Contention-sensitive Data Structures and Algorithms

Gadi Taubenfeld

The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel,
tgadi@idc.ac.1i1,
http://www.faculty.idc.ac.il/gadi/

Abstract. A contention-sensitive data structure is a concurrent data structure in
which the overhead introduced by locking is eliminated in the common cases,
when there is no contention, or when processes with non-interfering operations
access it concurrently. When a process invokes an operation on a contention-
sensitive data structure, in the absence of contention or interference, the process
must be able to complete its operation in a small number of steps and with-
out using locks. Using locks is permitted only when there is interference. We
formally define the notion of contention-sensitive data structures, propose four
general transformations that facilitate devising such data structures, and illus-
trate the benefits of the approach by implementing a contention-sensitive con-
sensus algorithm, a contention-sensitive double-ended queue data structure, and
a contention-sensitive election algorithm. Finally, we generalize the result to en-
able to avoid locking also when contention is low.

Keywords: Contention-sensitive, synchronization, locks, shortcut code, disable-
free, prevention-free, livelock, starvation, k-obstruction-free, wait-free.

1 Introduction

1.1 Motivation

Concurrent access to a data structure shared among several processes must be synchro-
nized in order to avoid interference between conflicting operations. Mutual exclusion
locks are the de facto mechanism for concurrency control on concurrent data structures:
a process accesses the data structure only inside a critical section code, within which
the process is guaranteed exclusive access. Any sequential data structure can be eas-
ily made concurrent using such a locking approach. The popularity of this approach is
largely due to the apparently simple programming model of such locks.

When using locks, the granularity of synchronization is important. Using a single
lock to protect the whole data structure, allowing only one process at a time to access it,
is an example of coarse-grained synchronization. In contrast, fine-grained synchroniza-
tion enables to lock “small pieces” of a data structure, allowing several processes with
non-interfering operations to access it concurrently. Coarse-grained synchronization is
easier to program but is less efficient compared to fine-grained synchronization.

Using locks may, in various scenarios, degrade the performance of concurrent ap-
plications, as it enforces processes to wait for a lock to be released. Moreover, slow or
stopped processes may prevent other processes from ever accessing the data structure.

Locks can introduce false conflicts, as different processes with non-interfering opera-
tions contend for the same lock, only to end up accessing disjoint data.

A promising approach is the design of concurrent data structures and algorithms
which avoid locking. The advantages of such algorithms are that they are not subject to
priority inversion, they are resilient to failures, and they do not suffer significant per-
formance degradation from scheduling preemption, page faults or cache misses. On the
other hand, such algorithms may impose too much overhead upon the implementation
and are often complex and memory consuming.

We propose an intermediate approach for the design of concurrent data structures,
which incorporates ideas from the work on data structures which avoid locking. While
the approach guarantees the correctness and fairness of a concurrent data structure under
all possible scenarios, it is especially efficient in the common cases when there is no
(or low) contention, or when processes with non-interfering operations access a data
structure concurrently.

1.2 Contention-sensitive data structures: The basic idea

Contention for accessing a shared object is usually rare in well designed systems. Con-
tention occurs when multiple processes try to acquire a lock at the same time. Hence, a
most desired property in a lock implementation is that, in the absence of contention, a
process can acquire the lock extremely fast. However, locks were introduced in the first
place to resolve conflicts when there is contention, and acquiring a lock always intro-
duces some overhead, even in the cases where there is no contention or interference.

We propose an approach which, in common cases, eliminates the overhead involved
in acquiring a lock. The idea is simple: assume that, for a given data structure, it is
known that in the absence of contention or interference it takes some fixed number of
steps, say at most 10 steps, to complete an operation, not counting the steps involved in
acquiring and releasing the lock. According to our approach, when a process invokes an
operation on a given data structure, it first tries to complete its operation, by executing
a short code, called the shortcut code, which does not involve locking. Only if it does
not manage to complete the operation fast enough, i.e., within 10 steps, it tries to access
the data structure via locking. The shortcut code is required to be wait-free. That is,
its execution by a process takes only a finite number of steps and always terminates,
regardless of the behavior of the other processes.

Using an efficient shortcut code, although eliminates the overhead introduced by
locking in common cases, introduces a major problem: we can no longer use a sequen-
tial data structure as the basic building block, as done when using the traditional lock-
ing approach. The reason is simple, many processes may access the same data structure
simultaneously by executing the shortcut code. Furthermore, even when a process ac-
quires the lock, it is no longer guaranteed to have exclusive access, as another process
may access the same data structure simultaneously by executing the shortcut code.

Thus, a central question which we are facing is: if a sequential data structure can not
be used as the basic building block for a general technique for constructing a contention-
sensitive data structure, then what is the best data structure to use? Before we proceed to
discuss formal definitions and general techniques, which will also help us answering the
above question, we demonstrate the idea of using a shortcut code to avoid locking — in

the absence of synchronization conflicts — by presenting a contention-sensitive solution
to the binary consensus problem using atomic read/write registers and a single lock.

