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ABSTRACT 

The importance of the notion of knowledge in 
reasoning about distributed systems has been recently 
pointed out by several works. It has been argued that a 
distributed computation can be understood and 
analyzed by considering how it affects the state of 
knowledge of the system. We show that there are a 
variety of definitions which can reasonably be applied 
to what a process can know about the global state. We 
also move beyond the semantic definitions, and present 
the first proof methods for proving knowledge asser- 
tions. Both shared memory and message passing 
models are considered. 

1. INTRODUCTION 

In this paper we will show how to prove 

knowledge assertions about both distributed and shared 

memory parallel programs. Before describing the 

proof methods we consider the fundamental question of 

"what is the meaning of knowledge in concurrent pro- 

grams?" Put another way, what does it mean for (an 

observer of) a process to know something? Other 

tempting questions immediately arise: What does a pro- 

cess always know? What does a process know when- 

ever it terminates? What does it know at a certain 

moment during a given execution? 

A number of successful attempts have been made 

in order to formally capture various notions of 

knowledge [HM1,HM2,FHV,Le]. Some other recent 

works are directly connected to a concurrent program- 

ruing environment. In [CM] a characterization is 

described of the minimum information flow necessary 

for a process to gain or lose knowledge about the sys- 

tem. The results are appfied for proving lower bounds 

on the number of messages required to solve certain 

problems. In It-IF] a formal model that relates the con- 

cepts of knowledge, action and communication in dis- 

tributed systems is presented. An impossibility proof 

for the well known coordinated-attack problem is 

presented. In [PR] a connection between distributed 

systems and the logic of knowledge is established. A 

set of axioms which this knowledge must obey is 

presented. 

We first motivate our approach to knowledge. 

Consider a concurrent program which is frozen at some 

point during its execution. Let b stand for a predicate 

defined on the global state of that program. Now, sup- 

pose you are interested in knowing whether predicate b 

is true when the program is suspended. For this task, 

you are allowed to use certain global information 

which is assumed to be known a priori. Such infon'na- 

tion might be, for example, an invariant of the program, 

certain properties of the processes, or properties of the 

model. In addition it is possible that you have access to 
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the following local information about the behavior of 

process i. 

case one: no additional information. 

case two: the control position of process i.  

case three: the complete visible state of process i.  

case four: the complete history of process i.  

For a distributed model, a process' visible state is 

identical to its local state. In the shared variable model, 

a process' visible state refers to all variables it can test. 

The history of a process means the sequence of all 

events in which it has participated. 

We say that process i knows b when the pro- 

gram is suspended, if using the above information it is 

possible to prove that b holds. Thus a process' 

knowledge is always defined with respect to some 

given information. Note that the global information is 

static, in the sense that it does not change during an 

execution, while the local information is dynamic. We 

call the available global and local information, the 

knowledge assumption. 

In this paper we assume the (entire) text of the 

program and its input specification as the a priori global 

information of a process. The opposite extreme would 

be to assume no global information. This case is of lit- 

tle interest since extremely limited knowledge is possi- 

ble when even the properties of the model are not 

known a prior. A less extreme case, where nothing is 

assumed about some of the processes, is of greater 

interest. A possible application for such a case is the 

Byzantine Generals Problem, where the protocol which 

a faulty Byzantine process is following is not available. 

However, it follows from [LSP] that in order for the 

processes to know the agreed value, it must be part of 

the global information that over two thirds of the 

processes are following a protocol which is known. An 

intermediate level is also possible, in which only cer- 

tain properties of the program are assumed to be known 

a priori. This level would be appropriate during pro- 

gram development. In [I-IF] it is not assumed that the 

text is given. 

Given our assumption of maximal global infor- 

mation, the above four cases of local information are 

considered to define different types of knowledge. 

Cases one and four represent opposite extremes from 

process i's point of view. In case one, called invariant 

knowledge, no local information at all is available, and 

thus process i may know only 'general things' like 'the 

program terminates' and all safety properties. In case 

four, called history knowledge, all possible local infor- 

marion is available, which of course, leads to the 

strongest type of knowledge. Numerous intermediate 

levels, where only a partial history is given, can be 

defined between those extremes. Examples are cases 

two and three, called location and state knowledge, 

respectively. Previous papers [CM,HF,PR] refer to 

(variants of) the concept of history knowledge. They all 

mention state knowledge as an additional option. 

Location knowledge refers to the knowledge of a pro- 

cess at a certain point for all possible computations. We 

establish in the sequel a connection between fundamen- 

tal verification concepts such as proof outline, interfer- 

ence freedom and cooperation [AFR,OG] and the con- 

cepts of knowledge. A method for proving knowledge 

assertions of all types is presented. 

2. THE MODEL 

A concurrent program is a collection of a finite 

set of processes operating asynchronously, which may 

communicate with each other in one of the following 

ways, (a)asynchronously using send and receive, 

(b )synchronously, as in CSP, also using send and 

receive commands, or (c) by setting shared variables. 

An event is the basic unit in the behavior of a 

process. It describes a change in the environment dur- 

ing the process' execution. An event occurs on a pro- 

cess, by executing an atomic command of that process. 

An execution of an atomic command includes execut- 

ing a skip or assignment command, a loop exit, evalua- 

tion of a boolean expression, or execution of a corn- 
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munication. 1 The same atomic commands executed in 

different environments correspond to different events. 

