule,

KL~ (y =lv2v3) [].

It is easy to see how the method is applied for

proving state knowledge assertions as well. Let W be

an assertion describing some location knowledge (of

process i) after c (proved using the above method),

and for some computation let sl be an assertion

describing the visible state of process i after c. By

property (7), "IJasi is state knowledge of process i

after c for that computation. This method is not strong

enough and in the next section we show a better way

for proving state knowledge assertions. ,,~

Example: Recall example 2. We prove

KS~ (y=lv2). Let • _-- (z=lv2) ^ x=y+z.

• ~ (c) implies ~ . By property 1 KL~'(~).

• By applying the auxiliary variable rule ,KL~ (W).

• By property 4, KS~ ('q ^ s). (s_--{x=3 ̂ after(c)})

• W ^ s implies y=lv2; By property 1 KS~ (y =lv2).

[].

4.2 HISTORY KNOWLEDGE

We now present a proof method for proving his-

tory knowledge assertions as well. First the notion of

history outline is defined. It generalize the notion of

cooperating proof outline (i.e a collection of sequen-

tial proof outlines which pass the cooperation test), and

that of a location outline. Once this is done, a theorem

which links the definition of history knowledge and that

of a history outline is formulated. We conclude by giv-

ing the proof method itself. We restrict ourselves to the

distributed model. It should be possible to apply the

ideas presented in the sequel also to the shared vari-

ables model.

A history h i of process i is expressed as a finite
.P

sequence of assertions describing ~ s local states

<So, "'" ,sj,sj+l sn >, where So describes i's initial

state and sj+l describes a successive state to sj,. We

say that history h i implies after(c) iff s,~ implies

after (c).

256

Example 4: Consider example 2. A possible his-

tory for P 1 is h ~---<So,S x,s2,s3,s4>, where:

s @{after (init 1)}, s l_={x = 1 ^ after (a 1)},

s2=-{x=l ^ after(a)}, sa_--{x=l ̂ after(b)},

s4m{x =3 ^ after (c)}.

We introduce the notion of a history outline

(h.o.), which is a central concept to the proof method.

Given history hlm<So, • ." ,sn>, a h.o. is intuitively the

assertions of an annotated program in which the infor-

mation known from the given history, and its implica-

tions on the behavior of the rest of the processes, may

be captured.

Assume an annotated program where each com-

mand c :S of a process is preceded and followed by

corresponding assertions pre (c) and post (c) respec-

tively. We will define when those assertions form a

correct h.o, with respect to a given history h. The

definition is given using marking rules. Initially all

assertions are assumed unmarked. Each assertion is

expressed as a conjunction of conjuncts. A rule may

allow marking a conjunct, and an assertion is marked

when all its conjuncts are marked. The assertions form

a correct h.o. with respect to history h iff it is possible

to mark them all.

The marking rules

Let post(c) denote the post assertion of a command

labeled by c , and let ~ denote one of its conjuncts.

can be marked if it satisfies at least one of the follow-

ing marking rules,

First rule : Let PO stand for a possible cooperat-

ing proof outline established for the above brack-

eted program using the usual proof system

([AFR]). Let po(c) denote the post assertion

belonging to PO, of the command labeled c.

• po (c) -.-> ~ . (From the previous sec-

tion, this is equivalent to: * KLf(~))

Remark: The various conjuncts marked by this rule do

not necessarily refer to the same PO.

The rule assures that information expressed within an

ordinary cooperating proof outline, can also be

expressed within a h.o.. It follows immediately that a

correct cooperating proof outline is also a correct h.o.

with respect to any given history.

An Invariant is proven in the usual way, and can then

be marked.

Second rule : Let S be a command labeled by c.

* The weakest liberal pre-condition of ~ and S

is implied by an already marked conjunct of

pre (c).

This means that for any sequential Hoare rule, if all

premises are marked, the consequent can be marked.

Through the rule a marked conjunct can affect its local

environment.