1.3 A simple example: Contention-sensitive consensus

The consensus problem is to design an algorithm in which all correct processes reach
a common decision based on their initial opinions. While various decision rules can
be considered such as “majority consensus”, the problem is interesting even where the
decision value is constrained only when all processes are unanimous in their opinions,
in which case the decision value must be the common opinion. A consensus algorithm
is called binary consensus when the number of possible initial opinions is two.

Processes are not required to participate in the algorithm, however, once a process
starts participating it is guaranteed that it may fail only while executing the shortcut
code. The algorithm uses an array 2[0..1] of two atomic bits, and two atomic registers
y and out. After a process executes a decide() statement, it immediately terminates.

CONTENTION-SENSITIVE BINARY CONSENSUS: program for process p; with inputin; € {0,1}.

shared «[0..1] : array of two atomic bits, initially both 0
y, out : atomic registers which range over { L, 0, 1}, initially both L

1 zfing] =1 // start shortcut code
2 ify=1theny:=in;fi

3 if 2[1 — in;] = O then out := in;; decide(in;) fi

4 if out #1 then decide(out) fi /I end shortcut code

5 if our = L then our := y fi ; decide(our) // Tocking

When a process runs alone (either before or after a decision is made), it reaches a de-
cision after accessing the shared memory at most five times. Furthermore, when all the
concurrently participating processes have the same preference — i.e., when there is no
interference — a decision is also reached within five steps and without locking. Two
processes with conflicting preferences, which run at the same time, will not resolve the
conflict in the shortcut code if both of them find y =_L. In such a case, some process
acquires the lock and sets the value of out to be the final decision value. The assign-
ment out := y requires two memory references and hence it involves two atomic steps.
Memory barriers may be used to prevent reordering [26].

1.4 Summery of contributions
The full list of our contributions is as follows,

1. We define contention-sensitive data structures by identifying four properties any
such data structure must satisfy; and discuss three additional “nice to have” prop-
erties. This involves introducing a new notion called a disable-free code segment
(Section 2).

2. We implement a contention-sensitive double-ended queue. To increase the level of
concurrency, two locks are used: one for the left-side operations and the other for
the right-side operations (Section 3).

3. Three known progress conditions are: (1) livelock-freedom, which guarantees that
in the absence of process failures, some participating process makes progress; (2)
starvation-freedom, which guarantees that in the absence of process failures, every
participating progress makes progress; (3) obstruction-freedom, which guarantees
that a process will be able to complete its pending operations in a finite number
of its own steps, if all the other processes “hold still” (i.e., do not take any steps)
long enough. That is, obstruction-freedom guarantees progress for any process that
eventually executes in isolation long enough. Under contention, obstruction-free
data structures may suffer from livelocks. We presents three transformations:

— Transformation 1, converts any contention-sensitive data structure which satis-
fies livelock-freedom into a corresponding contention-sensitive data structure
which satisfies starvation-freedom. It adds only one memory reference to the
shortcut code (Section 4.1).

— Transformation 2, converts any obstruction-free data structure into the corre-
sponding contention-sensitive data structure which satisfies livelock-freedom
(Section 4.2).

— A new progress condition called prevention-freedom is presented. Transfor-
mation 3, converts any prevention-free data structure into the corresponding
contention-sensitive data structure which satisfies livelock-freedom (Section 4.3).

4. We define the notion of a k-contention-sensitive data structure in which locks are
used only when contention goes above k, and illustrate this notion by implementing
a 2-contention-sensitive consensus algorithm. Then, for each & > 1, we define a
progress condition called k-obstruction-freedom, and present a transformation that
converts any k-obstruction-free data structure into the corresponding k-contention-
sensitive data structure which satisfies livelock-freedom (Section 5).

5. We present a contention-sensitive election algorithm, using atomic registers only
(Section 6).

1.5 Related work

Mutual exclusion locks were first introduced by Edsger W. Dijkstra in [6]. Since than,
numerous implementations of locks have been proposed [34,40]. Algorithms for sev-
eral concurrent data structures based on locking have been proposed since at least the
1970’s [5, 8,20, 25]. Speculative lock elision [35], is a hardware technique which allows
multiple processes to concurrently execute critical sections protected by the same lock;
when misspeculation, due to data conflicts, is detected rollback is used for recovery,
and the execution fall back to acquiring the lock and executing non-speculatively.

Implementations of data structures which avoid locking have appeared in many
papers [7, 11, 14, 30, 38,42]. Several progress conditions have been proposed for data
structures which avoid locking. The most extensively studied conditions, in order of de-
creasing strength, are wait-freedom [15], non-blocking [19], and obstruction-freedom
[16]. Wait-freedom guarantees that every process will always be able to complete its
pending operations in a finite number of its own steps. Non-blocking guarantees that
some process will always be able to complete its pending operations in a finite number
of its own steps. All strategies that avoid locks are called lockless [18] or lock-free [29].
(In some papers, lock-free means non-blocking.)

