
Speeding Lamport’s Fast Mutual Exclusion Algorithm∗

Michael Merritt† Gadi Taubenfeld†

Abstract

A linked list is used to speed up a mutual exclusion algorithm. This optimization permits
additional concurrency by allowing scans of the list to be concurrent with insertions and
deletions of list entries.

1 Introduction

In [Lam87], Lamport presents a fast mutual exclusion algorithm, with time complexity —
the number of accesses to the shared memory in order to enter and exit a critical section
in the absence of contention — of only seven memory accesses. Figure 1 in Section 2
presents Lamport’s algorithm. This algorithm assumes that each of n potentially contending
processes has a unique identifier taken from {1, ..., n}, and that the only atomic operations
are reads and writes. In particular, test-and-set operations are not supported.

Lamport’s algorithm provides fast access in the absence of contention, however, in the
presence of contention (of even just two processes), the winning process may have to check
the status of all other n processes before it is allowed to enter its critical section. (In the
for loop that scans the array b[1..n].) That is, even if the winning process never has to
busy-wait, it still may need to access the shared memory more than n times.

Since the other contending processes are waiting for the winner, it is particularly im-
portant to speed its entry to the critical section. That is, to design a contention sensitive
mutual exclusion algorithm in which the time it takes for the winning process to enter (and
exit) its critical section, since the last time some process exited its critical section, is a
function of the actual number of contending processes.

Note that n is a constant in Lamport algorithm. In a typical implementation, the actual
number of contending processes varies over time. Typically, tables such as the array b[1..n]
are statically allocated, and n is chosen as a pessimistic upper bound on the total number
of potentially contending processes, although the expected number of such processes may
be several orders of magnitude smaller.

This is the case in the TUXEDO1 system [TUX90].2 In this system the pessimistic upper
bound on the total number of potentially contending processes is more than thirty thousand,
while the expected number of such processes is less then a dozen. Lamport’s algorithm is

∗This paper is a revision of an AT&T Technical Memorandum, May 1991.
†AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
1The TUXEDO Transaction Processing System provides applications designers and programmers with a

framework for building on-line transaction processing applications in a distributed computing environment.
2TUXEDO and UNIX are registered trademarks of UNIX System Laboratories.

1



used when TUXEDO is run on machines – like the MIPS 3000 series processors – that do
not support an atomic test-and-set operation [Mac91].

We describe a performance optimization of Lamport’s algorithm, which exploits a dis-
tinction between active and inactive processes. Inactive processes may not contend for the
shared resource. However, they can execute initialization code and become active. Sim-
ilarly, active processes may become inactive by executing appropriate exit code. In our
optimization, only the status of active processes must be examined, using a linked list. Pro-
cesses become active by inserting themselves into the list, and become inactive by deleting
themselves. (The notion of active process is made precise in Section 5.) While insertions
and deletions cannot be done concurrently, the optimization permits additional concurrency
by allowing scans of the list to be concurrent with insertions and deletions. The resulting
algorithm is sensitive to the actual number of processes in the system and solves mutual
exclusion efficiently in contexts in which process creation and destruction are rare.

The concluding section raises several open problems related to this optimization and
mutual exclusion.

2 Lamport’s algorithm

Figure 1 below presents Lamport’s algorithm [Lam87]. The algorithm is deadlock-free
but allows starvation of individual processes. (Lamport argues that deadlock-freedom is
essential, but that starvation-freedom is not, since contention for a critical section should
be rare in well designed systems.)

x, y: integer, initially y = 0
b[1..n]: boolean array, initially false

start: b[i] := true;
x := i;
if y 6= 0 then b[i] := false;

await y = 0;
goto start fi;

y := i;
if x 6= i then b[i] := false;

for j := 1 to n do await ¬b[j] od;
if y 6= i then await y = 0;

goto start fi fi;
critical section;
y := 0;
b[i] := false

Figure 1: Lamport’s Fast Mutual Exclusion Algorithm – process i’s program.

