
Computing in the Presence of Timing Failures

Gadi Taubenfeld
The Interdisciplinary Center

P.O.Box 167, Herzliya 46150, Israel
tgadi@idc.ac.il

Abstract

Timing failures refer to a situation where the environ-
ment in which a system operates does not behave as ex-
pected regarding the timing assumptions, that is, the timing
constraints are not met. In the immense body of work on the
designing fault-tolerant systems, the type of failures that are
usually considered are, process failures, link failures, mes-
sages loss and memory failures; and it is usually (implicitly)
assumed that there are no timing failures. In this paper we
investigate the ability to recover automatically from tran-
sient timing failures. We introduce and formally define the
concept of algorithms that are resilient to timing failures,
and demonstrate the importance of the new concept by pre-
senting consensus and mutual exclusion algorithms, using
atomic registers only, that are resilient to timing failures.

1 Introduction

1.1 Motivation

One of the advantages of designing algorithms for asyn-
chronous systems is that no assumption is made about the
relative speed of the participating processes. Thus, such al-
gorithms are robust in the sense that they (obviously) also
operate properly in any partially synchronous system. How-
ever, this generality comes at the cost of efficiency and
sometimes even solvability. Algorithms for asynchronous
systems are usually less efficient than similar algorithms
designed for synchronous systems, and important problems
(such as consensus, renaming, election) do no have deter-
ministic solutions in the presence of process failures using
atomic read/write registers without making timing assump-
tions.

On the other hand, timing-based systems (where as-
sumptions are made about the relative speed of the partici-
pating processes) enable the design of efficient algorithms.
Furthermore, such systems are stronger than asynchronous
systems enabling to solve problems that are unsolvable in

asynchronous systems. A disadvantage of timing-based al-
gorithms is that they may fail to operate properly when the
timing constraints are not met. We will use the term timing
failure, to refer to a situation where the timing constraints
of a given timing-based system are not met.

To overcome the drawbacks of asynchronous systems
(also called, time-free systems) and timing-based systems
(or partially synchronous systems), as discussed above, we
consider algorithms that are resilient to timing failures.
These are efficient algorithms that are designed for timing-
based systems with the following additional feature: their
safety properties are always guaranteed to hold even in the
presence of timing failures, and their liveness properties are
guaranteed to hold as soon as the timing constraints are
met.1

The appeal of such time-resilient algorithms lies in the
fact that when they are executed in an asynchronous sys-
tem, they “lie in wait” for a short period of time during
which certain timing constraints are met, and when this hap-
pens these algorithms take advantage of the situation and
efficiently complete their mission. Furthermore, when they
are execute in a timing-based system such algorithms are
very efficient as they are optimized for such a timing-based
system. Finally, these algorithms guarantee that in case of
timing failures, no harm is done – as soon as the timing
constraints are again met the algorithms will automatically
resume their normal efficient operation.

In the sequel, we formally define the notion of algo-
rithms that are resilient to timing failures, and demonstrate
the importance of the new concept by present several algo-
rithms that are resilient to timing failures.

1.2 Timing-based Systems

A timing-based system provides an interesting abstrac-
tion of the timing details of concurrent systems. We as-

1Safety properties (such as, mutual exclusion, or never deciding on con-
flicting values) stipulate that “nothing bad ever happens”, while liveness
properties (such as, eventually entering a critical section, eventually reach-
ing an agreement, or termination) stipulate that “something good eventu-
ally happens” [26].



sume that there is a known upper bound on memory access
time. This assumption is inherently different from the asyn-
chronous model where no such bound exists. While such
a system abstracts from implementation details, in various
environments it is a better approximation of the real con-
current systems compared to the asynchronous model, and
enables to obtain more efficient solutions. Furthermore, it is
stronger than the asynchronous model enabling us to solve
problems that are unsolvable in the asynchronous model.
We assume that the basic atomic operations are reads and
writes of atomic registers, however, we add the following
timing assumption about the speed of the processes,

• Timing assumption: There is an upper bound δi on the
time it takes for process i to execute a statement which
involves a single access to the shared memory. We as-
sume that ∆ = max{δi}. That is, ∆ is a known upper
bound on the time it takes for the slowest process to
execute a statement which involves an access to the
shared memory.

• Explicit delay statement: Each process can delay itself
by executing the statement:

delay(d), for some constant d.