A behavior of  a process can be described as a finite 

sequence of events on that process. This is known as a 

trace [BHR,M]. A process is characterized by a 

(prefix-closed) set of  all its possible traces. By general- 

izing the above, a concurrent program P is defined. 

Assuming an interleaving semantics, we are only 

interested in the relative order in which events occur. 

No clock is assumed. A trace t of  P is a finite 

sequence of events on processes of P satisfying the 

conditions: 

(1) Any subsequence of t which consists of  all 

events on a process which belongs to P ,  is a 

trace of  that process. 

(2) Asynchronous communication: for every event 

of  'receiving message m '  there is a correspond- 

ing 'send message m'  event which occurs earlier. 

(2') Synchronous communication : for every event of  

'send message m'  there is a corresponding 

'receive message m'  event which occurs immedi- 

ately after, i.e, no other event occurs between 

those events (those two events can be considered 

to be a single one). 

A concurrent program is characterized as the set of  all 

possible traces of  the program. 

A trace can also be seen as a transition from the 

initial state of  the program into a unique state of  the 

program, which in addition records all the "history" of 

how it reached that state. Each such state contains two 

kinds of  information: the exact values of  the program 

variables and the control position of each process (the 

value of the program counter). 

To be able to express the control position, we 

assume that all commands are uniquely labeled. By 

saying that (the control of) a process is after c, we 

mean that the command labeled c was the last one to 

be executed in that process. In addition the labels 

t The language may also contain selection statments with local 

initl . . . . .  initn are used to label dummy commands 

placed at the beginning of each process. I f  (control of) 

process i is after initi, execution of process i has not 

yet started. 2 

With each trace t we associate a (trace) predicate 

st which expresses the values of all the variables 

(including the control) after a computation described 

by t took place. This predicate depends on a given ini- 

tial state. For the rest of  the paper let li stand for a 

label of a command from process Pi ( i=l . .n) .  Let C 

be a function from traces into n-tuples  of labels. 

Definition : C ( t ) = (ll . . . . .  In) iff after a compu- 

tation described by t the control of processes 

Pl . . . . .  Pn is after 11 . . . . .  In respectively. 

A location set T[t ... . . .  t.) is defined to be a set of 

traces such that: T(t ...... i.) ~ { t I C (t)=(l 1 . . . . .  In) }. 

Thus location set T(t . . . . . .  t,) describes the set of traces 

w h i c h  leave the control of the program after 

(lt . . . . .  ln). It easy to see that the number of  such 

location sets is exactly the product of  the number of 

labels in each process. They correspond to all possible 

positions of  the control of  the program during an exe- 

cution. 

For the rest of  the paper, let lc denote an n-  

taple of  labels ( I t . . . . .  I n ). With each location set Ttc 

we associate a location predicate S~. Sic is defined to 

be the disjunction of all st such that t belongs to Ttc. If  

T~ is an empty set (i.e for no execution is the control 

after lc ), then St~ is false.  Assume that the control of a 

program is after lc. The state of  a specific execution at 

this point refers to the exact values of  all program (and 

environment) variables. The location predicate Szc at 

this point refers to all possible values of  the variables, 

without committing to a certain execution. Sic is actu- 

ally the strongest predicate which is true when the con- 

trol is after lc. 

nondeterminism, but this will not be atomic. 
2 In ease that e and d denote two different labels of distinct 

commands belonging to the same process, then the assertion 
after (c ) ^ after (d ) equals false.  
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Example 1: Consider the (shared variable) pro- 

gramP: :  [P1 l] P2] where: 

P 1:: end1: x :=x+l 
P2:: end2: x :=2*x 

Assume that the initial state is x=2. 

The possible events are: (1) end1 executes first, (2) 

end 2 executes first, (3) endl executes second, (4) end 2 

executes second. 

The predicates associated with the traces 

<>,<1>,<2>,.~2,3>,<1,4> are: 

s<,~. x=2 ^ after (initl,init2), 

s < I>=- x =3 ^ after (end 1,init 9 ,  

s < 2>--- x =4 ^ after ( init x,end 2), 

s < 2,3 >--- x =5 ^ after (end x,end 2), 

s< 1,4,- = x =6 ^ after (end 1,end2), respectively. 

The possible location sets are: 

T (initz~nit,)E{ < > } , T (,nd,:,at~)-={ < l > } , 

T ci~it~,,~)---{ < 2 > } , T cend,,~)---{ < 2,3 > , < l ,4 > }. 

The possible location predicates are: 

S (init~:,at~) ~ x =2 ^ after (init 1 ,init 2), 

S(,~,i~/t2) --- x=3 ^ after (end x,init2), 

Sci~it,,,~) ~ x=4 ^ after (iniq,end2), 

S ( ~ , , , ~ )  -= ((x =5)v(x =6)) ^ after (end 1,endg. 

We will also assume that each process i has a 

local history named h i . The history will presumably be 

accumulated in a variable which records the sequence 

of all events in which process i has participated. As 

mentioned in [HF] "This is certainly not a reasonable 

assumption", because it assumes that a process has 

unbounded storage space to record its history. A trace 

t matches h i (match (t ,h i)) iff ti, the subsequence of t 

which consists of all events on process i ,  equals h i . 

Similarly h i matches location set T~: iff it matches 

with some trace belonging to T~:. 

