
Disentangling Multi-object Operations

(EXTENDED ABSTRACT)

Yehucla

Abstract

Afek * Michael Merrittt

We consider the problem of implementing atomic op-
erations on multiple shared memory objects, in systems
which directly support only single-object atomic oper-

ations. Our motivation is to design algorithms that
exhibit both low contention between concurrent oper-
ations and a high level of concurrency, by disentangling
long chains of conflicting operations. That is, operations
that access widely disjoint parts of a data structure, or
are widely separated in time, should not interfere with
each other.

The algorithm reported here extends and is based on
the work of Attiya and Dagan [A D96], where a non-
blocking solution is presented for two-object atomic op-
erations. For any number, k, we present a wait-free
solution for atomically accessing up to k objects. No-
tions of local contention and local step complexity are

defined, and it is shown that the solution has low local
contention and local step complexity. Relations between

multi-objects and the familiar resource allocation prob-
lem are explored-the algorithm presented also provides
a solution to the resource allocation problem.

1 Int roduct ion

Consider a data structure stored in shared memory and
accessed concurrently by n processes. The shared data
structure is abstracted w an array of memory locations.

To perform its operation, a process needs to get exclu-
sive access to the set of locations necessary to carry out

●Computer Science Dept., Tel-Aviv Univ., Israel 69978, and
AT&T Labs. Partial support provided by BSF grant 94-00297.

t AT&T Labs, 180 Pwk Av., Florhm park, NJ 07932-0971.

Partial support provided by BSF grant 94-00297.
$The Open Univ., 16 Kiausner st., P.O,B. 39328, Tel-Aviv

61392, Israel, and AT&T Labs.
$~SOF p=~el Softwme, I~r=l

Permissionto make digitalfiord copiesof all or pwt of thismaicri;)iIbr
personrdor ci,~room useisgrantedwithoutfeepmvidcdIIMI thecOpies
are notmadeor distributedfor profit or conrmcrcialodvruttage.thecofry-
right notice.the (itle of the publicationand it..dotezppmr. md noticeis
given ttrd copyright is by permissionof the ACM. hw. 10 COPYOlll*~i~.
to republish,to poston scwm or to redistribttte10lists.requircwspccilic
pemlissiontd/Or fee

1997 POD{” 97 Scmto Borbrm (.’.4 [ISA
Copyright 1997 ACM O-89791-952-1~7/8..$3.5O

Gadi Taubenfeld$ Dan Touitou~

the operation. We assume that the set of locations re-

quired by each such multi-object operation is fixed at

the beginning of the operation. (As opposed to more
general transactions on data structures that decide on
the locations to use on the fly).

Except for a wait-free requirement, implementing

multi-object operations is essentially the well-known re-
source allocation problem, where locations are abstrac-
tions of more general shared resources, Typically, a
resource in a concurrent system may be accessed by
only one process at a time. To share a single resource,

processes coordinate using mutual exclusion algorithms.
When processes require simultaneous access to multiple
resources, the task of coordinating them properly is the
resource allocation problem. Hence, non-blocking and
wait-free multi-object algorithms provide fault-tolerant
solutions to the resource allocation problem, at least in

those ca~es in which the actions taken in the critical
section are such that processes can help each other. If
helping processes in the critical section is not an option,

fault-tolerant multi-object algorithms such as ours can
be modified to simply wait for other processes instead
of helping them—resulting in resource-allocation algo-

rithms for the fault-free model with small failure locality
when failures do occur [CS96].

Our motivation then is to design algorithms for shared
data structures and shared resources, supporting multi-
object operations, that have low contention and a high
level of concurrency. That is, operations that access dis-
joint parts of the data structure, or are widely separated

in time, should not interfere with each other. For exam-
ple, operations on disjoint sets of components can pro-
ceed independently, and avoid concurrency-control over-
head [Bar93, IR94, TSP92, ST95, AM95a]. When there
is considerable contention, conflicting operations could
form long chains and complex webs, transitively effect-
ing operations that are otherwise disjoint. Extremely
fast algorithms might be designed that “disentangle”
these webs, and require coordination only among locai

neighborhoods of contending operations. Recent work
by Attiya and Dagan achieves this goal for operations on
pairs of locations, obtaining a non-blocking algorithm
for 2-location atomic updates [AD96]. Using algorith-
mic ideas from the work of Attiya and Dagan, we de-
scribe a wait-free solution for any fixed number of lo-

111

cations, k, To describe the properties of this solution,
we also introduce new definitions for specifying the lo-

cal behavior of algorithms—the degree to which they
succeed in disentangling webs of conflicting operations.

In the remainder of this section, we briefly introduce
ollr local complexity measures, provide an overview of
the algorithm itself, and close with a discussion of the
extensive literature on this and related problems. Sec-

tion 2 formally defines and motivates our local com-
plexity measures, and Section 3 presents our algorithm

in more detail, concluding with a statement of its prop-
erties.

1.1 Local complexity

In defining our complexity measures we use the familiar

notion of a co~~flict graph. Informally, two multi-object
operations are in conflict if they are concurrent and the
set of locations they need intersect. A conflict graph is

a graph whose set of nodes is the set of operations such
that every two conflicting operations are connected by
an edge,

We define two measures, both simple and eaay to ap-
ply, capturing the dependence of an operations’ con-
tention and step complexity on its local neighborhood

in the conflict graph. Informally, an algorithm haa d-
local contention if any two operations that access the
same location simultaneously are at distance at most d
from each other in the conflict graph. An algorithm haa
d-local step complexity if the step complexity of any
operation is bounded by a function of the number of
operations within distance d of it in the conflict graph.
(Exact definitions are given in Section 2.)

