
Constructing a Reliable Test&Set Bit
Frank Stomp and Gadi Taubenfeld

AbstractÐThe problem of computing with faulty shared bits is addressed. The focus is on constructing a reliable test&set bit from a

collection of test&set bits of which some may be faulty. Faults are modeled by allowing operations on the faulty bits to return a special

distinguished value, signaling that the operation may not have taken place. Such faults are called omission faults. Some of the

constructions are required to be gracefully degrading for omission. That is, if the bound on the number of component bits which fail is

exceeded, the constructed bit may suffer faults, but only faults which are no more severe than those of the components; and the

constructed bit behaves as intended if the number of component bits which fail does not exceed that bound. Several efficient

constructions are presented, and bounds on the space required are given. Our constructions for omission faults also apply to other

fault models.

Index TermsÐTest&set bits, reliability, omission faults, gracefully degradation, wait-free algorithms.

æ

1 INTRODUCTION

ACONCURRENT system may be viewed as a collection of
processes which communicate through shared objects.

These shared objects allow different processes to exchange
information. For example, an atomic register is a shared
object which, in one atomic step, a process can either read or
write (but not both). Other (stronger) shared objects are
test&sets, semaphores, and data structures such as queues
or stacks.

Much work has been carried out on enabling a
concurrent system as a whole to continue to function
despite the failure of a limited number of processes. Making
such a system fault-tolerant depends also on constructing
reliable shared objects. The fault of a shared object may be
caused by various reasons: data contained in the object is
corrupted, requests are lost due to switching failures, an
algorithm enters an unintended infinite loop, or an
algorithm mistakenly allows a process to affect memory
not assigned to it.

Two recent papers [1], [6] have studied how to tolerate
faults in shared objects. The first explores the possibility
that faulty shared objects may return arbitrary values. The
second, independent, paper explores a wider range of fault
models. Among these models are the arbitrary fault model
as in [1], and two others: the crash and omission fault models.

In the crash fault model, a faulty object behaves
correctly until the object suffers a terminal, atomic crash
event. Thereafter, all operations on that object return ª?º.
In the omission fault model, which is of particular
interest to this paper, operations on faulty objects may
return a special value ª?º, which indicates only that the
operation has terminated and that the operation has
either affected the state of the object as intended or
completely failed to affect it.

A constructed object is said to tolerate t faults of model F
if the object does not exhibit any faulty behavior when at
most t of the underlying primitive objects, from which it is
constructed, fail by F . If, in addition, more than t primitive
objects fail by F and the constructed object exhibits faults of
model F only, then the constructed object is called gracefully
degrading for F [6]. This implies that if too many primitive
objects fail, the constructed object is either correct or it does
not exhibit more severe faults than those of the components
in every execution.

Gracefully degrading constructions may be used as
modules in larger constructions. The property that a
construction can be carried out in a modular fashion is
important because without this property no fault-tolerant
interfaces or abstraction layers can be constructed. The
same property ensures that correctness proofs of the system
in case of faults can be carried out on the basis of its
constituent components. Our results imply that, for omis-
sion faults, the requirement of graceful degradation
increases the space complexity of the implementation.

1.1 Summary of Results

The subject of this paper is the construction of (reliable)
test&set bits which can tolerate omission faults. The
constructions of test&set bits which are presented apply
also to the crash model introduced above and to the
omission-crash and the eventual-crash models introduced
in [1] and discussed later in this section.

The specification of a test&set bit can be described by
means of a single bit, initially 0, that can be accessed by
processes through an operation called test&set: In one
atomic step, the value 1 is assigned to the bit and the bit's
old value is returned.

When it is assumed that test&set bits are accessed by at
most two processes, we prove the following tight bounds:

. Two test&set bits are necessary and sufficient for
constructing a test&set bit which can tolerate one
omission fault.

. Three test&set bits are necessary and sufficient for
constructing a test&set bit which can tolerate one

252 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 3, MARCH 1999

. F. Stomp is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202. E-mail: fstomp@cs.wayne.edu.

. G. Taubenfeld is with The Open University, 16 Klausner St., Tel-Aviv
61392, Israel. E-mail: gadi@cs.openu.ac.il.

Manuscript received 30 Oct. 1995.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100027.

1045-9219/99/$10.00 ß 1999 IEEE

omission fault and which is gracefully degrading for
omission.

When it is assumed that test&set bits are accessed by n
processes, we prove the following upper bounds:

. n� 2 test&set bits are sufficient for constructing a
test&set bit which can tolerate one omission fault.

. 2n� 3 test&set bits are sufficient for constructing a
test&set bit which can tolerate one omission fault
and which is gracefully degrading for omission.

When it is assumed that test&set bits and atomic bits are
accessed by n processes, we prove:

. One atomic bit and two test&set bits are sufficient
for constructing a test&set bit which can tolerate one
omission fault.

. One atomic bit and three test&set bits are sufficient
for constructing a test&set bit which can tolerate one
omission fault and which is gracefully degrading for
omission.

When it is assumed that test&set bits are accessed by n
processes and that only test&set bits are used, we prove the
following lower bound:

. n test&set bits are necessary for constructing a
test&set bit which can tolerate one omission fault
and which is gracefully degrading for omission.

In [1], [6], it is explained how to construct objects which
tolerate many faults from objects which tolerate one fault.
Using the ideas from [1], [6], all our constructions can be
extended to tolerate multiple faults. In [1], a construction is
given to convert a test&set bit without a reset operation
(and which can tolerate a single arbitrary fault) into one
which supports a reset. In essence, a similar construction
applies to the bits constructed in the present paper.
Although the above techniques ignore the issue of
efficiency, this explains why we have decided to concen-
trate here on constructing test&set bits without reset which
can tolerate one omission fault.

1.2 Related Work

As already pointed out, research on constructing reliable
shared objects is reported in [1], [6]. In both these papers, a
theory for combining algorithmic constructions in a
modular way is developed, and various lower bounds
and constructions of reliable objects from faulty compo-
nents, including universality results, are presented. In
particular, there are some constructions in [1] of reliable
test&set bits for arbitrary faults. These constructions are not
gracefully degrading for omission, however. The existence
of reliable test&set bits which are gracefully degrading for
omission follows from results in [6], but no such explicit
constructions are given.

Two other fault models are introduced in [3]: omission-
crash and eventual-crash. Both kinds of faults are more severe
than crash faults, but no more severe than omission faults.
In the omission-crash model, faulty objects may suffer a
terminal crash event ? as in the crash model. However,
operations concurrent with the crash may suffer omission
faults, returning ?. Subsequent operations will return ?. In
the eventual-crash model, faulty objects may also suffer a
terminal crash event. However, any operation prior to or

concurrent with the crash event may suffer omission faults,
returning ? before the terminal crash occurs. All subsequent
operations will return ?.