A history location predicate - Shtc - associated 

with location set Tt~ and history h, is defined as the dis- 

junction of all (trace) predicates st such that t belongs 

to Tt~ and match ( t ,h) .  If no such traces exist then 

S h t ~ f a l s e .  The predicate She is, by definition, the 

strongest predicate known to be true after lc when 

only h is known. 

Example : If the local history h of P 1 was empty 

(no events have yet occurred), then that history 

matched the first and third traces given above. The 

possible history location predicates in that case are: 

Sh (i,at,,i,at2) --- x=2 ^ after ( init l,init 2), 

Sh Ce~dl~,at2) -= fa l se ,  

Sh (initz,,~2) --- x =4 ^ after ( init 1,end2), 

Sh (end~,end~) •- false. 

3. DEFINITION OF K N O W LED G E 

The (global) trace which corresponds to the exe- 

cution up to any moment, belongs to exactly one loca- 

tion set (called the actual location set). Informally, we 

will say that process i knows b i f f b  is true in all loca- 

tion sets that process i considers possible candidates to 

be the actual one. 

In the first case where no additional local infor- 

marion is given, process i must consider all location 

sets which are possible under the global a priori infor- 

marion. When, in case two, process i knows the exact 

position of its control, the possible location sets reduce 

to those for which I i corresponds to i ' s  actual position. 

With the additional assertion giving the exact visible 

state of process i ,  in case three, the above possible 

location sets reduce to those where the location predi- 

cate of the location sets does not contradict the asser- 

tion about the actual visible state. Finally, with the his- 

tory of process i, only those location sets which match 

that local history are possible. 

For now, we restrict the language so that no 

knowledge operator appears within the scope of 

another. Let c be a label of a command in process i ,  s 

be an assertion describing a visible state of process i 

(including the control of process i), and h be a history 

of process i .  
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P ::[ P iIIP2 ] where: 

P1 :: 

a:  [a l :  true .-->x :=l [I a2: true--~x:=2]; 

b : P 2 l x ;  

c: P2?x 

Figure 1. Simple CSP Program. 

P2 :: 

d: [true -->y :=1 fl true -->y :=2 fl true-..~y :=3]; 

e : P2?z ; 

f :  P 2!(Y +z ) 

The notations KIi (b ), KLf(b ), KSf(b ), KHih(b ) are 

used for: process i knows b,  process i knows b 

after c,  process i knows b with s ,  process i knows b 

with h,  respectively. Recall that lc is an n-tuple of 

labels. 

Definition: 

(1) Invariant knowledge: 

KI i (b ) iff  V lc .Stc --~ b . 

(2) Location knowledge: 

KLf(b ) iff V lc . (St~ A after (c )) ~ b . 

(3) State knowledge: 

KS:(b ) iff 'Vlc . (Stc ^ s )  --~ b. 

(4) History knowledge: 

KHih(b ) iff V lc . Shtc ---~ b.  3 

Let Ki denote all knowledge types. The following pro- 

perties are over all labels, visible states and histories. 

Properties: 

(I) (Ki(b ) A (b ---~ b')) --.~ Ki(b'). 

(2) Ki(b)AKi(b" ) iff Ki(b Aft). 

(3) ( K i ( b ) v  Ki(b ' ) )  -->Ki(b v b ' ) .  

(4) (K~(b ~ b ' )  AK~(b))~K~(b')). 

(5) KLfi( after (c ) ). 

(6) KS:(s) .  

3 An alternative equivalent 
KHih(b ) iff  V t . match ( t , h ) .  s, ~ b. 

definition is, 

(7) (KL:(b) A (s ~ after (c)) ) ~ KS:(b ^ s). 

We give a proof of property (7): 

(1) KLf(b) .  [Assumption] 

(2) s ~ after (c ). [Assumption] 

(3) V lc . (Stc ^ after (c )) ---~ b.  
[(1), Def. of location knowledge] 

(4) Vlc. (Sic AS) ---~ b. [(2), (3)] 

(5) KS:(b). [(4), Def. of state knowledge] 

(6) KS:(b A S). [(5), properties 2 & 6] 

[] 

Example 2: Consider the (CSP) program, shown 

in figure 1. Let s describe a local state of P1, 

s_--{x=3 A after(c)},  Let  h be a history of P1. Assume 

that it implies that the current local state is the one 

described by s,  and that the first event on P1 occurred 

by executing command a 1. The following knowledge 

assertions are then true: 

(1) K I l ( y = l v 2 v 3 v U n d e f i n e d ) ,  (2) KL~(y=lv2v3),  

(3) KS~ (y=lv2).  (4)Kn~(y=2).  

In the next section, we formally prove all these 

knowledge assertions. 

4. THE PROOF METHOD 

In this section a method for proving knowledge 

assertions about a program is presented. We initially 

establish a connection between location knowledge 

and various verification methods. The method for 
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proving location knowledge assertions is then 

developed based on existing verification methods. For 

proving history knowledge assertions, an original 

method is developed, based on the new notion of 

history outline. For now, we restrict a process to 

know only predicates which do not contain temporal 

operators. In the future we intend to relax that restric- 

tion. 

From the variety of verification methods avail- 

able [B], we choose two proof systems [AFR,OG] 

which we consider representative. Both systems are 

designed to prove partial correctness, one for CSP and 

the other for a shared variable model. A stronger sys- 

tem, such as [eLI, which can be used for proving live- 

ness properties, should be considered when temporal 

operators are incorporated. 