Non-blocking and wait-freedom (although desirable) may impose too much over-
head upon the implementation, and are often complex and memory consuming. Re-
quiring implementations to satisfy only obstruction-freedom can simplify the design of
algorithms, however, since it does not guarantee progress under contention, such algo-
rithms may suffer from livelocks. Various contention management techniques have been
proposed to improve progress of obstruction-free algorithms under contention while
still avoiding locking [12, 36]. Other works investigated boosting obstruction-freedom
by making timing assumption [4, 9, 39] and using failure detectors [13].

It is known that even in the presence of only one crash failure, it is not possible
to solve consensus using atomic read/write registers only [10, 23]. Wait-free consensus
algorithms that use read and write operations in the absence of (process) contention,
or even in the absence of step contention, and revert to using strong synchronization
operations when contention occurs, are presented in [2,24]. A wait-free consensus al-
gorithm that in any given execution uses objects with consensus number above k, only
when contention goes above k, appeared in [32].

Consistency conditions for concurrent objects are linearizability [19] and sequential
consistency [22]. A tutorial on memory consistency models can be found in [1]. Trans-
actional memory is a methodology which has gained momentum in recent years as a
simple way for writing concurrent programs [17,37,43]. It has implementations that
use locks and others that avoid locking, but in both cases the complexity is hidden from
the programmer. In [27], a constructive critique of locking and transactional memory:
their strengths, weaknesses, and challenges, is presented.

2 Defining contention-sensitive data structures

We focus on an architecture in which n processes communicate asynchronously via a
shared memory. Asynchrony means that there is no assumption on the relative speeds of
the processes. Processes may fail by crashing, which means that a failed process stops
taking steps forever. Numerous implementations of locks have been proposed to help
coordinating the activities of the various processes.

We are not interested in implementing new locks, but rather assume that we can
use existing locks. We are not at all interested whether the locks are implemented using
atomic registers, semaphores, etc. We do assume that a lock implementation guarantees
that: (1) no two processes can acquire the same lock at the same time, (2) if a process is
trying to acquire the lock, then in the absence of failures some process, not necessarily
the same one, eventually acquires that lock, and (3) the operation of releasing a lock is
wait-free. (It is possible to consider also using read-write locks, k-exclusion locks, etc.)

An implementation of a contention-sensitive data structure is divided into two con-
tinuous sections of code: the shortcut code and the body code. When a process invokes
an operation it first executes the shortcut code, and if it succeeds to complete the oper-
ation, it returns. Otherwise, the process tries to complete its operation by executing the
body code, where it usually first tries to acquire a lock. If it succeeds to complete the
operation, it releases the acquired lock(s) and returns. The problem of implementing a
contention-sensitive data structure is to write the shortcut code and the body code in
such a way that the following four requirements are satisfied,

Fast path: In the absence of contention or interference, each operation

must be completed while executing the shortcut code only.

— Wait-free shortcut: The shortcut code must be wait-free — its execution
should require only a bounded number of steps and must always terminate.
(Completing the shortcut code does not imply completing the operation.)

— Livelock-freedom: In the absence of process failures, if a process is exe-
cuting the shortcut code or the body code, then some process, not neces-
sarily the same one, must eventually complete its operation.

— Linearizability: Although operations of concurrent processes may over-

lap, each operation should appear to take effect instantaneously. In partic-

ular, operations that do not overlap should take effect in their “real-time”
order.

It is possible to consider replacing linearizability with a weaker consistency require-
ment, such as sequential consistency [22]. Livelock-freedom may still allow that indi-
vidual processes may never complete their operations. We will examine also solutions
which do not allow such a behavior.

— Starvation-freedom: In the absence of process failures, if a process is
executing the shortcut code or the body code, then this process, must even-
tually complete its operation.

Next, we define two additional desirable properties. They are “nice to have”, but it is
not required that each correct implementation satisfies them. First, we introduce a new
notion called disable-freedom. A code segment is disable-free, if a process that fails
while executing that code segment may not prevent other processes from completing
their operations.

A disable-free code segment is not necessarily wait-free and vice versa. To illustrate
this point, consider the following program for two processes in which a single atomic
register, called x, is used. Each process executes the following three lines and termi-
nates: (1) z := 0; (2) := 1; (3) while = # 1 do skip od. Consider the code segment
which consists of lines 1 and 2. It is clearly wait-free, but it is not disable-free since a
process that fails just before executing line 2 may cause the other process to spin for-
ever (in line 3). On the other hand, the code segment which consists of only line 3 is
disable-free but is not wait-free.

— Disable-free shortcut: A process that fails (or that is very slow) while ex-
ecuting the shortcut code, may not prevent other processes from accessing
the data structure and completing their operations.