Some other research has explored memory faults which
are restricted to occur during specific periods of time. For
example, such constrained memory faults are studied in
work on self-stabilizing systems [4]. Self-stabilizing systems
are required to recover once the final memory fault has
occurred and the system is in an arbitrary state. There is an
immense body of work on self-stabilization as an approach
for designing fault-tolerant systems. For a survey on this
topic, see [12]. Initialization faults have been investigated in
[5]. A shared register is subject to initialization fault if the
shared register contains an arbitrary unknown value in the
initial state.

2 PRELIMINARIES

A concurrent system may be viewed as a collection of
sequential processes communicating through shared objects.
Each object O has a type hD;Opi, where D is the set of all
values which O can take and where Op is the set of all
operations to access and manipulate O.

Every system supports a number of primitive objects (or
object types) which can be used to construct more
complicated objects. Let O1; � � � ;On be a list of primitive
objects. A construction of object O from O1; � � � ;On is a
function whose image is O under O1; � � � ;On. Hereafter, O
will often be referred to as an object constructed or derived
from O1; � � � ;On. A sequential specification of an object is a
description of its behavior when processes access the object
sequentially.

We focus on an object called a test&set bit. Its sequential
specification can be described by means of a single binary
bit, initially 0, which can be accessed by processes through
an operation called test&set: In one atomic step value 1 is
assigned to the bit and the bit's old value is returned. The
bit is a ªsingle_useº type of bit, because, as defined here, it
does not support a reset operation.

Such a simple specification does not suffice in case of a
concurrent system in which several processes may access a
bit concurrently. One concept used most often to character-
ize such concurrent behavior is that of linearizability [9].
Informally, linearizability means that every concurrent
behavior is equivalent, in a sense discussed below, to a
behavior in which processes access the bit sequentially.

An execution of a concurrent system is a finite sequence of
operation invocations and responses. An invocation of
operation op by process p on object obj is represented by a
triple hobj; op; pi. A response of object obj to process p's
invocation of operation op is represented by a triple
hobj; op; res; pi, where res is the result returned. A response
matches an invocation if their object, operation, and process
components are the same. A response is called correct if its
result is allowed by the object's type. An invocation is
pending in an execution if there is no matching response
following that invocation in the execution. An execution is
called sequential if every invocation, except possibly the last
one, is immediately followed by a (correct) matching
response and every response is immediately preceded by
an invocation. An execution is complete if there are no

STOMP AND TAUBENFELD: CONSTRUCTING A RELIABLE TEST&SET BIT 253

pending invocations. A specification is sequential if it only
constrains sequential executions; otherwise, it is concurrent.
Every execution � is assumed to be well-formed [9], that is,
for every process p, the subsequence of all events in �
whose process component is p is sequential. Notice that
well-formedness does not imply sequentiality, and that
sequentiality implies well-formedness.

Every execution � defines a partial order �� on (the
occurrences of) the invocations and responses in the
execution: a �� b holds iff 1) either a and b are invocations
by or responses to the same process and a occurs before b in
�, or 2) a is a response which precedes invocation b in �. A
(concurrent) execution � of a system is called linearizable if
the following is true: There exists a complete execution �0 of
the system extending � by appending responses for
incomplete invocations in � and there exists a sequential
execution � of that system such that ��0 and �� are the
same.

Faulty objects can be modeled by allowing incorrect
responses to invocations to that object. In the present paper
we concentrate on omission faults, as was first introduced in
[6]. An object fails by omission in an execution � if it may
return a distinguished response ? in �, and

1. Every response from the object is either ? or one
allowed by its type;

2. For every response ? in �, replacing ? by one
allowed by the object's type or omitting both the
response and the corresponding invocation results in
a linearizable execution.

An object may fail by omission if, in every execution, the
object may fail only by omission.

A construction can tolerate t omission faults if it does not
exhibit any faulty behavior when at most t of the under-
lying primitive objects fail by omission. If, in addition, more
than t primitive objects fail by omission and the constructed
object may fail only by omission, then it is called gracefully
degrading for omission [6]. This means that, if too many
primitive objects fail by omission, the constructed object is
either correct or it does not exhibit more severe faults than
omission faults in every execution. An object is called
strongly wait-free [1] if every invocation on the object by any
process will result in an eventual response, irrespectively of
the status of other processes and objects. In this paper, all
primitive objects are assumed to be strongly wait-free and
all constructed objects are required to be strongly wait-free.

We have the following simple, but useful, property
whose proof is immediate.

Lemma 1. An object is a test&set bit if, for every nonempty
execution of that object without pending requests,

1. every process which participates returns either 0 or 1,
2. exactly one process returns 0,
3. if a process returns 1, then every process which starts

strictly thereafter returns 1.

We end this section with the following observations:

. A test&set bit which fails by omission may respond
by ? and then respond correctly thereafter. Thus,
after response ?, the responses are not necessarily all
?. A test&set bit which has responded by ? (at least
once) is considered to be faulty.

. If a test&set bit first responds by ?, then the second
response may be either 0 or 1.

. For a constructed test&set bit which is gracefully
degrading for omission, the above observations are
also true.

3 TIGHT BOUNDS FOR TWO PROCESSES

In this section, we construct test&set bits which are accessed
by at most two processes and assume that only test&set bits
are allowed to be used in the constructions. The two main
results proven are:

. Two test&set bits are necessary and sufficient for
constructing a test&set bit which can tolerate one
omission fault.

. Three test&set bits are necessary and sufficient for
constructing a test&set bit which can tolerate one
omission fault and which is gracefully degrading for
omission.

These results imply that, for omission faults, the require-
ment of graceful degradation increases the space complex-
ity of the implementation.

3.1 An Optimal Nongracefully Degrading
Construction

We have the following obvious lower bound:

Theorem 1. Two test&set bits are necessary for constructing a
test&set bit which can tolerate one omission fault.

Next, we show that the above lower bound is tight. Notice
that, in the theorem below, the construction is not required
to be gracefully degrading.

Theorem 2. Two test&set bits are sufficient for constructing a
test&set bit which can tolerate one omission fault.

Proof. Consider the construction in Fig. 1, whose code is
given in Fig. 2. It consists of two shared primitive
test&set bits A, B. In Fig. 1, gray nodes labeled s0 and s1
denote states. Invocations of test&set operations are
implicit. Edges out of state s0 are labeled by responses to
the test&set operation on A; edges out of the state s1 are
labeled by responses to test&set on B; white nodes with
some value in it represent the value returned by a
process.

If a process accesses bit A and A responds with 1, then
the process immediately returns 1. (The other process
has already accessed A.) If A responds with 0 or ?, then
the process cannot determine whether it is the first to
access A. It then accesses bit B. The process returns 1 if B
responds with 1. Otherwise, the process returns 0. The
proof of the theorem follows from Lemma 2 given next,
and the observation that the construction in Fig. 1 is
strongly wait-free. tu

Lemma 2. The bit in Fig. 1, whose code is given in Fig. 2, is a
test&set bit which can tolerate one omission fault.