In each of the two systems, a partial correctness 

proof of a program is done in two stages: (1) separate 

proofs are constructed in isolation for each component 

process, (2) the separate sequential proofs are com- 

bined by showing that they are interference-free [OG] 

or cooperate [AFR]. 

The separate proofs, in the first stage, are 

presented by a proof  outline in which each statement 

of a process is preceded and followed by a correspond- 

ing assertion. Next, in the second stage it is proved that 

the possible interactions do not invalidate the sequen- 

tial proofs. In the shared variable model, it is necessary 

to show that the assertions used in the proof outline of 

each process are left invariantly true under parallel exe- 

cution of the other processes. This is done by proving 

interference-freedom. In the distributed model, when 

establishing the separate proofs, a process 'guesses' the 

value its parameters will receive upon communication. 

When the proofs are combined, these guesses have to 

be checked for consistency using the cooperation test. 

In order to combine the separate sequential proof out- 

lines, a parallel composition (meta) rule is used. 

Both proof systems use additional auxiliary vari- 

ables for the correctness proof. In [AFR] the notion of 

brackets is introduced, in order to delimit the sections 

within which an invariant need not necessarily hold. 

Here we assume that an interleaving can occur between 

every two atomic statements, so that all possible states 

after an atomic action must be considered in deciding 

what is known. For this reason, a bracketed section is 

restricted to contain exactly one basic command (i.e a 

command which does not refer to auxiliary variables). 

This does not affect the completeness as is shown in 

[Ap]. An await statement (for the shared-memory 

model) or a bracketed section is considered as an 

atomic action. For later reference, we denote a pro- 

gram P with additional auxiliary variables by P'. 

In the proof outline for process i ,  post (li) stands 

for the post assertion of a command labeled by I i . A 

global invariant which may be used for the proof is 

denoted by I ,  while post (l 1 . . . . .  In) is an abbreviation 
Pl 

for i__AlPOSt.__ (li) A I A after (l I . . . . .  In ). 

4.1 LOCATION KNOWLEDGE 

We now present a proof method for proving 

location knowledge assertions. First, a theorem which 

links the definition of location knowledge and that of 

interference free (cooperating) proof outlines is formu- 

lated. Then we give the proof method itself. 

Lemma 1: Assume a program with a locally 

correct sequential proof outline for each process. If the 

proof outlines of the individual processes are 

interference-free (cooperate) then for every label li of 

process i (i=l. .n),  KLi~(post (ll)), i.e, process i knows 

(location knowledge) post (li ) after li .4 

Proof:  Assume to the contrary that for some li, 

KLi~(post(li)) does not hold. This means that there 

exists a trace t such that C (t) = (ll . . . . .  In) and its 

associated predicate st does not imply post (ll), which 

immediately contradicts the soundness [Ap,Ow] of the 

proof systems. U 

4 Here and afterwards only executions which start in an initial 
state satisfying p o s t  ( ini t  I . . . . .  initn ) are considered. 
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Remark: Let us define the assertions of (anno- 

tated) process i as a correct sequential location outline 

iff for every label Ii of process i, KLi~(post(li)). We 

claim that in order to prove partial correctness of a pro- 

gram, it is sufficient to establish such a location outline 

for each process, and then apply to them a (modified) 

parallel composition (meta) rule without further use of 

interference-freedom, cooperation or any other test. 

From the above lemma and claim the interference- 

freedom test and the cooperation test are viewed as 

providing sufficient (but not necessary!) conditions for 

a correct sequential proof outline to be also a locadon 

outline. 

For the rest of the section, we refer to a program with 

correct interference-free (cooperating) proof outlines. 

In fact, it is sufficient to have correct location outlines. 

Corollary 1.1: For any location set Tzc its asso- 

ciated predicate S~ implies post (lc). 

Proof: The location predicate S~ is the strong- 

est predicate true after lc, while it follows from 

Lemma 1 that post (lc) is a true predicate after lc. H 

Theorem 1: I f c  is a label of process i, and ~ (c )  

is the disjunction of all assertions post(l 1 . . . . .  In) such 

that li-~c, then KLf(~(c )). 

Proof : 

(1) V l c  . (St~ a after (c )) ~ (post (lc ) ^ post (c )). 
[From corollary 1.1] 

(2) V l c  .(post (lc ) ^ after (c ))--->~(c ). [Def, of ~(c  )] 

(3) Vlc .(Stc ^pos t (c ) )  --> O(c ). [(1), (2)] 

(4) KL~(dP(c )). [(3), Def. of location knowledge] 

fl 

The preceding theorems refer to a given program 

which, as mentioned, may contain auxiliary variables. 

A rule similar to the usual rule lOG) for removing such 

variables is used, to refer back to the original program 

(i.e without auxiliary variables). 

Auxiliary Variables rule: 

Let AV be a set of variables such that x e AV 

implies x appears in P" only in assignments y :=t, 

where y E AV. Then if • does not contain free 

any variables from AV, P is obtained from P '  by 

deledng all assignments to variables in AV, and 

processes i and i are corresponding processes 

belonging to P and P '  respectively, 

Kt,f,('e) 
KL:(W) 

Following is a method for proving location knowledge 

assertions. Suppose it is to be proved that KLf(b) is 

true for a given program P .  The proof goes as follows: 

(1) Using one of the mentioned proof systems 

[AFR,OG] a "strong enough" correctness proof is 

established for P'.  