We point out that the shortcut code of the consensus algorithm presented in the intro-
duction is disable-free. The second “nice to have” property is,

— Weak-blocking body: Let p be a process that has failed while executing
the body code, and let ¢ be a process that has started executing the shortcut
code after p has failed. Furthermore, assume that the operations of p and ¢
are non-interfering, and that no other process is concurrently participating.
Then, the fact that p has failed should not prevent ¢ from completing its
operation while executing the shortcut code.

The implementation of the body code can be either coarse-grained, or fine-grained.

3 A contention-sensitive double-ended queue data structure

In [16], two obstruction-free CAS-based implementations of a double-ended queue are
presented; the first is implemented on a linear array, the second on a circular array. In the
following, a contention-sensitive double-ended queue data structure implementation,
which is based on the implementations from [16], is presented.

The double-ended queue is implemented on an infinite array (denoted) and is
based on load-link/store-conditional/validate (LL/SC/VL) operations. For a given ob-
ject o, the operations LL/SC/VL are defined as follows: (1) LL(0) returns o’s value. (2)
SC(o,v) by process p succeeds if and only if no process has successfully written to
o since p’s last LL on o. If SC succeeds, it changes o’s value to v (or to the value of
v, if v is a variable) and returns true. Otherwise, o’s value remains unchanged and SC
returns false. (3) VL (o) by process p returns true if and only if no process performed a
successful SC on o since p’s last LL on o. Otherwise, VL returns false.

Two locks are used: llock (left lock) is used by the left-side operations and rlock
(right lock) is used by the right-side operations. Two values [nil (left null) and rnil
(right null) that are different from the data values are used, and the following invariant
is maintained: For every two integer values ¢ < j, Q[j] = Inil implies Q[i] = Inil,
and Q[¢] = rnil implies Q[j] = rnil. Two pointers are used: Lptr (left pointer) which
holds the index of the rightmost Inil value, and Rptr (right pointer) which holds the
index of the leftmost rnil value. A rightpush(value) (resp. leftpush(value)) operation
changes the leftmost rnil (resp. rightmost Inil) value to value. A rightpop (resp. left-
pop) operation changes the rightmost (resp. leftmost) data value to rnil (resp. Inil) and
returns that value.

The right-side operations, rightpush and rightpop, are shown in Figure 1. The left-
side operations, leftpush and leftpop, are symmetric to the right-side operations, and
hence are not presented.

When a process p invokes a right-side operation, p first reads the Rptr pointer to
find the index of the exact location, say k, it needs to modify in the array). Then, it
LL(Q[k]) and also LL Q[k]’s adjacent location Q[k—1]. In order to prevent interference
by another right-side operation, process p first SC to the adjacent location Q[k — 1]
(without changing that location’s value). If this SC succeeds, the process SC to Q[k].
As a result of this approach, two concurrent right-side operations can each cause the
other to retry. In such a case, p tried to acquire the rightlock and, in its critical section,
p continually repeats the above sequence of steps trying to complete its operation.

A concurrent left-side and right-side operations can interfere if they try to apply a
SC to the same memory location. We observe that in such a case if as a result one of
the two type of operations has to retry, then it must be the case that an operation of the
other type must be completed.

Since Rptr is updated using an atomic write operation, the implementation in Fig-
ure 1 does not satisfy the disable-free shortcut and the weak-blocking body properties.
These properties can be easily satisfied by letting each process updating Rptr (and
Lptr) using (the more expensive) LL/SC/VL operations, whenever a process finds out
that Rptr is not updated. For lack of space, all the proofs were omitted.

CONTENTION-SENSITIVE DOUBLE-ENDED QUEUE: program for each one of the n processes

shared (Q[—o0..00]: infinite array; initially, Q[¢] = Inil for all ¢ < 0 and Q[i] = rnil for all s > 0
Lptr, Rptr: integers; initially, Lptr = —1 and Rptr =0

local done, empty: boolean; cur, prev: both range over {all data values, nil, rnil}

k: integer
rightpush(value) // value & {Inil, rnil}
1 k:= Rptr; prev := LL(Q[k — 1]); cur := LL(Q[k]); /I k index of leftmost rnil
2 if cur = rnil A prev # rnil then /I Rptr is updated
3 if SC(Q[k — 1], prev) then // prevent interfering operations
4 if SC(Q[k], value) then /I push new value
5 Rptr := Rptr 4+ 1; return("ok") fi fi fi /l update Rptr
;
7 done := false // set local variable
8 repeat
9 k := Rptr; prev := LL(Q[k — 1]); cur := LL(Q[k]) /I k index of leftmost rnil
10 if cur = rnil A prev # rnil then /I Rptr is updated
11 if SC(Q[k — 1], prev) then // prevent interfering operations
12 if SC(Q[k], value) then // push new value
13 Rptr := Rptr 4+ 1; done := true fififi /l update Rptr

