
Group Renaming

Yehuda Afek1, Iftah Gamzu1?, Irit Levy1, Michael Merritt2, and Gadi Taubenfeld3

1 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
{afek,iftgam,levyirit}@tau.ac.il

2 AT&T Labs, 180 Park Ave., Florham Park, NJ 07932, USA
mischu@research.att.com

3 The Interdisciplinary Center, P.O. Box 167, Herzliya 46150, Israel
tgadi@idc.ac.il

Abstract. We study the group renaming task, which is a natural generalization
of the renaming task. An instance of this task consists of n processors, partitioned
into m groups, each of at most g processors. Each processor knows the name of
its group, which is in {1, . . . , M}. The task of each processor is to choose a new
name for its group such that processors from different groups choose different
new names from {1, . . . , `}, where ` < M . We consider two variants of the
problem: a tight variant, in which processors of the same group must choose the
same new group name, and a loose variant, in which processors from the same
group may choose different names. Our findings can be briefly summarized as
follows:

1. We present an algorithm that solves the tight variant of the problem with ` =
2m− 1 in a system consisting of g-consensus objects and atomic read/write
registers. In addition, we prove that it is impossible to solve this problem
in a system having only (g − 1)-consensus objects and atomic read/write
registers.

2. We devise an algorithm for the loose variant of the problem that only uses
atomic read/write registers, and has ` = 3n − √n − 1. The algorithm also
guarantees that the number of different new group names chosen by proces-
sors from the same group is at most min{g, 2m, 2

√
n}. Furthermore, we

consider the special case when the groups are uniform in size and show that
our algorithm is self-adjusting to have ` = m(m + 1)/2, when m <

√
n,

and ` = 3n/2 + m−√n/2− 1, otherwise.

1 Introduction

1.1 The group renaming problem

We investigate the group renaming task which generalizes the well known renaming
task [3]. In the original renaming task, each processor starts with a unique identifier
taken from a large domain, and the goal of each processor is to select a new unique
identifier from a smaller range. Such an identifier can be used, for example, to mark
? Supported by the Binational Science Foundation, by the Israel Science Foundation, and by

the European Commission under the Integrated Project QAP funded by the IST directorate as
Contract Number 015848.

a memory slot in which the processor may publish information in its possession. In
the group renaming task, groups of processors may hold some information which they
would like to publish, preferably using a common memory slot for each group. An
additional motivation for studying the group version of the problem is to further our
understanding about the inherent difficulties in solving tasks with respect to groups [10].

More formally, an instance of the group renaming task consists of n processors par-
titioned into m groups, each of which consists of at most g processors. Each processor
has a group name taken from some large name space [M] = {1, . . . ,M}, representing
the group that the processor affiliates with. In addition, every processor has a unique
identifier taken from [N]. The objective of each processor is to choose a new group
name from [`], where ` < M . The collection of new group names selected by the
processors must satisfy the uniqueness property meaning that any two processors from
different groups choose distinct new group names. We consider two variants of the
problem:

– a tight variant, in which in addition to satisfying the uniqueness property, processors
of the same group must choose the same new group name (this requirement is called
the consistency property), and

– a loose variant, in which processors from the same group may choose different
names, rather than a single one, as long as no two processors from different groups
choose the same new name.

1.2 Summary of results

We present a wait-free algorithm that solves the tight variant of the problem with ` =
2m− 1 in a system equipped with g-consensus objects and atomic read/write registers.
This algorithm extends the upper bound result of Attiya et al. [3] for g = 1. On the
lower bound side, we show that there is no wait-free implementation of tight group
renaming in a system equipped with (g − 1)-consensus objects and atomic read/write
registers. In particular, this result implies that there is no wait-free implementation of
tight group renaming using only atomic read/write registers for g ≥ 2.

We then restrict our attention to shared memory systems which support only atomic
read/write reagisters and study the loose variant. We develop a self-adjusting algorithm,
namely, an algorithm that achieves distinctive performance guarantees conditioned on
the number of groups and processors. On worst case, this algorithm has ` = 3n−√n−1,
while guaranteeing that the number of different new group names chosen by processors
from the same group is at most min{g, 2m, 2

√
n}. It seems worthy to note that the

algorithm is built around a filtering technique that overcomes scenarios in which both
the size of the maximal group and the number of groups are large, i.e., g = Ω(n) and
m = Ω(n). Essentially, such scenario arises when there are Ω(n) groups containing
only few members and few groups containing Ω(n) members.

We also consider the special case when the groups are uniform in size, and refine
the analysis of our loose group renaming algorithm. Notably, we demonstrate that ` =
m(m + 1)/2, when m <

√
n, and ` = 3n/2 + m − √n/2 − 1, otherwise. This last

result settles, to some extent, an open question posed by Gafni [10].