(2) Assertion O(c), as defined above, is constructed. 

[by theorem 1 KLf, (O(c)) ]. 

(3) It is proved that O(c)  implies b.  

[by property 1 KLf, (b)]. 

(4) By applying the auxiliary variables rule, 

KL[(b) is proved. 

Theorem 2 (completeness): If KL:(b) is true 

then it can be proved to be true. 

Proof: Recall that b is asserted to be non- 

temporal, and not to include knowledge assertions. It 

must be shown that if KL:(b) is true, then (in step(l)) a 

"strong enough" correctness proof can indeed be esta- 

blished. From the fact that the proof systems are com- 

plete [Ap,Ow], it follows that it is possible (although 

not practical) to establish a correctness proof in which 

for any n-tuple (ll . . . . .  In), post (l 1 . . . . .  l,,) is the 

strongest post assertion possible. Such a correctness 

proof is always "strong enough" []. 

Example 3: Recall example 2. We prove 

KL~ (y=lv2v3)  
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P1 :: 

[i=o} 
a :[true-->x :=1 fl true ---~x :=2]; 
{(x=Iv2) ^ i=O} 

b :<P2!x ;i :=I> 

{i=I} 
c :<P i ?x ;i :=2> 

{(x =2v3v4v5) ^ i=2} 

I ~  i=j ^ (i=2-~x=y+z) 

Figure 2. Proof Outline. 

P2 :: 

[j=O} 
d:[true --~y :=1 Q true---~y :=2 0 true--4y :=3]; 

{(y=lv2v3) ^ j=O} 

e : <P 2? z ;j :=l> 

{(y=lv2v3) ^ (z =lv2) ^ j=l}  

f :<P2!(y+z);j:=2> 

{(y=lv2v3) ^ (z =lv2) ^ j=2} 

step 1: To verify the program, two auxiliary variables 

i , j  are used. The proof outline for the brack- 

eted program P '  is shown in figure 2. 

step 2: ~(c  ) _= post (c ,init 2) v post (c ,d) v post (c ,e ) v 
post (c , f  ) 

-: false v false v false v 
( (x=2v3v4v5)  ^ i=2 ^ (y=lv2v3) 
^ (z =lv2) ^ j=2 ^ I ^ after (c , f )  ). 

step 3: ~(c )  implies y=lv2v3,  by property 1 

KL'~" (y = lv2v3). 

step 4: By applying the auxiliary variables rule, 

KL~ (y =lv2v3) []. 

It is easy to see how the method is applied for 

proving state knowledge assertions as well. Let W be 

an assertion describing some location knowledge (of 

process i) after c (proved using the above method), 

and for some computation let sl be an assertion 

describing the visible state of process i after c. By 

property (7), "IJasi is state knowledge of process i 

after c for that computation. This method is not strong 

enough and in the next section we show a better way 

for proving state knowledge assertions. ,,~ 

Example: Recall example 2. We prove 

KS~ (y=lv2). Let • _-- (z=lv2) ^ x=y+z. 

• ~ (c )  implies ~ .  By property 1 KL~'(~). 

• By applying the auxiliary variable rule ,KL~ (W). 

• By property 4, KS~ ('q ^ s). (s_--{x=3 ̂  after(c)}) 

• W ^ s implies y=lv2;  By property 1 KS~ (y =lv2). 

[]. 

4.2 HISTORY KNOWLEDGE 

We now present a proof method for proving his- 

tory knowledge assertions as well. First the notion of 

history outline is defined. It generalize the notion of 

cooperating proof outline (i.e a collection of sequen- 

tial proof outlines which pass the cooperation test), and 

that of a location outline. Once this is done, a theorem 

which links the definition of history knowledge and that 

of a history outline is formulated. We conclude by giv- 

ing the proof method itself. We restrict ourselves to the 

distributed model. It should be possible to apply the 

ideas presented in the sequel also to the shared vari- 

ables model. 

A history h i of process i is expressed as a finite 
.P 

sequence of assertions describing ~ s local states 

<So, "'" ,sj,sj+l . . . . .  sn >, where So describes i's initial 

state and sj+l describes a successive state to sj,. We 

say that history h i implies after(c) iff s,~ implies 

after (c ). 
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Example 4: Consider example 2. A possible his- 

tory for P 1 is h ~---<So,S x,s2,s3,s4>, where: 

s @{after (init 1 )}, s l_={x = 1 ^ after (a 1)}, 

s2=-{x=l ^ after(a)}, sa_--{x=l ̂  after(b)}, 

s4m{x =3 ^ after (c )}. 

We introduce the notion of a history outline 

(h.o.), which is a central concept to the proof method. 

Given history hlm<So, • ." ,sn>, a h.o. is intuitively the 

assertions of an annotated program in which the infor- 

mation known from the given history, and its implica- 

tions on the behavior of the rest of the processes, may 

be captured. 

Assume an annotated program where each com- 

mand c :S of a process is preceded and followed by 

corresponding assertions pre (c ) and post (c ) respec- 

tively. We will define when those assertions form a 

correct h.o, with respect to a given history h. The 

definition is given using marking rules. Initially all 

assertions are assumed unmarked. Each assertion is 

expressed as a conjunction of conjuncts. A rule may 

allow marking a conjunct, and an assertion is marked 

when all its conjuncts are marked. The assertions form 

a correct h.o. with respect to history h iff it is possible 

to mark them all. 

