
Distributed Universality

Michel Raynal1,2, Julien Stainer2, and Gadi Taubenfeld3

1 Institut Universitaire de France
2 IRISA, Université de Rennes 35042 Rennes Cedex, France

3 The Interdisciplinary Center, PO Box 167, Herzliya 46150, Israel
{raynal,julien.stainer}@irisa.fr, tgadi@idc.ac.il

Abstract. A notion of a universal construction suited to distributed computing
has been introduced by M. Herlihy in his celebrated paper “Wait-free synchro-
nization” (ACM TOPLAS, 1991). A universal construction is an algorithm that
can be used to wait-free implement any object defined by a sequential specifi-
cation. Herlihy’s paper shows that the basic system model, which supports only
atomic read/write registers, has to be enriched with consensus objects to allow the
design of universal constructions. The generalized notion of a k-universal con-
struction has been recently introduced by Gafni and Guerraoui (CONCUR, 2011).
A k-universal construction is an algorithm that can be used to simultaneously im-
plement k objects (instead of just one object), with the guarantee that at least one
of the k constructed objects progresses forever. While Herlihy’s universal con-
struction relies on atomic registers and consensus objects, a k-universal construc-
tion relies on atomic registers and k-simultaneous consensus objects (which are
wait-free equivalent to k-set agreement objects in the read/write system model).

This paper significantly extends the universality results introduced by Herlihy
and Gafni-Guerraoui. In particular, we present a k-universal construction which
satisfies the following five desired properties, which are not satisfied by the previ-
ous k-universal construction: (1) among the k objects that are constructed, at least
� objects (and not just one) are guaranteed to progress forever; (2) the progress
condition for processes is wait-freedom, which means that each correct process
executes an infinite number of operations on each object that progresses forever;
(3) if any of the k constructed objects stops progressing, all its copies (one at each
process) stop in the same state; (4) the proposed construction is contention-aware,
in the sense that it uses only read/write registers in the absence of contention;
and (5) it is generous with respect to the obstruction-freedom progress condi-
tion, which means that each process is able to complete any one of its pending
operations on the k objects if all the other processes hold still long enough. The
proposed construction, which is based on new design principles, is called a (k, �)-
universal construction. It uses a natural extension of k-simultaneous consensus
objects, called (k, �)-simultaneous consensus objects ((k, �)-SC). Together with
atomic registers, (k, �)-SC objects are shown to be necessary and sufficient for
building a (k, �)-universal construction, and, in that sense, (k, �)-SC objects are
(k, �)-universal .

Keywords: Asynchronous read/write system, universal construction, consensus,
distributed computability, k-simultaneous consensus, wait-freedom, non-blocking,
obstruction-freedom, contention-awareness, crash failures, state machine
replication.

M.K. Aguilera et al. (Eds.): OPODIS 2014, LNCS 8878, pp. 469–484, 2014.
c© Springer International Publishing Switzerland 2014

470 M. Raynal, J. Stainer, and G. Taubenfeld

1 Introduction

Asynchronous crash-prone read/write systems and the notion of a universal construc-
tion This paper considers systems made up of n sequential asynchronous processes that
communicate by reading and writing atomic registers. Up to n− 1 processes may crash
unexpectedly. This is the basic (n− 1)-resilient model, also called read/write wait-free
model, and denoted here ARWn,n−1[∅]. A fundamental problem encountered in this
kind of systems consists in implementing any object, defined by a sequential specifica-
tion, in such a way that the object behaves reliably despite process crashes.

Several progress conditions have been proposed for concurrent objects. The most
extensively studied, and strongest condition, is wait-freedom. Wait-freedom guarantees
that every process will always be able to complete its pending operations in a finite
number of its own steps [14]. Thus, a wait-free implementation of an object guarantees
that an invocation of an object operation may fail to terminate only when the invoking
process crashes. The non-blocking progress condition (sometimes called lock-freedom)
guarantees that some process will always be able to complete its pending operations in a
finite number of its own steps [17]. Obstruction-freedom guarantees that a process will
be able to complete its pending operations in a finite number of its own steps, if all the
other processes “hold still” long enough [15]. Obstruction-freedom does not guarantee
progress under contention.

It has been shown in [10,14,19] that the design of a general algorithm implement-
ing any object defined by a sequential specification and satisfying the wait-freedom
progress condition, is impossible in ARWn,n−1[∅]. Thus, in order to be able to imple-
ment any such object, the model has to be enriched with basic objects whose computa-
tional power is stronger than atomic read/write registers [14].