1.3 Related work

Group solvability was first introduced and investigated in [10]. The renaming problem
was first solved for message-passing systems [3], and then for shared memory systems
using atomic registers [6]. Both these papers present one-shot algorithms (i.e., solu-
tions that can be used only once). In [8] the first long-lived renaming algorithm was
presented: The `-assignment algorithm presented in [8] can be used as an optimal long-
lived (2n − 1)-renaming algorithm with exponential step complexity. Several of the
many papers on renaming using atomic registers are [1, 2, 4, 11, 14, 15]. Other refer-
ences are mentioned later in the paper.

2 Model and Definitions

Our model of computation consists of an asynchronous collection of n processors com-
municating via shared objects. Each object has a type which defines the set of operations
that the object supports. Each object also has sequential specification that specifies how
the object behaves when these operations are applied sequentially. Asynchrony means
that there is no assumptions on the relative speeds of the processors.

Various systems differ in the level of atomicity that is supported. Atomic (or indi-
visible) operations are defined as operations whose execution is not interfered with by
other concurrent activities. This definition of atomicity is too restrictive, and it is safe to
relax it by assuming that processors can try to access the object at the same time, how-
ever, although operations of concurrent processors may overlap, each operation should
appear to take effect instantaneously. In particular, operations that do not overlap should
take effect in there “real-time” order. This type of correctness requirement is called lin-
earizability [13].

We will always assume that the system supports atomic registers, which are shared
objects that support atomic reads and writes operations. In addition, the system may
also support forms of atomicity which are stronger than atomic reads and writes. One
specific atomic object that will play an important role in our investigation is the con-
sensus object. A consensus object o supports one operation: o.propose(v), satisfying:

1. Agreement. In any run, the o.propose() operation returns the same value, called the
consensus value, to every processor that invokes it.

2. Validity. In any run, if the consensus value is v, then some processor invoked
o.propose(v).

Throughout the paper, we will use the notation g-consensus to denote a consensus object
for g processors.

An object is wait-free if it guarantees that every processor is always able to complete
its pending operation in a finite number of its own steps regardless of the execution
speed of other processors (does not admit starvation). Similarly, an implementation or
an algorithm is wait-free, if every processor makes a decision within a finite number of
its own steps. We will focus only on wait-free objects, implementations or algorithms.
Next, we define two notions for measuring the relative computational power of shared
objects.

– The consensus number of an object of type o, is the largest n for which it is possible
to implement an n-consensus object in a wait-free manner, using any number of
objects of type o and any number of atomic registers. If no largest n exists, the
consensus number of o is infinite.

– The consensus hierarchy (also called the wait-free hierarchy) is an infinite hierarchy
of objects such that the objects at level i of the hierarchy are exactly those objects
with consensus number i.

It has been shown in [12], that in the consensus hierarchy, for any positive i, in a system
with i processors: (1) no object at level less than i together with atomic registers can
implement any object at level i; and (2) each object at level i together with atomic
registers can implement any object at level i or at a lower level, in a system with i
processors. Classifying objects by their consensus numbers is a powerful technique for
understanding the relative power of shared objects.

Finally, for simplicity, when refereing to the group renaming problem, we will as-
sume that m, the number of groups, is greater or equal to 2.

3 Tight Group Renaming

3.1 An upper bound

In what follows, we present a wait-free algorithm that solves tight group renaming using
g-consensus objects and atomic registers. Essentially, we prove the following theorem.

Theorem 1. For any g ≥ 1, there is a wait-free implementation of tight group renaming
with ` = 2m− 1 in a system consisting of g-consensus objects and atomic registers.

Corollary 2. The consensus number of tight group renaming is at most g.

Our implementation, i.e., Algorithm 1, is inspired by the renaming algorithm of Attiya
et al. [3], which achieves an optimal new names space size of 2n− 1. In this renaming
algorithm, each processor iteratively picks some name and suggests it as its new name
until an agreement on the collection of new names is reached. The communication
between the processors is done using an atomic snapshot object. Our algorithm deviates
from this scheme by adding an agreement step between processors of the same group,
implemented using g-consensus objects. Intuitively, this agreement step ensures that all
the processors of any group will follow the decisions made by the “fastest” processor
in the group. Consequently, the selection of the new group names can be determined
between the representatives of the groups, i.e., the “fastest” processors. This enables us
to obtain the claimed new names space size of 2m − 1. It is worthy to note that the
“fastest” processor of some group may change over time, and hence our agreement step
implements a “follow the (current) group leader” strategy. We believe that this concept
may be of independent interest. Note that the group name of processor i is designated
by GIDi, and the overall number of iterations executed is marked by I .

We now turn to establish Theorem 1. Essentially, this is achieved by demonstrating
that Algorithm 1 maintains the consistency and uniqueness properties (Lemmas 4 and

Algorithm 1 Tight group renaming algorithm: code for processor i ∈ [N].