254 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 3, MARCH 1999

Proof. Assume that at most one primitive bit of bit T
constructed in Fig. 1 is faulty. Consider an arbitrary
nonempty, complete execution � of T . The lemma
follows from conditions 1, 2, 3 below, and Lemma 1.

1. In �, every process returns either 0 or 1.
This is obvious.

2. In �, exactly one process returns 0.
Recall that in �, every process returns 0 or 1.

We first show that at least one process returns
0 in �.

At least one of the processes receives 0 or ?
from bit A. Consequently, at least one of the
processes accesses B. The first process to do so
receives either 0 or ? from bit B. This process
returns 0.

To complete the proof of condition 2, it suffices
to show the following: If both processes access bit
T , then at least one process returns 1. Suppose
that this is not true. Then, both processes return 0.
It follows that each of these processes accesses
both bits A and B and that each of these processes
receives 0 or ? as responses from A and B. This
implies that either both bits A and B are faulty or
that one of the bits A, B responds twice with 0.
The first possibility contradicts the assumption
that at most one primitive bit is faulty; the second
possibility contradicts the specification of a
test&set bit (it can respond at most once with 0).

3. In �, if a process returns 1, then every process
which starts strictly thereafter returns 1.

Assume, to obtain a contradiction, that one
process P has returned 1 and that, strictly
thereafter, another process Q starts which also
returns 1. Since only two processes access bit T ,
we obtain that none of these processes returns 0,
contradicting condition 2 above. tu

3.2 An Optimal Gracefully Degrading Construction

The previous construction is not gracefully degrading. For
example, if one process receives responses 0 from A and B,

and the other process receives responses ? from A and B,

then both processes will return 0. In this case, both

primitive bits exhibit a fault and there does not exist an

equivalent sequential execution, because of the two 0s

returned.

Theorem 3. Three test&set bits are necessary for constructing a

test&set bit which can tolerate one omission fault and which is

gracefully degrading for omission.

Proof. Suppose, to obtain a contradiction, that a construc-

tion exists with only two primitive bits A and B. (In view

of Theorem 1, a construction consists of at least two

primitive bits.) Assume that A always responds with ?

and does not undergo a state-change when accessed by

process P and assume that B always responds correctly

and undergoes an appropriate state-change when ac-

cessed by process P . Analogously, assume that A always

responds correctly and undergoes an appropriate state-

change when accessed by process Q and that B always

responds ? and does not undergo a state-change when

accessed by process Q. Then, consider scenario S1 in

which only P accesses the constructed bit. Upon

completion, P returns 0. And consider scenario S2 in

STOMP AND TAUBENFELD: CONSTRUCTING A RELIABLE TEST&SET BIT 255

Fig. 1. Schematic of a simple construction of a test&set bit for two processes which can tolerate one omission fault. The construction is not gracefully
degrading for omission.

Fig. 2. A construction of a test&set bit for two processes which can
tolerate one omission fault. The construction is not gracefully degrading
for omission.

which only Q accesses the constructed bit. Upon
completion, Q returns 0. Define S3 as the scenario in
which first P and thereafter Q accesses the constructed
bit. Process P cannot distinguish between the scenarios
S1 and S3. Thus, in S3, P returns 0. Similarly, in S3, Q
returns 0, a contradiction. tu

As shown, the construction in the previous section is not
gracefully degrading. Now, if a process has received two
responses ?, then it is safe that this process returns ?. We
modify the construction in the previous subsection by
adding a third node s2 which represents the state after bit A
responds with ? to a process (instead of node s1. The
response received from bit B in that state is then the value
returned by that process. This ensures that if a process
receives two ?s, it will return ?, and that a process returns
the same values as in the previous construction otherwise.
Another problem arises in the construction in the previous
subsection when one process receives ? from one bit and
the other process receives ? from the other bit and both
processes return 0. This occurs if each of the processes has
received 0 and ? as responses.

We proceed as follows: Rather than immediately return-
ing a value when a process has received the responses 0 and
?, we make the process access a third test&set bit C. The
response from C is the value returned by that process. Since
at most one process can receive 0 as response from C, it
follows that at most one process will return 0 in this case.
The same is also true for response 1. Notice that if a process
receives ? from C, then that process has ªseenº two faulty
bits and it is safe for the process to return ?. The gracefully
degrading construction is given in Fig. 3 and its code is
given in Fig. 4. It is obtained from Fig. 1 by first adding gray
node s2 to represent the state after bit A has responded with
? and, then, replacing the white node with value 0 in it by
state s3. In state s2, a process can access bit B and, in state

s3, a process can access bit C. In Fig. 3, edges out of state s2

are labeled by responses to the test&set operation on bit B

and edges out of state s3 are labeled by responses to the

test&set operation on bit C.

Theorem 4. Three test&set bits are sufficient for constructing a

test&set bit which can tolerate one omission fault and which is

gracefully degrading for omission.

Proof. Consider the construction in Fig. 3. Suppose that, in

an execution, no process reaches state s3. If a process has

received two ?s, then it will return ?. Otherwise, that is,

if the process has received less than two ?s, we can

simulate this execution on the construction in Fig. 1,

which shows that the processes return admissible values.
Suppose that, in an execution, exactly one process

reaches state s3. Then, we can simulate the part of the
execution up to the process reaching state s3 on the
construction in Fig. 1. That process would return 0 there.
The discussion before the formulation of this theorem
implies that another process would then return a value
different from 0 in Fig. 3. The proof then follows from the
observation that if exactly one process reaches state s3 in
Fig. 3, it will return either 0 or ?.

Now, suppose that, in some execution, two processes
reach state s3. Then, both bits A and B are faulty. Bit C
will never return 0 to both processes, nor will it return 1
to both processes. This is so because if C is faulty, then it
fails by omission. This completes the proof of this case.tu

4 A NONGRACEFULLY DEGRADING CONSTRUCTION

FOR n PROCESSES

We now focus on constructing a test&set bit for n processes

(n � 1), which can tolerate one omission fault. As before, it

is assumed that only test&set bits are used. (In Section 7, the

256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 3, MARCH 1999

Fig. 3. Schematic of a gracefully degrading construction of a test&set bit for two processes which can tolerate one omission fault.

case that also atomic bits are used is considered.) We prove

the following upper bound:

. n� 3 test&set bits are sufficient for constructing a
test&set bit which can tolerate one omission fault.

In Section 8, we show how this bound can be improved by

one test&set bit.
Let us reconsider the constructions in Section 3 and

analyze their behavior in case more than two processes

access those constructions. The scenario below shows that

the property ªIf one process returns 1, then every process

which starts strictly thereafter returns 1º is not satisfied for

the construction of Fig. 2. Consider the case that only bit A

is faulty. Take three processes P1, P2, and P3. Consider the

scenario described by:

1. Process P1 accesses bit A which responds with 0.
2. Process P2 accesses bit A which responds with 1.

Hence, process P2 returns a 1.
3. Process P3 accesses bit A which responds with ?.