Objects that can be used, together with registers, to implement any other object which
satisfies a given progress condition PC, are called universal objects with respect to PC.
Previous work provided algorithms, called universal constructions, based on universal
objects, that transform sequential implementations of arbitrary objects into wait-free
concurrent implementations of the same objects. It is shown in [14] that the consensus
object is universal with respect to wait-freedom. A consensus object allows all the cor-
rect processes to reach a common decision based on their initial inputs. A consensus
object is used in a universal construction to allow processes to agree –despite concur-
rency and failures– on a total order on the operations they invoke on the constructed
object.

In addition to the universal construction of [14], several other wait-free universal
constructions were proposed, which address additional properties. As an example, a
universal construction is presented in [8], where “processes operating on different parts
of an implemented object do not interfere with each other by accessing common base
objects”. Other additional properties have been addressed in [2,9].

From consensus to k-simultaneous consensus (or k-set agreement) in read/write sys-
tems. k-Simultaneous consensus has been introduced in [1]. Each process proposes a
value to k independent consensus instances, and decides on a pair (x, v) such that x is
a consensus instance (1 ≤ x ≤ k), and v is a value proposed to that consensus instance.
Hence, if the pairs (x, v) and (x, v′) are decided by two processes, then v = v′.

Distributed Universality 471

k-Set agreement [7] is a simple generalization of consensus, namely, at most k differ-
ent values can be decided on when using a k-set agreement object (k = 1 corresponds
to consensus). It is shown in [1] that k-set agreement and k-simultaneous consensus
have the same computational power in ARWn,n−1[∅]. That is, each one can be solved
in ARWn,n−1[∅] enriched with the other1. Hence, 1-simultaneous consensus is the
same as consensus, while, for k > 1, k-simultaneous consensus is weaker than (k− 1)-
simultaneous consensus.

While the impossibility proof (e.g., [14,19]) of building a wait-free consensus object
in ARWn,n−1[∅] relies on the notion of valence introduced in [10], the impossibility
to build a wait-free k-set agreement object (or equivalently a k-simultaneous consensus
object) in ARWn,n−1[∅] relies on algebraic topology notions [5,16,26].

It is nevertheless possible to consider system models, stronger than the basic wait-
free read/write model, enriched with consensus or k-simultaneous consensus objects.
These enriched system models, denoted ARWn,n−1[CONS] and ARWn,n−1[k -SC]
(1 ≤ k < n), respectively, are consequently computationally strictly stronger than the
basic model ARWn,n−1[∅].

Universal construction for k objects. An interesting question introduced in [12] by
Gafni and Guerraoui is the following: what happens if, when considering the design
of a universal construction, k-simultaneous consensus objects are considered instead
of consensus objects? The authors claim that k-simultaneous consensus objects are k-
universal in the sense that they allow to implement k deterministic concurrent objects,
each defined by a sequential specification “with the guarantee that at least one machine
remains highly available to all processes” [12]. In their paper, Gafni and Guerraoui
focus on the replication of k state machines. They present a k-universal construction,
based on the replication –at every process– of each of the k state machines.

Contributions. This paper is focused on distributed universality, namely it presents a
very general universal construction for a set of n processes that access k concurrent
objects, each defined by a sequential specification on total operations. An operation on
an object is “total” if, when executed alone, it always returns [17]. This construction
is based on a generalization of the k-simultaneous consensus object (see below). The
noteworthy features of this construction are the following.

– On the object side, at least � among the k objects progress forever, 1 ≤ � ≤ k. This
means that an infinite number of operations is applied to each of these � objects.
This set of � objects is not predetermined, and depends on the execution.

– On the process side, the progress condition associated with the processes is wait-
freedom. That is, a process that does not crash executes an infinite number of oper-
ations on each object that progresses forever.

– An object stops progressing when no more operations are applied to it. The con-
struction guarantees that, when an object stops progressing, all its copies (one at
each process) stop in the same state.

1 This is no longer the case in asynchronous message-passing systems, namely k-simultaneous
consensus is then strictly stronger than k-set agreement (as shown using different techniques
in [6,24]).

472 M. Raynal, J. Stainer, and G. Taubenfeld

– The construction is contention-aware. This means that the overhead introduced
by using synchronization objects other than atomic read/write registers is elimi-
nated when there is no contention during the execution of an operation (i.e., inter-
val contention). In the absence of contention, a process completes its operations
by accessing only read/write registers2. Algorithms which satisfy the contention-
awareness property have been previously presented in [3,21,22,27].