The marking rules 

Let post(c) denote the post assertion of a command 

labeled by c ,  and let ~ denote one of its conjuncts. 

can be marked if it satisfies at least one of the follow- 

ing marking rules, 

# First rule : Let PO stand for a possible cooperat- 

ing proof outline established for the above brack- 

eted program using the usual proof system 

([AFR]). Let po(c)  denote the post assertion 

belonging to PO, of the command labeled c. 

• po (c) -.-> ~ . (From the previous sec- 

tion, this is equivalent to: * KLf(~) ) 

Remark: The various conjuncts marked by this rule do 

not necessarily refer to the same PO. 

The rule assures that information expressed within an 

ordinary cooperating proof outline, can also be 

expressed within a h.o.. It follows immediately that a 

correct cooperating proof outline is also a correct h.o. 

with respect to any given history. 

An Invariant is proven in the usual way, and can then 

be marked. 

# Second rule : Let S be a command labeled by c.  

* The weakest liberal pre-condition of ~ and S 

is implied by an already marked conjunct of 

pre (c ). 

This means that for any sequential Hoare rule, if all 

premises are marked, the consequent can be marked. 

Through the rule a marked conjunct can affect its local 

environment. 

# Third rule: Let c be a label of the process i to 

which the history h is known (hm<so, '" ,sn>),  

and let Oh (C) denote the disjunction of all sj's 

such that sj-->after(c). (If for no sj, 

sj --> after (c ) then Oh (C )---false .) 

* O h ( C ) ~ .  

Through the rule, information from the history of a pro- 

cess is 'transferred' directly into the assertions of that 

process, with no further proof obligations. 

# Fourth rule (output): Let c be a label of an out- 

put command c :Pj !expr. Let Inp be the set of 

all labels of input commands which semantically 

match s with that output command. For each 

input command d :Pk ?Yd where d ~ Inp, define 

Vd as an assertion for which there are marked 

conjuncts of post(d) which imply Vd then, 

* V va[expr/ya]-->~. 
d~ lnp 

s The input command P k ?Y and the output command 
Pj!expr, taken from process J and process k respectively, are 
called a syntactic matching pair. A syntactic matching pair is also a 
semantic matching pair if there exists an execution in which a 
communication between the matching communication commands ac- 
tually takes place. Using the ordinary proof system it is possible to 
distinguish which are the semantic matching pairs. 
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PI  :: 

{i=O) 

a :[true -->x :=1 Q true -->x :=2]; 

{x= l h i=0)  

b :<P2!x ;i :=1> 

{ i=1} 

c :<P 1 ?x ;i :=2> 

{x=3 ^ i=2} 

I =- i =j A (i =2-->X =y +Z ) 

Figure 3. History Outline. 

P2 :: 

{j=o) 
d :[true ~ y  :=1 I] true ~ y  :=2 I] true--~y :=3]; 

{j=O} 

e :<P2?z ;j :=1> 

{z=l A j=l)  

f :<P 2t(y +z );j :=2> 

{z=l ^ j=23 

It follows from the rule that the possible values of an 

output expression - e x p r -  after the communication 

must include all possible values of the (matching) input 

variables --Yd -- after communication. The reason for 

referring to the value of the output expression after 

communication is due to the fact that it may not take 

place. 

Example: Assume Pj !expr has exactly two semantic 

matching input commands, e :Pk ?v and f :Pk ?w. Let 

post (e) _= { (v =3v4) A (W =7) } and post ( f )  ~. 

{ (v=lv2) A (W =5V6) }, and assume the first conjunct 

of post(e) and the second conjunct of pos t ( f )  are 

marked, then v,  ~ {v=3v4}, v f  -= {w=5v6} and 

v, [expr /v ] v v/[expr/w] _-- {expr=3v4v5v6}. 

# Fifth rule (inpu0: Let c be a label of an input 

command c :Pk?Y. Let Out be the set of all 

labels of output commands which semantically 

match with that input command. For each output 

command d :P j !expra where d e Out, define Vd 

as an assertion for which there are marked con- 

juncts of post (d) which imply va then, 

* V va [y/exprd] ~ ~. 
d ~ Out 

It follows from the rule that the possible values of an 

input variable - y -  after communication include all 

possible values of the (matching) output expressions 

- expra - after communication. 

Example: Assume c :Pk ?Y has exactly two semantic 

matching outputs commands, e :P j !3 and f :P j !(v +w ). 

Let post (e ) ~_ { true } and 

pos t ( f ) -={(v=lv2)A(W=3V5)}  and assume it is 

marked, then v, ~ {3=3}, v/=-{v+w=4v5v6vT} and 

v, [y/3] v v / [y /v  +w ] _-- {y =3v4vSv6v7}. 

The history outline concept as described above 

is not complete, in the sense that it is not possible to 

capture all possible information induced by a given his- 

tory. First Oh (c) does not reflect the relative order in 

which the local states appear. Second, the pre assertion 

of an output command may not be as strong as possi- 

ble. This may happen when an input command semant- 

ically matches with several output commands. In this 

case, we might want to capture the fact that at least one 

of those outputs has to send a specific value. Such a 

fact can not be expressed in a h.o. as defined above. It 

seems that by wider use of auxiliary variables, this 

information might also be expressed. 