Notice that d-local step complexity does not imply d-
Iocal contention. For example, we couid define a single
huge Read/Modify/ Write (RM W) object, consisting of

the union of all the individual objects, and define each
multi-object operation as a single RMW operation on
this object. Because each operation consists of a single
atomic step (on a huge object), this algorithm haa small
d-local step complexity. (Indeed, the step complexity is
1, and is d-local for any d ~ 1.) But any two operations
may access the single object, whether they conflict or
not, so the algorithm does not exhibit local contention.

Most of the non-blocking multi-object implementa-
tions in the literature (e,g. [IR93, AM95a, ST95])
are based on the same universal single-location oper-
ation, Load Link/StoreConditional (LL/SC). Instead of
LL/SC, our algorithm is based on the existence of a

general, atomic, single-location RM W operation, where
each Ioc.ation may hold many fields. This allows us to
concentrate on the new ideaa of our algorithm, rather
than 011the difficulties of the extra synchronization nec-
essary between LL/SC pairs. Nevertheless, we discuss in

!+ction 3.3 how to replace the large RM W object associ-
ated with each location by an implementation that uses

LL/SC on single words (given in [ADT95]) and does not
change the local contention and local step-complexity
properties of our algorithm.

1.2 The algorithm in a nutshell

In this paper we present a wait-free multi-object algo-
rithm on k objects, that haa d-local contention, and

d-local step complexity, for d = O(log* n) We first
develop a non-blocking algorithm and then combine it
with a simple mechanism which turns it into a wait-free

algorithm.
Following Attiya and Dagan [AD96], each nlulti-

object operation in our non-blocking algorithm has four
phases: filter, decide, lock, and execute.

The full conflict graph on the active operations has

no a priori structure, making it difficult to ~:oordinate
using a local algorithm. The jilter phase guarantees
that at any point of time, the subgraph induced (on the
conflict graph) by the active operations that are through
the jilter, is a forest of (k – 1)-ary trees.

The jiiier itself haa two parts: in the first, each op-
eration marks its k – 1 lower memory locations aa its
children; in the second part it marks the highest loca-
tion as its parent. At any time, each location may be
marked by two operations: as the child of af most one
operation and aa the parent of at most one (,peration.

To ensure that the fiiier is non-blocking and local
(with no long waiting chains) the k – 1 child locations
must be marked in one atomic operation by ttie k multi-
object operation. To accomplish this, we use one of the
key observations in generalizing the Attiya-Dagan alg~
rithm: our algorithm is applied recursively to atomically
mark the k – 1 lower memory locations, using ordinary
single object RMW operations as the base of the re-

cursion. In Section 3, Figure 1 illustrates the recursive

data structures required by the filter phases. and Fig-
ure 2 provides a detailed example,

Once through the jilter, in the decide phase we ap-
ply the 3-coloring algorithm of Goldberg, Plotkin, and
Shannon [GPS87] to color the operations ill each di-
rected tree. The 3-coloring algorithm is a ,qeneraliza-
tion of the Cole-Vishkin algorithm [CV86] which waa

used by Attiya and Dagan for the same puri}ose over a
path (1-ary tree).

The three colors are used to determine the locking
order, the order in which operations acquir~> the locks
for their locations (children then parent, or vice-versa)
during the lock phase, so that waiting chains are kept
short. The three colors are ordered, and each node de-
termines its locking order baaed on the relative values
of its color and that of its parent. In the three-coloring
of the tree, monotonic paths toward the root cannot be
longer than three nodes, and so at most two consecutive
nodes can hold locks on their children, and wait for a
lock on their parent location - forming a wait ing chain.

112

Since the third node is labelled with an extreme color, it
will have locked its parent location before obtaining the
locks for its children. Now through the iock phase, this
operation has gained exclusive access to the k memory
locations it needs for its operation. After executing the
operation, it releases the locks, and removes itself from

the forest, allowing any waiting children to contend for
the lock on the parent location.

This abstract description ignores many details of the
non-blocking algorithm. An important omission is the

standard technique of a blocked process helping the pro-
cess that blocks it, which is how algorithms are made
non-blocking [Her91, Her93]. If at any phase process
p is blocked by another process q, then p helps q to
proceed until q does not block p anymore, and then p
continues. In addition, both algorithms guarantee that
no operation will help another at distance greater than

O(log” n).

We apply a familiar technique for converting the non-
blocking algorithm to a wait-free version [Her91, Her93,

AM95a]: A process that properly terminates its non-
blocking operation, must help other pending operations,
before it starts a new operation of its own. To obtain a
wait-free algorithm with local contention and step com-
plexity, we apply this technique separately to each loca-
tion, and each terminating operation helps only pending

operations with which it directly conflicts.

1.3 Related work

Early work in multi-objects focused on the synchroniza-
tion power of m-registers, multi-objects in which the

operations are restricted to reads and writes of m lo-
cations [Her91, MT94]. The synchronization power of

other multi-objects is studied in [AMT96]. Recent at-
tention has focused on the multi-object problem out of a
desire to find truly fast implementations of shared data
structures that are also non-blocking or wait-free.

General multi-object algorithms: Early work on
wait-free and non-blocking data structures provided
methods to transform sequential implementations of
arbitrary shared objects into wait-free concurrent im-
plementations, assuming the existence of a universal
primitive [Her91, P1088, P1089, JT92]. Those methods
demonstrate the potential of wait-free algorithms, but

are too inefficient to use in practice. Herlihy introduced
a universal translation method to transform a sequential
implementation into either a non-blocking or a wait-free
one using LL/SC [Her93]. These methods are simple
and easily implementable, but still each process has to
copy the entire data structure even for a minor update.
In addition, while using the wait-free method, each pro-
cess must take O(n) steps even when accessing the data
structure alone. The problem was also considered in a

timing based model [AT93].
A search for efficient implementations proceeded.