Thereafter, P3 accesses bit B which responds with 0.
Hence, process P3 returns a 0.

A similar scenario as the one described above can be used to

show that the bit constructed in Fig. 4 in Section 3.2 also

does not satisfy the above mentioned property. The two

other properties formulated in Lemma 1 do hold. This

observation is used to obtain gracefully degrading con-

structions from the earlier constructions. Our result for the

case of n processes is:

Theorem 5. n� 3 test&set bits are sufficient for constructing a

test&set bit for n processes which can tolerate one omission

fault.

To prove the theorem, we construct a test&set bit which

consists of n� 3 test&set bits and which can tolerate one

omission fault. The construction uses a so-called gate.
Intuitively, a process which accesses a gate can either

pass the gate, indicating that the process returns 0 or it does

not pass the gate, indicating that it returns 1. A gate satisfies

the following two conditions, provided that at most one of

its primitive bits is faulty by omission:

1. Every process which accesses the gate either passes
the gate or does not pass the gate. And, if at least one

process accesses the gate, then at least one process
will pass the gate.

2. If some process has returned a value (i.e., it has
passed the gate or not passed the gate), then every
process which starts strictly thereafter does not pass
the gate.

Notice that, for the gate, unlike for the test&set bit, more
than one process may return 0. For the above specification,

the construction in Fig. 5 is a test&set bit for n processes
which can tolerate one omission fault. If a process passes
the gate, it accesses the bit presented in Fig. 1; if a process
does not pass the gate, it returns 1.

Lemma 3. Consider bit T in Fig. 5. Assume that the gate can

tolerate one fault. Then, T is a test&set bit for n processes

which can tolerate one omission fault.

Proof. Assume that bit T in Fig. 5 may be accessed by n

processes. Also assume that the gate can tolerate one

fault. Let � be an arbitrary nonempty, complete execu-
tion of T in which at most one primitive bit exhibits a
fault. The lemma follows from condition 1, 2, 3 below,
and Lemma 1.

1. In �, every process returns either 0 or 1.
If a process does not pass the gate, then it

returns 1. (The gate can tolerate one fault.) If, on
the other hand, a process passes the gate, then it
accesses the bit in Fig. 1. Such a process cannot
return a ? because, by assumption, at most one bit

is faulty. It follows that every process which
accesses T returns 0 or 1.

2. In �, exactly one process returns 0.
First, we show that at most one process returns

0. A process Pi, 1 � i � n, returns 0 when it has
passed the gate, and it executes line 4 of the code

in Fig. 2. It is clear that at most one process
returns 0 if bit B is not faulty. Let us therefore
assume that bit B is faulty. Since B is faulty, the
assumption of the lemma implies that A is not
faulty. Consequently, the second process to access

A receives 1 as response. Then, that process will
return 1. It follows that at most one process will
return 0.

STOMP AND TAUBENFELD: CONSTRUCTING A RELIABLE TEST&SET BIT 257

Fig. 4. A gracefully degrading construction for omission of a test&set bit for two processes which can tolerate one omission fault.

Next, we show that at least one process will
return 0. To do so, observe that at least one of the
processes which accesses T passes the gate. We
distinguish two cases:

a. Bit A is not faulty.
In this case, exactly one process will access

bit B. This process will return 0.
b. Bit A is faulty.

In this case, bit A will respond with 0 or ?
to at least one process. At least one of the
processes will therefore access B. The first
one to do so will return 0. (Notice that, by
assumption, bit B is not faulty.)

3. In �, if a process returns 1, then every process
which starts strictly thereafter returns 1.

Assume, to obtain a contradiction, that this is
not true. Thus, some process Pi returns 1 and
strictly thereafter another process Pj starts which
returns 0. This implies that process Pj has passed
the gate strictly after process Pi has returned 1.
We consider two cases:

a. Process Pi has not passed the gate.
We immediately obtain a contradiction

from the gate's specification. (If a process
does not pass the gate, then no process which
has started strictly thereafter can pass the
gate.)

b. Process Pi has passed the gate.
It follows that strictly after Pi has passed

the gate, process Pj has passed the gate.
Aga in , th i s cont rad ic t s t he ga te ' s
specification. tu

To complete the proof of the Theorem 5, it remains to find a
construction for the gate which can tolerate one fault and
which consists of n� 1 primitive test&set bits. Such a
construction is given in Fig. 6. To access the gate, a process
accesses all the gate's primitive bits. The process returns 1 if
at least n of the bits have responded with 1 to that process;
otherwise, the process returns 0.

Our construction of the gate satisfies its specification.
This is the subject of the following lemma, formulated in
terms of the code of the gate:

Lemma 4. Object O, with code as in Fig. 6, is a gate which can
tolerate one omission fault.

Proof. Assume that at most one of the primitive test&set
bits of the constructed object O is faulty by omission. Let
� be an arbitrary nonempty, complete execution of O.
The lemma follows from conditions 1 and 2 below and
the specification of the gate.

1. Every process which accesses the gate either
passes the gate or does not pass the gate; and if
at least one process accesses the gate, then at least
one process will pass the gate.

The first part follows from the code. We
therefore concentrate on the second part. At most
n processes will access object O and at least one
process will access O (because � is nonempty).
Since there exist n� 1 primitive bits accessed by
all these processes, at least one of these processes
obtains non-1 responses from (at least) two bits.
Thus, at least one of these processes will return 0.

2. If some process has passed the gate or not passed
the gate, then every process which starts strictly
thereafter does not pass the gate.

Assume that one process Pi has passed the
gate or that it has not passed the gate. Assume
also that strictly thereafter another process Pj
starts its execution. Since Pi has accessed all the
primitive bits, and since at most one primitive bit
is faulty, it follows that process Pj obtains at least
n 1s as responses from the primitive bits. Thus,
process Pj will return 1. tu

Notice that our construction of the test&set bit in Fig. 5 can
tolerate one omission fault in the gate and one omission
fault in the other part of the implementation. The construc-
tion is not gracefully degrading because if all the gate's
constituent bits respond with ?, then every process which
accesses the gate will return 0.

5 A Gracefully Degrading Construction for n
processes

In the gracefully degrading case, our result for n processes
is:

Theorem 6. 2n� 4 test&set bits are sufficient for constructing a
test&set bit which can tolerate one omission fault, and which is
gracefully degrading for omission.

In Section 8, we show how this bound can be improved by
one test&set bit.

To extend the construction of Section 3.2 to a gracefully
degrading one, we again use a gate; however, this time we
construct a gate which is gracefully degrading. The gate will
consist of 2n� 1 test&set bits and it can tolerate one
omission fault.

In order for the gate to be gracefully degrading, we
ensure, in addition to conditions 1 and 2 formulated in
Section 4, that the following conditions are also satisfied
when at least two of its primitive bits are faulty by
omission:

258 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 3, MARCH 1999

Fig. 5. A construction of a test&set bit for n processes which can tolerate one omission fault. Fuction passed-gate (see Fig. 6) returns 0 if the
process passes the gate and 1 if it does not pass the gate. Function 2-process-test&set is from Fig. 2. The construction is not gracefully degrading
for omission.

