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Abstract

We consider the problem of transforming a given sequential implementation of a data
structure into a wait-free concurrent implementation. Given the code for different op-
erations of a data structure that is designed to work under the assumption that only a
single process accesses it, we want to construct an implementation that works correctly
in a concurrent environment where it may be accessed by many processes.

We assume a shared memory model with atomic registers. It is well known that,
in asynchronous systems, using atomic read/write registers only, it is impossible to
construct concurrent implementations of even very simple objects such as test-and-set
bits. We show that the knowledge about relative speeds of processes can be used for
such implementations. We assume that there is a known upper bound on the time
taken by the slowest process to execute a statement involving an access to the shared
memory. This timing assumption is very powerful and enables us to construct fast
wait-free implementations of data structures such as queues, stacks and synchronization
primitives such as test-and-set, compare-and-swap, fetch-and-add, etc.

Our transformation works only when the given sequential implementation is bounded,
that is, there is a known upper bound on the number of steps required to complete any
of the operations it supports. In the absence of contention, transformation guarantees
that there is only a small overhead in the cost of executing the concurrent operations
over the sequential ones, namely, only a constant number of accesses to the shared
memory.

*A preliminary version of this work has appeared as [AT93].
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1 Introduction

A sequential implementation of a data structure consists of the code for all its operations,
which behaves correctly when all the operations are executed one after the other in a
sequential fashion. A concurrent implementation gives the code that behaves correctly even
when executed by many processes concurrently. A concurrent implementation is usually
required to be wait-free, that is, it should guarantee that any operation by a process will
always be completed in a finite number of steps regardless of the behavior of other processes
(such as abnormal termination). Since writing a concurrent implementation is usually much
trickier than writing a sequential one, our goal is to obtain a general method that transforms
a given sequential implementation into a wait-free concurrent implementation.

For efficiency purposes, we are interested in minimizing the difference between the costs
of executing an operation in the concurrent implementation and the sequential one. We will
focus on the contention-free complexity of a concurrent implementation, namely, the cost of
an operation when only one process is accessing the data structure. Lamport has pointed
out that in well designed systems contention for using a shared data structure is rare — most
of the time only one process is interested in accessing a given data structure [Lam87]. Thus,
we want an implementation that works correctly even when many processes access the data
structure, but when only one process is accessing it the overhead in executing an operation
is small. We will say that a concurrent implementation is fast when the difference between
the cost of an operation in the sequential implementation and its contention-free cost in the
concurrent implementation is a small constant.

One way to obtain a concurrent implementation from the sequential code is to enforce
sequentiality in accessing the data structure using a mutual exclusion algorithm. In this
solution, in order to access the data structure, a process participates in a mutual exclusion
algorithm that protects the data structure, and accesses the data structure only in its critical
section. However, typically mutual exclusion algorithms are not wait-free, and a failure of
a process in its critical section will block any further access to the data structure by other
processes. Also, for this solution to be fast, the mutual-exclusion algorithm used needs to
be of low contention-free complexity. We will present a solution by designing a fast wait-free
algorithm for mutual exclusion.

The model

For process communication, we use the shared memory model with atomic registers. Thus,
in one atomic step a process can either read or write a shared register, but cannot do
both. It is well known that using atomic registers it is impossible to construct concurrent
implementations of even very simple shared data structures such as queues and test-and-set
bits [LA87]. However, we will use timing assumptions, and show that the knowledge about
the relative speeds of processes can be used to obtain such implementations.

We assume that there is a known upper bound, denoted by A, on the time taken by
the slowest process to execute a single step. A single step involves at most one access to
the shared memory along with a minimal local computation such as assignments to local
registers, change of control location in the code, comparisons etc. Observe that our timing
assumption does not imply lock-step execution as in the synchronous model, and the time
it takes for different processes to execute a single step may be different. The bound A can



be used explicitly in the following way: a process can execute a statement delay(A); this
statement is similar to a skip statement, but takes at least A time units to finish execution.

The cost of an implementation is measured by the number of accesses to the shared
memory, and the amount of explicit delay introduced by executing the delay statements.
A concurrent implementation is called fast if the difference between the sequential cost
and the contention-free concurrent cost is a constant number of accesses and no explicit
delay. Notice that the costs of a single access to memory and an execution of delay(A) are
different, because the value of A needs to account for the slowest process, whereas the time
taken to execute a memory access needs not. Hence, we require that no delay statements
are used in absence of contention.