Barnes presented algorithms with the idea of “ simu-
lating” the update without effecting the shared n~em-
ory, and then to apply the changes atomically us-
ing a non-blocking implementation of a mu}ti-word

RM W [Bar93]. This idea was developed further by
Israeli and Rappoport [IR94]. Turek, Shasha, and

Prakash explored similar constructions using an atomic
conlpare&swap primitive [TSP92]. These non-blocking

algorithms avoid copying the entire data structure, and

allow disjoint access: operations in disjoint portions of
the conflict graph can proceed independently. Processes
waiting for each other recursively can form long chains

of size n,
Shavit and Touitou present a non-blocking implemen-

tation of multi-word atomic RMW from LL/SC [ST95].
This non-blocking algorithm also avoids copying the

entire data structure and allows disjoint access, and
has only constant-length helping chains: a process has
to help only its closest neighbors, which reduces con-
tention. Simulation results indicate that it may perform
well in practice, But it can give rise to waiting chains
of size n: although it has to help only its closest neigh-
bors, the number of steps a process performs is effected
by neighbors at distance n from it.

Anderson and Moir explore a slightly different prob-
Ietn, proposing to use implementations that assume the
concurrent execution of only k < n processes, and to
protect the implementations using a k-exclusion and a
k-renaming algorithm [AM94]. In this way a process
that accesses the data structure alone haa a O(k) com-

plexity instead of O(n). This fault model is not as gen-
eral as wait-freedom. In addition, the algorithms neither
avoid copying nor have disjoint access.

Afek, Dauber, and Touitou present a wait-free, uni-
versal translation method that avoids copying the en-
tire data structure and in which the step complexity

depends ouly on the (global) contention, but that doea
not allow disjoint access [A DT95].

In a later paper, Anderson and Moir present a wait-
free methodology that avoids copying the data struc-
ture, but has Q(n) step complexity for even a single
operation [AM95b]. They alao present a wait-free multi-
word atomic implementation that allows disjoint access,

but that gives rise to helping chains of length n [AM95a].
Moreover, an operation has G?(n) step complexity even
if it accesses the data structure alone.

A final predecessor to our work, the non-blocking
algorithm of Attiya and Dagan implements 2-location
atomic updates with helping and waiting chains of
length only O(log” n) [AD96]. They also introduce the
notion of the sensitivity of one operation to another, and
show that in their algorithm, operations are only sensi-
tive to others within an O(log” n) distance in the conflict

113

grill)]). WC’ generalize their algorithm in two essential
w{l.ys, replacing their unary trees (disjoint paths) with
A’-il~y trees, and using recursive calls to atolnic (k – 1)-

mult<i-objt=ct operations. The result is a non-blocking

algorithm implementing atomic k-multi-object atomic

operations, for any fixed k. We then show how to nlod-
ify the non-blocking algorithm and obtain a wait-free
version. Our generalization solves an important ques-
tion [Bar93, IR94], demonstrating the possibility of a
truly fast multi-object algorithm, in which complexity
of operations is bounded only by the local contention,
rather than by the global contention as in [ADT95].

W’e introduce the notions of d-local contention and
d-local step complexity, measure our algorithm accord-
ing 10 these metrics, and advocate them as appropriate

for investigating the local properties of concurrent algo-
rithms

The resource allocation problem: Research on co-
ordinating the sharing of multiple resources, rather than
multiple memory locations, has a history that antedates

this recent interest in multi-object operations. Various
ahst.ract,ions have been suggested to model this prob-
Imn, which is essentially the same a-s the multi-object
problem. In his pioneering work, Dijkstra introduced
t 11(>clilling Philosophers problem in which the poten-
Iia] conflict graph is very simple-a cycle [Dij72]. Since
tht,l~, dozens of solutions to this problem have been pro-
posed. Lynch showed that the dining philosophers prob-
lem can be extended to an arbitrary graph network, in
which a philosopher needs to acquire the resources on

all incident edges [Lyn8 1]. Chandy and Misra further

generalized this by introducing the Drinking Philoso-
phers problem, in which a philosopher needs some non-
empty subset of its resources; this subset of resources

tnay change over time. These papers assume a fault-
free nlodel [CM84].

A few recent papers on the resource allocation prob-
Ienl ill asynchronous message passing systems have con-
sidered the notion of $adure locality [SP88, AS90, (X395,
(‘S96]. Failure locality of an algorithm is defined as the
smallest m such that any process, for which there are

no failures within a distance m in the conflict graph,
is free from starvation. All these papers achieve a con-
stant failure locality, while trying to minimize response
time and message complexity. (Failure locality does not
imply short, waiting chains.) The above papers do not
use any kind of helping method and are neither non-
hlockiug nor wait-free.

It is also possible that highly concurrent resource al-
location algorithms, such as that due to Awerbuch and
Saks, may be the basis for efficient non-blocking or wait-
free multi-object algorithms [AS90].

2 Complexity measures

Inthis section we formally define complexity measures
that capture how much operations interfere with, or ef-

fect, each other in a given algorithm.

DEFINITION 1

Two multi-object operations are in conflict if they
overlap in time and the set of memory locations

(or resources) on which the operations are based,
intersect.

A conflict graph of a time interval is a graph whose
set of nodes is the set of operations that are active

at some time during the interval, and ihere ts an
edge between any two operations that are ;n conflict.

The conflict graph of a set of operations Op is the
conflict graph of the time interval that begins with
the earliest start of the operations in Op. and ends
with the latest finish (or co, zf one or n)ore opera-
tions in Op have not terminated).