14 until (done)

15 | unlock(rlock) |; return("ok") // unlocking section

rightpop()

1 k := Rptr; prev := LL(Q[k — 1]); cur := LL(Q[k]) /1 k index of leftmost rnil
2 if cur = rnil A prev # rnil then /I Rptr is updated
3 if prev = Inil A VL(Q[k — 1]) then return("empty") // adjacent Inil and rnil
4 else if SC(QIk], rnil) then // prevent interfering operations
5 if SC(Q[k — 1], rnil) then /I pop value
6 Rptr := Rptr — 1; return(prev) fififi fi /I update Rptr
7

8 done := false; empty := false // set local variables
9 repeat

10 k := Rptr; prev := LL(Q[k — 1]); cur := LL(Q[k]) /I k index of leftmost rnil
11 if cur = rnil A prev # rnil then /I Rptr is updated
12 if prev = Inil A VL(Q[k — 1]) then empty := true // adjacent Inil and rnil
13 else if SC(QIk], rnil) then /I prevent interfering operations
14 if SC(Q[k — 1], rnil) then /I pop value
15 Rptr := Rptr — 1; done := true fifififi /l update Rptr

16 until (done V empty)
17 | unlock(rlock) |; if done then return(prev) else return("empty") fi // unlocking section

Fig. 1. A contention-sensitive double-ended queue data structure. The left-side operations, left-
push and leftpop, are symmetric to the right-side operations. The first 5 lines (6 lines, resp.) of
the rightpush (rightpop, resp.) operation is the shortcut code. Two locks are used: llock (left lock)
is used by the left-side operations and rlock (right lock) is used by the right-side operations.

4 Three transformations

Recall the question raised in the introduction: If a sequential data structure can not be
used as the basic building block for constructing a contention-sensitive data structure,
what is the best data structure to use? The following transformations that facilitate de-
vising such data structures provide an answer.

4.1 From livelock-freedom to starvation-freedom

The transformation converts any contention-sensitive data structure, denoted A, which
satisfies livelock-freedom into a corresponding contention-sensitive data structure, de-
noted B, which satisfies starvation-freedom. It adds only one memory reference to the
shortcut code. It is an extension of a known transformation, for the mutual exclusion
problem, that has appeared in [40] (page 83).

It is assumed that A is implemented using a single lock, and that the body of A
is divided into three continuous sections of code: locking, main-body, and unlocking.
When a process invokes an operation on A it first executes the shortcut code of A, and
if it succeeds to complete the operation, it returns. Otherwise, it executes the body code,
where it first tries to acquire the single lock by executing the locking code. If it succeeds
to acquire the lock, it executes the main-body. If it succeeds to complete the operation,
it releases the lock.

Using A, we construct B as follows: In addition to the objects used in A, we use an
atomic register called turn which is big enough to store a process identifier, a boolean
array called flag, and a boolean bit called contention. All the processes can read and
write furn and the contention bit, the processes can read the bit flagl[é], but only process
i can write flag[i]. The processes are numbered 1 through n. The statement “await
condition” is used as an abbreviation for “while —~condition do skip”.

Transformation 1: process ¢’s program.
Initially: flag[i] = false, contention = false, the initial value of furn is immaterial.

1 if contention = true then goto lock fi // begin shortcut of B
2 shortcut of A // end shortcut of B
3 lock: flagli] := true // begin body of B
4 await (turn =i or flag[turn| = false)

5 locking of A

6 contention := true
7 main-body of A
8 contention := false

9 flag[i] :=false
10 if flag[turn] = false then turn := (turn mod n) + 1 fi
11 unlocking of A // end body of B

Setting the contention bit to true, happens after acquiring the lock which implies that
there has been contention and interference. Evaluating the condition flag[turn] = false
requires two memory references.

4.2 From obstruction-freedom to livelock-freedom

Next we present a transformation that converts any obstruction-free data structure, de-
noted DS, into a corresponding contention-sensitive data structure. The idea is to use a
lock to choke down parallelism and eventually eliminate interference on an obstruction-
free data structure. Let us denote by first(DS) the number of steps that a process needs
to take in order to complete its operation of DS when there is no contention.! The trans-
formation uses a single lock.

Transformation 2: program for a process which invokes operation op.

execute up to first(DS) steps of DS /1 shortcut
if op is completed then return response fi

1
2
3 /1 body
4 continue to execute steps of DS until op is completed

5

First a process tries to complete its operation op of DS without holding the lock. If there
is no contention the process will complete its operation without locking. Otherwise, if
after taking first(DS) steps, it does not succeed in completing its operation, it tries to
acquire the lock. As a result of such an approach, a process that is already holding
the lock may experience interference. However, either some process will manage to
complete its operation without holding the lock, or (since the number of processes is
finite) this interference will eventually vanish.

A data structure which is constructed using the above transformation satisfies also
the disable-free shortcut property and the weak-blocking body property.

