
On the Computational Power of Shared Objects

Gadi Taubenfeld

The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel,
tgadi@idc.ac.il,

http://www.faculty.idc.ac.il/gadi/

Abstract. We propose a new classification for evaluating the strength of shared
objects. The classification is based on finding, for each object of type o, the
strongest progress condition for which it is possible to solve consensus for any
number of processes, using any number of objects of type o and atomic registers.
We use the strongest progress condition to associate with each object a number
call the power number of that object. Objects with higher power numbers are
considered stronger. Then, we define the power hierarchy which is an infinite hi-
erarchy of objects such that the objects at level i of the hierarchy are exactly those
objects with power number i. Comparing our classification with the traditional
one which is based on fixing the progress condition (namely, wait-freedom) and
finding the largest number of processes for which consensus is solvable, reveals
interesting results. Our equivalence and extended universality results, provide a
deeper understanding of the nature of the relative computational power of shared
objects.

Keywords: Shared objects, consensus numbers, power numbers, wait-freedom,
k-obstruction-freedom, wait-free hierarchy, power hierarchy, universality.

1 Introduction

Motivation

Alice, the CTO of MultiBrain Inc., was excited when she told her spouse Bob about the
new multi-core computer that her company has just bought. “It has 128 cores and it is
extremely powerful” she said, “we are already writing concurrent applications that will
take advantage of its high level of parallelism”.

Bob, a theoretician, has asked her if they intend to use locks in their concurrent
applications. “No” said Alice, “we have decided to avoid using locks”. “And what are
the type of atomic operations the machine supports?” asked Bob. “Swap, and reads
and writes” answered Alice.1 “What about compare-and-swap, and load-link/store-
conditional?” asked Bob. “No” answered Alice, “only atomic swap, and reads and
writes are supported”. “Well” said Bob, “for many interesting applications you will
not be able to use more than two of these 128 cores simultaneously, so do not expect to
get too much speedup”. “Why?” asked Alice, “we have paid so much for that machine,
it must be able to do better”.

1 A swap operation takes a shared register and a local register, and atomically exchange their
values.

“There is a fundamental result” explained Bob, “that using the type of atomic oper-
ations that your machine supports, it is possible to solve consensus and many other im-
portant problems for two processes only, assuming that the required progress condition
is wait-freedom”. “You got me worried for a minute” said Alice, “for all our practical
purposes, we can do with a much weaker progress condition than wait-freedom”. “Such
as?” asked Bob. “You tell me” answered Alice, “what is the strongest progress condi-
tion for which it is possible to solve consensus and all the other important problems for
any number of processes using only atomic swap, and reads and writes?”. “Interesting
question”,said Bob .

We propose a new classification for evaluating the strength of shared objects, which
is based on finding the strongest progress condition for which it is possible to solve
consensus for any number of processes. Such a classification enables to answer Alice’s
question for any type of object. Comparing our classification with the traditional one
reveals interesting results.

Consensus numbers and the wait-free hierarchy

The traditional approach for understanding the relative computational power of shared
objects is to classify them according to their consensus numbers. Objects with higher
numbers are considered stronger. In order to define the notion of a consensus number,
we first define the consensus problem and two known progress conditions.

The (binary) consensus problem is to design an algorithm in which all correct pro-
cesses reach a common decision based on their initial opinions. We assume that a pro-
cess may fail only by crashing (i.e., fail-stop). The problem is defined as follows. There
are n processes p1, p2, . . . , pn. Each process pi has an input value xi ∈ {0, 1}. The re-
quirements of the consensus problem are that there exists a decision value v such that:
(1) each non-faulty process eventually decides on v, and (2) v ∈ {x1, x2, . . . , xn}. In
particular, if all input values are the same, then that value must be the decision value.

Two of the most extensively studied progress conditions, in order of decreasing
strength, are wait-freedom [5] and obstruction-freedom [6]. Wait-freedom guarantees
that every process will always be able to complete its pending operations in a finite
number of its own steps, regardless of the behavior of the other processes. Obstruction-
freedom guarantees that a process will be able to complete its pending operations in a
finite number of its own steps, if all the other processes “hold still” (i.e., do not take any
steps) long enough. That is, obstruction-freedom guarantees progress for any process
that eventually executes in isolation long enough, however, it do not guarantee progress
under contention.

The consensus number of an object of type o, denoted CN(o), is the largest n for
which it is possible to solve consensus for n processes, using any number of objects
of type o and atomic registers, assuming that the required progress condition is wait-
freedom. If no largest n exists, the consensus number of o is infinite (denoted ∞). The
wait-free hierarchy is an infinite hierarchy of objects such that the objects at level i of
the hierarchy are exactly those objects with consensus number i.

It is known that, in the wait-free hierarchy, for any positive i, in a system with i
processes: (1) no object at level less than i together with atomic registers can implement
any object at level i; and (2) each object at level i together with atomic registers can

implement any object at level i or at a lower level [5]. If instead of wait-freedom, only
obstruction-freedom is required, the hierarchy collapses.