An algorithm has d-local step complexity if the
step complexity of any operation O is bounded by a
(monotonic) function of the number of operations
within distance d of O in the conflict grflph of O.

An algorithm has d-local contention if In any run
of the algorithm two operations 01 and 02 access
the same primitive object simultaneously only ifO1
and 02 are within distance d of each other in the
conflict graph of {01, 02}.

Notice that local step complexity implies nou-blocking
but not wait-freedom. The multi-object algorithm pre-
sented here is wait-free, has O(log* rt)-local contention,
and O(log* n)-local step complexity.

2.1 Local step complexity

The conflict graph of a set of operations determines
what it means for two multi-object operations to be
close to each other, either in time or in space

Attiya and Dagan defined the notion of sensitivity,
which measures the minimum distance between two op-
erations that guarantees that they will not effect each
other’s step complexity [AD96]. Although sensitivity of
distance d implies d-local step complexity, the Attiya-
Dagan notion of sensitivity is neither robust (indepen-

dent of the semantics of the shared objects) nor does
their algorithm exhibit d-local contention for any d. In
their algorithm, (n – 1) concurrent StoreConditional op-
erations can contend for the same address, even though
the operations are not adjacent or even connected in any
conflict graph. All but one will fail, and so they don’t
effect each other’s step complexity (assuming only one

114

ste~~ is counted for each StoreConditional). But if the
Store(‘ondit,ionals’s are replaced with a subroutine built
fron~ {’g., RMW objects, then the fact that they are all
colicurrmlt gives them the chance to effect each other’s

step complexity inside the implementation, in terms of
the number of accesses to the subprimitive objects and

local memory.
Moreover, reasoning about sensitivity is difficult.

Defining and tracing the possible eflect of one operation
on another in a run requires understanding the seman-

tics of the multi-object transactions and of the opera-
tions on individual locations, to determine how informa-
tion can flow between operations. Also, determining the
effect of one event on another typically requires reason-

iug al>out pairs of runs (comparing a run to a similar
run in which the event does not occur). Because our
algorithmic wait-free, we can avoid such careful reason-
ing about the effect of one operation on another, instead
focusing on the coarser measure of an upper bound on
the total step complexity of an operation. (That is, an
operation distant from O may effect O’s step complex-
ity, by increasing or decreasing it, so long as it does
not exceed the upper bound imposed by the number of
O’s closer neighbors. More concretely, suppose O has m
other operations as neighbors in the conflict graph, and

in addition a long chain of operations hanging from it.

Then l-local step complexity allows O to work in a dif-

ferent manner depending on whether this chain exists,
in particular increasing or decreasing its step complex-
ity, as long as it remains bounded by a function of m.
If the algorithm exhibits sensitivity of distance 1, the
number of operations performed by O must be ezactiy
thesame, whether the chain exists or not.)

2.2 Local contention

Following Dwork, Herlihy and Waarts and the fact that
hardware is not magic, we assume that the cost of ac-
cessing a shared location is effected by the contention
concurrent with the access [DHW93]. For example, in a
contention sensitive implementation, the time taken by
a single low-level operation could be a linear or logarith-
mic function of the number of simultaneously contend-
ing low-level operations. In implementing a multi-object
operation, we seek to keep the total number of low-level

operations (the step complexity) small, but also to min-
imize the contention of each of those operations. In
algorithms with d-local contention, operations are per-
mitted to simultaneously access the same shared Ioca-
tion only if they are within distance d of each other in
the conflict graph. In algorithms exhibiting l-local con-
tention. for example, only neighboring operations may

simultaneously access the same shared location X.
our definition of contention could be called sirnulta-

newu.s contention, because
operations simultaneously

it focuses on the number of
accessing a shared location

.Y. An alternative definition of contention would then
he serial contention, the total number of operations that
access X and overlap with the operation. For example,
a single long operation O on .Y could be delayed by a

series of short operations on X. In such a run, the si-
multaneous contention of O is only two, but the cost
of O might better be measured in terms of its serial
contention.

We rejected the stronger definition of serial contention
for two reasons: it is much more complicated to reason
about, and it is not compositional, By compositional,
we mean that an algorithm with d-local contention that
makes primitive operations on X, should remain d-local

if X is replaced by an arbitrary implementation of X
from components xl, ..,, ~d. That is, the contention
of operations on the Za objects should also be bounded
(to multi-operations that are within a d-neighborhood
of each other). This property is trivially true for simul-
tantaneous contention: two operations can simultane-
ously access an w only if they are also simultaneously
accessing X ! However, it is possible to construct exam-
ples of algorithms with d-local serial contention on X,
that do not have d-local serial contention on the Zi. (A
single operation on X can be expanded into a series of
operations on an Zi.)

3 The multi-object algorithm

This section expands on the nutshell description of the
algorithm from the introduction. We begin with a non-
blocking version of the algorithm, and then describe how
to modify it to produce a wait-free version.

3.1 Outline of the the non-blocking L

object algorithm

The non-blocking algorithm has four major phases, as
in [AD96]: jilter, decide, lock, and erecute. The oper-
ations that have passed the jilter induce a subgraph of
the conflict graph that is a forest of (k-1)-ary trees. In
the decide phase each operation scans O(log* n) of its
ancestors in its tree to color the operations in the tree
with 3 colors. The three colors are then used in the iock
phase to decide which memory locations to lock first,

the one in the direction of the parent, or the k – 1 chil-
dren. If operation O fails to lock a location because it is
held by another operation, then O helps the other oper-
ation until it releases the lock, and tries the lock again.