– The construction is generous3 with respect to obstruction-freedom.This means that
each process is able to complete its pending operations on all the k objects each
time all the other processes hold still long enough. That is, if once and again all the
processes except one hold still long enough, then all the k objects, and not just �
objects, are guaranteed to always progress.

This new universal construction is consequently called a wait-free contention-aware
obstruction-free-generous (k, �)-universal construction. Differently, the universal con-
struction presented in [12] is a (k, 1)-universal construction and is neither contention-
aware, nor generous with respect to obstruction-freedom. Moreover, this construction
suffers from the following limitations: (a) it does not satisfy wait-freedom progress, but
only non-blocking progress (i.e., infinite progress is guaranteed for only one process);
(b) in some scenarios, an operation that has been invoked by a process can (incorrectly)
be applied twice, instead of just once; and (c) the last state of the copies (one per pro-
cess) of an object on which no more operations are being executed can be different at
distinct processes. While issue (b) can be fixed (see [25]), we do not see how to modify
the construction from [12] to overcome drawback (c).

When considering the special case k = � = 1, Herlihy’s construction is wait-
free (1, 1)-universal [14], but differently from ours, it does not satisfy the contention-
awareness property.

To ensure the progress of at least � of the k implemented objects, the proposed con-
struction uses a new synchronization object, that we call (k, �)-simultaneous consen-
sus object, which is a simple generalization of the k-simultaneous consensus object.
This object type is such that its (k, 1) instance is equivalent to k-simultaneous con-
sensus, while its (k, k) instance is equivalent to consensus. Thus, when added to the
basic ARWn,n−1[∅] system model, (k, �)-simultaneous consensus objects add com-
putational power. The paper shows that (k, �)-simultaneous consensus objects are both
necessary and sufficient to ensure that at least � among the k objects progress forever.

From a software engineering point of view, the proposed (k, �)-universal construc-
tion is built in a modular way. First a non-blocking (k, 1)-universal construction is de-
signed, using k-simultaneous consensus objects and atomic registers. Interestingly, its
design principles are different from the other universal constructions we are aware of.
Then, this basic construction is extended to obtain a contention-aware (k, 1)-universal

2 Let us recall that, in worst case scenarios, hardware operations such as compare&swap() can
be 1000× more expensive that read or write.

3 Generosity is a general notion. Intuitively, an algorithm is generous with respect to a given
condition C, if, whenever C is satisfied, the algorithm does more than what it is required
to do in normal circumstances. The condition C specifies the “exceptional” circumstances
under which the algorithm does “more”. These “exceptional” circumstances depend on the
underlying system behavior.

Distributed Universality 473

construction, and then a wait-free contention-aware (k, 1)-universal construction. Fi-
nally, assuming that the system is enriched with (k, �)-simultaneous consensus objects,
1 ≤ � ≤ k, instead of k-simultaneous consensus objects, we obtain a contention-aware
wait-free (k, �)-universal construction. During the modular construction, we make sure
that the universal construction implemented at each stage is also generous with respect
to obstruction-freedom.

Roadmap The paper is made up of 5 sections. Section 2 presents the computation
models and the specific objects used in the paper. Section 3 presents a non-blocking
(k, 1)-universal construction. Then Section 4 extends it so that it satisfies contention-
awareness, wait-freedom, and the progress of at least � out of the k constructed objects.
This section shows also that (k, �)-simultaneous consensus objects are necessary and
sufficient for the design of (k, �)-universal constructions. Due to page limitation, (1)
all proofs, (2) the presentation of an interesting simple variant of the general universal
construction which is an obstruction-free (1, 1)-universal construction based on atomic
registers only, and (3) definitions and notions which can be used to establish a (k, �)-
universality theory, are presented in [25].

2 Basic and Enriched Models, and Wait-Free Linearizable
Implementation

2.1 Basic Read/Write Model and Enriched Model

The basic model presented in the introduction is the wait-free asynchronous read/write
model denoted ARWn,n−1[∅] (see also [4,20,23]). The processes are denoted p1, ...,
pn. Considering a run, a process is faulty if it crashes during the run, otherwise it is
correct.

In addition to atomic read/write registers [18], two other types of objects are used.
The first type does not add computational power, but provides processes with a higher
abstraction level. The other type adds computational power to the basic system model
ARWn,n−1[∅].