3. Every process which accesses the gate either passes
the gate, does not pass the gate, or returns ?; and if at
least one process accesses the gate, then at least one
process passes the gate or at least one process
returns ?.

4. If some process has accessed the gate and returned
the value 0 or 1, then every process which starts
strictly thereafter returns 1 or ?.

Condition 3 guarantees that if one process has passed the

gate, we may pretend that all other processes which have

returned ? do not pass the gate and that if no process has

passed the gate, we may pretend that one process which has

returned ? does pass the gate. Condition 4 guarantees

that if some process has returned 0 or 1, then every

process which starts strictly thereafter may be pretended

to return 1 (not to pass the gate). Note that if some

process returns ?, then another process which starts

strictly thereafter may return 0.
In Fig. 7, we have combined such a gate with the

construction of Section 3.2. This combination is a test&set

bit for n processes which can tolerate one omission fault

and which is gracefully degrading.

Lemma 5. Consider bit T in Fig. 7. Assume that the gate can

tolerate one fault and is gracefully degrading. Then, T is a

test&set bit for n processes which can tolerate one omission

fault and which is gracefully degrading for omission.

Proof. Take an arbitrary nonempty, complete execution � of

bit T . In case at most one primitive bit of T exhibits a

fault in �, the proof is similar to the one of Lemma 3.

Assume, therefore, that at least two primitive bits exhibit

a fault in �.

1. In �, every process returns 0, 1, or ?.
This is obvious.

2. In �, at least one process returns 0 or ?.
Since the gate is gracefully degrading, at least

one process passes the gate or returns ?. In the

latter case, condition 2 holds. Assume, therefore,

that at least one of the processes has passed the

gate. A simple argument, similar to the one

applied in Lemma 3, shows that of all the

processes which have passed the gate, at least

one will return 0 or ?.
3. In �, if some process has accessed T and returned

a value, then every process which starts strictly
thereafter returns 1 or ?.

Let Pi be a process which has accessed T and

returned a value; and let Pj, i 6� j, be a process

which starts strictly thereafter. We consider two

cases:

a. Process Pi did not pass the gate.
Because of the specification of the gate,

every process which starts thereafter either

returns 1 or ?.
b. Process Pi did pass the gate.

The specification of the gate again im-

plies that no process started strictly there-

after can pass the gate. Consequently, Pj
returns 1 or ?. tu

To establish Theorem 6, it remains to construct a gate

consisting of 2n� 1 test&set bits which can tolerate one

omission fault and which is gracefully degrading for

omission. The code of such a construction is given in

Fig. 8. A process accessing the gate performs a test&set-

operation on all the 2n� 1 shared test&set bits. It returns

? if at least two bits have responded with ?. It returns 1 if

at most one bit has responded with 0 to it. In all other

cases, i.e., if the process has received at most one ? and at

least two 0s from all the bits, it returns 0.

Lemma 6. Object O whose code is given in Fig. 8 is a gate which

can tolerate one omission fault and which is gracefully

degrading for omission.

Proof. Let � be a nonempty, complete execution of object O.

The proof follows from conditions 1, 2, 3, and 4 below.

1. Assume that in � at most one primitive bit fails by
omission. Then, every process which accesses the
gate either passes the gate or does not pass the
gate. And at least one process will pass the gate.

One process will receive at least two 0s when

accessing the shared bits. (This is so because there

is at most one faulty bit and 2n� 1 bits and at

most n processes.) This process will return 0. It is

clear that every process which accesses O either

passes the gate or does not pass the gate because

no process can return ?. (By assumption, at most

one bit exhibits a fault in �.)
2. Assume that in � at most one primitive bit fails by

omission. Then, the following holds: If some
process has passed the gate or not passed the
gate, then every process which starts strictly
thereafter does not pass the gate.

STOMP AND TAUBENFELD: CONSTRUCTING A RELIABLE TEST&SET BIT 259

Fig. 6. A construction of a gate which can tolerate one omission fault from n� 1 test&set bits.

Assume that process Pi has returned 0 or 1 and
that another process Pj starts strictly thereafter.
Process Pi has accessed all the 2n� 1 shared bits.
Since there is at most one fault, it follows that at
least 2n of the bits will return a 1 to process Pj.
Thus, process Pj can receive at most one 0 when it
accesses the 2n� 1 bits. We conclude that Pj will
return 1.

3. Assume that in � at least two bits fail by omission.
Then, the following holds: Every process which
accesses the gate either passes the gate or does not
pass the gate, or returns ?; and if at least one
process accesses the gate, then at least one process
enters the gate or at least one process returns ?.

The first part of condition 3 should be clear.
We concentrate on the second part of the
condition. If one process receives at least two ?s
as responses from the bits, then we are done: This
process will return a ?. Consequently, assume
that no process will receive more than one ?s
from the bits. Then, because there are 2n� 1 bits
and n processes, there exists at least one process
which will receive at least two 0s. This process
will then return 0.

4. Assume that in � at least two bits fail by omission.
Then, the following holds: If some process has
accessed the gate and returned a value, then
every process which starts strictly thereafter
returns 1 or ?.

Assume that process Pi has returned 0 or 1 and
that another process Pj starts strictly thereafter.
We have that process Pi has received at most one
? when it accessed the bits. Thus, the value of at
most one bit can be 0 after Pi has returned a value.
Therefore, when Pj accesses the shared bits it can
receive at most one 0. It follows that process Pj
will either return ? or 1. tu

6 A Lower Bound for n Processes

We now prove a lower bound on the number of test&set
bits which are necessary to construct a reliable test&set bit
for n processes (when only test&set bits can be used in a
construction). We assume throughout this section that the
processes are symmetric, i.e., the code executed by different
processes is the same except for the names of local
variables.

Theorem 7. For n symmetric processes at least n test&set bits are
necessary for constructing a test&set bit which can tolerate one
omission fault and which is gracefully degrading for omission.

The proof is by contradiction. Assume that there exists
some test&set bit T for n processes which can tolerate one
omission fault, is gracefully degrading for omission, and
uses fewer than n primitive test&set bits. We construct a
scenario in which a set of the processes which access bit T
concurrently return 1 and in which no process has returned
a ? or a 0 previously. This contradicts the correctness
requirement of a test&set bit and, hence, the existence of T .
In the proof below, denote by hP; b; vi that process P has
accessed primitive bit b and that b has responded with value
v to P .