Once the k memory locations are locked, the operation
is executed. Finally, the k locks are released, the oper-
ation removes itself from the tree, and terminates. In
more detail:

Initialization: Each operation starts by computing a
unique operation id, oid% and initializing necessary data

115

Strllcturx?s,

Filter: The purpose of the jilter phase is to select from
al I 1he operations that are simultaneously accessing the

sl]ared memory, a subset whose conflict graph is a forest

of rooted (k– 1)-ary trees. It is similar to the JWerphase
ia tfle Attiya-Dagan algorithm, where k = 2 [AD96].

cllild:(k-2)-loctition

P

parent: OIDA child: (k- 1)-location

lock: OIDA

value: OID*

parent: OIDA

lock: OIDA

value: data

Figure 1: Key fields of a shared location, showing

As

re-
cllrsioll in the child field.

illustrated in Figure 1, in addition to a lock and a value
field, t>:LCh melmory’ location contains two other fields:
a parent field and a child field. The child field is
recursive] y constructed in the same way, lock, value,
parent, and the (recursive) child, to support (k-1)-
object multi-object updates, at the next lower level of
wcursion. At the lowest level, the child field consists of

a single value field.
Let Oil) be the set of all operation identifiers, define

0111 = (IID U {1} and define OID* to be the set of
all strings of OID’S, with the additional symbols J- and
root. The parent fields hold elements of OIIY. The
value field at the highest level holds the data values of
tile k-object, multi-object, and at the lower levels, hold
(>lelneuts of OID* .

An operation passes the filter by writing its oid in the
child fields of its k — 1 lowest-index locations, and in
the parent field of its highest index location. The k – 1
child fields are updated atomically using a recursive

call to a (k — 1)-multi-object RMW algorithm. Hence,
the child field is actually a (k – I)-level memory lo-
cation, and the oid stored there is written to its value
field by the (k – I)-level recursive call. The parent field
is ul)dated using single-word RMW operations. The
(k – 1)-level H.MW that marks the child fields does so

ol~ly if it finds them all unmarkecl by other operations;
silnilarly, the RMW to the parent field succeeds only if
it is unmarked.

For example, suppose that a process performs an
at omit multi-object operation t on k memory locations
1’1,.. .. (!k, where I?l < /2 < . . < f?k. Memory location

1’~ is called the high location of t and the PI, ~~_l

locations are the (k - 1) low locations oft. 1n the jilter
phase, t uses a (k – 1)-multi-object RMW algorithm to

try to mark its oid in each of the child fields in mem-
ory locations, 11, ~k- 1. The recursive call prevents
interleaving of the marking by conflicting operations,
which could introduce deadlocks when each requires a
child marked by the other, or long waiting chains in
which each process needs a child marked by another.

OID: Locations
p: i, 6, ~
q; 7, 9, 13
r: 11, 13, 18
s: 3, 18, 21
t: 7, 12, 14

u: 5, 7, 10
data structure

conflict graph
,,s

/’

/r
p/qpt

u

El

& ~~
s
21

s s
r

18 3
.“

.’r .’
; .’
13 11

,’
.’

E?13q
P
9

P

1 6

b .’

q
,’ ...atler q terminates,

~ t .“’ and t marks location 7

7

A

.’

!

.’ root
.“

.’
u .’ J

.“
.’

.’ s s.’
.’ r

.“ 18,“ 3

.’‘“”’d k.’
.“ 13 11

“u

Figure 2: A set of conflicting operations, the corre-
sponding conflict graph, and two snapshots of the data
structure from an example execution,

If operation t succeeds in marking all k – 1 child
fields, then it tries to mark the parent fielfl of fk. If
it succeeds in that field too, then t is through the jiL
ier, An operation that has marked the child field of kk

(and is otherwise through the jilter) is t‘s parent in the

116

t,ree. and those operations that have marked the parent
field of any of the [1, ~k-~ locations are t‘s children.

Figure i! illustrates a specific example of a set of con-
flicting operations that each access three locations, the

corresponding conflict graph, and two snapshots of the
data structure that could be produced as different op-
erations enter the filter. Operations p, q, r, and S, are
through the filter, and the figure illustrates the resulting
binary tree. Operations t and u are trying to mark the

child field of location 7. Since this is already marked
by q, both attempts will fail, and the processes execut-

ing operations i and u will help q finish its operation
and unmark the location. The bottom part of the fig-

ure illustrates the update to the data structure which
occurs when q terminates, and t wins the competition

with u to mark location 7 and exit the filter.
As just illustrated, if an operation t fails in its attempt

to mark the child fields, then it helps one of the op-
erations that is blocking it, and retries. Similarly, if an
operation t fails in marking the parent field of the high
location (fk) then it unmarks the child fields at the low
locations, helps the operation that already marked the
parent field at the high location, and retries.

There is an exception to the behavior of jiiter at the
root of the tree, motivated as follows. During the de-

czde phase, operations read the oid’s in a O(log” n) path
toward the root to compute’ a 3-coloring. Operations
closer than this to the root pad the string they have
read with a default string. If operations could join an
existing tree by becoming the parent of its root, some

nodes in the tree might read to the old root and use
a paddecl path, while later operations read past the
old root and see the new operations. Such inconsis-
tent views of the path could lead to illegal colorings.
Therefore, once a memory location is the root of a tree
(either the child field is unmarked at the time an oper-

ation marks the parent field, or a successful operation
unmarks the child field), no operation may again mark
it as a child until the operation that marked the parent
fielci has finished. Thus, when an operation marks the
parent field and finds the child field of the same b-
cation vacant, it simultaneously marks the child field
with a special root symbol. (In Figure 2, operation s
has marked location 21 as a root.) An operation that
fails to mark a child field because it finds the root
sylnt~ol in it, helps the operation that has marked the
parent field of the same location.