Example 5: A correct h.o. for the bracketed pro- 

gram P" and history h i from example 4 is shown in 

figure 3. 

Explanation: All conjuncts which refer to auxili- 

ary variables are marked using the first rule, where as 

PO we use the proof outline presented in example 3. 
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This PO provides also a proof of the invariant I .  

Marking the rest of the conjuncts of assertions from P ;  

are done by using the third rule (with history h 1). The 

conjunct (z=l) of pos t ( e )  is marked by using the fifth 

rule while the conjunct (z=l) of p o s t ( f )  is marked 

using the second rule. 

Remark:  In the above example, the history h l of 

program P (example 2) is only a pardal history of P', 

in that it does not refer to the auxiliary variables (a.v.). 

This should not cause any problem because any history 

can be uniquely extended to refer also to the exact 

values of the a.v. in each state of the sequence of states 

which form that history. This follows immediately 

from the role of the a.v. as history variables. In prac- 

flee, as in the above example, it is not necessary to 

establish the extended history, because the conjuncts 

which refer to the a.v. can be marked using the first 

rule. To avoid cumbersome presentation we use h for 

both the history without references to a.v. and its 

unique extension. The actual use can be understood 

from the context. 

For the rest of the section we refer to an annotated pro- 

gram, where the assertions form a correct history out- 

line with respect to a given history h of process i. The 

previous notaflons post (li) and post (lc) refer now to 

that annotated program. 

Lemma 2: For a history outline as defined above 

and for any n-tuple of labels lc, pos t ( lc )  is a true 

predicate after lc for all traces which match with h. 

Proof  : omitted. 

The following observation follows directly from the 

definition of a history location predicate -Shtc - (see 

the end of section two). 

Observation: Let h be the history of process i. 

If h ~ after (c ) and li ~ c then Sh 0 ...... t,)---false. 

Lemma 3: For any location set T~ and history 

h,  the associated history location predicate Shtc implies 

post  (lc ). 

proof :  Sht~ is, by definition, the strongest predi- 

cate known to be true after lc when only h is known, 

while from lemma 2, post (lc) is a true predicate after 

lc for all traces which match with h. D 

Theorem 3: If c is a label of process i,  

h ~ after (c), and ~(c ) is the disjunction of all asser- 

tions post (ll . . . . .  In) such that li ---c , then KHi*( dp( c )). 

Proof:  

(1) h -+ after(c) .  [Assumption] 

(2) Vlc . Sh~ --> post (lc ). [I.emma 2] 

(3) V lc . (post (lc ) A after (c ))-.¢~(c ). [Def. of ~(c )] 

(4) Vlc . Shtc ---~ (post(lc ) A after(c)) .  [(1),(2),Obs.] 

(5) V lc . Sht, ---~ dp(c ). [(3), (4)] 

(6) KH~(dp(c )). [(5), Def. of history knowledge] 

[] 

Now suppose it is to be proved that KHih(b) is 

true for a given program P and that h ~ after (c). The 

proof involves four steps similar to those used for loca- 

tion knowledge. 

(1) A "strong enough" h.o. (with respect to h) is 

established for P'. 

(2) Assertion ~(c),  as defined above, is constructed. 

[by Theorem 3 KH~ (~(c  )) ]. 

(3) It is proved that ~ (c )  implies b. 

[by property 1 KH~ (b)]. 

(4) By applying the auxiliary variables rule,6 

KHih(b ) is proved. 

Example 6: Consider examples 2 & 4. We 

prove KHi  hI (y =2). 

step 1: See h.o. presented in example 5. 

step 2: ~(c  ) _=post(c ,init2) v pos t ( c ,d )  v post(c  ,e ) v 
post  ( c , f  ) 

false v false v false v 
(x=3 A Z=I A i=j=2 A I ^ a f t e r ( c , f )  ). 

6 An auxiliary variable role similar to the one presented in the 
previous section is used. 
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step 3: O(c) implies y=2, by property 1 

KHan(y=2). 

step 4: By applying the auxiliary variable rule, 

Knlh' (Y =2 ) 0. 

It is easy to modify the proof method just 

presented to prove knowledge assertions when only a 

partial history is given. The modification which is 

needed is in how a correct (partial) h.o. is established 

in such cases. This will involve redefining the third 

marking rule, which showed how to satisfy proof obli- 

gations direcdy from the history. Now only a partial 

history can be used. 

As an example let us modify the proof method, 

so as to prove state knowledge assertions. Let s 

denote the given state. The modified third marking rule 

takes the following form: 

# Third rule : * s ~ (~ ^ after (c)). 

Defining the (usual) four step proof method is now 

obvious. 

In general if the current location is not given as 

part of the partial history then process i can know the 

disjunction of ~(c ) over all its possible locations. 

Note that now it will make sense to mark precon- 

ditions of statements on the basis of the marking of its 

postcondition (in the process whose partial history is 

given), at least back to an input/output statement. Pre- 

viously there was no need to do such 'backward mark- 

ing' since the entire history was available. 

Modifying the proof method for proving location 

knowledge assertions, involves omitting the third mark- 

ing rule completely. Note that in that case, as 

expected, the resulting marking rules 7 define what has 

previously been defined as a location outline. 