A delay statement delay(d) by a process p delays p for
at least d time units before it can continue. Since it is
assumed that the value of ∆ is known, delay statements
can refer directly to ∆, and a process can enforce every
other (nonfaulty) process to take at least one step by
executing the statement delay(∆).

Next, we define the notion of a timing failure.

A timing failure: A timing failure refers to a situation
where the timing constraints of a timing-based system are
not met. In particular, a timing failure occurs when it takes
more than ∆ time units for a process to execute a statement
which involves an access to a shared memory location.

When measuring time complexity, we assume that the state-
ment delay(∆) takes exactly ∆ time units, and that each ac-
cess (local or remote) to a shared memory location takes at
most ∆ time units.

We have defined ∆ to be the maximum time it takes for
the slowest process in the system to execute a statement
which involves an access to the shared memory. In sys-
tems which allow processes to be preempted (as almost all
modern computing systems do), ∆ must include the time
spent preempted between two statements, in the time to ex-
ecute one of them. Furthermore, in determining the value
of ∆, possible cache misses, page faults, and delays due
to memory contention should be taken into account. Thus,
the value of ∆ in most cases must be very large, rendered

timing-based algorithms impractical, especially if they use
delay also in the absence of contention.

However, because the time-resilient algorithms we
present in this paper ensure correctness even when tim-
ing assumptions are violated, we can consider strategies in
which we estimate ∆ optimistically. Let us define opti-
mistic(∆) to be a bound on the time it takes each process in
the system to execute a statement which involves an access
to the shared memory most of the times (or even “enough”
times), but not necessarily all the times. For example, opti-
mistic(∆) would ignore possible delays resulting from page
faults, memory contention and preemption. Thus, the value
of optimistic(∆) can be significantly smaller than ∆. As we
consider only algorithms that are resilient to timing failures,
from a practical point of view, such algorithms would work
correctly and are likely to be more efficient and practical
when ∆ is replaced with optimistic(∆). The exact value of
optimistic(∆) should be tuned for each individual machine
architecture, and can also be changed over time if the algo-
rithm fails to make sufficient progress.

1.3 Tolerating Timing Failures

One negative effect of timing failures is to decrease ef-
ficiency. We will require that in algorithms that are re-
silient to timing failures, some time after timing failures
stop, called convergence time, the algorithm becomes as ef-
ficient as if timing failures have never occurred. We will use
the term convergence to refer to the time it takes to reach a
configuration starting from which the time complexity of
the algorithm is as if timing failures have never occurred.
The notion of convergence is more interesting in the con-
text of long-lived algorithms such as mutual exclusion, than
in the context of short-lived algorithms such as consensus.

Tolerating timing failures: An algorithm is resilient to tim-
ing failures, w.r.t. time complexityψ, if it satisfies the follow-
ing three requirements,

1. Stabilization. The algorithm guarantees that after a
transient timing failure has terminated, all the (safety
and liveness) properties that the algorithm should sat-
isfy immediately hold, assuming no more failures oc-
cur in the future. Furthermore, all the safety properties
are always guaranteed to hold even during timing fail-
ures.

2. Efficiency. In the absence of timing failures (that is,
when the timing constraints are always met), the time
complexity of the algorithm should be ψ.

3. Convergence. The algorithm convergence time is fi-
nite. A finite number of time units after all timing fail-
ures stop, the time complexity of the algorithm is again
ψ.



In all the algorithms presented in this paper, the time com-
plexity ψ always equals c · ∆ time units for some small
constant c. Thus, in order to simplify the presentation, from
now on instead of saying that an algorithm is resilient to
timing failures w.r.t. time complexity c · ∆, we will sim-
ply say that an algorithm is resilient to timing failures (and
implicitly assume that it is resilient w.r.t. time complexity
c · ∆).

Weaker definitions of stabilization in which it is not re-
quired that the safety properties are guaranteed to hold dur-
ing timing failures, or in which it is required that the safety
properties only eventually hold (not necessarily immedi-
ately) are interesting. Also, it is possible to consider vari-
ants of the above definition in which the requirement that
the time complexity of the algorithm after it converges is
exactly the same as in the absence of timing failures, is re-
laxed. Stronger definitions of convergence in which it is re-
quired that the convergence time is a constant, or a function
of the number of processes, are also interesting.