Processes are subject to crash failures in which a process at an arbitrary time ceases
to participate further in the algorithm. As long as a process has not failed, it must follow
its program and satisfy all the timing assumptions. Thus, wait freedom means that any
operation by a process must be completed in a finite number of steps even if all other
processes crash.

We refer the interested reader to [AT96] for a more formal description of the timing-
based model.

Overview

The main result of the paper is a method for transforming a sequential implementation
into a fast wait-free concurrent one. Our transformation works only for bounded imple-
mentations. A sequential implementation is called bounded if there exists a known upper
bound on the number of steps required to complete any of the operations. Thus, in a
bounded implementation, the time complexity of various operations does not depend on
the input or the current state of the shared data structure. The natural implementations
of queues, stacks, test-and-set, fetch-and-add, consensus (for one process), sticky-bit, swap,
compare-and-swap, are all bounded. On the other hand, consider a data structure set that
is implemented as a linked list with the membership operation implemented by a linear
search through the list. Such an implementation is not bounded because the number of
steps needed to execute the membership operation depends on the numbers of elements in
the set.

We reach our goal in several steps. First, using only atomic registers we design a fast
timing-based implementation of a restricted type of test-and-set bits; the subsequent algo-
rithms employ these bits as primitives. In the second step, we construct a fast starvation-free
mutual exclusion algorithm using test-and-set bits. This algorithm is interesting in its own
right. It makes no timing assumptions and regardless of the level of contention, the max-
imum number of steps of the process that enters its critical section in its entry code and
exit code, since the last time a process exited its critical section, is a constant (assuming
test-and-set takes one step). The previous best known starvation-free algorithm has time
complexity O(logn), where n is the total number of processes. The third step is to modify
the starvation-free algorithm, maintaining the property of being fast, so that it also be-
comes wait-free. This requires the additional assumption that there is a bound on the time
a process spends in its critical section.

Finally we use the fast wait-free mutual exclusion algorithm to transform a given se-



quential bounded implementation into a concurrent one. When each sequential operation
involves only writes that are robust to failure, that is, a process failure immediately after a
write does not leave the data structure in an inconsistent state, the transformation is easy.
In this case the wait-free mutual exclusion algorithm is fine-tuned so that the bound on the
time a process is allowed to be in its critical section is long enough to enable it to finish an
operation. When the sequential operations contain writes that are not robust to failure, a
process may fail leaving the data structure in an inconsistent state. In this case, when some
other process detects such a failure it needs to complete the preceding unfinished operation.
In Section 5 we explain how this can be done for any bounded implementation.

Related work

The idea of transforming a given sequential implementation into a wait-free concurrent one,
has drawn the attention of many researchers. Both general transformation methods and
specific concurrent implementations of various data structure have been proposed [Her91,
Plo89, Her90, Her93]. Those methods demonstrate the potential of wait-free and non-
blocking algorithms, but are too inefficient to use in practice.

In [Bar93], algorithms with the idea of “simulating” the update without affecting the
shared memory and then to apply the changes atomically using a non-blocking implemen-
tation of a multi-word Read-modify-write are presented. This idea was developed further
in [IR94]. Similar constructions using an atomic compare&swap primitive are explored
in [TSP92]. These non-blocking algorithms avoid copying the entire data structure, and al-
low disjoint access: independent operations can proceed independently. However, processes
helping each other recursively can form long helping chains of size n.

A non-blocking implementation of multi-word atomic read-modify-operations from Load-
link /Store-conditional operation is presented in [ST95]. A slightly different problem, propos-
ing to use implementations that assume the concurrent execution of only k < n processes,
and to protect the implementations using a k-exclusion and a k-renaming algorithm is
explored in [AM94]. In this way a process that accesses the data structure alone has a
O(k) complexity instead of O(n). A wait-free, universal translation method in which the
step complexity depends only on the (global) contention is presented in [ADT95]. This
last method does not allow disjoint access. A wait-free methodology that avoids copying
the data structure, but has Q(n) step complexity for even a single operation is presented
in [AM95b]. A non-blocking algorithm which implements 2-location atomic updates with
helping and waiting chains of length only O(log* n) is presented in [AD96].