We define scenario S in which the processes P1; � � � ; Pn
(in that order) access T until one of these processes receives
only 1s from the primitive bits and this process returns a
value. In scenario S the primitive bits constituting T return
either ? or 1 (and not a 0) to the processes. Whenever one of
the bits has returned a ?, its value is changed to 1. (Thus,
every test&set-operation on a primitive bit in this scenario
is successful, although the responses may indicate faults.)
Every primitive bit's first response is always ? and

260 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 3, MARCH 1999

Fig. 7. A construction of a test&set bit for n processes which can tolerate
one omission fault and which is gracefully degrading. Function passed-
gracefully-degrading gate (see Fig. 8) returns 0 if the process passes
the gate, 1 if it does not pass the gate, and ? otherwise.

Fig. 8. A gracefully degrading construction of the gate which can tolerate one omission fault from 2n� 1 test&set bits.

subsequent responses are always 1 in S. In scenario S, we
first make every process Pi accessing T run until one of the
following occurs:

1. Pi accesses a bit b which has not been accessed by
any other process before. As a consequence of how
the primitive bits behave in scenario S, it follows that
bit b returns ? to process Pi. All bits different from b
accessed by Pi return 1 to Pi.

2. Pi accesses only bits which have been accessed
before and Pi returns some value (and terminates its
test&set-operation). Again because of how the
primitive bits behave in scenario S, each of the bits
accessed by Pi returns 1.

Now, there exists a process Pk participating in scenario S
which receives only 1s as responses from the primitive bits
it accesses. Process Pk exists indeed because of the pigeon-
hole principle: By assumption, there are n processes and
fewer than n bits constitute bit T . Now, k � 1 immediately
contradicts the existence of T . (If P1 returns a value without
accessing any primitive bit, then each of the processes will
return the same value as P1 when they access bit T . This is
so because the processes are symmetric. A similar argument
immediately leads to a contradiction if P1 returns a value
after receiving its first ?.) Thus, hereafter we assume that
k > 1 is true. Scenario S looks like

hP1; b1; ?i � �2 � hP2; b2; ?i � �3 � � ��kÿ1 � hPkÿ1; bkÿ1; ?i � �k:

Here, � denotes concatenation as usual; bi the
primitive bit which returns ? to Pi; and �i�1 the
sequence of the form hPi�1; b

1;1i � � � � � hPi�1; b
`;1i with

fb1; � � � ; b`g � fb1; � � � ; big �i � 1; � � � ; kÿ 1�.
The next lemma states that process Pk returns value 1.

Lemma 7. Assume that bit T , scenario S, and process Pk are as
defined above. Then, Pk returns 1.

Proof. Consider scenario S0 defined by

hP1; b1;0i � �2 � hP2; b2;0i � �3 � � ��kÿ1

� hPkÿ1; bkÿ1;0i � �1 � � � �kÿ1 � �k:
Scenario S0 differs from scenario S in that in S0 the
primitive bit bi returns 0 (instead of ?) to process Pi; and
each of the processes Pi runs to completion, indicated by
�i, before Pk accesses bit T (i � 1, � � � , kÿ 1). In scenario
S0, no primitive bit responds with ?. Notice that S0

defines an execution of bit T indeed. Also notice that in
S0 process Pk returns the same value as in scenario S.
(Process Pk cannot distinguish S from S0.) In scenario S0,
none of bit T 's primitive bits exhibits a fault and the
processes P1; � � � ; Pkÿ1 have all returned some value
strictly before Pk has started. It follows that in scenario
S0, hence, in S, process Pk returns 1, because T satisfies
the correctness requirement of a test&set bit. (A process
cannot return 0 if it has started strictly after another
process has already returned a value.) tu
Thus, process Pk returns value 1 in scenario S. We next

extend scenario S to one in which all the processes
P1; � � � ; Pk return 1. To do so, let us call a process active in
some scenario if it has accessed bit T in that scenario, but it

has not (yet) returned any value. Notice that, by construc-
tion, all of the processes P1; � � � ; Pkÿ1 are active in scenario S.

Consider the following scenario S0 extending S: In S0, the
processes and the bits behave first as they do in scenario S.
Choose an active process Pj. (Thus, Pj is accessing bit T and
has not returned any value yet.) We then make process Pj
continue its execution until it is about to access a bit which
has not been accessed by any other process before or until it
returns a value otherwise. As before, a bit returns value 1 to
a process if it has been accessed before by any process. We
next distinguish two cases:

1. Process Pj returns a value without accessing a bit
which has not been accessed before.

2. Process Pj is about to access a bit which has not been
accessed before.

Lemma 8. Assume that bit T , scenario S0 and process Pk are as
defined above. Consider process Pj as in case 1 above. Then, Pj
returns 1 in scenario S0.

Proof. Scenario S0 looks like

hP1; b1; ?i � �2 � hP2; b2; ?i � �3 � � ��j � hPj; bj; ?i � �j�1 � � ��kÿ1

� hPkÿ1; bkÿ1; ?i � �k � �j:

Here, �j denotes that part of the execution where process
Pj runs to completion. Define scenario S00 by

hP1; b1;0i � �2 � hP2; b2;0i � �3 � � ��j � hPj; bj; ?i � �j�1 � � ��kÿ1

� hPkÿ1; bkÿ1;0i � �j:

Scenario S00 is the same as S0 except that in S00 we do not
activate process Pk; and the bits accessed by processes
different from Pj return 0 (instead of ?). It is easy to see
that S00 defines a scenario of bit T indeed. Process Pj
cannot distinguish scenario S0 from scenario S00. Notice
that in scenario S00 only one primitive bit exhibits a fault,
namely the bit which returns a ? to process Pj. It follows
that in S00 and, hence, in S, process Pj returns a 0 or a 1
(and not a ?). However, Pj cannot return 0 in scenario S00.
This is true because of the following: Assume that
process Pj returns 0 in scenario S00. Then, we activate
process Pk strictly thereafter. Let the responses from the
primitive bits to Pk be the same as the responses to
process Pj. (This is possible, since these responses are
either 1 or ?.) It follows that Pk also returns 0 in scenario
S00 (because of symmetry). Consequently, there exists a
scenario in which two processes return 0, contradicting
the correctness requirement of bit T .

We conclude that in scenario S0, Pj returns a 1,
hence, that there exists an extension of S in which Pj
returns a 1. tu

In order to show that this extension also exists when
process Pj is about to access a bit which has not been
accessed by any process before (case 2 above), let us assume
that process Pj is about to access such a bit. Observe that
there exists a process P` which has not accessed T before.
We now activate P` and let the responses from bits to it be
the same as those to process Pj until P` reaches bit b, which
Pj is about to access. Then, P` accesses b, which returns 0.

STOMP AND TAUBENFELD: CONSTRUCTING A RELIABLE TEST&SET BIT 261

Thereafter, we make Pj access bit b which then returns a 1,
and make it run until it is about to access a bit which has not
been accessed before or until it returns a value otherwise. If
scenario S0 is of the form

hP1; b1; ?i � �2 � hP2; b2; ?i � �3 � � ��j � hPj; bj; ?i � �j�1 � � ��kÿ1

� hPkÿ1; bkÿ1; ?i � �k � �j;

then scenario S1 we have constructed is of the following
form:

hP1; b1; ?i � �2 � hP2; b2; ?i � �3 � � ��j � hPj; bj; ?i � �j�1 � � ��kÿ1

� hPkÿ1; bkÿ1; ?i � �k � �j � �`:
Here, �` is �0` � hP`; bj; ?i � � 0` � hP`; b; 0i � �0j , where �0` and � 0`
are obtained from �j and �j, respectively, by replacing the
first component, Pj, of every element in the sequence by P`,
and where �0j is that part of the Pj's execution after P` has
accessed bit b until Pj returns a value or it accesses a bit
which has not been accessed before.