An object o is universal for n processes if any object which has sequential specifi-
cation has a wait-free linearizable implementation using atomic registers and objects of
type o in a system with at most n processes.2 In [5], it is proven that consensus for n
processes is universal in a system with n processes, for any positive n. An immediate
implication of this result is that, an object o is universal in a system with n processes if
and only if the consensus number of o is at least n.

Power numbers and the power hierarchy

Instead of the traditional classification of fixing a single progress condition (namely,
wait-freedom) and finding the largest number of processes for which consensus is solv-
able, we propose a classification which is based on finding the strongest progress con-
dition for which it is possible to solve consensus for any number of processes. For a set
of processes P , let |P | denotes the size of P . Consider the following generalization of
the notion of obstruction-freedom:

For any k ≥ 1, the progress condition k-obstruction-freedom guarantees that
for every set of processes P where |P | ≤ k, every process in P will be able
to complete its pending operations in a finite number of its own steps, if all the
processes not in P do not take steps for long enough.

The progress condition k-obstruction-free does not guarantee progress under contention
of more than k processes. These infinitely many progress conditions cover the spectrum
between obstruction-freedom and wait-freedom. The progress condition 1-obstruction-
freedom is the same as obstruction-freedom. When the maximum number of processes
is a fixed number, say n, k-obstruction-freedom is the same as wait-freedom, for all
k ≥ n.

The power number of an object of type o, denoted PN(o), is the largest k for
which it is possible to solve consensus for any number processes, using any
number of objects of type o and atomic registers, assuming that the required
progress condition is k-obstruction-freedom. If no largest k exists, the power
number of o is infinite (denoted ∞). The power hierarchy is an infinite hierar-
chy of objects such that the objects at level i of the hierarchy are exactly those
objects with power number i.

In the above definitions, the objects of type o and the atomic registers are all assumed
to be wait-free. That is, each operation that is invoked by a process on these basic
objects always terminates, regardless of the behavior of the other processes. Next we
generalize the notion of universality which was defined earlier in the context of the
wait-free hierarchy.

2 Sequential specification specifies how the object behaves when operations are applied sequen-
tially. Linearizability implies that each operation should appear to take place instantaneously
at some point in time, and that the relative order of non-concurrent operations is preserved.

An object o is k-universal if any object which has sequential specification has a
k-obstruction-free linearizable implementation using atomic registers and ob-
jects of type o for any number of processes.

Clearly, if an object is k-universal its is also universal for k processes. An interesting
question, that we resolve later, is whether an object that is universal for k processes is
also k-universal in a system with more than k processes.

Summary of contributions

A new approach. We propose a new classification for evaluating the strength of shared
objects, which is based on the new notions of power numbers and the power hierarchy.
The new classification together with the technical results mentioned below, provide a
deeper understanding into the nature of the relative computational power of shared ob-
jects.

An equivalence result. We show that the traditional approach which is based on de-
termining the consensus number of an object and our approach, are two sides of the
same coin. We prove that the wait-free hierarchy and power hierarchy are equivalent.
That is, the consensus number of an object equals to its power number. The new classifi-
cation together with the equivalence result, does not yet fully enables to answer Alice’s
question.

An extended universality result. We extend the known universality result for the wait-
free hierarchy in the following non-trivial way. If the consensus number (or the power
number) of an object o is k, then not only o is universal for k processes, o is also
k-universal in a system with any number of processes. Put another way, an object is
universal for k processes if and only if it is k-universal for any number of processes.
Now, we can fully answer Alice’s question. The consensus number of a swap object is
2. Thus, using the type of atomic operations that Alice’s machine supports, any object or
problem which has sequential specification has a 2-obstruction-free linearizable imple-
mentation for any number of processes; and this claim does not hold for 3-obstruction-
freedom.

Related work

The consensus problem was formally defined in [14]. The impossibility result that there
is no consensus algorithm that can tolerate even a single crash failure in an asyn-
chronous model was first proved for the message-passing model in [3], and later has
been extended for the shared memory model in which only atomic read/write registers
are supported, in [12]. A recent survey which covers many related impossibility results
can be found in [2].

The power of various shared objects has been studied extensively in shared memory
environments where processes may fail benignly, and where every operation is wait-
free. In [5], Herlihy classified shared objects by their consensus number and defined the
wait-free hierarchy. He found the consensus number of many objects and, in particular,

proved that the consensus number of an atomic swap object is 2. Additional results
regarding the wait-free hierarchy can be found in [8, 10].

Objects that can be used, together with atomic registers, to build wait-free imple-
mentations of any other object are called universal objects. Previous work provided
methods, called universal constructions, to transform sequential specifications of arbi-
trary shared objects into wait-free concurrent implementations that use universal ob-
jects [5, 15]. In [15] it is proved that sticky bits are universal, and independently, in [5]
it is proved that wait-free consensus objects are universal. A bounded space version of
the universal construction from [5] appears in [9]. The universal construction that we
use to prove Theorem 3 conceptually mimics the original construction from [5].