We point out that algorithms that are correct for com-
pletely asynchronous systems are usually, but not always,
resilient to timing failures w.r.t. some time complexity ψ.
However, in such cases, the value of ψ would usually be
large, and such asynchronous algorithms be less efficient
than the corresponding timing-based algorithms when exe-
cuted in timing-based systems.

1.4 Results

We introduce and formally define the concept of algo-
rithms that are resilient to timing failures. This new concept
provides a novel way of looking at timing-based algorithms
when designing fault-tolerant systems which may experi-
ence timing failures.

We assume that the reader is familiar with the definitions
of the consensus problem and the mutual exclusion prob-
lem. To demonstrate the importance of the new concept we
present two algorithms, using atomic registers only, that are
resilient to timing failures:

• A consensus algorithm that is resilient to timing fail-
ures. The algorithm is also wait-free, which means that
as soon as the timing constraints are met, it is guaran-
teed that each process eventually terminates even if all
the other processes crash. That is, the algorithm can
tolerate any number of process crash failures. Further-
more, the algorithm is fast: in absence of contention,
a process decides after a constant number of its own
steps, regardless of timing failures.

Using the consensus algorithm as a building block, it
is easy to design few other efficient algorithms that
are resilient to timing failures. These algorithms in-
clude wait-free leader election, wait-free n-renaming,

a wait-free implementation of a test-and-set object
from atomic registers, etc.

Given the known result about the universality of con-
sensus [24], it follows from the fact that there exists
a wait-free implementation of a consensus algorithm
that is resilient to timing failures using atomic regis-
ters, that it is possible to provide a wait-free imple-
mentation that is resilient to timing failures w.r.t. some
time complexity ψ of any object (which has sequential
specification) using atomic registers only.

• A mutual exclusion algorithm that is resilient to tim-
ing failures. The algorithm is very efficient – has only
O(∆) time complexity – when there are no timing fail-
ures (that is, when timing constraints are met), and be-
haves as one of the best known asynchronous mutual
exclusion algorithm during timing failures. That is, the
algorithm alternates between these two modes of oper-
ation depending on the behavior of the environment.

The first result demonstrates that although reaching con-
sensus in the presence of a single process failure is im-
possible using atomic registers in systems that are always
asynchronous [22, 28], reaching consensus is possible in
systems that are most of the time (but not always) asyn-
chronous. The second result demonstrates that for systems
that are not always asynchronous one can design a mutual
exclusion algorithm that is efficient when the system behave
in a completely asynchronous way, and is much more effi-
cient during times when some timing constraints are met.
As already mentioned, in order to make time-resilient algo-
rithms practical, ∆ must be replaced with optimistic(∆).

1.5 Related Work

Timing-based algorithms, which are not resilient to tim-
ing failures, were considered in several papers and are cov-
ered in [34] (Chapter 10). The first timing-based mutual
exclusion algorithm is due to Fischer and is described in
[27]. Lamport’s paper also contains a fast timing-based mu-
tual exclusion algorithm which works correctly only when
some bound is assumed on the time needed to execute the
critical section [27]. Fast timing-based algorithms for mu-
tual exclusion and consensus appeared in [4, 5, 6, 30].

In [29], a timing-based mutual exclusion algorithm is
presented, in which only the property of deadlock-freedom
depends on the timing assumptions, and mutual exclusion
is guaranteed even in presence of timing failures. The
deadlock (livelock) that is possible in the algorithm of [29]
when there are timing failures, can persist even after there
are no more timing failures. In [25] the time complexity
of timing-based mutual exclusion algorithms is considered
when counting only remote memory reference and delay
statements.



Message-passing algorithms for partially synchronous
systems were presented in various papers [1, 19, 21, 35].
In particular, in [35] a leader election algorithm is presented
which is correct under any assumption about time in the sys-
tem, but exhibit graceful degradation of performance when
the timing conditions deteriorate.

In [3] algorithms for both mutual exclusion and consen-
sus were presented assuming that a time bound on the mem-
ory access time exists but is not known. The consensus al-
gorithm in [3] proceeds in rounds where in each round the
timing-based consensus algorithm from [6] is executed with
some estimate for ∆. If no decision is made in a round then
larger estimate for ∆ is used in the next round. Our con-
sensus algorithm is constructed similarly but, unlike the al-
gorithm from [3], it is resilient to timing failures w.r.t. time
complexity c · ∆. It follows from the lower bound proved
in [3] that, in a model where a time bound on the memory
access time exists but is not a priori known, there is no con-
sensus algorithm with time complexity of c · ∆.