A sonlewhat more involved mechanism is used when
a successful operation unmarks a child field, creating
i] new root, if the parent field of that location is cur-
rently marked. (In Figure 2, this occurs when operation
q unrnarks location 7.) To ensure the descendants of the
successful operation read the same log* n string, the suc-
cessful operation writes the string it observed into the

child field. Like the root symbol, this string prevents

other operations from marking the child field, until the
operation that marked the parent unmarks it. (Hence,

in the figure, the child field of location 7 is marked
with the string rs when q unmarks it.)

Decide: In this phase each operation decides its lock-
ing direction-whether to first lock the high location (lk)
and then lock the k — 1 low locations (r/l, . . . , /k_ 1), or
to first lock the k – 1 low locations and then the high
location. To make this decision without creating long
waiting chains along the (k – 1)-ary tree, we color the
operations in the tree with 3 colors using the Goldberg

Plotkin and Shannon algorithm [G PS87]. Each opera-

tion locks its high (parent side) location first if its imme-
diate ancestor in the tree has a larger color, ot!~erwise

it locks the low locations first.
To apply the coloring algorithm, operation p has to

read the ids of O(log” n) of its ancestors in the tree. As
discussed above, if while reading the oids p reaches the
root of its tree, there are two possibilities. Either the
operation v at the root had a parent w that finished, or
it never had a parent. In the latter case, the child field
will be marked root, and p extends its sequence with a
default padding to the proper length. (This is the case
in the first part of Figure 2. If operation p reads the
dat,a structure in this state, it finds root in the child

field of location 21.) Otherwise, v once had a parent
w, and before terminating, w wrote its ancestor chain
to the child field, so that p will see the same oid’s as
w and other earlier readers. (This is the case in the

bottom part of Figure 2. If operation p reads the data
structure in this state, it finds the string rs in the child

field of location 9.) Then p concatenates this sequence
to what, it had previously read in the tree, and uses this
combined sequence to compute its color,

Lock: In this phase, operation p uses the orcler de-
cided on in the decide phase to lock its k locations. If
any of these locations is already locked by a conflicting
operation q, p helps q until q releases the lock, and tries

to lock again. The 3-coloring ensures there are no mono-
tonic chains of colors longer than 3. This ensures that
in this phase there are no waiting chains longer than 4.

Execute: When operation p starts the execute phase,
it holds locks for all k locations it requires, and so can
update them one at a time, in (virtual) mutual exclu-
sion, However, some care is required since p could be
only one of several operations simultaneously trying to
perform the same operation on these k locations. (As
p might be either helping another operation, or p’s op-
eration might itself be helped by others.) The locks

are held, not by p, but by the operation being executed
by p (and possibly by other helpers). As with the entire

117

helping technique, the atomic update is effectively inter-
preted, one step at a time. To synchronize, after each
step, a step counter is recorded both in an operation
record specific to this operation, and in the shared lo-

cations, This ensures that none of the component steps
of the operation is performed more than once, and al-
lows different processes to execute successive component
strps on behalf of the same operation. Moreover, we as-
sli]ne that, the output (returned to the calling process)

of’ a k-ol>ject, RMW operation consists of the k-tuple of
location values just before they are updated. The out-
put, values of a particular k-object RMW operation may
he ueeded by other helping processes, so at the begin-

ning of the ezecute phase these values are copied (using
RMW) from each of the k locations into the operation
record.

Unlock & release: After finishing the execute phase,
each operation unlocks the k locations and unmarks the
child and parent fields.

wnit-free solution: The non-blocking algorithm is

n]ade wait-free by applying a modification of a standard
techuique [Her91, Her93, AM95a]:

A process that properly terminates its opera-
tion, must help (some) pending operations be-

fore it is allowed to start a new operation.

To obtain an algorithm with local contention and step
colnplexit,y, we apply this technique so that each ter-

lllinating operation helps only those pending operations
with which it directly conflicts. To do so, the opera-
1ion must be able to detect the operations with which
it directly conflicts. Hence, we associate with each lo-
cation a record of the active operations on that loca-
tion. After the initialization phase, operation p enters

itself into the record associated with each of the k loca-
tions it needs. Then it performs the non-blocking algo-
rithln, and after finishing it, process P that performed
operation p removes operation p from these records and
helps the other operations that entered these records. In
the non-blocking algorithm, no operation p can be pre-
vented from progressing unless other operations within

a hounded distance repeatedly interfere-by marking

needed child or parent fields, or by obtaining needed
lo~lis. If any operation p is blocked for too long, con-

fiiclillg operations will all eventually fincl p in the cor-
responding record, until none can be blocking p any
longer: the result is a wait-free algorithm.

As described, in making the algorithm wait-free, upon
terminating the non-blocking phase, each operation p
helps its immediate neighbors. However, by helping

morp operations at this point (to e.g. distance 2, or con-
stant distance c), it is possible to prevent additional op-
erations from interfering with p, and hence being helped,

during the non-blocking portion of the algorithm. This
requires a queue at each activation record. I)uring the
non-blocking algorithm, each neighbor of oid p that
helps p enters itself into the queue associated with p’s
activation record. When p terminates, it uses this queue
and the queues associated with the locations p updates,
to determine its immediate neighbors, and transitively,
to distance c.

Helping: A standard helping technique is used both
in the basic non-blocking algorithm and in the wait-
free portion. To coordinate among helping pr~,cesses, in
a pre-processing step each operation publishw its code
in an operation record. The operation the~] is essen-
tially interpreted, by both the original process, and any
that help it. Accesses to the individual 10..ations in

the shared memory alternate with updates I) the op-

eration record’s local variables and progranl counter.
Careful record keeping in both the shared locations and
the operation record ensure that no step of the oper-

ation is executed more than once on the shared mem-
ory [Ba.r93, IR94].