As already mentioned, two extensively studied conditions are wait-freedom [5], and
obstruction-freedom [6]. It is shown in [6] that obstruction-free consensus is solvable
using atomic registers. Wait-free consensus algorithms that use read and write opera-
tions in the absence of (process) contention, or even in the absence of step contention,
and revert to using strong synchronization operations when contention occurs, are pre-
sented in [1, 11, 13]. Linearizability is defined in [7].

The notion of k-obstruction-freedom is presented in [17], as part of a transformation
that is used to fuse objects which avoid locking and locks together in order to create new
types of shared objects. A weaker set of progress conditions, called k-obstacle-freedom,
which cover the spectrum between obstruction-freedom and non-blocking (sometimes
called lock-freedom) is defined in [17]. Results similar to those presented in this paper
for k-obstruction-freedom, can also be proved w.r.t. k-obstacle-freedom.

2 An Equivalence Result

We show below that the traditional approach which is based on determining the con-
sensus number of an object and our approach, are two sides of the same coin. Our
first technical result is that the wait-free hierarchy and power hierarchy are equivalent.
Put another way, we show that the consensus number of an object equals to its power
number.

To simplify the presentation, it is sometimes convenient to use the notion of a con-
sensus object instead of consensus algorithm (the two notions are essentially the same).
A consensus object o supports one operation: o.propose(v) satisfying: (1) Agreement:
In any run, the o.propose() operation returns the same value, called the consensus
value, to every process that invokes it. (2) Validity: In any run, if the consensus value
is v, then some process invoked o.propose(v). When the value v ∈ {0, 1} the object
is called a binary consensus object. Throughout the paper, unless otherwise stated, by
a consensus object we mean a binary consensus object; and by n-consensus we mean a
multi-valued consensus object where v ∈ {0, 1, ..., n− 1}.

Theorem 1 (Equivalence). For any object of type o, PN(o) = CN(o).

Proof. In the sequel, the term k-obstruction-free consensus algorithm, means a consen-
sus algorithm which, for any number of processes, is correct assuming that the required
progress condition is k-obstruction-freedom. It follows immediately from the defini-
tions that, for any k ≥ 1, a k-obstruction-free consensus algorithm is also a wait-free

consensus algorithm for k processes. This simple observation implies that, for any ob-
ject type o, PN(o) ≤ CN(o). The difficult part of the proof is to show that, for any
k ≥ 1, it is possible to implement a k-obstruction-free consensus algorithm using only
wait-free consensus objects for k processes and atomic read/write registers. Such an
implementation together with the above observation implies the theorem. Below we
present such an implementation of a k-obstruction-free consensus algorithm and prove
its correctness.

In the implementation we use a function, called setk(), from the positive integers
into sets of size k of process ids. We do not care how exactly the function is imple-
mented, we only care that, for every positive integer k, there exists a function setk()
which satisfies the following property: For every set of k process ids P and every pos-
itive integer s there exists t ≥ s such that P = setk(t). That is, every set of k process
ids appears infinitely often.

The algorithm proceeds in rounds. The notion of a round is used only for the sake of
describing the algorithm. We do not assume a synchronous model of execution in which
all the processes are always executing the same round, and where no process can move
to the next round before all others have finished the previous round. Each process has
a preference for the decision value in each round; initially this preference is the input
value of the process. If no decision is made in a round then the processes advance to the
next round, and try again to reach agreement.

Algorithm 1. k-OBSTRUCTION-FREE CONSENSUS FOR ANY NUMBER OF PROCESSES USING

ATOMIC REGISTERS AND WAIT-FREE CONSENSUS OBJECTS FOR k PROCESSES:
program for process pi with input ini (where ini ∈ {0, 1}).

shared registers
x[0..∞, 0..1] infinite array of bits, initially x[0, 0] = x[0, 1] = 1 and all other entries are 0
con[1..∞] infinite array of wait-free consensus objects for k processes
decide ranges over {⊥, 0, 1}, initially ⊥

local registers
ri integer, initially 1
vi bit, initially ini

1 while decide =⊥ do
2 if x[ri, vi] = 0 then if x[ri, 1− vi] = 1 then vi := 1− vi else x[ri, vi] := 1 fi fi
3 if x[ri − 1, 1− vi] = 0 then decide := vi /*no conflict in prev round */
4 else if pi ∈ setk(ri) then vi := con[ri].propose(vi) fi /*update pref */
5 fi
6 ri := ri + 1
7 od
8 decide(decide)

In round r ≥ 1, process pi first checks if the flag of its preference vi is already set. If it
is not set and the flag of 1 − vi is set, pi changes its preference to 1 − vi. If both flags
are not set, pi flags its preference vi by writing 1 to x[r, vi] (line 2). Then, pi reads the
flag x[r−1, 1−vi]. If the flag x[r−1, 1−vi] is not set, then every process that reaches
round r with the conflicting preference 1− vi will find that only x[r, vi] is set to 1, and

will change its preference to vi. Consequently, process pi can safely decide on vi, and
it writes vi to decide (line 3). Otherwise, pi checks if it belongs to the set setk(r). If it
does, pi proposes its current preference vi to con[r] and updates its preference to be the
value agreed upon in con[r]. Then, pi proceeds to round r + 1 (line 4).