A similar approach is taken in constructing the random-
ized consensus algorithm from [11] with the delays re-
moved from the algorithm in [3]. Time-resilient algorithms
are related to randomized algorithms, as both approaches
guarantee safety but relay on good luck (i.e., on the behav-
ior of the scheduler) for liveness (such as termination) and
efficiency. The unknown delay model is also considered in
[23].

The concept of self-stabilization is due to Dijkstra [17,
18], which has defined a system as self-stabilizing when
“regardless of its initial state, it is guaranteed to arrive at
a legitimate state in a finite number of steps.” We notice
that self-stabilizing algorithms are not necessarily resilient
to timing failures, as they are not required to satisfy the
safety properties at all times. For example, two processes
may be in their critical sections at the same time as a results
of a failure. For a comprehensive description of results on
the topic of self-stabilization see [20].

In [22], it was proved that reaching consensus in the pres-
ence of a single process failure is impossible in an asyn-
chronous message-passing system. In [28], a similar impos-
sibility result was proved for an asynchronous system which
supports only atomic read/write registers. Timing-based
systems enable to solve consensus by (indirectly) impos-
ing constraints on the scheduler (i.e., the adversary’s con-
trol is restricted). Another way to restrict the scheduler is
explored in [9, 10], where it is shown how to solve consen-
sus assuming priority-based scheduling and quantum-based
scheduling. Another related approach, which provides a
mechanism to circumvent timing assumptions in an asyn-
chronous system, is the use of (unreliable) failure detectors
[14, 15, 32]. Several other related papers are mentioned
later in the paper.

2 Consensus in the Presence of Timing Fail-
ures

We present a consensus algorithm which is resilient to tim-
ing failures, using atomic registers only. The algorithm is
wait-free, as soon as there are no more timing failures, one
process cannot prevent another process from reaching a de-
cision, and thus the algorithm can tolerate arbitrary number
of crash failures. Furthermore, the algorithm is fast, in ab-
sence of contention a process decides after a constant num-
ber of its own steps, even in the presence of timing failures.

2.1 The Algorithm

The algorithm proceeds in rounds. The notion of a round
is used only for the sake of describing the algorithm. We
do not assume a synchronous model of execution in which
all the processes are always executing the same round, and
where no process can move to the next round before all oth-
ers have finished the previous round.

Each process has a preference for the decision value in
each round; initially this preference is the input value of the
process. In each round, processes execute a timing-based
consensus algorithm using ∆, the known upper bound on
memory access time. The timing-based algorithm used in
each round avoids conflicting decisions even if there is a
timing failure during the round. If no decision is made
in a round then the processes advance to the next round,
and try again to reach agreement. If there are no more
timing failures starting at the beginning of round r, than
agreement is reached (at the latest) by the end of round r+1.

Algorithm 1. CONSENSUS IN THE PRESENCE OF TIMING

FAILURES: program for pi with input ini.

shared registers
x[1..∞, 0..1] array of bits, initially all 0
y[1..∞] array, ranges over {⊥, 0, 1}, initially all ⊥
decide ranges over {⊥, 0, 1}, initially ⊥

local registers
ri integer, initially 1
vi bit, initially ini

1 while decide =⊥ do
2 x[ri, vi] := 1
3 if y[ri] =⊥ then y[ri] := vi fi
4 if x[ri, v̄i] = 0 then decide := vi

5 else delay(∆)
6 vi := y[ri]
7 ri := ri + 1 fi
8 od
9 decide(decide)



The algorithm uses the following shared data structures: a
(two dimensional) infinite array x[1..∞, 0..1] of bits, and an
infinite array y[1..∞] where the possible values of each y[i]
are {⊥, 0, 1}. The decision value is written to the shared
register decide. In addition, each process pi has a local reg-
ister vi, containing its current preference and a local register
ri, containing its current round number.

In round r, process pi first flags its preference v by writ-
ing 1 to x[r, v]. Then, the process reads y[r], and writes its
preference to y[r], if y[r] has still its initial value ⊥. Pro-
cess pi then reads the flag for the other preference (denoted
by v̄). If x[r, v̄] is not set, then every process that reaches
round r with the conflicting preference v̄ will find y[r] set
to v. Consequently, process pi can safely decide on v. Oth-
erwise, it waits for ∆ time units and then sets its preference
for the next round by reading y[r].