Our model is quite different from the models used in all the above works, in which the
existence of a universal synchronization primitive (such as load-link/store-conditional or
read-modify-write) is assumed. Our algorithm , first described in [AT93], employs atomic
registers with timing assumptions as primitives, and the focus is on achieving low contention-
free step complexity.

The importance of contention-free complexity was stressed originally by Lamport [Lam87],
where he presents a fast mutual exclusion algorithm in which the number of steps by a pro-
cess before entering its critical section in the absence of contention is constant. Since then,
various algorithms that are sensitive to the level of contention have been proposed for mutual
exclusion [AT92, CS93, MT93, AAT94, AT96].



Relatively less work has been done on designing algorithms in the timing-based model
used in this paper. In such a model, the first deadlock-free mutual exclusion algorithm,
is due to Fischer [Lam87]. Lamport also gives a fast timing-based deadlock-free mutual
exclusion algorithm, which works correctly when some bound is assumed on the time needed
to execute the critical section [Lam87]. In [AT92], we have presented a fast timing-based
algorithm for mutual exclusion. In [LS92], an algorithm is presented for mutual exclusion
where only the property of deadlock freedom depends on the timing assumptions; this
algorithm is not fast. Nomne of these previous algorithms is starvation-free, and hence,
cannot be used directly to obtain wait-free concurrent implementations.

There has been substantial work investigating efficient algorithms for specific data struc-
tures. Few examples below. Non-blocking algorithms for implementing queues are presented
in [Lam83, HW90, HW87]. A non-blocking set manipulation algorithm is given in [LS88]. A
non-blocking Union/Find algorithm is designed in [AW91]. A non-blocking implementation
of a priority queue is presented in [IR93]. Practical and efficient implementations of non-
blocking queues are described in [Val95, MS96]. There are many constructions of concurrent
B-trees, mainly for use in databases; see for example [BS77, LY81, Sag85]. AVL trees, 2-3
trees, and a distributed extendible hash file have been implemented in [Ell80a, E1I80b, E1185].
A distributed dictionary structure is studied in [Pel90].

2 Implementing test-and-set bits

In this section we provide a fast implementation of a restricted type of test-and-set bits from
atomic registers using timing assumptions. This implementation will play a central role in
the implementations of more complex data structure in the remaining sections. We remind
the reader that the test-and-set operation cannot be implemented from atomic registers
without the timing assumptions. This impossibility result follows from the fact that, while
there is no wait-free solution for the consensus problem for two processes using only atomic
registers, there is such a solution using test-and-set bits [LA87].

2.1 Single-use test-and-set

We first consider test-and-set bits that are meant to be used only once. The shared data
structure is a bit that is initially false, and it is accessible to the processes sharing it
through the test-and-set operation. This operation atomically reads the register, sets it to
true, and returns the value read. Such a data structure is called a single-use test-and-set
bit. When many processes execute the test-and-set operation on such a data structure, the
first operation returns false and all others return true, and hence, we need some mechanism
of choosing the winner.

Our solution is inspired by the algorithms for mutual exclusion of [Lam87] and [AT92],
and is shown in Figure 1. A single-use test-and-set bit ¢ is implemented using two atomic
registers x and y, and an atomic bit z. We assume that each process has a unique identifier,
and when process ¢ wants to execute the test-and-set operation on the bit ¢, it executes
the code of Figure 1. In our construction, the bit z models the actual shared bit, and is
accessed only in the critical section of the code, namely, the if statement labeled cs. The
algorithm ensures that no two processes are in their critical sections simultaneously. Also, if



function single-use-test-and-set(t):
t.z, t.y : shared registers, initially .y is 0; t.z : shared bit, initially false;

t.xr =1
if t.y # 0 then return(true) fi;
ty =1

if t.x # i then delay(3-A);
if t.y # i thenreturn(true) fi fi;
cs: if t.z then return(true)
else t.z := true; return(false) fi
end-function

Figure 1: Fast timing-based implementation of a single-use test-and-set bit
from atomic registers (process i’s program).