Adopt-commit object. The adopt-commit object has been introduced in [11]. An adopt-
commit object is a one-shot object that provides the processes with a single operation
denoted propose(). This operation takes a value as an input parameter, and returns a
pair (tag, v). The behavior of an adopt-commit object is formally defined as follows:

– Validity.
• Result domain. Any returned pair (tag, v) is such that (a) v has been proposed

by a process and (b) tag ∈ {commit, adopt}.
• No-conflicting values. If a process pi invokes propose(v) and returns before

any other process pj has invoked propose(v′) with v′ �= v, then only the pair
(commit, v) can be returned.

– Agreement. If a process returns (commit, v), the only pairs that can be returned
are (commit, v) and (adopt, v).

– Termination. An invocation of propose() by a correct process always terminates.

474 M. Raynal, J. Stainer, and G. Taubenfeld

Let us notice that it follows from the “no-conflicting values” property that, if a single
value v is proposed, then only the pair (commit, v) can be returned. Adopt-commit
objects can be wait-free implemented in ARWn,n−1[∅] (e.g., [11,23]). Hence, they
provide processes only with a higher abstraction level than read/write registers.

k-Simultaneous consensus object. A k-simultaneous consensus (k-SC) object is a one-
shot object that provides the processes with a single operation denoted propose(). This
operation takes as input parameter a vector of size k, each entry containing a value, and
returns a pair (x, v). The behavior of a k-simultaneous consensus object is formally
defined as follows:

– Validity. Any pair (x, v) that is returned by a process pi is such that (a) 1 ≤ x ≤ k
and (b) v has been proposed by a process in the x-th entry of its input vector before
pi decides.

– Agreement. If a process returns (x, v) and another process returns (y, v′), and x =
y, then v = v′.

– Termination. An invocation of propose() by a correct process always terminates.

Let ARWn,n−1[k -SC] denote ARWn,n−1[∅] enriched with k-SC objects. It is shown
in [1] that a k-SC object and a k-set agreement (k-SA) object are wait-free equivalent
in ARWn,n−1[∅]. This means that a k-SC object can be built in ARWn,n−1[k -SA],
and a k-SA object can be built in ARWn,n−1[k -SC].

2.2 Correct Object Implementation

Let us consider n processes that access k concurrent objects, each defined by a deter-
ministic sequential specification. The sequence of operations that pi wants to apply to
an object m, 1 ≤ m ≤ k, is stored in the local infinite list my listi[m], which can be
defined statically or dynamically (in that case, the next operation issued by a process
pi on an object m, can be determined from pi’s view of the global state). It is assumed
that the processes are well-formed: no process invokes a new operation on an object m
before its previous operation on m has terminated.

Wait-free linearizable implementation. An implementation of an object m by n pro-
cesses is wait-free linearizable if it satisfies the following properties.

– Validity. If an operation op is executed on objectm, then op ∈ ∪1≤i≤nmy listi[m],
and all the operations of my listi[m] which precede op have been applied to object
m.

– No-duplication. Any operation op on object m invoked by a process is applied at
most once to m. We assume that all the invoked operations are unique.

– Consistency. Any n-process execution produced by the implementation is lineariz-
able [17].

– Termination (wait-freedom). If a process does not crash, it executes an infinite num-
ber of operations on at least one object.

Distributed Universality 475

Weaker progress conditions In some cases, the following two weaker progress condi-
tions are considered.

– The non-blocking progress condition [17] guarantees that there is at least one pro-
cess that executes an infinite number of operations on at least one object.

– The obstruction-freedom progress condition [15] guarantees that any correct pro-
cess can complete its operations if it executes in isolation for a long enough period
(long enough period during which the other processes stop progressing).

3 A New Non-blocking k-Universal Construction

As mentioned in the Introduction, the construction is done incrementally. In this sec-
tion, we present and prove the correctness of a non-blocking k-universal construction,
based on new design principles (as far as we know). This construction is built in the
enriched model ARWn,n−1[k -SC]. In Section 4, we extend the construction, without
requiring additional computational power, to obtain the contention-awareness property,
and the wait-freedom progress condition (i.e., each correct process can always execute
and completes its operations on any object that progresses forever). Then (k, �)-SC ob-
jects are introduced (which are a natural generalization of k-SC objects), and are used
to design a (k, �)-universal construction which ensures that least � objects progress for-
ever. In Section 4, we also show that (k, �)-SC objects are necessary and sufficient to
obtain a (k, �)-universal construction.

3.1 A new Non-blocking k-Universal Construction: Data Structures

The following objects are used by the construction. Identifiers with upper case letters
are used for shared objects, while identifiers with lower case letters are used for local
variables.