3.2 Results

ln this subsection we state the main propert]es of the
algorithm, Proofs are omitted from this ext~’nded ab-
st ract.

Within the jiher, a process helps only operations that
are either 1- or 2-neighbors of its operation. In the de-
cide phase, an operation may access locations at dis-
tance up to O(log* n) while reading the O(log” n) oper-
ations in a chain toward the root of its tree. 1f at some
point it reaches a root, it stops. However, it ~[light also

reach a node q which is not through the filter. ~Process q
has marked its child field but not its parent i Process
p helps q to either mark its parent field, or (t lie parent
is already marked), to unmark the needed child field.
During the lock phase, p may help other processes un-
til they release their locks, which in turn may need to
help other processes, etc. But by using the 3 coloring,
helping chains are bounded by 4.

Thus, in any level of the recursion, a process may ac-

cess common locations with other processes al distance
at most O(log* n) from it at that level. This explanation

motivates the following:

Theorem 1 The aigorithm has O(log” n)-locd con-
tention complexity.

The step complexity of an operation p is ~rnpacted
by the cost of the recursion, and the number of distinct

neighbors helped by p, either during the non-blocking
portion of the algorithm, or during the wait-free con-

struction, when it helps all neighbors within a constant

118

distance c. The exact complexity depends on the num-
ber and distance of neighbors that are helped in the
wait-free construction. Helping neighbors to a greater
distance increases the cost of the wait-free helping, but

prevents operations from interfering withp, and hence
being helped, during the non-blocking portion of the

algorithm. It can be shown that for a fixed k, the
step complexity of any multi-object operation on k lo-
cations, is bounded by a function of the number of op-
erations within distance O(log* n) of it in its conflict
graph. Hence:

Theorem 2 The algorithm has 0(log” n)-local step
complexity.

As already discussed, the wait-free mechanism assures
wait-freedom by guaranteeing that no immediate neigh-
bor of p can block p repeatedly. The non-blocking por-

tion of the algorithm has several crucial properties: first,
p can only be blocked by helping other operations, and
no operation is helped twice. Second, p only helps oper-
ations within a bounded distance in the conflict graph.

Now suppose p is blocked indefinitely. Then by
the first property, p must help infinitely many opera-
tions, and by the second property, these occur within a.
hounded distance in the conflict graph. Then there is

a minimum distance from p in the conflict graph, d, in
which infinitely many operations occur. Consider each

of the (finitely many) nodea at distance d – 1 from p. At
least oJ]e, q, must have infinitely many neighbors—but
then q will eventually be helped, and removed from the
conflict, graph after some finite time, a contradiction.
Hence, we have:

Tl~eorem 3 The aigor-ithm is wait-free.

3.3 Replacing large RMW with LL/SC

Some of the RMW objects used in our algorithm are
rather large. Either O(log* n) for each memory location,
or larger for the wait-free mechanism.

The individual update method of Afek, Dauber and
Touitou replaces each RMW object by several LL/SC
ol}jects. and can be used to transform this implemen-
t ation into one that uses LL/SC operations on small
words [A DT95]. (Words which hold 0(/ogn) bits or
n constant number of oid’s.) The individual update
Illt=thod is one of several methodologies Afek, et al.
[Imcrilje to transform a sequential data structure im-
[~le]l]ent,ation (in particular a large RMW) into a fast
wait-free one using LL/SC. It ensures that every pro-
cess completes its operation within O(kf(s) log(~(s))

steps, where f(s) is the step complexity of the sequen-
tial implementation, and k is the number of processes

col~currently contending with the operation on the data
structure, For that reason we state:

Corollary 4 There exists a woit-free k-object imple-
mentation with O(log* n)-iocal step complexity and
O(log” n)-local contention which uses oTdy LL/SC prim-
itives on words of length O(logn).

4 Discussion

We have presented a wait-free algorithm for the multi-
object problem that exhibits local contention and step
complexity: operations that access widely disjoint parts
of a data structure, or are widely separated in time, do
not interfere with each other.

We assume that the number of locations required by
any multi-object operation is bounded by some fixed
number k, and that the set of locations required by
each multi-object operation is already known at the be-

ginning of the operation. It would be interesting to find
a solution, that has low local contention and local step
complexity, which supports more general multi-object
operations in which there is no bound on the number
of locations which can be accessed atomically, and the
specific locations can be chosen on the fly.

As we discussed, except for the wait-free or non-
blocking fault-tolerance requirements, the multi-object

problem is essentially the well-known resource alloca-

tion problem, and hence our algorithm can be used to

solve both problems. It would be interesting to deter-
mine whether existing highly concurrent resource allo-
cation algorithms (such as that due to Awerbuch and
Saks [AS90]) can be modified to also produce efficient
multi-object algorithms.

Finally, the complexity measures we study are local
contention and local step complexity. It would be inter-
esting to find algorithms (or lower bounds) narrowing

the local neighborhoods—for example, are their algo-
rithms with d-local contention, where d is a constant?
Also, it would be interesting to find algorithms which
have O(log* n)-local step complexity, in which the step
complexity bound is smaller. For example, is it possible
to save steps by unwrapping the recursive construction?
Or can the algorithm be optimized for the special case
ofk =3?

References

[AD96] H. Attiya and E. Dagau. Universal operations:
LJnary versus binary. In Proc. 15th ACM Symp. on Prin-
ciples of Distributed Computing, pages 223–232, 1996.

[ADT95] Y. Afek, D. Dauber, and D. Touitou. Wait-free
made fast. In Proc. 27th ACM Symposium on Theory oj
Computing, pages 538-547, May 1995.