If only up to k processes with conflicting preferences participate in round r, and all
them are in setk(r), then all of them will reach round r + 1 with the same preference
which is the value agreed upon in con[r]. When all processes reach a round with the
same preference, a decision is reached either in that round or the next round.

Theorem 2. Algorithm 1 is a correct k-obstruction-free consensus algorithm for any
number of processes, using atomic registers and wait-free consensus objects for k pro-
cesses.

Before we prove the theorem, we make the following observations:

– Let Algorithm 2 be a modified version of Algorithm 1, where line 4 is omitted.
Then, Algorithm 2 is a correct 1-obstruction-free consensus algorithm for any num-
ber of processes using atomic registers only.

– Let y[1..∞] be an infinite array of swap objects, which range over {⊥, 0, 1}, ini-
tially all set to ⊥, and let tempi be a local register of process pi. Let Algorithm 3
be a modified version of Algorithm 1, where line 4 is replace with:
“else tempi := vi; swap(y[i], tempi); if tempi ̸=⊥ then vi := tempi fi”
Then, Algorithm 3 is a correct 2-obstruction-free consensus algorithm for any num-
ber of processes using atomic registers and swap objects.

– Let y[1..∞] be an infinite array of test&set bits, initially all set to 0, and let Algo-
rithm 4 be a modified version of Algorithm 1, where line 4 is replace with:
“else if test&set(y[ri]) = 1 then if x[ri, 1− vi] = 1 then vi := 1− vi fi fi”
Then, Algorithm 4 is a correct 2-obstruction-free consensus algorithm for any num-
ber of processes using atomic registers and test&set bits3.

Below we present a correctness proof of the algorithm. Let r ≥ 1 and v ∈ {0, 1}.
Process pi reaches round r, if it executes Statement 2 with ri = r. Process pi prefers
the value v in round r, if vi = v when pi reaches round r. Process pi commits to the
value v in round r, if it executes the assignment decide := v with ri = r.

Lemma 1. If all processes reaching round r have the same preference v for round r,
then all nonfaulty processes reaching round r commit to v either in round r or in round
r + 1.

Proof. Suppose all processes reaching round r have the same preference v for round r.
Then, whenever some process pi sets the bit x[r, vi] to 1, vi equals v. Consequently, no
process ever sets x[r, 1− v] to 1, and hence x[r, 1− v] always equals 0. Now consider
a process p reaching round r. Assuming that p continues to take steps in round r, p
will either (1) finds x[r − 1, 1 − v] = 0 at Statement 3, and commits to the value v in

3 A test&set bit, say r, is a shared bit that supports two operations: (1) test&set, which writes
1 to r, and returns the old value (which is either 0 or 1); and (2) reset, which writes 0 into r
(and does not return a value).

round r, or (2) will continue to round r + 1 with preference v. In the second case, all
processes reaching round r+1 have the same preference v for round r+1, thus, p will
find x[r, 1− v] = 0 at round r + 1, and will commit to the value v in round r + 1. ⊓⊔

Lemma 2 (validity). If pi decides on a value v then inj = v for some pj .

Proof. If there are two processes that have different inputs then the lemma holds triv-
ially. Suppose all processes start with the same input in. Then, by Lemma 1, all non-
faulty processes will commit to in in the first round or the second round (actually the
second round in this case), will execute the statement decide(decide), at the end of one
of these two rounds, and will decide on in. ⊓⊔

Lemma 3. If some process commits to v in round r then all processes reaching round
r + 1 prefer v and commit to v in round r + 1.

Proof. Suppose some process p commits to v in round r. Since p finds x[r−1, 1−v] = 0
at Statement 3, it follows that every process with preference 1− v for round r, will find
in Statement 2 that x[r, 1− v] = 0 and x[r, v] = 1, and will change its preference to v.
This implies that for a committed value v, no process ever sets x[r, 1− v] to 1 in round
r. It follows that all processes reaching round r + 1 prefer v in round r + 1, and since
they will find in round r + 1 that x[r, 1 − v] = 0, they will all commits to v in round
r + 1. ⊓⊔

Lemma 4 (agreement). No two processes decide on conflicting values.