Shared objects

– kSC [1..]: infinite list of of k-simultaneous consensus objects; kSC [r] is the object
used at round r.

– AC [1..][1..k]: infinite list of vectors of k adopt-commit objects; AC [r][m] is the
adopt-commit object associated with the object m at round r.

– GSTATE [1..n] is an array of SWMR (single-writer/multi-readers) atomic regis-
ters; GSTATE [i] can be written only by pi. Moreover, the register GSTATE [i]
is made up of an array with one entry per object, such that GSTATE [i][m] is the
sequence of operations that have been applied to the object m, as currently know
by pi; it is initialized to ε (the empty sequence).

Local variables at process pi

– ri: local round number (initialized to 0).
– g statei[1..n]: array used to save the values read from GSTATE [1..n].
– operi[1..k]: vector such that operi[m] contains the operation that pi is proposing to

a k-SC object for the object m (as we will see in the algorithm, this operation was
not necessarily issued by pi).

476 M. Raynal, J. Stainer, and G. Taubenfeld

– my opi[1..k]: vector of operations such that my opi[m] is the last operation that pi
wants to apply to the object m (hence my opi[m] ∈ my listi[m]).

– � histi[1..k]: vector with one entry per object, such that � histi[m] is the sequence
of operations defining the history of object m, as known by pi. Each � histi[m] is
initialized to ε. The function append() is used to add an element at the end of a
sequence � histi[m].

– tagi[1..k] and ac opi[1..k]: arrays that, for each object m, are used to save the pairs
(tag, operation) returned by the invocation of AC [r][m] of current round r.

– outputi[1..k]: vector such that outputi[m] contains the result of the last operation
invoked by pi on the object m (this is the operation saved in my opi[m]).

Without loss of generality, it is assumed that each object operation returns a result,
which can be “ok” when there is no object-dependent result to be returned (as with the
stack operation push() or the queue operation enqueue()).

3.2 Eliminating Full Object Histories

For each process pi and object m, the universal construction uses a shared register
GSTATE[i][m] to remember the sequence of all the operations that have been suc-
cessfully applied to object m, as currently known to pi. We have chosen this implemen-
tation mainly due to its simplicity. While it is space inefficient, it can be improved as
follows.

– Recall that we have assumed that all the operations are unique. This can be easily
implemented locally, where each process attaches a unique (local) sequence num-
ber plus its id to each operation. The (local) sequence number attached can be the
number of operations the process has invoked on the object so far. Now, instead
of remembering (by each process) for each object m its full history, it is sufficient
that each process pi computes and remembers only the last state of m, denoted
� statei[m], plus the sequence number of the last operation successfully applied to
m by each process.

– As far as the function compute output(op, h) used at line 9 and line 20 is con-
cerned, we have the following, where OUTPUT [1..n] is an array made up of one
atomic register per process. Immediately after line 18, a process pi executes the
following statements, which replace lines 19-23.

outputi[m] ← compute output(ac opi[m], � statei[m]);
let pj be the process that invoked ac opi[m];
if (i = j) then lines 21-22

else OUTPUT [j] ← outputi[m]
end if.

When executed by a process pj , line 9 is replaced by outputj[m] ← OUTPUT [j].

It is easy to see that these statements implement a simple helping mechanism that allow
processes, which invoke append() at line 18, to pre-compute the operation results for
the processes that should invoke compute output(op, h) at line 9. Consequently, the
distributed universal construction can be easily modified to use this more space efficient
representation instead of the “full history” representation.

Distributed Universality 477

3.3 A New Non-blocking (k, 1)-Universal Construction: Algorithm
To simplify the presentation, it is assumed that each operation invocation is unique.
This can be easily realized by associating an identity (process id, sequence number)
with each operation invocation. In the following, the term “operation” is used as an
abbreviation for “operation execution”.

The function next() is used by a process pi to access the sequence of operations
my listi[m]. The x-th invocation of my listi[m].next() returns the x-th element of
this list.

Initialization The algorithm implementing the k-universal construction is presented in
Figure 1. For each object m ∈ {1, ..., k}, a process pi initializes both the variables
my opi[m] and operi[m] to the first operation that it wants to apply to m. Process pi
then enters an infinite loop.