In shared memory:
SS[1, . . . , N] array of swmr registers, initially ⊥.
HIS[1, . . . , N][1, . . . , I][1, . . . , N] array of swmr registers, initially ⊥.
CON[1, . . . , M][1, . . . , I] array of g-consensus objects.

1: p ← 1
2: k ← 1
3: while true do
4: SS[i] ← 〈GIDi, p, k〉
5: HIS[i][k][1, . . . , N] ← Snapshot(SS)

. Agree on w, the winner of group GIDi in iteration k, and import its snapshot:
6: w ← CON[GIDi][k].Compete(i)
7: (〈GID1, p1, k1〉, . . . , 〈GIDN , pN , kN 〉) ← HIS[w][k][1, . . . , N]

. Check if pw, the proposal of w, can be chosen as the new name of group GIDi:
8: P = {pj : j ∈ [N] has GIDj 6= GIDw and kj = maxq∈[N]{kq : GIDq = GIDj}}
9: if pw ∈ P then

10: r ← the rank of GIDw in {GIDj 6= ⊥ : j ∈ [N]}
11: p ← the r-th integer not in P
12: else return pw

13: end if
14: k ← k + 1
15: end while

5), that it has ` = 2m − 1 (Lemma 6), and that it terminates after a finite number of
steps (Lemma 7). Let us denote the value of p written to the snapshot array (see line 4)
in some iteration as the proposal value of the underlying processor in that iteration.

Lemma 3. The proposal values of processors from the same group is identical in any
iteration.

Proof. Consider some group. One can easily verify that the processors of that group,
and in fact all the processors, have an identical proposal value of 1 in the first iteration.
Thus, let us consider some iteration k > 1 and prove that all these processors have an
identical proposal value. Essentially, this is done by claiming that all the processors up-
date their value of p in the preceding iteration in an identical manner. For this purpose,
notice that all the processors compete for the same g-consensus object in that itera-
tion, and then import the same snapshot of the processor that won this consensus (see
lines 6–7). Consequently, they execute the code in lines 8–13 in an identical manner. In
particular, this guarantees that the update of p in line 11 is done exactly alike. ut
Lemma 4. All the processors of the same group choose an identical new group name.

Proof. The proof of this lemma follows the same line of argumentation presented in the
proof of Lemma 3. Again, the key observation is that in each iteration, all the processors
of some group compete for the same g-consensus object, and then import the same
snapshot. Since the decisions made by the processors in lines 8–13 are solely based on
this snapshot, it follows that they are identical. In particular, this ensures that once a

processor chooses a new group name, all the other processors will follow its lead and
choose the same name. ut
Lemma 5. No two processors of different groups choose the same new group name.

Proof. Recall that we know, by Lemma 4, that all the processors of the same group
choose an identical new group name. Hence, it is sufficient that we prove that no two
groups select the same new name. Assume by way of contradiction that this is not the
case, namely, there are two distinct groups G and G′ that select the same new group
name p∗. Let k and k′ be the iteration numbers in which the decisions on the new
names of G and G′ are done, and let w ∈ G and w′ ∈ G′ be the corresponding pro-
cessors that won the g-consensus objects in that iterations. Now, consider the snapshot
(〈GID1, p1, k1〉, . . . , 〈GIDN , pN , kN 〉), taken by w in its k-th iteration. One can easily
validate that pw = p∗ since w writes its proposed value before taking a snapshot. Sim-
ilarly, it is clear that p′w′ = p∗ in the snapshot (〈GID′1, p′1, k′1〉, . . . , 〈GID′N , p′N , k′N 〉),
taken by w′ in its k′-th iteration. By the linearizability property of the atomic snapshot
object and without loss of generality, we may assume that snapshot of w was taken be-
fore the snapshot of w′. Consequently, w′ must have captured the proposal value of w
in its snapshot, i.e., p′w = p∗. This implies that p∗ appeared in the set P of w′. However,
this violates the fact that w′ reached the decision step in line 12, a contradiction. ut
Lemma 6. All the new group names are from the range [`], where ` = 2m− 1.

Proof. In what follows, we prove that the proposal value of any processor in any itera-
tion is in the range [`]. Clearly, this proves the lemma as the chosen name of any group
is a proposal value of some processor. Consider some processor. It is clear that its first
iteration proposal value is in the range [`]. Thus, let us consider some iteration k > 1
and prove that its proposal value is at most 2m−1. Essentially, this is done by bounding
the value of p calculated in line 11 of the preceding iteration. For this purpose, we first
claim that the set P consists of at most m− 1 values. Notice that P holds the proposal
values of processors from at most m− 1 groups. Furthermore, observe that for each of
those groups, it holds the proposal values of processors having the same maximal itera-
tion counter. This implies, in conjunction with Lemma 3, that for each of those groups,
the proposal values of the corresponding processors are identical. Consequently, P con-
sists of at most m− 1 distinct values. Now, one can easily verify that the rank of every
group calculated in line 10 is at most m. Therefore, the new value of p is no more than
2m− 1. ut
Lemma 7. Any processor either takes finite number of steps or chooses a new group
name.