Two processes with conflicting preferences for round
r will not resolve the conflict only if both of them find
y[r] =⊥ first and, as a result of a timing failure, one of them
proceeds and chooses its preference for the next round be-
fore the other one finishes the assignment to y[r]. However,
when there are no timing failures, each process finishes the
assignment within time ∆ and all the processes will choose
the same value, the value of y[r], as their preference for
the next round. We notice that if all processes in a round
have the same preference, then a decision is reached in that
round. These two observations ensure termination.

Theorem 2.1 (Properties of the algorithm)

• The algorithm is an efficient timing-based consensus
algorithm that is resilient to timing failures. In the ab-
sence of timing failures each process decides and ter-
minates after at most 15 · ∆ time units (the first two
rounds).

• If there are no more timing failures starting at the be-
ginning of round r, then each process decides and ter-
minates (at the latest) by the end of round r + 1.
(r = maximum({rj | j ∈ set of all process’
identifiers}).)

• The algorithm is wait-free – it can tolerate any number
of process crash failures.

• The algorithm is fast – in absence of contention, a pro-
cess decides after taking 7 steps, regardless of timing
failures, and with no need to execute a delay statement.

• The number of participating processes is (potentially)
unbounded. In particular, there is no need to know the
number of participants.

We observe that infinitely many atomic registers are used.
Also, the convergence time is finite but unbounded. It is an

interesting open problem to decide whether there is a time-
resilient consensus algorithm which uses only finitely many
atomic registers and/or has bounded convergence time. No-
tice that such an algorithm exists when there is a known
bound on the number of time units during which there are
timing failures.

Using the consensus algorithm as a building block, it is
easy to construct algorithms that are resilient to timing fail-
ures for the other problems that have no fault-tolerant solu-
tions using atomic registers, in a completely asynchronous
system such as election, set-consensus and renaming.

2.2 Correctness

We now consider the correctness proof of the algorithm.
For lack of space we only state the theorems and omit their
proofs.

Theorem 2.2 (validity) If pi decides on a value v then
inj = v for some pj .

Theorem 2.3 (agreement) No two processes decide on
conflicting values.

Theorem 2.4 (termination & wait-freedom) If from
some point on there are no more timing failures, then it is
guaranteed that each nonfaulty process eventually decides
and terminates, regardless whether the other processes are
faulty or not.

3 Mutual Exclusion in the Presence of Tim-
ing Failures

We present an efficient mutual exclusion algorithm that
is resilient to timing failures. The algorithm has only O(∆)
time complexity when there are no timing failures and be-
haves as one of the best known asynchronous mutual exclu-
sion algorithm during timing failures. That is, the algorithm
alternates between these two modes of operation depending
on the behavior of the environment. Time complexity is de-
fined as follows,

Time complexity: The longest time interval where some
process is in its entry code while no process is in its critical
section, assuming there is an upper bound of ∆ time units
for step time in the entry or exit code and no lower bound.

Notice that the above definition make sense for both timing-
based and time-free algorithms. No known mutual exclu-
sion algorithm achieves O(∆) time complexity when ex-
ecuted in an asynchronous system. Moreover, there is no
known mutual exclusion algorithm that works correctly in
an asynchronous environment and at the same time has only
O(∆) time complexity when the time constraint of a timing-
based environment are met. We present below the first such



algorithm, which is constructed by combining two algo-
rithms, a variant of Fischer’s timing-based algorithm and
an asynchronous fast starvation-free mutual exclusion algo-
rithm.

3.1 Fischer’s Timing-based Mutual Exclu-
sion Algorithm

The first and most simple timing-based mutual exclusion
algorithm is due to Fischer [27]. The algorithm uses one
shared register named x. A process first waits until x = 0
and then assigns its id to x, delays itself and then checks
x. If x has not been changed it can safely enter its critical
section, otherwise it repeats this procedure. In the code
of the algorithm, the statement “await condition” is used
as an abbreviation for “while ¬condition do skip”. The
processes are numbered 1 through n.

Algorithm 2. FISCHER’S TIMING-BASED ALGORITHM:
process i’s program.

Shared x: atomic register, initially 0.