Third rule: Let c be a label of the process i to

which the history h is known (hm<so, '" ,sn>),

and let Oh (C) denote the disjunction of all sj's

such that sj-->after(c). (If for no sj,

sj --> after (c) then Oh (C)---false .)

* O h (C) ~ .

Through the rule, information from the history of a pro-

cess is 'transferred' directly into the assertions of that

process, with no further proof obligations.

Fourth rule (output): Let c be a label of an out-

put command c :Pj !expr. Let Inp be the set of

all labels of input commands which semantically

match s with that output command. For each

input command d :Pk ?Yd where d ~ Inp, define

Vd as an assertion for which there are marked

conjuncts of post(d) which imply Vd then,

* V va[expr/ya]-->~.
d~ lnp

s The input command P k ?Y and the output command
Pj!expr, taken from process J and process k respectively, are
called a syntactic matching pair. A syntactic matching pair is also a
semantic matching pair if there exists an execution in which a
communication between the matching communication commands ac-
tually takes place. Using the ordinary proof system it is possible to
distinguish which are the semantic matching pairs.

257

PI ::

{i=O)

a :[true -->x :=1 Q true -->x :=2];

{x= l h i=0)

b :<P2!x ;i :=1>

{ i=1}

c :<P 1 ?x ;i :=2>

{x=3 ^ i=2}

I =- i =j A (i =2-->X =y +Z)

Figure 3. History Outline.

P2 ::

{j=o)
d :[true ~ y :=1 I] true ~ y :=2 I] true--~y :=3];

{j=O}

e :<P2?z ;j :=1>

{z=l A j=l)

f :<P 2t(y +z);j :=2>

{z=l ^ j=23

It follows from the rule that the possible values of an

output expression - e x p r - after the communication

must include all possible values of the (matching) input

variables --Yd -- after communication. The reason for

referring to the value of the output expression after

communication is due to the fact that it may not take

place.

Example: Assume Pj !expr has exactly two semantic

matching input commands, e :Pk ?v and f :Pk ?w. Let

post (e) _= { (v =3v4) A (W =7) } and post (f) ~.

{ (v=lv2) A (W =5V6) }, and assume the first conjunct

of post(e) and the second conjunct of pos t (f) are

marked, then v, ~ {v=3v4}, v f -= {w=5v6} and

v, [expr /v] v v/[expr/w] _-- {expr=3v4v5v6}.

Fifth rule (inpu0: Let c be a label of an input

command c :Pk?Y. Let Out be the set of all

labels of output commands which semantically

match with that input command. For each output

command d :P j !expra where d e Out, define Vd

as an assertion for which there are marked con-

juncts of post (d) which imply va then,

* V va [y/exprd] ~ ~.
d ~ Out

It follows from the rule that the possible values of an

input variable - y - after communication include all

possible values of the (matching) output expressions

- expra - after communication.

Example: Assume c :Pk ?Y has exactly two semantic

matching outputs commands, e :P j !3 and f :P j !(v +w).

Let post (e) ~_ { true } and

pos t (f) -={(v=lv2)A(W=3V5)} and assume it is

marked, then v, ~ {3=3}, v/=-{v+w=4v5v6vT} and

v, [y/3] v v / [y /v +w] _-- {y =3v4vSv6v7}.

The history outline concept as described above

is not complete, in the sense that it is not possible to

capture all possible information induced by a given his-

tory. First Oh (c) does not reflect the relative order in

which the local states appear. Second, the pre assertion

of an output command may not be as strong as possi-

ble. This may happen when an input command semant-

ically matches with several output commands. In this

case, we might want to capture the fact that at least one

of those outputs has to send a specific value. Such a

fact can not be expressed in a h.o. as defined above. It

seems that by wider use of auxiliary variables, this

information might also be expressed.

Example 5: A correct h.o. for the bracketed pro-

gram P" and history h i from example 4 is shown in

figure 3.

Explanation: All conjuncts which refer to auxili-

ary variables are marked using the first rule, where as

PO we use the proof outline presented in example 3.

258

This PO provides also a proof of the invariant I .