Proof. We show that no two processes commit to conflicting values. This implies that
no two processes decide on conflicting values. Assume to the contrary that two pro-
cesses commit to conflicting values. This means that there exist nonfaulty processes p0
and p1 such that p0 commits to 0 in round r and p1 commits to 1 in round r′. First
suppose that r ̸= r′. Without loss of generality, let r < r′. Since p0 commits to 0 in
round r, from Lemma 3 all processes reaching round r+1, and in particular p1, commit
to 0 in round r + 1; a contradiction. Now suppose that r = r′. In round r, process p0
commits to 0, and process p1 commits to 1. Since process p0 finds x[r − 1, 1] = 0 at
Statement 3, process p1 must find x[r, 1] = 0 and x[r, 0] = 1 at Statement 2 and change
it preference to 0 in round r. Consequently, it is not possible that both commit in round
r. ⊓⊔

Lemma 5. Let P be an arbitrary non empty set of at most k processes, and let r be a
positive integer such that P ⊆ setk(r). If the processes in P complete the execution
of round r and round r + 1, before any of the other processes reach round r, then all
nonfaulty processes reaching round r+1 (1) have the same preference, say v, for round
r + 1, and (2) commit to v either in round r + 1 or in round r + 2.

Proof. Assume first the processes in P all have the same preference v, and complete
the execution of round r and round r+ 1 before any of the other process reaches round
r. Since it is assumed that they execute round r without interference from the other
processes, they will reach also round r+1 with the same preference v, and with x[r, 1−
v] = 0. No process that will arrive later will be able to change the value of x[r, 1− v].

Thus, in round r+ 1 they will commit to v. Every other process that will reach round r
later, will find in Statement 2 that x[r, 1 − v] = 0 and x[r, v] = 1, and will change its
preference to v in case it was 1− v. This implies that no process ever sets x[r, 1− v] to
1 in round r. It follows that all processes reaching round r + 1 prefer v in round r + 1,
and since they will find in round r + 1 that x[r, 1− v] = 0, they will all commit to v in
round r + 1.

Now, assume that the processes in P reach round r with different preferences (i.e.,
some prefer 0 and some 1), and complete the execution of round r and round r + 1
before any of the other process reaches round r. Clearly, it is not possible that each one
of the processes in P changes its preferences while executing Statement 2 in round r. If
only the processes with input 0 (resp. input 1) change their preference while executing
Statement 2 in round r, then we are in a case, similar to a one already covered, where
all the processes in P reach round r with the same preference.

Thus, let us assume that not all the processes change their preference while exe-
cuting Statement 2, in round r, and thus both x[r, v] and x[r, 1 − v] will be set to 1.
In such a case, Statement 4 ensures that all the processes in P will reach round r + 1
with the same preference with the same preference v, which is the value agreed upon
in con[r]. Since it is assumed that they execute round r + 1 without interference from
the other processes, they will reach also round r + 2 with the same preference v, and
with x[r + 1, 1 − v] = 0. No process that will arrive later will be able to change the
value of x[r+1, 1−v]. Thus, in round r+2 they will commit to v. Every other process
that will reach round r + 1 later, will find in Statement 2 that x[r + 1, 1 − v] = 0 and
x[r + 1, v] = 1, and will change its preference to v in case it was 1 − v, and will later
reach round r+2 with preference v. This implies that no process ever sets x[r+1, 1−v]
to 1 in round r+1. It follows that all processes reaching round r+2 prefer v, and since
they will find in round r+2 that x[r+1, 1− v] = 0, they will all commit to v in round
r + 2. ⊓⊔
Lemma 6 (liveness with k-obstruction-freedom). Let P be an arbitrary non-empty
set of at most k processes. Each nonfaulty process eventually decides and terminates,
regardless whether the other processes are faulty or not, in every run in which from
some point on all the processes, except those in P , do not take any steps until the
nonfaulty processes in P decide.

Proof. Assume that from some point on, say from time t, all the processes, except those
in P , “hold still” (i.e., do not take any steps) until the nonfaulty processes in P decide.
Let ri(t) be the value of the local register ri at time t. Define the maximum round
reached at time t, denoted r(t), as: r(t) = maximum({rj(t) | j ∈ set of all process’
identifiers}). Let r′ be the smallest integer such that r(t) ≤ r′ and P ⊆ setk(r

′). Then,
it follows from Lemma 5 that each nonfaulty process commits before or during round
r′ + 2, and later executes the statement decide(decide) and decides. ⊓⊔
This completes the proof of Theorem 1. ⊓⊔

3 An Extended Universality Result

An object o is universal for k processes if any object which has sequential specification
has a wait-free linearizable implementation using atomic registers and objects of type o

in a system with at most k processes [5]. Lets assume that we know that o is universal
in a system with k processes, what can we say about the computational power of o in a
system with more than k processes? As we prove below, in such a case it follows from
our extended universality result that o is also k-universal in a system with any number
of processes. That is, any object which has sequential specification has a k-obstruction-
free linearizable implementation using atomic registers and objects of type o for any
number of processes.

Theorem 3 (Extended Universality). For any object o and positive integer k ≥ 1,

1. A k-obstruction-free consensus object is k-universal.
2. o is k-universal if and only if PN(o) ≥ k.
3. o is k-universal if and only if CN(o) ≥ k.
4. o is k-universal if and only if o is universal for k processes.