1 repeat await (x = 0)
2 x := i
3 delay(∆)
4 until x = i
5 critical section
6 x := 0

The delay statement ensures that after a process finishes
the delay statement, the value of x remains unchanged un-
til some process leaving its critical section sets it to 0. In
the absence of timing failures, Fischer’s algorithm satisfies
both mutual exclusion and deadlock freedom. However, it
fails to guarantee mutual exclusion when there are timing
failures.

3.2 A Space Lower Bound

It has shown by Burns and Lynch [13], that in an asyn-
chronous system which supports only read/write atomic
registers, any deadlock-free mutual exclusion algorithm for
n processes must use at least n shared registers. Lynch and
Shavit have shown that a similar lower bound holds also
for timing-based systems in which the timing conditions are
only eventually met [29]. This later lower bound implies a
similar bound for time-resilient algorithms.

Theorem 3.1 Any mutual exclusion algorithm for n pro-
cesses that is resilient to timing failures w.r.t. some time
complexity ψ must use at least n shared registers (regard-
less of the value of ψ).

We observe that a mutual exclusion algorithm that is re-
silient to timing failures may during timing failures pre-
vent all the processes from entering their critical sections.
The algorithm presented below does not prevent all the pro-
cesses from entering their critical sections during timing
failures.

3.3 The Mutual Exclusion Algorithm

Let A be a correct mutual exclusion algorithms for
asynchronous systems. That is A satisfies mutual exclusion
and deadlock-freedom. The new algorithm, Algorithm 3,
is obtained by replacing the critical section of Fischer’s
algorithm with a fast starvation-free mutual exclusion
algorithm, called A, and replacing the single statement of
the exit code of Fischer’s algorithm with the statement: if
x = i then x := 0 fi. The code of Algorithm 3 is,

Algorithm 3. A MUTUAL EXCLUSION ALGORITHM:
process i’s program.

Shared x: atomic register, initially 0.
Assume the registers of A do not include x.

1 repeat await (x = 0)
2 x := i
3 delay(∆)
4 until x = i

5 entry section of algorithm A

6 critical section

7 exit section of algorithm A

8 if x = i then x := 0 fi

The main question is: What should be the properties of Al-
gorithm A which would guarantee that Algorithm 3 be re-
silient to timing failures?

First we observe that the fact that Algorithm A satisfies
mutual exclusion for asynchronous systems implies that Al-
gorithm 3 satisfies also mutual exclusion. It is easy to see
that Algorithm 3 is deadlock-free, given that Algorithm A
and Algorithm 2 are both deadlock-free.

In order for Algorithm 3 to satisfy the efficiency require-
ment in the definition of resiliency to timing failures we re-
quire thatA be fast. That is, in absence of contention, a pro-
cess must enter its critical section after a constant number
of its own steps. Lamport’s fast mutual exclusion algorithm
[27] is the first published fast algorithm (using atomic reg-
isters). Lamport’s algorithm satisfies deadlock-freedom but
not starvation-freedom.

Several other fast algorithms, using atomic registers
only, have been published [2, 7, 8, 12, 16, 31, 33]. All
these fast algorithms satisfy starvation-freedom, however,
they are rather complicated. A simple and elegant mutual



exclusion algorithm (using atomic registers) which is both
fast and starvation-free, can be easily obtained by apply-
ing a general transformation, due to Yoah Bar-David, which
transforms any deadlock-free mutual exclusion algorithm
into a corresponding starvation-free algorithm, to Lamport’s
fast mutual exclusion algorithm [27]. This simple trans-
formation is described in [34], Problem 2.34. There are
also simple fast starvation-free mutual exclusion algorithms
which use synchronization primitives stronger than atomic
registers.

Would using Lamport’s original deadlock-free fast algo-
rithm (for algorithm A) guarantee that Algorithm 3 satisfies
also the third requirement (i.e.,convergence)? The answer
is negative.

Theorem 3.2 Let A be a fast deadlock-free mutual exclu-
sion algorithm. Then, Algorithm 3 is not guaranteed to con-
verge.

Proof: As a result of time failures, several processes may
execute the entry code of A at the same time. The fact that
A is deadlock-free does not ensure that when there are no
more timing failures, eventually at most one process will
execute the entry code of A. Thus, because after a timing
failures, there may always be contention in the entry code of
A it may always take more than c·∆ time units for a process
to enter its critical section since a critical section was last
released. Hence, the algorithm may never converge.