Marking the rest of the conjuncts of assertions from P ;

are done by using the third rule (with history h 1). The

conjunct (z=l) of pos t (e) is marked by using the fifth

rule while the conjunct (z=l) of p o s t (f) is marked

using the second rule.

Remark: In the above example, the history h l of

program P (example 2) is only a pardal history of P',

in that it does not refer to the auxiliary variables (a.v.).

This should not cause any problem because any history

can be uniquely extended to refer also to the exact

values of the a.v. in each state of the sequence of states

which form that history. This follows immediately

from the role of the a.v. as history variables. In prac-

flee, as in the above example, it is not necessary to

establish the extended history, because the conjuncts

which refer to the a.v. can be marked using the first

rule. To avoid cumbersome presentation we use h for

both the history without references to a.v. and its

unique extension. The actual use can be understood

from the context.

For the rest of the section we refer to an annotated pro-

gram, where the assertions form a correct history out-

line with respect to a given history h of process i. The

previous notaflons post (li) and post (lc) refer now to

that annotated program.

Lemma 2: For a history outline as defined above

and for any n-tuple of labels lc, pos t (lc) is a true

predicate after lc for all traces which match with h.

Proof : omitted.

The following observation follows directly from the

definition of a history location predicate -Shtc - (see

the end of section two).

Observation: Let h be the history of process i.

If h ~ after (c) and li ~ c then Sh 0 t,)---false.

Lemma 3: For any location set T~ and history

h, the associated history location predicate Shtc implies

post (lc).

proof : Sht~ is, by definition, the strongest predi-

cate known to be true after lc when only h is known,

while from lemma 2, post (lc) is a true predicate after

lc for all traces which match with h. D

Theorem 3: If c is a label of process i,

h ~ after (c), and ~(c) is the disjunction of all asser-

tions post (ll In) such that li ---c , then KHi*(dp(c)).

Proof:

(1) h -+ after(c) . [Assumption]

(2) Vlc . Sh~ --> post (lc). [I.emma 2]

(3) V lc . (post (lc) A after (c))-.¢~(c). [Def. of ~(c)]

(4) Vlc . Shtc ---~ (post(lc) A after(c)) . [(1),(2),Obs.]

(5) V lc . Sht, ---~ dp(c). [(3), (4)]

(6) KH~(dp(c)). [(5), Def. of history knowledge]

[]

Now suppose it is to be proved that KHih(b) is

true for a given program P and that h ~ after (c). The

proof involves four steps similar to those used for loca-

tion knowledge.

(1) A "strong enough" h.o. (with respect to h) is

established for P'.

(2) Assertion ~(c), as defined above, is constructed.

[by Theorem 3 KH~ (~(c))].

(3) It is proved that ~ (c) implies b.

[by property 1 KH~ (b)].

(4) By applying the auxiliary variables rule,6

KHih(b) is proved.

Example 6: Consider examples 2 & 4. We

prove KHi hI (y =2).

step 1: See h.o. presented in example 5.

step 2: ~(c) _=post(c ,init2) v pos t (c ,d) v post(c ,e) v
post (c , f)

false v false v false v
(x=3 A Z=I A i=j=2 A I ^ a f t e r (c , f)).

6 An auxiliary variable role similar to the one presented in the
previous section is used.

259

step 3: O(c) implies y=2, by property 1

KHan(y=2).

step 4: By applying the auxiliary variable rule,

Knlh' (Y =2) 0.

It is easy to modify the proof method just

presented to prove knowledge assertions when only a

partial history is given. The modification which is

needed is in how a correct (partial) h.o. is established

in such cases. This will involve redefining the third

marking rule, which showed how to satisfy proof obli-

gations direcdy from the history. Now only a partial

history can be used.

As an example let us modify the proof method,

so as to prove state knowledge assertions. Let s

denote the given state. The modified third marking rule

takes the following form:

Third rule : * s ~ (~ ^ after (c)).

Defining the (usual) four step proof method is now

obvious.

In general if the current location is not given as

part of the partial history then process i can know the

disjunction of ~(c) over all its possible locations.