Note that if Pj is about to access a bit b0 which has not
been accessed before, then there exists a process which has
not accessed T at all. Consequently, we can choose one such
process, have it run as Pj until it reaches b0. Thereafter, that
process accesses b0 which responds with 0. Then, Pj
continues its execution and the whole procedure is
repeated. Eventually, Pj will not access any ªnewº bits
any more. It follows that eventually the procedure
described above terminates and Pj returns some value.

Lemma 9. Pj as considered above will eventually return a 1.

Proof. Consider scenario S1 of the form

hP1; b1; ?i � �2 � hP2; b2; ?i � �3 � � ��j � hPj; bj; ?i � �j�1 � � ��kÿ1

� hPkÿ1; bkÿ1; ?i � �k � �j � �`
as above and assume that Pj returns a value. (The proof
for the general case is similar.) When Pj returns a value,
it has received one ? and 1s otherwise. Consider scenario
S2 defined by

hP1; b1;0i � �2 � hP2; b2;0i � �3 � � ��j � hPj; bj; ?i � �j�1 � � ��kÿ1

� hPkÿ1; bkÿ1;0i � �j � �`:
It is obtained from S1 by not activating process Pk and by
replacing responses ? of bits to processes in P1; � � � ; Pkÿ1

different from Pj by 0 (instead of ?). Notice that S2

defines an execution of bit T indeed. Also notice that
process Pj cannot distinguish scenario S1 from the
scenario S2. It follows that Pj cannot distinguish the
scenario it is in from one in which only one of the
primitive bits of bit T exhibits a fault and in which
process Pk has not accessed T at all. We conclude that Pj
will return a 0 or a 1 (and not a ?). A 0 is not possible,
however. This is so because, otherwise, we can take a
process, e.g., Pk, which has not accessed T which, when
it accesses T , behaves exactly as Pj. That process would
also return 0 (because of symmetry). This implies that a
process returns 0 after another process which has started
strictly thereafter also returns 0. This contradicts the
correctness requirement of bit T . We conclude that
process Pj will return 1. tu

Proof of Theorem 7. We repeat the above described
procedure for all processes Pj with 1 � j � kÿ 1. From
the lemmas and the discussion above, it follows that each
of these processes will eventually return 1. Thus, there
exists a scenario in which processes which access bit T
concurrently all return 1, and in which no process has
returned a ? or 0 previously. This contradicts the
correctness requirement of a test&set bit, hence, the
existence of bit T . Note that it is irrelevant for obtaining a
contradiction which values the processes Pj with j > k
return when they access bit T . This is so because all these
processes have started strictly after process Pk has
returned value 1. tu

7 USING ATOMIC BITS

By using atomic bits, the constructions of a gate as defined
in Sections 4 and 5 can be much simplified. An atomic bit
can only take the values 0 and 1. It supports two operations:
A read operation which returns the value of the bit and a
write operation which modifies the value of the bit to the
one given as an argument to the write operation. We assume
that an atomic bit can be read and written by all the
processes. The results of this section, which are rather
simple, are:

. Two atomic bits are sufficient for constructing a gate
which can tolerate one omission fault.

. Three atomic bits are sufficient for constructing a
gate which can tolerate one omission fault and
which is gracefully degrading for omission.

These results and the constructions of Section 4 and
Section 5 imply that, for n processes,

. Two atomic bits and two test&set bits are sufficient
for constructing a test&set bit which can tolerate one
omission fault.

. Three atomic bits and three test&set bits are
sufficient for constructing a test&set bit which can
tolerate one omission fault and which is gracefully
degrading for omission.

These bounds are improved in the next section.
We start with the trivial observation that one atomic bit is

sufficient for constructing a gate which cannot tolerate even
one omission fault. The trivial construction of a gate is given
in Fig. 9.

Theorem 8. One atomic bit is sufficient for constructing a gate.

The next step is to modify the construction so that it can
tolerate one omission fault. This is done by replacing the
single bit in the previous construction by two bits.
Intuitively, a process which accesses the gate simply reads
both bits. If the process sees at least one 1, then it returns 1;
otherwise, it returns 0. This simple construction is given in
Fig. 10 and provides a proof of the following:

Theorem 9. Two atomic bits are sufficient for constructing a gate
which can tolerate one omission fault.

262 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 3, MARCH 1999

Observe that the construction in Fig. 10 is not gracefully
degrading. In Fig. 11, we give a construction of a gate which
is also gracefully degrading. Here, we use three bits.
Intuitively, a process which accesses the gate reads all
three bits. If the process receives two ?s from the bits, then it
returns ?; otherwise, if it receives at least one 1, then it
returns 1; in all other cases, it returns 0. This construction
can be easily shown to be gracefully degrading. Thus, we
have the following theorem:

Theorem 10. Three atomic bits are sufficient for constructing a
gate which can tolerate one omission fault and which is
gracefully degrading for omission.

8 IMPROVEMENTS

In the constructions for n processes (in Sections 4, 5, 7), we
have emphasized modularity. Constructing a gate first and
then combining it with a solution for two processes resulted
in a solution that satisfies all the requirements for n
processes. Modularity eases the presentation and the
correctness proof of the solution. Now that we have these
solutions, we point out how to modify them to obtain
solutions with slightly better space complexity.

8.1 A Nongracefully Degrading Construction

We next describe how to construct a test&set bit which can
tolerate one omission fault for any number of processes,
from one (instead of two) atomic bit and two test&set bits.

Consider the construction in Fig. 12. It consists of one
atomic bit R and two test&set bits A and B. The gray nodes
labeled s0, s1, and s2 denote states. Edges out of state s0 are
labeled by responses to read operation on R; edges out of
the states s1 and s2 are labeled by responses to test&set on
A and B, respectively; white nodes with some value in it
represent the value returned by a process.

When a process accesses bit R, if R responds with 1, then

the process immediately returns 1. (Some other process has

already accessed R.) Otherwise, the process cannot deter-

mine whether it is the first to access R. It then accesses A. If

A responds with 1, then the process sets R to 1 (closing the

gate) and returns 1. If A's response is not 1, then the process

also accesses B and returns 1 if B responds with 1 and

returns 0 otherwise.
Using the above construction, it is also possible to

improve the construction presented in Section 4 by one

test&set bit. Replace the atomic bit R in Fig. 12 by n test&set

bits U1; :::; Un. To read bit R, process Pi does a test&set on

bit Ui and uses the result as the value of R; and to write 1,

process Pi does a test&set on all the n bits.