Theorem 3.3 Let A be a fast starvation-free mutual exclu-
sion algorithm. Then, Algorithm 3 is guaranteed to con-
verge. Thus, Algorithm 3 is resilient to timing failures.

Proof: As a result of time failures, several processes may
execute the entry code of A at the same time. The fact that
A is starvation-free ensures that as soon as there are no more
timing failures eventually at most one process will execute
the entry code of A. To see that, we notice that a new pro-
cess may reach the entry code of A only when another pro-
cess sets x to zero in line 8. Line 8 guarantees that, out of all
the processes that are concurrently in the entry code of A,
at most one will set x to zero and all the others will simply
exit leaving x unchanged. Thus eventually all the processes
will leave the entry code of A.

We notice that as a result of a time failure several pro-
cesses may be ready, at the same time, to set x to 0 in state-
ment 8. This should cause no problem, as these processes
are all guaranteed to finish executing statement 8 within ∆
time units, after there are no more timing failures. Thus,
when there are no more timing failures, after some process
finishes executing statement 3 (the delay statement) all these
processes will finish executing statement 8.

To make Algorithm 3 practical, ∆ must be replaced with
optimistic(∆). If ∆ (or optimistic(∆)) is not a priori known,

we can start with a small estimated value and change it over
time. One potential way to estimate ∆, is to use a technique
similar to the one used in TCP congestion control (i.e, slow
start and additive-increase, multiple-decrease).

4 Discussion

Real systems exhibit a significant degree of synchrony
in practice, but few guarantee to do so. This synchrony can
be exploited to achieve algorithms with properties that are
not possible in a completely asynchronous systems, how-
ever, in general we cannot afford to risk incorrect behavior
in case our assumptions about this synchrony are occasion-
ally violated. We have explored the possible middle ground
of exploiting synchrony when it is available, but in any case
guaranteeing correctness regardless of the timing behavior
of the system.

More precisely, we have investigated the ability to re-
cover automatically from transient timing failures, and pre-
sented algorithms that are resilient to timing failures for
the consensus and mutual exclusion problems. As we have
pointed out, these algorithms would work correctly and be
more efficient when ∆ is replaced with optimistic(∆). The
exact value of optimistic(∆) should be tuned for each indi-
vidual machine architecture.

The notion of algorithms that are resilient to timing fail-
ure has been defined with respect to a pair of two models:
the asynchronous model and a specific timing-based model.
This notion can easily be generalized for any pair of two
models A and B as follows, (1) a timing failure refers to a
situation where the timing constraints of model A are not
met, and (2) it is assumed that the timing constraints of
model B are always met. Another possibility is to make
assumptions directly about the scheduler. In this context, a
scheduling failure refers to a situation where the constraints
of the scheduler are not met. Resiliency in the presence of
scheduling failures is defined in the obvious way.

There are numerous possible ways to extend this
research: To solve other problems in various models as dis-
cussed above; to design efficient time-resilient concurrent
data structures and local-spinning algorithms; to assume
that both (transient) memory failures and timing failures
are possible; to use synchronization primitives other that
atomic registers; to use failure detectors; and to consider
message passing systems.

Acknowledgement: I wish to thank an anonymous
referee for many constructive suggestions.

References

[1] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Communication-efficient leader election and con-



sensus with limited link synchrony. In Proc. 23rd ACM
Symp. on Principles of Distributed Computing, pages 328–
337, 2004.

[2] Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive col-
lect with applications. In Proc. 40th IEEE Symp. on Founda-
tions of Computer Science, pages 262–272, October 1999.

[3] R. Alur, H. Attiya, and G. Taubenfeld. Time-adaptive al-
gorithms for synchronization. SIAM Journal on Computing,
26(2):539–556, April 1997.

[4] R. Alur and G. Taubenfeld. Results about fast mutual exclu-
sion. In Proceedings of the 13th IEEE Real-Time Systems
Symposium, pages 12–21, December 1992.

[5] R. Alur and G. Taubenfeld. How to share an object: A fast
timing-based solution. In Proceedings of the 5th IEEE Sym-
posium on Parallel and Distributed Processing, pages 470–
477, December 1993.

[6] R. Alur and G. Taubenfeld. Fast timing-based algorithms.
Distributed Computing, 10(1):1–10, 1996.