In the algorithm, process i first sets x to i, and then checks the value of y. When it
finds y = 0, it sets y to i and then checks the value of x. Let us say that process i enters
its critical section along path α if it finds x = i at this step. At most one process can enter

2



its critical section along path α. If a process finds x 6= i then it delays itself by looping
until it sees that all the bits in the arrary b are false. Checking these n bits plays two roles:
(See [Lam87] for a complete correctness proof.)

1. Say that process i enters its critical section along path β if it finds y = i after exiting
the for-loop. A consequence of having observed all the bits to be false is that the value
of y will not be changed thereafter until process i leaves the critical section. This follows
because every other contending process either reads y 6= 0 in the third line and is looping
in the first three statements, or reads y = 0 and then finished the assignment y := j in the
sixth line before setting b[j] to false. Hence, once process i finds y = i after the loop, no
other process can change the value of y until process i sets y to 0 in its exit code. It follows
that at most one process can enter along path β.

2. The for-loop ensures that if a process enters the critical section along path α, then
any other process is prevented from entering along path β. To see this, observe that when a
process j enters its critical section along path α, its bit b[j] remains true. Thus, if another
process tries to enter along path β it will find that b[j]= true and will have to wait until
process j exits its critical section and sets b[j] to false.

3 The modified algorithm

The optimization is to replace the scan through array b[1..n] by maintaining a linked list of
the active processes. Instead of checking the status of all processes, a process only checks
the status of the processes in the list. The modified algorithm is shown in Figure 2.

start: b[i] := true;
x := i;
if y 6= 0 then b[i] := false;

await y = 0;
goto start fi;

y := i;
if x 6= i then b[i] := false; next := list[0]; /* notice that next 6= 0 */

repeat await ¬ b[next]; next := list[next]; /* scan the list */
until next = 0;
if y 6= i then await y = 0;

goto start fi fi;
critical section;
y := 0;
b[i] := false

Figure 2: The modified Mutual Exclusion Algorithm – process i’s program.

The linked list is implemented using a shared array list[0..n], where the first entry list[0]
is the header of the list. The variable next is an additional local variable that is used as a
pointer into the array. The range of next and of the entries of list is 0 through n, and all
are initialized to 0.

3



As in Lamport’s algorithm, the variable y is initialized to 0, and all entries in the boolean
array b[1..n] are initially false.

4 Maintaining the list

Of course, the linked list of active processes must be maintained correctly. At first examina-
tion, this would seem to require mutual exclusion between the different processes accessing
the list, bringing the problem full circle. But we observe that if processes are inserted and
deleted using the procedures in Figure 3, then processes may safely scan the list concur-
rently with inserts and deletes. These procedures presuppose a mechanism for maintaining
mutual exclusion between inserts and deletes (the new critical section). This mechanism is
discussed below.

Insert(i)
enter new critical section:

find predecessor;
list[i] := list[predecessor];
list[predecessor] := i;

leave new critical section:

Delete(i)
enter new critical section:

find predecessor;
list[predecessor] := list[i];

leave new critical section:

Figure 3: List insertion and deletion for process i.

A process may choose its predecessor in various ways. To be safe, so that scans will not
miss list entries, the insertion policy should not place any item later in the list than where
it last appeared. Both insertion at the head of the list and by process id are safe. Insertion
at the end of the list is not safe—a scan may access a node just as the node is deleted and
then re-inserted, and the scan may jump to the end of the list, missing intervening entries.

A safe insertion policy ensures that a scanning process will observe all entries that are in
the list throughout the scan execution. Processes that enter and/or leave the list during the
scan may be missed. But process i is not active and b[i]=false while inserting or deleting
itself. Hence, if a scanning process misses i during a scan, then b[i]=false at some point
during the scan. Thus, we have the effect of reading b[i], without the cost.