some process ¢ returns true without reading z, then some other process j, that starts before
i finishes, enters its critical section (assuming no failure). These two properties together
ensure the existence of a consistent serialization. Let us see why no two processes can be in
their critical sections simultaneously. We will say that a process ¢ enters its critical section
along path « if it finds = = 4, and along path ( if it finds y = i after the delay. It should
be obvious that at most one process can enter along path a. The delay statement has two
roles. First, after some process executes the delay, the value of y will stay unchanged, and
hence at most one process ¢ can find y = 7 after the delay, and enter along path 3. Secondly,
suppose that process ¢ enters along path o and process j enters along path 3. Since j finds
y = j after the delay, process ¢ must have executed y := i before j starts its delay. Since
process ¢ takes at least 3 steps while j executes its delay statement, ¢ terminates when j
finishes the delay.

In absence of contention, a process enters the critical section along path «, executes
only 7 steps. In presence of contention, the test-and-set operation involves at most 8 steps
and an explicit delay of 3-A.

2.2 Multi-use test-and-set

The (multi-use) test-and-set bit is similar to a single-use test-and-set bit, except that it
has an additional reset operation. As before, the bit is initially false. The test-and-set
operation is as before, and the reset operation assigns the value false.

We will modify the code of Figure 1 to implement a weaker form of this data structure.
Let us define a corrupted test-and-set bit to be a bit with test-and-set and reset operations
such that the test-and-set operation always returns true, and the reset operation does
nothing. Thus, a corrupted test-and-set bit is just like the (read-only) constant value true.
A corruptible test-and-set bit is again a shared bit accessible through test-and-set and reset
operations; it behaves like a correct test-and-set bit as long as there are no process failures,
but if a process accessing the bit crashes then the bit may start behaving like a corrupted
test-and-set bit. In other words, a failure of a process accessing the bit may cause all the



subsequent test-and-set operations to return true.

Figure 2 shows the proposed construction of a corruptible test-and-set bit from atomic
registers and delays. The construction is similar to the one of Figure 1, and we will point out
the differences. As before, the bit z models the actual shared bit, and the reset operation
corresponds simply to setting the bit z to false. In Figure 1, once the register y gets a
nonzero value, it is never reset to 0, and all the remaining processes return true without
even testing z. This mechanism is now unacceptable because of the reset operation. In the
new code, the process that enters the critical section resets y to 0 before returning from
the test-and-set operation. The algorithm ensures that no two processes are in the critical
section simultaneously.

function corruptible-test-and-set(t):
t.x, t.y : shared registers, initially ¢t.y is 0; t.z : shared bit, initially false;
t.x =1
if t.y # 0 then delay(A);
if t.y # 0 then
delay(9-A); return(true) fi fi;
t.y =1
if t.x # i then delay(4-A);
if t.y # i then
delay(5-A); return(true) fi fi;
cs:  if t.z then t.y := 0; return(true)
else t.z := true; t.y := 0; return(false) fi
end-function
procedure reset(t)
t.z := false
end-procedure

Figure 2: Fast timing-based implementation of a corruptible test-and-set bit
from atomic registers (process ¢’s program).

To prove correctness, we need to show that every run involving multiple invocations of
test-and-set and reset operations has a consistent serialization. With each operation we
associate a commit point. Consider a test-and-set operation by a process that enters the
critical section. If the process finds z set, then the commit point coincides with this read. If
the process finds z to be false and assigns true to z, then the commit point coincides with
this assignment. The commit point of a reset operations coincides with the assignment of
false to z. To begin with, let us ignore all the test-and-set operations that terminate without
testing z, that is, without entering the critical section. Then, it is easy to prove that the
ordering of all other operations specified by the ordering of their respective commit points
gives a consistent serialization. Now consider a test-and-set by some process ¢ which returns
true without testing z. The deadlock freedom of the underlying mutual exclusion algorithm
ensures that there is some other process j whose execution of test-and-set overlaps with that
of process ¢, and process j enters the critical section. The long delays introduced just before
process ¢ terminates ensure that this invocation overlaps with the commit point associated



with process j’s operation. The commit point for process i’s operation is immediately after
process j’s commit point, and this leads to a consistent serialization. There is one remaining
case: it may happen that process j is already committed before process i starts, but process
J has not yet reset y to 0. In this case, process i may find y # 0. The statement delay(A)
following the test ensures that process j finishes the assignment y := 0 in its critical section.
Now process i tests y again, and if it finds y # 0 again, then there must be another process k
that enters the critical section. In this case, process i’s execution overlaps with the commit
point of process k.