[7] J.H. Anderson and Y.-J. Kim. Fast and scalable mutual ex-
clusion. In Proceedings of the 13th international symposium
on distributed computing, 1999.

[8] J.H. Anderson and Y.-J. Kim. Adaptive mutual exclusion
with local spinning. Proc. of the 14th international symp. on
distributed computing. Lecture Notes in Computer Science,
1914:29–43, 2000.

[9] J.H. Anderson and M. Moir. Wait-free synchronization in
multiprogrammed systems: Integrating priority-based and
quantum-based scheduling. In Proc. 18th ACM Symp. on
Principles of Distributed Computing, pages 123–132, 1999.

[10] J.H. Anderson, M. Moir, and S. Ramamurthy. A simple proof
technique for priority-scheduled systems. Information Pro-
cessing Letters, 77(2-4):63–70, 2001.

[11] J. Aspnes. Fast deterministic consensus in a noisy environ-
ment. In Proc. 19th ACM Symp. on Principles of Distributed
Computing, pages 299–308, July 2000.

[12] H. Attiya and V. Bortnikov. Adaptive and efficient mutual
exclusion. Distributed Computing, 15(3):177–189, 2002.

[13] J.N. Burns and N.A. Lynch. Bounds on shared-memory
for mutual exclusion. Information and Computation,
107(2):171–184, December 1993.

[14] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus. Journal of the ACM,
43(4):685–722, 1996.

[15] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–
267, 1996.

[16] M. Choy and A.K. Singh. Adaptive solutions to the mutual
exclusion problem. Distributed Computing, 8(1):1–17, 1994.

[17] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17:643–644, 1974.

[18] E. W. Dijkstra. A belated proof of self-stabilization. Dis-
tributed Computing, 1:5–6, 1986.

[19] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal
synchronism needed for distributed consensus. Journal of
the ACM, 34(1):77–97, 1987.

[20] S. Dolev. Self-Stabilization. The MIT Press, March 2000.

[21] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, 1988.

[22] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374–382, 1985.

[23] F. Fich, V. Luchangco, M. Moir, and N. Shavit. Obstruction-
free algorithms can be practically wait-Free. In 19th in-
ternational symposium on distributed computing, September
2005.

[24] M. Herlihy. Wait-free synchronization. ACM Trans. on Pro-
gramming Languages and Systems, 13(1):124–149, January
1991.

[25] Y.-J. Kim and J.H. Anderson. Timing-based mutual exclu-
sion with local spinning. In 17th international symposium on
distributed computing, October 2003. LNCS 2848 Springer
Verlag 2003, 30–44.

[26] L. Lamport. Proving the correctness of multiprocess pro-
grams. IEEE Transaction on Software Engineering SE–3,
2:125–143, 1977.

[27] L. Lamport. A fast mutual exclusion algorithm. ACM Trans.
on Computer Systems, 5(1):1–11, 1987.

[28] M.C. Loui and H. Abu-Amara. Memory requirements for
agreement among unreliable asynchronous processes. Ad-
vances in Computing Research, 4:163–183, 1987.

[29] N.A. Lynch and N. Shavit. Timing-based mutual exclusion.
In Proceedings of the 13th IEEE Real-Time Systems Sympo-
sium, pages 2–11, December 1992.

[30] M. M. Michael and M. Scott. Fast mutual exclusion, even
with contention. Technical Report 460, Department of Com-
puter Science, University of Rochester, June 1993.

[31] M. Merritt and G. Taubenfeld. Computing with infinitely
many processes. In 14th international symposium on dis-
tributed computing, October 2000. LNCS 1914 Springer Ver-
lag 2000, 164–178.

[32] M. Raynal. A short introduction to failure detectors for
asynchronous distributed systems. ACM SIGACT News Dis-
tributed Computing Column 17, 36(1), 2005.

[33] G. Taubenfeld. The black-white bakery algorithm. In 18th
international symposium on distributed computing, October
2004. LNCS 3274 Springer Verlag 2004, 56–70.

[34] G. Taubenfeld. Synchronization algorithms and concurrent
programming. Pearson Education – Prentice-Hall, 2006.
ISBN: 0131972596.

[35] P.M.B. Vitanyi. Distributed elections in an Archimedean ring
of processors (preliminary draft). In Proceedings of the 16th
ACM Symposium on Theory of Computing, pages 542–547,
1984.