Proof. The proof of this theorem is a natural generalization of the termination proof of
the renaming algorithm (see, e.g., [5, Sec. 16.3]). Thus, we defer it to the final version
of the paper. ut

3.2 An impossibility result

In Appendix A.1, we provide an FLP-style proof of the following theorem.

Theorem 8. For any g ≥ 2, it is impossible to wait-free implement tight group renam-
ing in a system having (g − 1)-consensus objects and atomic registers.

In particular, Theorem 8 implies that there is no wait-free implementation of tight group
renaming, even when g = 2, using only atomic registers.

4 Loose Group Renaming

In this section, we restrict our attention to shared memory systems which support only
atomic registers. By Theorem 8, we know that it is impossible to solve the tight group
renaming problem unless we relax our goal. Accordingly, we consider a variant in which
processors from the same group may choose a different new group name, as long as the
uniqueness property is maintained. The objective in this case is to minimize both the
inner scope size, which is the upper bound on the number of new group names selected
by processors from the same group, and the outer scope size, which is the new group
names range size. We use the notation, (α, β)-group renaming algorithm to designate
an algorithm yielding an inner scope of α and an outer scope of β.

4.1 The non-uniform case

In the following we consider the task when group sizes are not uniform. We present a
group renaming algorithm having a worst case inner scope size of min{g, 2m, 2

√
n}

and a worst case outer scope size of 3n − √
n − 1. The algorithm is self-adjusting

with respect to the input properties. Namely, it achieves better performance guarantees
conditioned on the number of groups and processors. It seems worthy to emphasize that
the performance guarantees of our algorithm are not only based on g and m, but also
on
√

n, which is crucial in several cases.
The algorithm is built upon a consolidation of two algorithms, denoted as Algo-

rithm 2 and Algorithm 3. Both algorithms are adaptations of previously known renam-
ing methods for groups (see, e.g., [10]). Algorithm 2, which efficiently handles small-
sized groups, is a (g, n + m− 1)-group renaming algorithm, while Algorithm 3, which
efficiently attends to small number of groups, is a (min{m, g},m(m + 1)/2)-group
renaming algorithm.

Theorem 9. Algorithm 2 is a wait-free (g, n + m− 1)-group renaming algorithm.

Proof. The algorithm is very similar to the original renaming algorithm of Attiya et. al.
[3]. While there processors select a new name by computing the rank of their original
large id among the ids of participating processors, here processors consider the rank of
their original group name among the already published (participating) original group
names. One can prove that Algorithm 2 maintains the uniqueness property and termi-
nates after finite number of steps by applying nearly identical arguments to those used
in the analogous proofs of the underlying renaming method (see, e.g., [5, Sec. 16.3]).
Therefore, we only focus on analyzing the size of the resulting new name-spaces. The
inner scope size of the algorithm is trivially g since there are at most g processors in
any group. We turn to bound the outer scope size. This is done by demonstrating that

the proposal value pi of any processor i in any iteration is at most n + m− 1. Clearly,
pi satisfies this requirement in the first iteration as its value is 1. Hence, let us consider
some other iteration and bound its proposal value. This is accomplished by bounding
the value of pi calculated in line 7 of the preceding iteration. For this purpose, notice
that the rank of every group calculated in line 6 is at most m. Furthermore, there are at
most n − 1 values proposed by other processors. Thus, the new value of pi is at most
n + m− 1. ut

Algorithm 2 code for processor i ∈ [N].

In shared memory: SS[1, . . . , N] array of swmr registers, initially ⊥.
1: pi ← 1
2: while true do
3: SS[i] ← 〈GIDi, pi〉
4: (〈GID1, p1〉, . . . , 〈GIDN , pN 〉) ← Snapshot(SS)
5: if pi = pj for some j ∈ [N] having GIDj 6= GIDi then
6: r ← the rank of GIDi in {GIDk 6= ⊥ : k ∈ [N]}
7: pi ← the r-th integer not in {pk 6= ⊥ : k ∈ [N] \ {i}}
8: else return pi

9: end if
10: end while

Theorem 10. Algorithm 3 is a wait-free (min{m, g},m(m + 1)/2)-group renaming
algorithm.