Proof. Proving Part 1 of the theorem is difficult. So, before proving it, we first explain
why all the other three statements are simple consequences of Theorem 1 and Part 1 of
Theorem 3. Part 2: If o is k-universal then, by definition, k-obstruction-free consensus
can be implemented using atomic registers and objects of type o, and hence PN(o) ≥
k. If PN(o) ≥ k, then by Theorem 2, k-obstruction-free consensus can be implemented
using atomic registers and objects of type o, and thus, by Part 1 of Theorem 3, o is k-
universal. Part 3: This item follows immediately from Part 2 and the fact that PN(o) =
CN(o) (i.e., Theorem 1). Part 4: In a system with at most k processes, k-obstruction-
free is the same as wait-freedom, thus, if an object is k-universal its is clearly also
universal for k processes. If an object, say o, is universal for k processes, by definition,
o can implement consensus objects for k processes. Thus, by Theorem 2, k-obstruction-
free consensus algorithm can be implemented using atomic registers and objects of type
o. Thus, by Part 1 of Theorem 3, o is k-universal.

To prove Part 1 of Theorem 3, we present below a universal construction that im-
plements any k-obstruction-free object o from k-obstruction-free consensus objects and
atomic registers. The construction conceptually mimics the original construction for the
wait-free model from [5]. The basic idea behind the construction is as follows: an ob-
ject o is implemented as a linked list which is represented as an unbounded array. The
entries of the array represent a sequence of invocations applied to the object. A process
invokes an operation by threading a new invocation onto the end of the list. The current
state of the objects corresponds to applying the sequence of invocations to the object.

First we need to generalize Algorithm 1. Recall that by n-consensus we mean a
multi-valued consensus object where the input value taken from the set {0, 1, ..., n−1}.

Theorem 4. For any positive integers k and n, it is possible to implement a k-obstruction-
free n-consensus object for any number of processes, using atomic registers and k-
obstruction-free binary consensus objects for any number of processes.

Proof. Starting from k-obstruction-free binary consensus objects for any number of
processes, we can trivially get wait-free binary consensus objects for k processes. It
is well know that using atomic registers and wait-free binary consensus objects for
k processes, it is simple to implement wait-free n-consensus objects for k processes
([16], page 329). Below we show that using atomic registers and wait-free n-consensus

objects for k processes, it is possible to implement a k-obstruction-free n-consensus
object for any number of processes. To do that, we present below Algorithm 2 which is
a simple modification of Algorithm 1.

Algorithm 2. k-OBSTRUCTION-FREE n-CONSENSUS FOR ANY NUMBER OF PROCESSES USING

ATOMIC REGISTERS AND WAIT-FREE n-CONSENSUS OBJECTS FOR k PROCESSES:
program for process pi with input ini (where ini ∈ {0, 1, ..., n− 1}).

shared registers
x[0..∞, 0..n− 1] infinite array of bits, initially entries of x[0..n− 1] are 1, all other entries are 0
con[1..∞] infinite array of wait-free n-consensus objects for k processes
decide ranges over {⊥, 0, 1, ..., n− 1}, initially ⊥

local registers
ri integer, initially 1 ; vi integer, initially ini ; j integer

1 while decide =⊥ do
2 if x[ri, vi] = 0 then
3 j := 0; while j < n and x[ri, j] = 0 do j := j + 1 od
4 if j < n then vi := j else x[ri, vi] := 1 fi fi
5 j := 0; while(vi = j) or (j < n and x[ri − 1, j] = 0) do j := j + 1 od
6 if j = n then decide := vi /* no conflict in previous round */
7 else if pi ∈ setk(ri) then vi := con[ri].propose(vi) fi /* update pref */
8 fi
9 ri := ri + 1
10 od
11 decide(decide)

In round r ≥ 1, process pi first checks if the flag of its preference vi is already set (line
2). If it is not set and a flag for some other value is set, pi changes its preference to the
smallest such value. If non of the flags are set, pi flags its preference vi by writing 1
to x[r, vi] (line 4). Then, pi reads all the flags from round r − 1 (line 5). If non of the
flags from round r− 1 (excluding its own) is set, then every process that reaches round
r with a conflicting preference, will find that only x[r, vi] is set to 1, and will change its
preference to vi. Consequently, process pi can safely decide on vi, and it writes vi to
decide (line 6).

Otherwise, pi checks if it belongs to the set setk(r). If it does, pi proposes its current
preference vi to con[r] and updates its preference to be the value agreed upon in con[r]
(line 7). Then, pi proceeds to round r + 1. If only up to k processes with conflicting
preferences participate in round r, and all of them are in setk(r), then all of them will
reach round r + 1 with the same preference which is the value agreed upon in con[r].
When all processes reach a round with the same preference, a decision is reached either
in that round or the next round.