Note that now it will make sense to mark precon-

ditions of statements on the basis of the marking of its

postcondition (in the process whose partial history is

given), at least back to an input/output statement. Pre-

viously there was no need to do such 'backward mark-

ing' since the entire history was available.

Modifying the proof method for proving location

knowledge assertions, involves omitting the third mark-

ing rule completely. Note that in that case, as

expected, the resulting marking rules 7 define what has

previously been defined as a location outline.

5. N E S T E D K N O W L E D G E

An extension of the knowledge definition and the

proof method to deal with knowledge about knowledge

is natural. In order to prove an assertion like: process i

knows after e that process j knows p, without further

information about the exact location of process j

(KLf(KLj (p))), one must prove that process j knows p

at all locations possible when process i is after c. That

is for every label a of process j either gLf(-,after (a))

or KL~(p). Again, considering example 2, such an

assertion is: KL~ (KL t(x =z)).

More generally, we consider a claim of the form

KH/~(b) where b may include other knowledge opera-

tors (but is still non-temporal). The assertion b often

(but not necessarily) will include the form KHj(p),

without a specific history as a parameter. This means

that for every local history h' of process j which

matches with one of the possible traces of the system,

KHf'(p). It is also possible to consider history

knowledge with only partial histories. For example,

Kill(p) (s - for state) means that process j will have

available a local history h' which can be used to show

p true, but h" is not given as a parameter. Thus, h'

may be any history of process j which matches with a

trace of the system and also is consistent with the state

s. Note that, at least when appearing in the scope of an

outer knowledge operator, this differs from KS](p),

where process j does not have a local history available.

Let us concentrate, as an example, on assertions

of the form KHih(KHj (p)), where p does not contain

knowledge operators. This means that, given local his-

tory h, process i knows that process j (history) knows

p, without further information about the actual history

of process j . Thus this assertion is true only if process

j knows p with any of its possible histories. Although

process i cannot in general know the entire actual local

history of process j , it can know (by using h) various

assertions which will be true of any local history of

process j which is consistent both with the possible

traces of the system and with h. Such assertions can be

proven by devising a history outline for h, and properly

marking all of the conjuncts as described previously.

This will be in fact the first stage in proving

actually the first marking role is enough.

260

KH:(KHj(p)). The following claim is then crucial to

the rest of the proof method: informally, the actual

local history of process j must satisfy all marked asser-

tions annotated in process j , from (any) history outline

established with respect to the above h. The following

lemma express this idea formally.

Let h and h" denote for the rest of the section,

local histories of processes i and j respectively. Let

post h (c) denote a post assertion of a command labeled

by c, which can appear in some history outline esta-

blished with respect to history h, and recall the

definition of Oh (c) from the previous section.

Definition: Two histories h and h" as above, are

consistent iff there exists a trace t such that both

match (t,h) and match (t ,h") hold.

Lemma 4: If two histories h and h' as above,

are consistent then for each label c of process j ,

Oh,(c) -4 posth(c).

Proof" : Omitted.

Next we describe how to establish the second

stage in proving a nested knowledge assertion, again

using marking rules. We require a (single) history out-

line which will be correct with respect to every history

of process j which is consistent with the given history

h of process i. The aim of this is to be able to show

KHj (p) in context. Its correctness will follow from

lemma 4. The intuition is to allow marking the asser-

tions annotated in process j if they can appear in the

history outline (with respect to the above h) from the

first stage. Formally, the assertions of the annotated

program in the new proof form a correct (multi) history

outline as described above, if they can be marked using

the marking rules from the previous section, where the

third rule is replaced by:

Third rule : Let c be a label of process j , and let

posth (c) denote, an assertion from a history out-

line previously established with respect to h.

* p o s t h (c) ~ .

Now, once such a (multi) history outline is established,

we can deduce from it the truth of the needed assertion

in the same manner as described in the beginning of

this section for location knowledge.