Proof. In this algorithm each processor records its participation by publishing its id
and its group original name. Each processor then takes a snapshot of the memory and
returns as its new group name the size of the snapshot it had obtained, concatenated
with its group id rank among the group ids recorded in the snapshot. One can prove that
Algorithm 3 supports the uniqueness property by applying nearly identical arguments
to those used in the corresponding proof of the underlying renaming method (see, e.g.,
[7, Sec. 6]). Moreover, it is clear that the algorithm terminates after finite number of
steps. Thus, we only focus on analyzing the performance properties of the algorithm.
We begin with the inner scope size. Particularly, we prove a bound of m, noting that
a bound of g is trivial since there are at most g processors in any group. Consider
the case that two processors of the same group obtain the same number of observable
groups m̃ in line 3. We argue that they also choose the same new group name. For
this purpose, notice that the set of GIDs that reside in SS may only grow during any
execution sequence. Hence, if two processors have an identical m̃ then their snapshot
holds the same set of GIDs. Consequently, if those processors are of the same group
then their group rank calculated in line 4 is also the same, and therefore the new names
they select are identical. This implies that the number of new group names selected by
processors from the same group is bound by the maximal value of m̃, which is clearly
never greater than m. We continue by bounding the outer scope size. As already noted,

m̃ ≤ m, and the rank of every group is at most m. Thus, the maximal group name is no
more than m(m− 1)/2 + m. ut

Algorithm 3 code for processor i ∈ [N].

In shared memory: SS[1, . . . , N] array of swmr registers, initially ⊥.
1: SS[i] ← GIDi

2: (GID1, . . . , GIDN) ← Snapshot(SS)
3: m̃ ← the number of distinct GIDs in {GIDj 6= ⊥ : j ∈ [N]}
4: r ← the rank of GIDi in {GIDj 6= ⊥ : j ∈ [N]}
5: return m̃(m̃− 1)/2 + r

We are now ready to present our self-adjusting loose group renaming algorithm.
The algorithm has its roots in the natural approach that applies the best response with
respect to the instance under consideration. For example, it is easy to see that Algo-
rithm 3 outperforms Algorithm 2 with respect to the inner scope size, for any instance.
In addition, one can verify that when m <

√
n, Algorithm 3 has an outer scope size of

at most n/2−√n/2, whereas Algorithm 2 has an outer scope size of at least n. Hence,
given an instance having m <

√
n, the best response would be to execute Algorithm 3.

Unfortunately, a straight-forward application of this approach has several difficulties.
One immediate difficulty concerns the implementation since none of the processors

have prior knowledge of the real values of m or g. Our algorithm bypasses this diffi-
culty by maintaining an estimation of these parameters using an atomic snapshot object.
Another difficulty concerns with performance issues. Specifically, both algorithms have
poor inner scope size guarantees for instances which simultaneously satisfy g = Ω(n)
and m = Ω(n). One concrete example having g = n/2 and m = n/2 + 1 consists
of a single group having n/2 members and n/2 singleton groups. In this case, both
algorithms have an inner scope size guarantee of n/2. We overcome this difficulty by
sensibly combining the algorithms, therefore yielding an inner scope size guarantee of
2
√

n for these “hard” cases. The key observation utilized in this context is that if there
are many groups then most of them must be small. Consequently, by filtering out the
small-sized groups, we are left with a small number of large groups that we can han-
dle efficiently. Note that Algorithm 4 employs Algorithm 3 as sub-procedure in two
cases (see lines 6 and 12). It is assumed that the shared memory space used by each
application of the algorithm is distinct.

Theorem 11. Algorithm 4 is a group renaming algorithm having a worst case inner
scope size of min{g, 2m, 2

√
n} and a worst case outer scope size of 3n−√n− 1.

Proof. We begin by establishing the correctness of the algorithm. For this purpose,
we demonstrate that it maintains the uniqueness property and terminates after finite
number of steps. One can easily validate that the termination property holds since both
Algorithm 2 and Algorithm 3 terminate after finite number of steps. It is also easy to
verify that the uniqueness property is maintained. This follows by recalling that both

Algorithm 4 Adjusting group renaming algorithm: code for processor i ∈ [N].

In shared memory: SS[1, . . . , N] array of swmr registers, initially ⊥.
1: SS[i] ← GIDi

2: (GID1, . . . , GIDN) ← Snapshot(SS)
3: m̃ ← the number of distinct GIDs in {GIDj 6= ⊥ : j ∈ [N]}
4: g̃ ← the number of processors j ∈ [N] having GIDj = GIDi

5: if m̃ <
√

n then
6: x ← the outcome of Algorithm 3 (using shared memory SS1[1, . . . , N])
7: return x
8: else if g̃ ≤ √

n then
9: x ← the outcome of Algorithm 2 (using shared memory SS2[1, . . . , N])

10: return x + n/2−√n/2
11: else
12: x ← the outcome of Algorithm 3 (using shared memory SS3[1, . . . , N])
13: return x + 5n/2−√n/2− 1
14: end if

Algorithm 2 and Algorithm 3 maintain the uniqueness property, and noticing that each
case of the if statement (see lines 5–14) utilizes a distinct set of new names. To be
precise, one should observe that any processor that executes Algorithm 3 in line 6 is
assigned a new name in the range {1, . . . , n/2 − √n/2}, any processor that executes
Algorithm 2 in line 9 is assigned a new name in the range {n/2−√n/2+1, . . . , 5n/2−√

n/2 − 1}, and any processor that executes Algorithm 3 in line 12 is assigned a new
name whose value is at least 5n/2 − √n/2. The first claim results by the outer scope
properties of Algorithm 3 and the fact that processors from less than

√
n groups may

execute this algorithm. The second argument follows by the outer scope properties of
Algorithm 2, combined with the observation that m ≤ n, and the fact that the value
of the name returned by the algorithm is increased by n/2 −√n/2 in line 10. Finally,
the last claim holds since Algorithm 3 is guaranteed to attain a positive-valued integer
name, and the value of this name is increased by 5n/2−√n/2− 1 in line 13.