The assumption that n is finite and a priori known, can be removed by replacing the
while loops in lines 3 and 5, with a known snapshot algorithm for unbounded number
of processes. from [4]. ⊓⊔

We assume any shared object, o, is specified by two relations:

apply ⊂ INVOKE × STATE × STATE,

and reply ⊂ INVOKE × STATE × RESPONSE,

where INVOKE is the object’s domain of invocations, STATE is its domain of states
(with a designated set of start states), and RESPONSE is its domain of responses.

1. The apply relation denotes a state change based on the pending invocation and the
current state. Invocations do not block: it is required that for every invocation and
current state there is a target state.

2. The reply relation determines the calculated response, based on the pending invo-
cation and the updated state. It is required that for any pair INVOKE×STATE there
is a target state and a response.

Let o be an an arbitrary k-obstruction-free object which can be specified as described
above. We present a universal construction that implements o from k-obstruction-free
consensus objects and atomic registers. Since, by Theorem 4, k-obstruction-free n-
consensus objects can be implemented from k-obstruction-free binary consensus ob-
jects and atomic registers, we will use in the construction below only k-obstruction-
free n-consensus objects. The construction is similar to the one for the wait-free model
from [16], where the wait-free n-consensus objects are replaced with k-obstruction-free
n-consensus objects.

In the actual implementation there are two principal data structures:

1. For each process i there is an unbounded array, Announce[i][1..∞], each element
of which is a cell which can hold a single invocation. The Announce[i][j] entry
describes the j-th invocation (operation name and arguments) by process i on o.

2. The object is represented as an unbounded array Sequence[1..∞] of process-id’s,
where for each positive integer g, Sequence[g] is a k-obstruction-free n-consensus
object. Intuitively, if Sequence[k] = i and Sequence[1], . . . , Sequence[k − 1] con-
tains the value i in exactly j−1 positions, then the k-th invocation on o is described
by Announce[i][j]. In this case, we say that Announce[i][j] has been threaded.

The universal construction of any k-obstruction-free object o is described below as the
code process i executes to implement an operation on o with invocation invoke. For
simplicity, we will assume that the input values for an n-consensus object are taken
from the set {1, ..., n} (instead of {0, 1, ..., n− 1}).

In outline, the construction works as follows: process i first announces its next invo-
cation, and then threads unthreaded, announced invocations onto the end of Sequence.
It continues until it sees that its own operation has been threaded, computes a response,
and returns. To ensure that each announced invocation is eventually threaded, the cor-
rect processes first try to thread any announced, unthreaded cell of process ℓ into entry
Sequence[k], where ℓ = k (mod n) + 1. This “helping” technique guarantees that once
process ℓ announces an operation, at most n other operations can be threaded before the
operation of process ℓ is threaded.

ALGORITHM 3. A UNIVERSAL CONSTRUCTION:
program for process i ∈ {1, . . . , n} with invocation invoke

shared
Announce[1..n][1..∞] array of cells which range over INVOKE ∪ {⊥},

initially all cells are set to ⊥
Sequence[1..∞] array of k-obstruction-free n-consensus objects

local to process i
MyNextAnnounce integer, initially 1 /* next vacant cell */
NextAnnounce[1..n] array of integers, initially 1

/* next operation */
CurrentState ∈ STATE, initially the initial state of o /* i’s view */
NextSeq integer, initially 1 /* next entry in Sequence */
Winner range over {1,. . . ,n} /* last process threaded */
ℓ range over {1,. . . ,n} /* process to help */

/* write invoke to a vacant cell in Announce[i] */
1 Announce[i][MyNextAnnounce] := the invocation invoke
2 MyNextAnnounce := MyNextAnnounce + 1
3 while ((NextAnnounce[i] < MyNextAnnounce) do

/* continue until invoke is threaded */
/* each iteration threads one operation */

4 ℓ := NextSeq (mod n) + 1 /* select process to help */
5 while Announce[ℓ][NextAnnounce[ℓ]] = ⊥ /* valid? */
7 do
6 ℓ := ℓ+ 1 /* not valid; help next process */
7 od
9 Winner := Sequence[NextSeq].propose(ℓ) /* propose ℓ */

/* a new cell has been threaded by Winner */
/* update CurrentState */

10 CurrentState := apply(Announce[Winner][NextAnnounce[Winner]],CurrentState)
11 NextAnnounce[Winner] := NextAnnounce[Winner] + 1
12 NextSeq := NextSeq + 1
13 od
14 return(reply(invoke,CurrentState))

Process i keeps track of the first index of Announce[i] that is vacant in a variable denoted
MyNextAnnounce, and first writes the invocation into Announce[i][MyNextAnnounce],
and (line 2) increments MyNextAnnounce by 1. To keep track of which cells it has seen
threaded (including its own), process i keeps n counters in an array NextAnnounce[1..n],
where each NextAnnounce[j] is one plus the number of times i has read cells of j in
Sequence. Hence NextAnnounce[j] is the index of Announce[j] where i looks to find the
next operation announced by j. We notice that, having incremented MyNextAnnounce:

NextAnnounce[i] = MyNextAnnounce−1 until the current operation of process
i has been threaded.