More formally, let ~(a) be defined as before but

with respect to the history outline just described. From

theorem 3 and lemma 4, it follows that for every his-

tory h" (of process j) consistent with the above h such

that h ~ ~zfter (a), h" KHj (~(a)). Thus, in order to

prove KHih(KHj(p)), one must prove that for every

label a of process j , either KH~(~after(a)) or

~(a) --~p.

In general, for KHih(b), the proof of b will be as

previously described, except that certain conjuncts can

be marked immediately if they define assertions true of

any history, state, or location which is available in b

and is consistent with h. This process can be continued

recursively, for an arbitrarily deep nesting of

knowledge operators.

Example 7: Consider, yet again, the program

from the previous examples. Using the technique

described above, we can easily show that

KH~ 1 (Kn2(x=3)).

From the history outline established in example

5, it follows that KH1 hl (-after (init 1)),

KHlh'(--after(d)), and KH~(~afier(e)) . Next a

correct history outline with respect to all histories of

process j consistent with h 1 is established. This is done

by adding y=2 as a conjunct of pos t (f) and retaining

only those conjuncts in process P I which refer to auxi-

liary variables. With respect to that history outline,

Off) ~ (x=3). []

6. CONCLUSIONS

In this paper we have shown how to prove

knowledge assertions under a variety of knowledge

assumptions about the available local information,

assuming the text of the program as global information.

We have generalized existing proof techniques, by

relaxing the proof obligations for assertions which fol-

low from the given knowledge assumption, and shown

26'I

what knowledge follows from such a proof.

The motivation for this work is in the

specification and design of distributed programs, and in

future work we plan to demonstrate the utility of

knowledge for a variety of tasks.

Acknowledgement: We would like to thank Nissim

Francez for helpful discussions on the subject.

REFERENCES

[AFR] Apt, K.R., Francez, N., and de Roever, W.P. A
proof system for communicating sequential
processes, ACM-TOPLAS, 2,3 1980, 359-
385.

[Ap] Apt, K.R., Formal justification of proof system
for communicating sequential processes.
JACM 30,1 1983, 197-216.

[B] Barringer, H. A survey of verification tech-
niques for parallel programs, LNCS 191 1985.

[BHR] Brookes, S.D., Hoare C.A.R., Roscoe A.W. A
theory of communicating sequential processes,
JACM 31,3 1984, 560-599.

[CM] Chandy, M., and Misra, J. How processes
learn, ACM-PODC 1985, 204-214.

[FHV] Fagin, R., Halpern, J., and Vardi, M. A model
theoretic analysis of knowledge, IEEE-FOCS
1984, 268-278.

[HF] Halpem, J., and Fagin, R. A formal model of
knowledge, action, and communication in dis-
tributed systems: preliminary report,
~tCM-PODC 1985, 224-236.

[HM1] Halpem, J., and Moses, Y. Knowledge and
common knowledge in a distributed environ-
ment, ACM-PODC 1984, 50-61.

[HM2] Halpern, J., and Moses, Y. A guide to the
modal logic of knowledge and belief, IJCAI
1985.

[Le] Lehmann, D. Knowledge, Common
Knowledge and related puzzles, ACM-PODC
1984, 62-67.

[Ow] Owicki, S. Axiomatic proof technique for
parallel programs, Computer Science Dept.,
Comell University, Ph.D. thesis, 1975.

[OG] Owicki, S., and Gries, D. An axiomatic proof
technique for parallel programs,
I. Acta Inf. 6, 1976, 319-340.

[OL]

[LS~

[M]

[PR]

Owicki, S., Lamport, L. Proving liveness pro-
perties of concurrent programs,
ACM-TOPLAS 4,3 1982, 455-495.

Lamport, L., Shostak, R., Pease, M. The
Byzantine General Problem,
ACM-TOPLAS 4,3 1982, 382-401.

Misra, J. Reasoning about network of com-
municating processes, Proc. Advanced NATO
Institute on Logic and Models for
Verification and Specification of Concurrent
Systems, Oct. 1984.

Pafikh, R., and Ramanujam, R. Distributed
processes and the logic of knowledge: prelim-
inary report, LNCS 193, 256-268.

262