We now turn to establish the performance properties of the algorithm. We demon-
strate that it is self-adjusting and has the following (inner scope, outer scope) properties:

(min{m, g}, m(m + 1)/2) m <
√

n

(g, 3n/2 + m−√n/2− 1) m ≥ √
n and g ≤ √

n

(min{g, 2
√

n}, 3n−√n− 1) m ≥ √
n and g >

√
n

Case I: m <
√

n. The estimation value m̃ always satisfy m̃ ≤ m. Therefore, all the
processors execute Algorithm 3 in line 6. The properties of Algorithm 3 guarantee that
the inner scope size is min{m, g} and the outer scope size is m(m + 1)/2. Take notice
that min{m, g} ≤ min{g, 2m, 2

√
n} and m(m+1)/2 ≤ 3n−√n−1 since m <

√
n.

Thus, the performance properties of the algorithm in this case support the worst case
analysis.
Case II: m ≥ √

n and g ≤ √
n. The estimation values never exceed their real values,

namely, m̃ ≤ m and g̃ ≤ g. Consequently, some processors may execute Algorithm 3 in

line 6 and some may execute Algorithm 2 in line 9, depending on the concrete execution
sequence. The inner scope size guarantee is trivially satisfied since there are at most g
processors in each group. Furthermore, one can establish the outer scope size guarantee
by simply summing the size of the name space that may be used by Algorithm 3, which
is n/2 − √

n/2, with the size of the name space that may be used by Algorithm 2,
which is n + m − 1. Notice that g ≤ min{g, 2m, 2

√
n} since g ≤ √

n ≤ m, and
3n/2 + m−√n/2− 1 ≤ 3n−√n− 1 as m ≤ n. Hence, the performance properties
of the algorithm in this case support the worst case analysis.
Case III: m ≥ √

n and g >
√

n. Every processors may execute any of the algorithms,
depending of the concrete execution sequence. The first observation one should make
is that no more than

√
n new names may be collectively assigned to processors of the

same group by Algorithm 3 in line 6 and Algorithm 2 in line 9. Moreover, one should
notice that any processor that executes Algorithm 3 in line 12 is part of a group of
size greater than

√
n. Consequently, processors from less than

√
n groups may execute

it. This implies, in conjunction with the properties of Algorithm 3, that no more than√
n new names may be assigned to each group, and at most n/2 − √

n/2 names are
assigned by this algorithm. Putting everything together, we attain that the inner scope
size is min{g, 2

√
n} and the outer scope size is 3n − √

n − 1. It is easy to see that
min{g, 2

√
n} ≤ min{g, 2m, 2

√
n} since m ≥ √

n, and thus the performance proper-
ties of the algorithm in this case also support the worst case analysis. ut

4.2 The uniform case
In what follows, we study the problem when the groups are guaranteed to be uniform
in size. We refine the analysis of Algorithm 4 by establishing that it is a loose group
renaming algorithm having a worst case inner scope size of min{m, g}, and an outer
scope size of 3n/2 + m − √

n/2 − 1. Note that min{m, g} ≤ √
n in this case. In

particular, we demonstrate that the algorithm is self-adjusting and has the following
(inner scope, outer scope) properties:

{
(min{m, g}, m(m + 1)/2) m <

√
n

(g, 3n/2 + m−√n/2− 1) m ≥ √
n

This result settles, to some extent, an open question posed by Gafni [10], which called
for a self-adjusting group renaming algorithm that requires at most m(m+1)/2 names
on one extreme, and no more than 2n− 1 names on the other.

The key observation required to establish this refinement is that n = m · g when
the groups are uniform in size. Consequently, either m <

√
n or g ≤ √

n. Since the
estimation values that each processor sees cannot exceed the corresponding real values,
no processor can ever reach the second execution of Algorithm 3 in line 12. Now, the
proof of the performance properties follows the same line of argumentation presented
in the proof of Theorem 11.