There is still the question of maintaining mutual exclusion between inserts and deletes. A
natural alternative is to use Lamport’s original algorithm to implement mutual exclusion for
this purpose. Scanning the entire array happens, at worst, only when processes are inserted
or deleted. Assuming that this is rare in comparison to the number of times processes
request shared resources, a net savings results. Using this approach, processes that do not
expect to be active contenders for the resource may voluntarily delete themselves from the

4



list, and similarly insert themselves only upon first contending for the shared resource.
In practice, it may be more efficient (and simpler) to insert and delete processes from

this list when they are first created and finally destroyed–events which typically involve
updates to system data structures that take place in mutual exclusion. Including the code
for insertion and deletion from the list within existing critical sections would entail negligible
overhead.

5 Scan termination

There can be a limited kind of interference between processes that scan the list in the
modified algorithm (Figure 2), and processes that insert or delete elements from the list,
depending on how processes choose their predecessor (Figure 3).

For example, if processes insert themselves at the head of the list (i.e., predecessor = 0),
then in principle a reader may find itself scanning the list forever, as entries are deleted
from late in the list and reinserted at the beginning. Under the assumption that inserts
and deletes are rare, this may not be a problem in practice.

Even this problem may be prevented, by insertion in order of process id. Since readers
would always move from larger to smaller entries, no reader will scan more than n entries
before returning. Insertion becomes slightly more expensive, since a process must find its
position before insertion.

6 Correctness

The correctness of the modified algorithm, assuming a safe insertion policy, follows easily
from the correctness of the original [Lam87], and the following observations. Assume that
each process does an insertion, some number of scans through the list (in the modified
mutual exclusion algorithm), and then a delete, possibly repeating this sequence. If a
process has finished an insertion operation but not yet begun a deletion, call it active,
and if it has finished a deletion operation but not yet begun an insertion, call it inactive.
Processes executing insert or delete operations are in transition.

Consider the array list[0..n] as a directed graph of n + 1 nodes, such that there is an
edge from node i to node j if list[i]= j.

It is straightforward to verify the following invariants:

• There is a path from every node to node 0. This and uniform outdegree of 1 implies
there is a unique cycle in the graph, which includes node 0.

• Active processes are on the cycle and inactive processes are not on the cycle.

• If j is active and there is a directed path from node i to j not going through node 0,
then such a path exists for as long as j is active.

From this, it follows that if a scan of the list terminates, it will visit all the nodes that
are active throughout the entire scan, and perhaps some nodes in transition. However, no
node that is inactive throughout the scan will be visited. These properties are sufficient to

5



maintain the correctness of the mutual exclusion algorithm. Specifically, if a process i is
not active, then b[i] is false. Any process i missed during a scan of the list has implicitly
been observed to have b[i]=false. (Formally, such read steps can be inserted into runs of the
modified algorithm, resulting in a run of Lamport’s original algorithm.) The correctness of
the modified algorithm now follows from that of the original.

7 Parallel sub-lists

Parallel processors could advantageously exploit greater concurrency, if the list is main-
tained as a collection of distinct sub-lists, such as one per processor. (Here we assume that
processes resident at separate processors must still maintain mutual exclusion via a shared
memory.) Processes could be inserted and deleted from only one sub-list, while scanners
would concurrently scan all of them. Insertions and deletions would require mutual ex-
clusion only with similar operations on the same sub-list. More complex quorum schemes
are possible, in which nodes are inserted to more than one sub-list and scanners need only
access enough sub-lists, where “enough” requires the scan of at least one sub-list used by
each potential insert operation. (All insert and scan sets must intersect.)

8 Discussion

The scan of the linked list could be pipelined with parallel awaits for the individual entries
of b[1..n]. This might be profitably exploited in machines with fine grains of parallelism.

Alternatives to (or elaborations of) the linked list data structure are possible. For
performance in practice, the key issue is most likely to be which operations must take
place in mutual exclusion. In particular, alternative data structures should allow scan
operations to proceed concurrently with inserts and deletes. If the linked list is unordered
(as discussed in Section 4), in the absence of contention inserts at the front take constant
time, while deletes could take time linear in the number of list elements (the cost is scanning
to find the predecessor node), and scans may not terminate (deletions and insertions may
continually move the scanner back to the front of the list). If the list is doubly-linked,
deletes are also constant time, but scans still may not terminate. (Scans in mutual exclusion
would terminate but sacrifice concurrency.) Double links on an ordered list guarantee scan
termination in time linear in n and deletes remain constant time, but insertions could take
time linear in the number of list elements (due to the cost of finding the correct insertion
point). Are there alternative data structures that reduce both inserts and deletes to constant
time in the absence of contention, still guaranteeing termination of scans in linear time, and
preserving concurrency?