This inequality is thus the condition (line 3) in the while loop (lines 3 – 13) in which
process i threads cells. Once process i’s invocation is threaded (and NextAnnounce[i]
= MyNextAnnounce), it exits the loop and returns the associated response value (line

14). Process i keeps an index NextSeq which points to the next entry in Sequence[1..∞]
whose element it has not yet accessed.

To thread cells, process i proposes (line 9) the id of process ℓ to the k-obstruction-
free consensus object Sequence[NextSeq], and after a decision is made, records the con-
sensus value for Sequence[NextSeq] in the local variable Winner (line 9). The value in
Sequence[NextSeq] is the identity of the process whose cell has just been threaded. After
choosing to help process ℓ (line 4), process i checks that Announce[ℓ][NextAnnounce[ℓ]]
contains a valid operation invocation. As discussed above, process i gives preference
(line 4) to a different process for each cell in Sequence. Thus, all active processes will
eventually agree to give preference to any pending invocation, ensuring it will eventu-
ally be threaded.

Once process i knows the id of the process whose cell has just been threaded, as
recorded in Winner, it can update (line 10) its view of the object’s state with the winner
invocation, and increment its records of process Winner’s successfully threaded cells
(line 11) and the next unread cell in Sequence (line 12). Having successfully threaded a
cell, process i returns to the top of the while loop (line 3). Eventually, the invocation of
process i will be threaded and the condition at the while loop (line 3) will be false. At
this point, the value of the variable CurrentState is the state of the object after process
i’s invocation has been applied to the object. Based on this state, process i can return
the appropriate response. This completes the proof of Theorem 3. ⊓⊔

4 Discussion

“Please explain me” requested Bob once he understood the new results, “when you
write a concurrent application for your new machine, and contention goes above two,
what do you do?”. “In such cases, contention resolution schemes such as exponen-
tial backoff, are used” explained Alice, “and since with a machine which supports an
atomic swap, we can easily deal with contention of two threads, the contention res-
olution scheme can kick-in only once three threads are contending, and not before.
Furthermore, once the contention resolution scheme kicks-in, it is enough to use it until
two, and not just one, contending threads stay alive. From a practical point a view, this
is a big performance gain”. “I see” said Bob, “so there is a tradeoff between how strong
the progress condition should be, and how often the contention resolution scheme will
kick-in”. “Exactly” said Alice, “this is one of the reasons why the new classification
and results are so helpful”.

References

1. H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with reads and writes in the ab-
sence of step contention. Proceedings of the 19th International Symposium on Distributed
Computing, LNCS 3724, 122–136, 2005.

2. F. E. Fich and E. Ruppert. Hundreds of impossibility results for distributed computing.
Distributed Computing, 16(2-3):121–163, 2003.

3. M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, 1985.

4. E. Gafni, M. Merritt, and G. Taubenfeld. The concurrency hierarchy, and algorithms for
unbounded concurrency. In Proc. 20th ACM Symp. on Principles of Distributed Computing,
pages 161–169, August 2001.

5. M. P. Herlihy. Wait-free synchronization. ACM Trans. on Programming Languages and
Systems, 13(1):124–149, January 1991.

6. M. P. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended
queues as an example. In Proc. of the 23rd Int. Conf. on Dist. Computing Systems, 2003.

7. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
toplas, 12(3):463–492, 1990.

8. P. Jayanti. Robust wait-free hierarchies. Journal of the ACM, 44(4):592–614, 1997.
9. P. Jayanti and S. Toueg. Some results on the impossibility, universality, and decidability of

consensus. In Proc. of the 6th Int. Workshop on Distributed Algorithms: LNCS 674, pages
69–84, 1992.

10. Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of us: Nondeterministic
wait-free hierarchies are not robust. SIAM Journal on Computing, 30(3):689–728, 2000.

11. V. Luchangco, M. Moir and N. Shavit. On the uncontended complexity of consensus. Proc.
of the 17th International Symp. on Distributed Computing, LNCS 2848, 45–59, 2003.

12. M.C. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, 4:163–183, 1987.

13. M. Merritt and G. Taubenfeld. Resilient consensus for infinitely many processes. Proc. of
the 17th International Symp. on Distributed Computing, LNCS 2848, 1–15, 2003.

14. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, 1980.

15. S. A. Plotkin. Sticky bits and universality of consensus. In Proc. 8th ACM Symp. on Princi-
ples of Distributed Computing, pages 159–175, 1989.

16. G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson /
Prentice-Hall, ISBN 0-131-97259-6, 423 pages, 2006.

17. G. Taubenfeld. Contention-sensitive data structures and algorithms. Proc. of the 23rd Inter-
national Symp. on Distributed Computing, September 2009. To appear.