4.3 From prevention-freedom to livelock-freedom

For a given implementation of a concurrent data structure, DS, assume that each state-
ment is uniquely numbered by a natural number. Let S; denote the set of all the numbers
of statements in the code of process p; (where i € {1,...,n}). For s € S;, we say that
process p; is at s if the next step of p; is to execute the statement numbered s. Let G;
be a subset of S;.

Prevention-freedom: A data structure is prevention-free w.rt. {Gy,...,Gn}
if it is guaranteed that each process p; will be able to complete its pending
operations in a finite number of its own steps, if all the other processes simul-
taneously “hold still” long enough, where each process p; # p; “holds still”
(i.e., waits) at some g; € Gj.

Each g; € G is called a gate. Prevention-freedom guarantees that if n — 1 processes
are suspended or even crash while each one of them is at a gate, the remaining process
is not effected and can complete its operation. We assume that when a process does not

"'In simple data structures like a queue or a stack the number of first(DS) steps would be a
constant. In a data structure like a search tree the number would depend on the size or depth
of the tree; this value can be stored in a shared location that each process can read and update.

invoke an operation, it is at a gate. A data structure is obstruction-free if and only if; it
is prevention-free w.r.t. {S1, ..., S, }. In an obstruction-free data structure each (number
of a) statement is a gate.

Let DS be a data structure that is prevention-free w.r.t. some set {G1, ..., Gy, }. We
say that DS is exit-safe if, regardless of contention, it is always the case that after a pro-
cess invokes an operation of DS and takes first(DS) steps, either the process completes
its operation or the process can always continue taking a small number of additional
steps until it reaches a gate. Below we present a transformation which converts any
prevention-free exit-safe data structure, denoted DS, into a corresponding contention-
sensitive data structure. The transformation uses a single lock.

Transformation 3: First a process tries to complete its operation op of DS
without holding the lock. If there is no contention the process will complete its
operation without locking. Otherwise if the process, after taking first(DS) steps,
does not succeed in completing its operation it continues taking steps until it
reaches a gate, and at that point it “exits” the DS code, and tries to acquire the
lock. Once it acquires the lock it “enters” the DS code at the same point where
it left it — i.e., through the gate — and continues taking steps trying to complete
the operation op. If op is completed it releases the lock.

A data structure which is constructed using Transformation 3, does not necessarily sat-
isfy the disable-free shortcut property or the weak-blocking body property.

5 Generalizations

A k-contention-sensitive data structure is a data structure in which contention resolution
(using locks) is used only when contention goes above k. It is defined by modifying the
fast path requirement as follows: When there is contention of at most k processes, or
when there is no interference, each operation must be completed while executing the
shortcut code only. We demonstrate this idea, by presenting a 2-contention-sensitive
consensus algorithm. The algorithm uses atomic registers and a single swap object.”

2-CONTENTION-SENSITIVE CONSENSUS: program for process p; with input v; € {0,1}.

shared z[0..1] : array of two atomic bits, initially both O
y, out : atomic registers which range over { L, 0, 1}, initially both L
z : a swap object which ranges over {_L, 0, 1}, initially L

local in; : aregister which ranges over {_L,0,1}
0 in; := v;; swap(z,in;); if in; =1 then in; := v; fi /1 start shortcut code
1 zfin;] =1

2 ify =1 theny :=in; fi
3 if 2[1 — in;] = O then out := in;; decide(in;) fi
4 if out #1 then decide(our) fi // end shortcut code

5 if out =L then our := y fi ; decide(our) // Tocking

2 A swap operation takes a shared registers and a local register, and atomically exchange their
values. It is known that there is no wait-free consensus algorithm for more than two processes,
using atomic registers and atomic swap objects [15].

Processes are not required to participate, however, once a process starts participating it
is guaranteed that it may fail only while executing the shortcut code. Once a process
decides, it immediately terminates. For a set of processes P, let | P| denotes the size of
P. Consider the following generalization of the notion of obstruction-freedom:

k-obstruction-freedom: For any k£ > 1, the progress condition k-obstruction-
freedom guarantees that for every set of processes P where |P| < k, every
process in P will be able to complete its pending operations in a finite number
of its own steps, if all the processes not in P do not take steps for long enough.

These progress conditions cover the spectrum between obstruction-freedom and wait-
freedom; 1-obstruction-freedom is the same as obstruction-freedom, and in a system of
k processes, k-obstruction-freedom is the same as wait-freedom. The following trans-
formation converts any k-obstruction-free data structure, denoted DS, into a correspond-
ing k-contention-sensitive data structure which satisfies livelock-freedom. Let us denote
by k-first(DS) the number of steps that a process needs to take in order to complete its
operation of DS when the contention level is at most k.