Abstractly, the linked list supports three logical operations, insert, delete and scan,
where the scan returns a set of id’s that contains all the processes that are active throughout
the scan, and none that are inactive. In the specific implementation, the scan is very
inexpensive relative to insert and delete, since it does not require exclusive access to the
list. Are there other applications for such a shared primitive?

The modified algorithm solves mutual exclusion efficiently in contexts in which process
creation and destruction are rare. The cost of inserting or deleting a process from the list

6



is then amortized over the more frequent mutually exclusion operations. With Lamport’s
original algorithm implementing mutual exclusive access to the list, in the presence of even
two contending processes, the winning process may still have to check the status of all other
n processes. (i.e., even if the winning process never has to busy-wait, it still may need to
access the shared memory n times.) It is interesting to speculate whether there exists a
deterministic mutual exclusion algorithm in which the number of accesses to the shared
memory by the winning process is a function of actual number of contending processes.

This question is complicated by the issue of measuring time (or memory accesses) in
systems which involve waiting. For example, it is possible to show that in any mutual
exclusion algorithm, when there is contention of two or more processes, there is no bound
on the number of steps taken by the winning process since the last time some process exited
its critical section [AT92]. That is, whenever there is contention, the adversary can schedule
the contending processes in such a way that each of them will have to busy-wait.

One possibility is to measure time under the assumption that every memory access takes
at most unit time. For example, if one process busy-waits on a bit (reads repeatedly until
the value returned is 1), and simultaneously a second process is executing a write to set the
bit to 1, the the writer’s single operation dominates: although any number of reads may
have taken place, the single write operation takes time at most one, and within at most two
more time units, the busy-wait terminates. (An unsuccessful read may partially overlap the
write. The first read operation that occurs entirely after the write is the earliest read that
must return 1.)

In Lamport’s algorithm (and ours), until the critical section is occupied, one process
waits for another only long enough for the latter to execute a constant number of memory
accesses. Under the assumption above, the waiting process can only execute a constant
number of reads during this busy wait. Hence, under this measure, we could argue that
the winning process in Lamport’s algorithm can take O(n) time, under contention of two
or more processes, while our algorithm takes time proportional to the number of active
processes.

Using this efficiency measure, some preliminary results indicate that contention sensitive
mutual exclusion may be possible: There exists an algorithm where the time it takes a
the winning process to enter the critical section is of order min{k, log n}, where k is the
number of contenders and n is the total number of processes [AGMT92]. Unfortunately, this
algorithm uses an unbounded number of shared registers. The algorithm uses a building
block which solves the leader election problem with a bounded number of shared registers
and with time complexity of order min{k, log n}.

References

[AGMT91] Y. Afek, E. Gafni, M. Merritt, and G. Taubenfeld. Contention sensitive mutual
exclusion. Presented at the rump session of the 10th Annual ACM Symp. on
Principles of Distributed Computing, Montreal, Quebec, August 1991.

[AT92] R. Alur and G. Taubenfeld. Results about fast mutual exclusion. A prelim-
inary version appeared in the Proceedings of the 13th IEEE Real-Time Sys-

7



tems Symposium, pages 12 – 21, December 1992. (Full version available from
gadi@research.att.com.)

[Lam87] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. on Computer
Systems, 5(1):1–11, 1987.

[TUX90] TUXEDO System Release 4.0 – Product Overview. AT&T, 1990.

[Mac91] M. R. MacBlane. Source level atomic test-and-set for the TUXEDO System
source product. UNIX System Laboratories, May 14, 1991.

8