[AM94] J. Anderson and M. Moir. Using k-exclusion to im-
plement resilient, scalable shared objects. Proc. of the
f.yth.4CM Symposium on Principles oj Distributed Com-
puting, pages 141-150, August 1994.

119

[AM95a] J. Anderson and M. Moir. Universal constructions
for multi-object operations. In Proc. 14th -4CM .SYW.

on Principles of Distributed Computing, pages 184–193,
August 1995.

[AM95b] J. Anderson and M. Moir. Universal construc-
tion of large objects. Proceedings of the 9th International
l$~orkshop on Distributed Algorithms. September 95.

[AMT96] Y. Afek and M. Merritt and G. Taubenfeld. The
power of multi-objects. In Proc. f 5th ACM Sgmp. on

Principles of Distributed Computing, pages ‘213-222, May
1996.

[AS~O] B. Awerbuch and M. Saks. A dining philosophers
algorithm with polynomiaJ response time. In Proc. .91th
IEEE Syrnp. on Foundations of Computer Science, pages
65-74, October 1990.

[AT93] R. Alur and G. Taubenfeld, How to share an object:
A fast timing-based solution. In Proceedings of the 5t~
IEEE Symposium on Parallel and Distributed Processing,
pages 470-477, December 1993.

[Bar93] G. Barnes. A Method for implementing lock-
free shared data structures. In Proceedings of the 5t/I
.4(’M Symposium on Parallel Algorithms and Architec-
tures, 1993.

[CM84] K. M. Chandy and J. Misra. The drinking philoso-
phers problem. ACM Trans. on Programming Languages

and S’ysterns, 6, 1984,

[(;S95] M. Choy and A. K. Singh. Efficient fault tolerant al-
gorithms for resource allocation in distributed systems.
ACM Trans. on Programming Languages and Systems,
17(3):535-559, May 1995.

[CS96] M. Choy and A. K. Siugh. Localizing failures in dis-
tributed synchronization. IEEE Transactions on parallel
and ciistributecl systems, 7(7):705–716, July 1996.

[CV86] R. C!ole ancl U. Vishkin. Deterministic coin tossing
with applications to optimal parallel list ranking. Infor-
mcdion and Control, 70(1) 32–53, July 1986.

[Dij72] E, W. Dijkstra. Hierarchical ordering of sequential
processes. In Operating Systems Techniques, 1972. Eds:
(~. A. R. Hoare and R. H. Perrott, Eds. Academic Press.

[DHW93] C. Dwork, M. Herlihy, and O. Waarts. Contention
in shared memory algorithms. In Proc. 25th Ann. ACM
Symp. on Theory of Computing, New York, pages 174-
183, 1993.

[C;C’96] M. GreenwaJd and D. R. Cheriton, The synergy
het.ween non-blocking synchronization and operating sys-
tem structure. In Proc. .2%dACM Symp. on Operating
System Design and Implementation. USENIX, Seattle,
pages 123-136, October, 1996.

[GPS87] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon
Parallel symmetry-breaking in sparse graphs. Proc. 19th
A tin. ACM Symp. on Theory of Computing, New York,
pages 315-324, 1987.

[Her93] M. Herlihy. A methodology for implementing highly
concurrent data objects, ACM Transactions on Program-
ming Languages and Systems 15(5): 745-77o, November
1993.

[IR93] A. Israeli and L. Rappoport. Efficient wait free im-
plementation of a concurrent priority queue. In Workshop
on Distributed Algorithms on Graphs i 999. Lectuw Notes
in Computer Science 725, Springer Verlag, pages 1-17.

[IR94] A. Israeli and L. Rappoport. Disjoint-access-parallel
implementations of strong shared memory In Proc.
14th AL’M Symp. on Principles of Distributed Comput-
ing, pages 151–160, 1994.

[JT92] P. Jayanti and S. Toueg. Some results on the impossi-
bility, universa.hty, and decidabllity of consensus. Proc. of
the 6th Int. Workshop on Distributed Algorithms: Lecture
Notes in Computer Science, 647, pages 69-84. Springer
Verlag, November 1992.

[Lyn81] N. A. Lynch. Upper bounds for static resource allo-
cation in a distributed systems. Journal of C{,mputer and
System Sciences, 23:254-278, 1981.

[MT94] M. Merritt and G. Taubenfeld. Atomii m-register
operations. Distributed Computing, 7:213–221, 1994. Also
appeared in Proc. 5th Int. Workshop on Distributed Algo-
rithms, 1991, pages 289–294,

[P1088] S. A. Plotkin. Chapter ~: Sticky Bits and Univer-
sality of Consensus. PhD thesis, M.I.T., August 1988.

[P1089] S. A. Plotkin. Sticky bits and universality of consen-
sus. In Proc. 8th ACM Symp. on Principles of Distributed
Computing, pages 159-175, August 1989.

[SP88] E, Styer and G. L. Peterson. Improved algorithms for
distributed resource allocation. In Proc. 7th .+CM Symp.
on Principles of Distributed (~omputing, pagvs 105–1 16,

August 1988.

[ST95] N. Shavit and D, I’ouitou. Software t, ansactional

memory, In Proc, l~th .4CM Symp. on Principles of Dis-
tributed Computing, pages 204-213, January i995.

[TSP92] J. Turek, D. Shasha, and S. Prakash. Locking with-
out blocking: Making lock based concurrent data struc-
ture rdgorithms non-blocking. In Proceedings of the 1992
Conference on the Principles of Database Systems, pages
212-222, 1992,

[HerYl] M. Herlihy. Wait-free synchronization, ACM Trans.
ola Programming Languages and Systems, 11(1):124–149,
January 1991.