Transformation 4: First a process tries to complete its operation op of DS
without holding the lock. If the contention level is at most k, the process will
complete its operation without locking. Otherwise if the process, after taking
k-first(DS) steps, does not succeed in completing its operation it “exits” the
DS code, and tries to acquire the lock. In this case it is sufficient to use a k-
exclusion lock.> Once it acquires the lock it “enters” the DS code at the same
point where it left it and continues taking steps trying to complete the operation
op. If op is completed it releases the lock.

A similar transformation can be designed for the following weaker condition:

k-obstacle-freedom: For any & > 1, the condition k-obstacle-freedom guaran-
tees that for every set of processes P where |P| < k, some process in P with
pending operations will be able to complete its operations in a finite number of
its own steps, if all the processes not in P do not take steps for long enough.

We notice that, 1-obstacle-freedom is the same as obstruction-freedom, and in a system
of k processes, k-obstacle-freedom is the same as non-blocking.

6 A contention-sensitive election algorithm

The election problem is to design an algorithm in which all participating processes
choose one process as their leader. More formally, each process that starts participating
eventually decides on a value from the set {0,1} and terminates. It is required that
exactly one of the participating processes decides 1. The process that decides 1 is the

3 A k-exclusion lock guarantees that: (1) no more than k processes can acquire the lock at the
same time, (2) if strictly fewer than k processes fail (are delayed forever) then if a process is
trying to acquire the lock, then some process, not necessarily the same one, eventually acquires
the lock, and (3) the operation of releasing a lock is wait-free.

elected leader. Processes are not required to participate, however, once a process starts
participating it is guaranteed that it will not fail. It is known that in the presence of one
crash failure, it is not possible to solve election using atomic registers only [33,41].
The following algorithm solves the election problem for any number of processes,
and is related to the splitter constructs from [21,28,31]. A single lock is used. It is
assumed that after a process executes a decide() statement, it immediately terminates.

CONTENTION-SENSITIVE ELECTION: Process 7’s program

shared =z, z: atomic registers, initially z = 0 and the initial value of x is immaterial
b, y, done: atomic bits, initially all 0
local leader: local register, the initial value is immaterial

1 z:=: // begin shortcut

2 ify =1thend := 1; decide(0) fi // T am not the leader

3 y:=1

4 if x =i then z := ¢; if b = 0 then decide(1) fi fi // T am the leader!
// end shortcut

5 // locking

6 if z =i A done = 0 then leader = 1 // T am the leader!

7 else awaitb A0V z # 0

8 if 2z = 0 A done = 0 then leader = 1; done :=1 // T am the leader!

9 else leader = 0 // T am not the leader

10 fi

11 fi

12 ; decide(leader) // unlocking

When a process runs alone before a leader is elected, it is elected and terminates after
accessing the shared memory six times. Furthermore, all the processes that start running
after a leader is elected terminate after three steps. The algorithm does not satisfy the
disable-free shortcut property: a process that fails just before the assignment to b in line
2 or fails just before the assignment to z in line 4, may prevent other processes spinning
in the await statement (line 7) from terminating.

7 Discussion

None of the known synchronization techniques is optimal in all cases. Despite the
known weaknesses of locking and the many attempts to replace it, locking still pre-
dominates. There might still be hope for a “silver bullet”, but until then, it would be
constructive to also consider integration of different techniques in order to gain the ben-
efit of their combined strengths. Such integration may involve using a mixture of objects
which avoid locking (also called lockless objects) together with lock-based objects; and,
as suggested in this paper, fusing lockless objects and locks together in order to create
new interesting types of shared objects.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial. IEEE
Computers, 29(12):66-76, September 1996.

. H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with reads and writes in the ab-

sence of step contention. Proceedings of the 19th International Symposium on Distributed
Computing, LNCS 3724, 122-136, 2005.

. R. Alur and G. Taubenfeld. Results about fast mutual exclusion. In Proceedings of the 13th

IEEE Real-Time Systems Symposium, pages 12-21, December 1992.

. M. K. Aguilera and S. Toueg. Timeliness-based wait-freedom: a gracefully degrading

progress condition. In Proc. 27rd ACM Symp. on Principles of Distributed Computing, pages
305-314, 2008.

. R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta Informatica,

9:1-21, 1977.

. E. W. Dijkstra. Solution of a problem in concurrent programming control. CACM, 8(9):569,

1965.

. W. B. Easton. Process synchronization without long-term interlock. In Proc. of the 3rd ACM

symp. on Operating systems principles, pages 95-100, 1971.

. C. S. Ellis. Extendible hashing for concurrent operations and distributed data. In Proc. of the

2nd ACM symposium on Principles of database systems, pages 106-116, 1983.

. E. F. Fich, V. Luchangco, M. Moir, and N. Shavit. Obstruction-free algorithms can be prac-

tically wait-free. Proc. of the 19th International Symp. on Distributed Computing, LNCS
3724, pp. 78-92, 2005.

M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus with one
faulty process. J. ACM, 32(2):374-382, 1985.