If a process in the critical section fails just before resetting y, then all the subsequent
test-and-set operations will return true, and thus, this failure will change the bit into a
corrupted test-and-set bit.

In absence of contention, a process will enter its critical section along path « and test z,
and thus, the implementation is fast. The worst-case time-complexity of the implementation
can be computed easily by counting the steps. The properties of the construction are as
follows:

Proposition 1 Properties of algorithm of Figure 2:

o The algorithm is a correct implementation of a corruptible test-and-set bit.

o A process finishes test-and-set operation within time 17-A irrespective of the failures
of other processes.

o The contention-free time complexity is 8 steps and no delay statements.

3 Starvation-free mutual exclusion

We now present a new and simple solution to the mutual exclusion problem [Dij65] (see also
[Ray86]). The solution uses test-and-set bits as the basic synchronization primitive. The
algorithm we present is fast even when there is contention — its worst-case time complexity
is a constant. That is, regardless of the level of contention, the maximum number of steps
of the process that enters its critical section in its entry code and exit code, since the
last time some process exited its critical section, is a constant (assuming test-and-set takes
constant time). This should be contrasted with the fact that using atomic registers only, it
is impossible to design a deadlock-free mutual exclusion algorithm, even for two processes,
with bounded (worst-case) time complexity [AT92].

The algorithm is based on a starvation-free algorithm by Burns [Bur78]. In his algorithm,
the winning process, even in the absence of contention, executes O(n) steps, where n is the
total number of processes. As far as we know, the time complexity of the best previously-
known (deterministic) starvation-free solution is O(logn).

The algorithm of Figure 3 employs a test-and-set bit lock, an array waiting of atomic
bits, and a shared atomic register turn. Process 7, when it wants to enter its critical section,
first sets waiting[i] to true, and then repeatedly performs test-and-set operation on the bit
lock. It can decide to enter its critical section in two ways. If test-and-set returns false,
then the process has the lock, and can enter the critical section. On the other hand, the
last winner, that is, the last process to enter the critical section, may grant permission to



turn: shared register;

lock: shared (corruptible) test-and-set bit, initially false;
waiting[0..(n — 1)]: shared array of bits, initially false;
lturn, key: local registers ;

waiting[i] := true;
key := true;
while (waiting[i] and key) do
key := test-and-set(lock) od,

critical section;

waiting[i] := false;

if turn =i thenlturn := (turn + 1) mod n

else lturn := turn fi;

if waiting[lturn] thenturn = lturn; waiting[lturn] := false
else turn := (lturn + 1) mod n; reset(lock) fi

Figure 3: Fast starvation-free mutual exclusion using test-and-set
bits — process i’s program.

process i by resetting waiting[i] to false. When some process exits its critical section, it
checks if the process turn wants to enter critical section, that is, if waiting[turn] is set. If
S0, it grants turn permission to enter the critical section; otherwise, it increments turn and
resets lock. The winning process executes only a constant number of steps in both its entry
code and exit code. Also, the algorithm guarantees that while a process is waiting to enter
its critical section, all the remaining processes can enter the critical section at most n — 1
times altogether. The properties of the algorithm are summarized in the following claim:

Proposition 2 Properties of algorithm of Figure 3:

e No two processes are in their critical sections simultaneously even if processes fail.

e In absence of process failures, if a process is trying to enter its critical section, then
it eventually enters its critical section.

o Assuming test-and-set takes constant number of steps, a process entering its critical
section takes constant number of steps in its entry code and exit code, since the last
time some process exited its critical section.

Note that the algorithm makes no use of timing assumptions. We can replace the test-
and-set bit by atomic registers with timing assumptions according to the construction of
Section 2. The resulting algorithm is a timing-based starvation-free solution from atomic
registers. In absence of contention, it provides fast access with constant time complexity.