5 Discussion

This paper has considered and investigated the tight and loose variants of the group re-
naming problem. Below we discuss few ways in which our results can be extended. An

immediate open question is whether a g-consensus task can be constructed from group
renaming tasks for groups of size g, in a system with g processes. Another question
is to design an adaptive group renaming algorithm in which a processor is assigned
a new group name, from the range 1 through k where k is a constant multiple of the
contention (i.e., the number of different active groups) that the processor experiences.
We have considered only one-shot tasks (i.e., solutions that can be used only once), it
would be interesting to design long-lived group renaming algorithms. We have focused
in this work mainly on reducing the new name space as much as possible, it would be
interesting to construct algorithms also with low space and time (step) complexities. Fi-
nally, the k-set consensus task, a generalization of the consensus task, enables for each
processor that starts with an input value from some domain, to choose some participat-
ing processor’ input as its output, such that all processors together may choose no more
than k distinct output values. It is interesting to find out what type of group renaming
task, if any, can be implemented using k-set consensus tasks and registers.

References

1. Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming made adap-
tive. In Proc. 18th ACM Symp. on Principles of Distributed Computing, pages 91–103, May
1999.

2. Y. Afek, G. Stupp, and D. Touitou. Long lived adaptive splitter and applications. Distributed
Computing, 30:67–86, 2002.

3. H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Renaming in an asynchronous
environment. J. ACM, 37(3):524–548, 1990.

4. H. Attiya and A. Fouren. Algorithms adapting to point contention. Journal of the ACM,
50(4):144–468, 2003.

5. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced
Topics. John Wiley Interscience, 2004.

6. A. Bar-Noy and D. Dolev. Shared memory versus message-passing in an asynchronous. In
Proc. 8th ACM Symp. on Principles of Distributed Computing, pages 307–318, 1989.

7. A. Bar-Noy and D. Dolev. A partial equivalence between shared-memory and message-
passing in an asynchronous fail-stop distributed environment. Mathematical Systems The-
ory, 26(1):21–39, 1993.

8. J. Burns and G. Peterson. The ambiguity of choosing. In Proc. 8th ACM Symp. on Principles
of Distributed Computing, pages 145–158, Aug. 1989.

9. M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, 1985.

10. E. Gafni. Group-solvability. In Proceedings 18th International Conference on Distributed
Computing, pages 30–40, 2004.

11. E. Gafni, M. Merritt, and G. Taubenfeld. The concurrency hierarchy, and algorithms for
unbounded concurrency. In Proc. 20th ACM Symp. on Principles of Distributed Computing,
pages 161–169, Aug. 2001.

12. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, 1991.

13. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent ob-
jects. ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

14. M. Inoue, S. Umetani, T. Masuzawa, and H. Fujiwara. Adaptive long-lived O(k2)-renaming
with O(k2) steps. In 15th international symposium on distributed computing, 2001. LNCS
2180 Springer Verlag 2001, 123–135.

15. M. Moir and J. H. Anderson. Wait-free algorithms for fast, long-lived renaming. Science
of Computer Programming, 25(1):1–39, Oct. 1995.

A Tight Group Renaming

A.1 An impossibility result
In what follows, we establish the proof of Theorem 8. Our impossibility proof follows
the high level FLP-approach employed in the context of the consensus problem (see,
e.g., [12, 9]). Namely, we assume the existence of a tight group renaming algorithm,
and then derive a contradiction by constructing a sequential execution in which the
algorithm fails, either because it is inconsistent, or since it runs forever. Prior to delving
into technicalities, we introduce some terminology.

The decision value of a processor is the new group name selected by that processor.
Analogously, the decision value of a group is the new group name selected by all pro-
cessors of that group. An algorithm state is multivalent with respect to group G if the
decision value of G is not yet fixed, namely, the current execution can be extended to
yield different decision values of G. Otherwise, it is univalent. In particular, an x-valent
state with respect to G is a univalent state with respect to G yielding a decision value of
x. A decision step with respect to G is an execution step that carries the algorithm from
a multivalent state with respect to G to a univalent state with respect to G. A processor is
active with respect to a algorithm state if its decision value is still not fixed. A algorithm
state is critical with respect to G if it is multivalent with respect to G and any step of
any active processor is a decision step with respect to G.

Lemma 12. Every group renaming algorithm admits an input instance whose initial
algorithm state is multivalent with respect to a maximal size group.

Proof. We begin by establishing that every group renaming algorithm admits an in-
put instance whose initial algorithm state is multivalent with respect to some group.
Consider some group renaming algorithm, and assume by contradiction that the initial
algorithm state is univalent with respect to all groups for every input instance. We argue
that all processors implement some function f : [M] → [`] for computing their new
group name. For this purpose, consider some processor whose group name is a ∈ [M].
Notice that this processor may be scheduled to execute a “solo run”. Let us assume
that its decision value in this case is x ∈ [`]. Since the initial algorithm state is uni-
valent with respect to the group of that processor, it follows that in any execution this
processor must decide x, regardless of the other groups, their name, and their schedul-
ing. The above-mentioned argument follows by recalling that all processors execute the
same algorithm, and noticing that a could have been any initial group name. Now, recall
that M > `. This implies that there are at least two group names a1, a2 ∈ [M] such
that f(a1) = f(a2). Correspondingly, there are input instances in which two processors
from two different groups decide on the same new group name, violating the uniqueness
property.