M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In Proc. 23rd ACM Symp.
on Principles of Distributed Computing, pages 50-59, 2004.

R. Guerraoui, M. P. Herlihy and B. Pochon. Towards a theory of transactional contention
managers. In Proc. of the 24th Symp. on Principles of Dist. Computing, pp. 258-264, 2005.
R. Guerraoui, M. Kapalka and P. Kouznetsov. The weakest failure detectors to boost
obstruction-freedom. Distributed Computing, 20(6):415-433, 2008.

T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proc. 15th inter-
national symp. on distributed computing, LNCS 2180:300-314, 2003.

M. P. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124-149, January 1991.
M. P. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended
queues as an example. In Proc. of the 23rd International Conf. on Dist. Computing Systems,
pages 522-529, 2003.

M. P. Herlihy and J.E.B. Moss. Transactional memory: architectural support for lock-free
data structures. In Proc. of the 20th annual international symp. on Computer architecture,
pages 289-300, 1993.

T. E. Hart, P. E. McKenney, and A. D. Brown. Making lockless synchronization fast: Perfor-
mance implications of memory reclamation. In Proc. of the 20th international Parallel and
Distributed Processing Symp., 2006.

M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. on Programming Languages and Systems, 12(3):463-492, 1990.

H. T. Kung and P. L. Lehman. Concurrent manipulation of binary search trees. ACM Trans-
actions on Database Systems, 5(3):354-382, 1980.

L. Lamport. A fast mutual exclusion algorithm. ACM Trans. on Computer Systems, 5(1):1-
11, 1987.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. on Computers, 28(9):690-691, September 1979.

M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, JAI Press, 4:163-183, 1987.

V. Luchangco, M. Moir and N. Shavit. On the uncontended complexity of consensus. Proc.
of the 17th International Symp. on Distributed Computing, LNCS 2848, 45-59, 2003.

P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations on B-trees. ACM
Trans. on Database Systems, 6(4):650-670, 1981.

P. E. McKenney. Memory ordering in modern microprocessors, Part I & Part II. Linux
Journal, 2005(136) 2 pages, and 2005(137) 5 pages, 2005. (Revised April 2009.)

P. E. McKenney, M. M. Michael and J. Walpole. Why the grass may not be greener on the
other side: A comparison of locking vs. transactional memory. In Proc. of the 4th workshop
on Programming languages and operating systems, pp. 1-5, 2007.

M. Moir and J. Anderson. Wait-Free algorithms for fast, long-lived renaming, Science of
Computer Programming 25(1):1-39, 1995.

H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report CUCS-005-
91, Columbia University, 1991.

M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking con-
current queue algorithms. In Proc. 15th ACM Symp. on Principles of Distributed Computing,
pages 267-275, 1996.

M. Merritt and G. Taubenfeld. Computing with infinitely many processes. Proc. of the 14th
International Symp. on Distributed Computing, LNCS 1914, 164-178, 2000.

M. Merritt and G. Taubenfeld. Resilient consensus for infinitely many processes. Proc. of
the 17th International Symp. on Distributed Computing, LNCS 2848, 1-15, 2003.

S. Moran and Y. Wolfsthal. An extended impossibility result for asynchronous complete
networks. Info. Processing Letters, 26:141-151, 1987.

M. Raynal. Algorithms for mutual exclusion. The MIT Press, ISBN 0-262-18119-3, 107
pages, 1986.

R. Rajwar and J. R. Goodman, Speculative Lock Elision: Enabling Highly Concurrent Mul-
tithreaded Execution. In Proc. 34th Inter. Symp. on Microarchitecture, pp. 294-305, 2001.
W. N. Scherer and M. L. Scott. Advanced Contention Management for dynamic software
transactional memory. In Proc. of the 24th Symp. on Principles of Dist. Computing, pp.
240-248, 2005.

N. Shavit and D. Touitou. Software transactional memory. In Proc. 14th ACM Symp. on
Principles of Distributed Computing, pages 204-213, 1995.

H. Sundell and P. Tsigas. Lock-free and practical deques using single-word compare-and-
swap. In 8th International Conference on Principles of Distributed Systems, 2004.

G. Taubenfeld. Efficient transformations of obstruction-free algorithms into non-blocking
algorithms. Proc. of the 21st International Symp. on Distributed Computing, LNCS 4731,
pp. 450-464, 2007.

G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson /
Prentice-Hall, ISBN 0-131-97259-6, 423 pages, 2006.

G. Taubenfeld and S. Moran. Possibility and impossibility results in a shared memory envi-
ronment. Acta Informatica, 33(1):1-20, 1996.

J. D. Valois. Implementing lock-free queues. In Proc. of the 7th International Conference
on Parallel and Distributed Computing Systems, pages 212-222, 1994.

Transactional memory. For a list of citations see: http://www.cs.wisc.edu/trans-memory/.