4 Wait-free mutual exclusion

Now we modify the algorithm of Section 3 so as to make it robust to process failures also.
The property of wait freedom requires that a failure of a process should not block the
progress of other non-faulty processes; that is, if a process is trying to enter its critical
section, then it should eventually enter its critical section, provided this process itself does
not fail. To ensure wait freedom, it is essential that a process is able to detect the failure of
some other process. We use timing assumptions for this purpose. We assume that there is
an upper bound on the amount of time a process is allowed to spend in its critical section,
and this bound is known to all the processes. Recall that in our model only crash failures
are allowed, and thus, all timing assumptions are satisfied as long as a process participates
in the algorithm.

turn: shared atomic register;

count[0..(n — 1)]: shared array of registers;

lock[0..(n — 1)]: shared array of corruptible test-and-set bits, initially false;
waiting[0..(n — 1),0..(n — 1)]: shared array of bits, initially false;

lturn, lcount, j, : local registers, £ is initially O;

K: constant;

startl: waiting[i, £] := true;
start2: lcount := count[{];
for j =1to K do
if not test-and-set(lock[¢]) thengoto cs fi;
if not waitingl[i, ] thengoto cs fi;
delay(A) od;
if count[(] = lcount thent := ( + 1; goto startl
else goto start2 fi;

cs: critical section;

lcount := (count[l] + 1) mod n;

count[l] := lcount;

waiting[i, ] := false;

if turn =i thenlturn := (turn + 1) mod n

else lturn := turn fi;

if waiting[lturn, (] thenturn := lturn; waiting[lturn] := false
else turn := (lturn + 1) mod n; reset(lock[¢]) fi

Figure 4: Fast wait-free mutual exclusion using test-and-set bits — process i’s program.

Let us see how the solution of Figure 3 can be made wait-free. We introduce a new
register called count, and this register is incremented each time a process leaves its critical
section. Recall that, in absence of failures, once a process leaves its critical section, the
next one enters the critical section within a constant number of steps. Each process spends
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only a bounded amount of time in the critical section. This implies that the value of count
should change within a bounded period. If a process records the value of count initially, and
finds count unchanged after a sufficient delay, it can conclude that some process has failed.
Observe that, once a process ¢ starts trying, there can be at most n— 1 entries to the critical
section before ¢ wins, and hence, count can get incremented at most n — 1 times while ¢
is waiting to enter. Consequently, it suffices to have count to act as a modulo n counter.
Once a failure is detected by a process, the process can execute the same algorithm, but
with a fresh set of registers. For each process failure, we may need a new copy, and hence,
n such copies are required. (A finer analysis reveals that it is sufficient to have only one
copy of the register turn.)

The solution is shown in Figure 4. The register ¢ denotes the number of the copy
currently being used. Initially, £ is 1, and when a failure is detected, it is incremented.
Notice that this register should stay the same between different invocations of the mutual
exclusion algorithm by the same process; that is, though £ is accessible only by process ¢,
it is a (temporally) global register.

The waiting for entering the critical section is mainly inside the for loop. As before,
process i can enter its critical section if it obtains false from test-and-set operation, or if the
previous winner grants it permission by resetting its bit in the array waiting. Executing the
loop K times ensures a delay of K-A between the successive sampling of the register count.
Let K.s-A be the upper bound on the time that a process is allowed to spend in its critical
section. Suppose the time taken to execute test-and-set is Kis-A. A careful counting shows
that it suffices to have K = K s + Kis + 12. If we assume that test-and-set is atomic, then
choose K to be K., + 13.

If a process accessing lock fails, thereby corrupting it, then this failure will be eventually
detected by everyone. We point out that a process will have to execute the for loop K times
only when some process fails, a rare occasion. On the other hand, in absence of contention,
our wait-free solution is fast.

Proposition 3 Properties of algorithm of Figure 4:

e No two processes are in their critical sections simultaneously even if processes fail.

e If a process is trying to enter its critical section, then it eventually enters its critical
section even if other processes fail.

e In absence of contention, a process needs to execute 4 steps (including a test-and-set
operation) in its entry code, 8 steps in its exit code, and no delay statements.

Since lock can be an array of corruptible test-and-set bits, we can use the implementation

of Section 2. In that case, the value of K should be K. + 29, and contention-free time
complexity is 19 steps.