8.2 A Gracefully Degrading Construction

An idea similar to the one presented in the previous

subsection can be used to slightly improve the space

complexity of the gracefully degrading solutions for n

processes. Following is an informal description of a grace-

fully degrading construction of a test&set bit which can

tolerate one omission fault for any number of processes

from one (instead of three) atomic bits and three test&set

bits.
In the construction for n processes in Section 5, we

replace the gate by one atomic bit R. When a process

accesses bit R, if R responds with 1, then the process

immediately returns 1. (Some other process has already

accessed R.) Otherwise, the process cannot determine

whether it is the first to access R. It then accesses the

construction for two processes (as described in Figs. 3 and

4) and executes it with only two changes: 1) If a process ever

sees two ?s, then it immediately returns ?; 2) Whenever a

process has to return 1, it first sets R to 1 and only then

returns 1 and terminates.
Using the above construction, it is also possible to

improve the construction presented in Section 5 by one

test&set bit. Replace the atomic bit R in the above solution

by 2n test&set bits U1; :::; U2n. Instead of reading the atomic

bit R, process Pi does a test&set on the bits U2iÿ1 and U2i

and uses the result as the value of R: If one of the two values

is ?, then the value of R is ?; otherwise, if one of the two

values is 0, then the value of R is 0; and, in all other cases (if

both values are 1), the value of R is 1. To write 1, process Pi
does a test&set on all the 2n bits.

STOMP AND TAUBENFELD: CONSTRUCTING A RELIABLE TEST&SET BIT 263

Fig. 9. A trivial construction of a gate which cannot tolerate even one
omission fault.

Fig. 10. A trivial construction of a gate which can tolerate one omission fault.

9 DISCUSSION

We have constructed reliable test&set bits from faulty bits.
The fault model considered in this paper is that of omission.
That is, operations on faulty bits either return a ªcorrectº
value or a special value ?, indicating that the operation may
have not taken place. Some of the constructions are
gracefully degrading, meaning that when too many
component bits fail by omission, the constructed bit is
either correct or also fails only by omission.

None of the constructions in the present paper can
tolerate even one fault when the arbitrary fault model is
assumed. (Here, responses ? are irrelevant because every
bit responds with 0 or 1.) Recall that faults in the crash fault
model, the omission-crash fault model, and the eventual-
crash fault model are no more severe than omission faults.
Therefore, all our constructions of a test&set bit which can
tolerate one omission fault can also tolerate one fault in the
above mentioned three models. (In these models, ? is
interpreted as a terminal crash event or as an omission fault
consistent with the model under consideration.) Also, those
constructions of the test&set bit which are not gracefully
degrading for omission are not gracefully degrading for
crash, omission-crash, or eventual-crash. Our constructions
which are gracefully degrading for omission can be shown

to be also gracefully degrading for crash, omission-crash,

and eventual-crash.

ACKNOWLEDGMENTS

We thank Michael Merritt for remarks concerning the

presentation. Part of this work was performed while the

authors were with AT&T Bell Labs.

REFERENCES

[1] Y. Afek, D. Greenberg, M. Merritt, and G. Taubenfeld, ªComput-
ing with Faulty Shared Memory,º Proc. 11th Ann. ACM Symp.
Principles of Distributed Computing, pp. 47-58, Aug. 1992.

[2] Y. Afek, D. Greenberg, M. Merritt, and G. Taubenfeld, ªComput-
ing with Faulty Shared Memory,º J. ACM, vol. 42, no. 6, pp. 1,231-
1,274, Nov. 1995.

[3] Y. Afek, M. Merritt, and G. Taubenfeld, ªBenign Failure Models
for Shared Memory (Preliminary Version),º Proc. Seventh Int'l
Workshop Distributed Algorithms, pp. 69-83, Sept. 1993.

[4] E.W. Dijkstra, ªSelf-Stabilizing Systems in Spite of Distributed
Control,º Comm. ACM, vol. 17, pp. 643-644, Nov. 1974.

[5] M.J. Fischer, S. Moran, S. Rudich, and G. Taubenfeld, ªThe
Wakeup Problem,º SIAM J. Computing, vol. 25, no. 6, pp. 1,332-
1,357, Dec. 1996. Also in Proc. 31st IEEE Ann. Symp. Foundations of
Computer Science, pp. 106-116, Oct. 1990.

[6] P. Jayanti, T. Chandra, and S. Toueg, ªFault-Tolerant Wait-Free
Shared Objects,º Proc. 33rd IEEE Ann. Symp. Foundation of
Computer Science, Oct. 1992. (Older version of [7].)

264 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 3, MARCH 1999

Fig. 11. A gracefully degrading construction of a gate which can tolerate one omission fault.

Fig. 12. Schematic of a construction of a test&set bit for any number of processes which can tolerate one omission fault. The construction is not
gracefully degrading for omission.

[7] P. Jayanti, T. Chandra, and S. Toueg, ªFault-Tolerant Wait-Free
Shared Objects,º J. ACM, vol. 45, no. 3, pp. 451-500, May 1998.

[8] M. Herlihy, ªWait-Free Synchronization,º ACM Trans. Program-
ming Languages and Systems, vol 11, no. 1, pp. 124-149, Jan. 1991.

[9] M. Herlihy and J. Wing, ªLinearizability: A Correctness Condition
for Concurrent Objects,º ACM Trans. Programming Languages and
Systems, vol. 12, no. 3, pp. 463-492, July 1990.

[10] L. Lamport, ªOn Interprocess Communication, Parts I and II,º
Distributed Computing, vol. 1, pp. 77-101, 1986.

[11] M.C. Loui and H.H. Abu-Amara, ªMemory Requirements for
Agreement Among Unreliable Asynchronous Processes,º Ad-
vances in Computing Research, vol. 4, pp. 163-183, 1987.

[12] M. Schneider, ªSelf-Stabilization,º ACM Computing Surveys, vol.
25, no. 1, pp. 45-67, Mar. 1993.

Frank Stomp received his BSc and MSc
degrees in mathematics from the University of
Utrecht, The Netherlands, and his PhD degree in
computer science from Eindhoven University of
Technology, The Netherlands. He is an assistant
professor in the Department of Computer
Science at Wayne State University, Detroit,
Michigan. His research interests include distrib-
uted algorithms and formal verification.

Gadi Taubenfeld received the BS, MSc, and
PhD degrees in computer science from the
Technion (Israel Institute of Technology) in
1982, 1984, and 1988, respectively. From
1988 to 1990, he was a research scientist at
Yale University and, from 1991 to 1995, he was
a member of the technical staff at AT&T Bell
Laboratories. Since 1995, he has been a faculty
member at the Open University of Israel. His
primary research interests are in concurrent and

distributed computing.

STOMP AND TAUBENFELD: CONSTRUCTING A RELIABLE TEST&SET BIT 265