We now turn to prove that every group renaming algorithm admits an input instance
whose initial algorithm state is multivalent with respect to a maximal size group. Con-
sider some group renaming algorithm, and suppose its initial algorithm state is multi-
valent with respect to group G. Namely, there are two execution sequences σ1, σ2 that

lead to different decision values of G. Now, if G is maximal in size then we are done.
Otherwise, consider the input instance obtained by adding processors to G until it be-
comes maximal in size. Notice that the execution sequences σ1 and σ2 are valid with
respect to the new input instance. In addition, observe that each possessor must decide
on the same value as in the former instance. This follows by the assumption that none
of the processors has prior knowledge about the other processors and groups, and thus
each processor cannot distinguish between the two instances. Hence, the initial algo-
rithm state is also multivalent with respect to G in this new instance. ut
Lemma 13. Every group renaming algorithm admits an input instance for which a
critical state with respect to a maximal size group may be reached.

Proof. We prove that every group renaming algorithm which admits an input instance
whose initial algorithm state is multivalent with respect to some group may reach a crit-
ical state with respect to that group. Notice that having this claim proved, the lemma
follows as consequence of Lemma 12. Consider some group renaming algorithm, and
suppose its initial algorithm state is multivalent with respect to group G. Consider the
following sequential execution, starting from this state. Initially, some arbitrary proces-
sor executes until it reaches a state where its next operation leaves the algorithm in a
univalent state with respect to G, or until it terminates and decides on a new group name.
Note that the latter case can only happen if the underlying processor is not affiliated to
G. Also note that the processor must eventually reach one of the above-mentioned states
since the algorithm is wait-free and cannot run forever. Later on, another arbitrary pro-
cessor executes until it reaches a similar state, and so on. This sequential execution
continues until reaching a state in which any step of any active processor is a decision
step with respect to G. Again, since the algorithm cannot run forever, it must eventually
reach such state, which is, by definition, critical. ut

We are now ready to prove the impossibility result.

Proof of Theorem 8. Assume that there is a group renaming algorithm implemented
from atomic registers and r-consensus objects, where r < g. We derive a contradiction
by constructing an infinite sequential execution that keeps such algorithm in a multiva-
lent state with respect to some maximal size group. By Lemma 13, we know that there
is an input instance and a corresponding execution of the algorithm that leads to a crit-
ical state s with respect to some group G of size g. Keep in mind that there are at least
g active processors in this critical state since, in particular, all the processors of G are
active. Let p and q be two active processors in the critical state which respectively carry
the algorithm into an x-valent and a y-valent states with respect to G, where x and y
are distinct. We now consider four cases, depending on the nature of the decision steps
taken by the processors:
Case I: One of the processors reads a register. Let us assume without loss of gen-
erality that this processor is p. Let s′ be the algorithm state reached if p’s read step
is immediately followed by q’s step, and let s′′ be the algorithm state following q’s
step. Notice that s′ and s′′ differ only in the internal state of p. Hence, any processor
p′ ∈ G, other than p, cannot distinguish between these states. Thus, if it executes a “solo
run”, it must decide on the same value. However, an impossibility follows since s′ is

x-valent with respect to G whereas s′′ is y-valent. This case is schematically described
in Figure 1(a).
Case II: Both processors write to the same register. Let s′ be the algorithm state
reached if p’s write step is immediately followed by q’s write step, and let s′′ be the al-
gorithm state following q’s write step. Observe that in the former scenario q overwrites
the value written by p. Hence, s′ and s′′ differ only in the internal state of p. There-
fore, any processor p′ ∈ G, other than p, cannot distinguish between these states. The
impossibility follows identically to Case I.
Case III: Each processor writes to or competes for a distinct register or consensus
object. In what follows, we prove impossibility for the scenario in which both pro-
cessors write to different registers, noting that impossibility for other scenarios can be
easily established using nearly identical arguments. The algorithm state that results if
p’s write step is immediately followed by q’s write step is identical to the state which
results if the write steps occur in the opposite order. This is clearly impossible as one
state is x-valent and the other is y-valent. This case is schematically illustrated in Fig-
ure 1(b).
Case IV: All active processors compete for the same consensus object. As men-
tioned above, there are at least g active processors in the critical state. Additionally, we
assumed that the algorithm uses r-consensus objects, where r < g. This implies that
the underlying consensus object is accessed by more processors then its capacity, which
is illegal.

q stepp read step

q step

x-valent

y-valent

s′′

s′

(a)

?

(b)

q write step

q write step

p write step

p write step

Fig. 1. The decision steps cases.