5 Sharing a sequential data structure

Consider a data structure that can be accessed through a fixed set of operations. We are
given the code of each operation such that the code implements the operation correctly using
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atomic registers under the assumption that the data structure is accessed only sequentially,
that is, by only one process. We also assume that the given code is bounded, that is, the
number of steps required to execute the given sequential code of an operation is bounded,
and this bound is known a priori. As an example, consider the data structure stack with
three operations push, pop, and is-empty. It is possible to implement the stack as an array,
where all these three operations take only a small number of steps, and this number is
independent of the current state of the stack, or the value to be pushed. On the other
hand, consider a data structure set that supports the operation member that tests whether
its argument is a member of the set. Suppose we implement the set by a linked list of
its elements. The membership operation will involve search, and the number of steps it
takes will depend on the size of the set at the time of the invocation. Consequently, this
implementation of set is not bounded. We can get a bounded implementation of a set
(which supports a membership operation) using a hash table.

Typically, the given sequential code for any operation will involve several read and
write operations to the shared registers modeling the data structure. A write operation
is said to be failure robust, if a process failure immediately after the write operation does
not leave the data structure in an inconsistent state. That is, in case of a process failure
immediately after a failure-robust write, we may either assume that the operation was
successfully completed, or assume that the operation was never executed. As an example,
consider the data structure stack that is implemented as an array A and an integer c that
keeps the count of its elements. The stack consists of the elements A[0] through Alc — 1].
Suppose the operation push first writes to the location A[c] and then increments c. Here,
both writes are failure robust; if a process fails before the second write, it is safe to assume
that the process failed before executing push. Observe that if the operation push first
increments ¢, and then writes the element into the array, the first write is not failure
robust.

If all the write operations in the given sequential code are failure robust, then we can
use the code of Figure 4 directly to transform the given sequential bounded implementation
into a concurrent implementation. To access the data structure, process 7 simply executes
the code of Figure 4 and in the critical section executes the given sequential code of the
desired operation. The fact that the data structure is bounded gives us the desired value of
K.s. (Recall that K.-A is the upper bound on the time that a process is allowed to spend
in its critical section.) Each such access to the shared data structure finishes within a finite
time in spite of the failures of other processes. In absence of contention, in addition to the
number of steps of the sequential code, the process needs to execute 19 extra steps. Thus,
the overhead is constant in absence of contention, and the implementation is fast.

It is possible to write bounded sequential code with only failure robust writes for various
synchronization primitives such as test-and-set, fetch-and-add, and data structures such as
queue, stack. This code can then be transformed as above to allow sharing.

Now we illustrate how to use the construction of Figure 4 even when the code contains
writes that are not failure robust. Suppose the number of writes in a sequential operation
accessing the data structure is bounded by a constant, say k. We introduce additional
atomic registers x1,...z; and yi, ... yg, and an atomic bit b. We modify the code for each
operation as follows. The bit b is initially false. At the i-th write, instead of modifying the
data structure, the process writes the name of the register (or the location) in z;, and the
value it wants to write in ;. At the end of the code, the process sets the bit b to true,
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and then actually updates the data structure; that is, for ¢ = 1,...k, writes the value y;
to the location specified by x;. After this update, it resets the bit b to false. Consider
what happens when a process fails in the middle of an operation. If b is false then the data
structure is in a consistent state. If b is true then the data structure may be only partially
updated, but all the information needed to finish the incomplete operation is available.
Hence, any process that wants to update the data structure first tests b, and if b is true, it
writes the value y; to the location specified by x; for i = 1,...k, resets b to false, and then
starts its own operation.

procedure swap (i, j):

r1,%2,Y1,y2: shared registers;

b : shared bit, initially false;
if b thenA[z1] := y1; A[xs] := yo; b := false fi;
x1 = 1; y1 = A[j];
ry = j; yo = Alil;

b := true;
Ali] = y1; Alj] = yo;
b := false

end-procedure

Figure 5: Code for swapping.

As an example, consider an array A that supports the operation swap(i,j) that swaps
the values in the locations A[i] and A[j]. Clearly, the operation has to update both the
registers, and no matter in what order these two writes occur, the first one cannot be failure
robust. The code of Figure 5 shows the above strategy. We can now use this code in the
critical section of Figure 4 with K.s = 18 (assuming each statement involves one access to
a shared location).
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