5. N E S T E D  K N O W L E D G E  

An extension of the knowledge definition and the 

proof method to deal with knowledge about knowledge 

is natural. In order to prove an assertion like: process i 

knows after e that process j knows p,  without further 

information about the exact location of process j 

(KLf(KLj (p))), one must prove that process j knows p 

at all locations possible when process i is after c. That 

is for every label a of process j either gLf(-,after (a)) 

or KL~(p). Again, considering example 2, such an 

assertion is: KL~ (KL t(x =z )). 

More generally, we consider a claim of the form 

KH/~(b) where b may include other knowledge opera- 

tors (but is still non-temporal). The assertion b often 

(but not necessarily) will include the form KHj(p), 

without a specific history as a parameter. This means 

that for every local history h' of process j which 

matches with one of the possible traces of the system, 

KHf'(p). It is also possible to consider history 

knowledge with only partial histories. For example, 

Kill(p) (s - for state) means that process j will have 

available a local history h' which can be used to show 

p true, but h" is not given as a parameter. Thus, h' 

may be any history of process j which matches with a 

trace of the system and also is consistent with the state 

s. Note that, at least when appearing in the scope of an 

outer knowledge operator, this differs from KS](p), 

where process j does not have a local history available. 

Let us concentrate, as an example, on assertions 

of the form KHih(KHj (p)), where p does not contain 

knowledge operators. This means that, given local his- 

tory h, process i knows that process j (history) knows 

p,  without further information about the actual history 

of process j .  Thus this assertion is true only if process 

j knows p with any of its possible histories. Although 

process i cannot in general know the entire actual local 

history of process j ,  it can know (by using h) various 

assertions which will be true of any local history of 

process j which is consistent both with the possible 

traces of the system and with h. Such assertions can be 

proven by devising a history outline for h, and properly 

marking all of the conjuncts as described previously. 

This will be in fact the first stage in proving 

actually the first marking role is enough. 
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KH:(KHj(p)). The following claim is then crucial to 

the rest of the proof method: informally, the actual 

local history of process j must satisfy all marked asser- 

tions annotated in process j ,  from (any) history outline 

established with respect to the above h. The following 

lemma express this idea formally. 

Let h and h" denote for the rest of the section, 

local histories of processes i and j respectively. Let 

post h (c) denote a post assertion of a command labeled 

by c, which can appear in some history outline esta- 

blished with respect to history h, and recall the 

definition of Oh (c) from the previous section. 

Definition: Two histories h and h" as above, are 

consistent iff  there exists a trace t such that both 

match (t,h ) and match (t ,h" ) hold. 

Lemma 4: If two histories h and h' as above, 

are consistent then for each label c of process j ,  

Oh,(c) -4 posth(c ). 

Proof" : Omitted. 

Next we describe how to establish the second 

stage in proving a nested knowledge assertion, again 

using marking rules. We require a (single) history out- 

line which will be correct with respect to every history 

of process j which is consistent with the given history 

h of process i. The aim of this is to be able to show 

KHj (p) in context. Its correctness will follow from 

lemma 4. The intuition is to allow marking the asser- 

tions annotated in process j if they can appear in the 

history outline (with respect to the above h) from the 

first stage. Formally, the assertions of the annotated 

program in the new proof form a correct (multi) history 

outline as described above, if they can be marked using 

the marking rules from the previous section, where the 

third rule is replaced by: 

# Third rule : Let c be a label of process j ,  and let 

posth (c) denote, an assertion from a history out- 

line previously established with respect to h. 

* p o s t h ( c ) ~  . 

Now, once such a (multi) history outline is established, 

we can deduce from it the truth of the needed assertion 

in the same manner as described in the beginning of 

this section for location knowledge. 

More formally, let ~(a)  be defined as before but 

with respect to the history outline just described. From 

theorem 3 and lemma 4, it follows that for every his- 

tory h" (of process j )  consistent with the above h such 

that h ~ ~zfter (a), h" KHj (~(a)). Thus, in order to 

prove KHih(KHj(p)), one must prove that for every 

label a of process j ,  either KH~(~after(a)) or 

~(a) --~p. 

In general, for KHih(b), the proof of b will be as 

previously described, except that certain conjuncts can 

be marked immediately if they define assertions true of 

any history, state, or location which is available in b 

and is consistent with h. This process can be continued 

recursively, for an arbitrarily deep nesting of 

knowledge operators. 

Example 7: Consider, yet again, the program 

from the previous examples. Using the technique 

described above, we can easily show that 

KH~ 1 (Kn2(x=3)). 

From the history outline established in example 

5, it follows that KH1 hl (-after ( init 1) ), 

KHlh'(--after(d)), and KH~(~afier(e)) .  Next a 

correct history outline with respect to all histories of 

process j consistent with h 1 is established. This is done 

by adding y=2 as a conjunct of pos t ( f )  and retaining 

only those conjuncts in process P I which refer to auxi- 

liary variables. With respect to that history outline, 

Off)  ~ (x=3). [] 

6. CONCLUSIONS 

In this paper we have shown how to prove 

knowledge assertions under a variety of knowledge 

assumptions about the available local information, 

assuming the text of the program as global information. 

We have generalized existing proof techniques, by 

relaxing the proof obligations for assertions which fol- 

low from the given knowledge assumption, and shown 
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what knowledge follows from such a proof. 

The motivation for this work is in the 

specification and design of distributed programs, and in 

future work we plan to demonstrate the utility of 

knowledge for a variety of tasks. 
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