Repeat loop: using the round r objects kSC [r] and AC [r] (lines 1-4) After it has
increased its round number, a process pi invokes the k-simultaneous consensus ob-
ject kSC [r] to which it proposes the operation vector operi[1..n], and from which it
obtains the pair denoted (ksc obj, ksc op); ksc op is an operation proposed by some
process for the object ksc obj (line 2). Process pi then invokes the adopt-commit ob-
ject AC [r][ksc obj] to which it proposes the operation output by kSC [r] for the object
ksc op (line 3). Finally, for all the other objects m �= ksc obj, pi invokes the adopt-
commit object AC [r][m] to which it proposes operi[m] (line 4). As already indicated,
the tags and the commands defined by the vector of pairs output by the adopt-commit
objects AC [r] are saved in the vectors tagi[1..k] and ac opi[1..k], respectively. (While
expressed differently, these four lines are the only part which is common to this con-
struction and the one presented in [12].)

The aim of these lines is to implement a filtering mechanism such that (a) for each
object, at most one operation can be committed at some processes, and (b) there is at
least one object for which an operation is committed at some processes.

Repeat loop: returning local results (lines 5-13) Having used the additional power sup-
plied by kSC [r], a process pi first obtains asynchronously the value of GSTATE [1..n]
(line 5) to learn an “as recent as possible” consistent global state, which is saved in
g statei[1..n]. Then, for each object m (lines 6-13), pi computes the maximal lo-
cal history of the object m which contains � histi[m] (line 7). (Let us notice that
g statei[i][m] is � histi[m].) This corresponds to the longest history in the n histo-
ries g statei[1][m], ..., g statei[n][m] which contains � histi[m]. If there are several
longest histories, they all are equal as we will see in the proof. If the last operation it
has issued on m, namely my opi[m], belongs to this history (line 8), some process has
executed this operation on its local copy ofm. Process pi computes then the correspond-
ing output (line 9), locally returns the triple (m,my opi[m], outputi[m]) (line 10), and
defines its next local operation to apply to the object m (line 11).

The function compute output(op, h) (used at lines 9 and 20) computes the result
returned by op applied to the state of the corresponding object m (this state is captured
by the prefix of the history h of m ending just before the operation op).
Repeat loop: trying to progress on machines (lines 14-29) Then, for each object m,
1 ≤ m ≤ k, pi considers the operation ac opi[m]. If this operation belongs to its

478 M. Raynal, J. Stainer, and G. Taubenfeld

for each m ∈ {1, . . . , k} do
my opi[m] ← my listi[m].next(); operi[m] ← my opi[m] end for.

repeat forever
(1) ri ← ri + 1;
(2) (ksc obj, ksc op) ← kSC [ri].propose(operi[1..k]);
(3) (tagi[ksc obj], ac opi[ksc obj]) ← AC [ri][ksc obj].propose(ksc op);
(4) for each m ∈ {1, . . . , k} \ {ksc obj} do

(tagi[m], ac opi[m]) ← AC [ri][m].propose(operi[m]) end for;

(5) for each j ∈ {1, . . . , n} do g statei[j] ← GSTATE [j] end for;
% the read of each GSTATE [j] is atomic %

(6) for each m ∈ {1, . . . , k} do
(7) � histi[m] ← longest history of g statei[1..n][m] containing � histi[m];
(8) if (my opi[m] ∈ � histi[m]) % my operation was completed %
(9) then outputi[m] ← compute output(my opi[m], � histi[m]);
(10) return {(m,my opi[m], outputi[m])} to the upper layer;
(11) my opi[m] ← my list[m].next()
(12) end if
(13) end for;

(14) res ← ∅;
(15) for each m ∈ {1, . . . , k} do
(16) if (ac opi[m] /∈ � histi[m]) % operation was not completed %
(17) then if (tagi[m] = commit) % complete the operation %
(18) then � histi[m] ← � histi[m].append(ac opi[m]);
(19) if (ac opi[m] = my opi[m]) % my operation was completed %
(20) then outputi[m] ← compute output(ac opi[m], � histi[m]);
(21) res ← res ∪ {(m,my opi[m], outputi[m])};
(22) my opi[m] ← my list[m].next()
(23) end if;
(24) operi[m] ← my opi[m]
(25) else operi[m] ← ac opi[m] % tagi[m] = adopt %
(26) end if
(27) else operi[m] ← my opi[m] % ac opi[m] ∈ � histi[m] %
(28) end if
(29) end for;

(30) GSTATE [i] ← � histi[1..k]; % globally update my current view %
(31) if (res �= ∅) then return res to the upper layer end if
end repeat.

Fig. 1. Basic Non-Blocking Generalized (k, 1)-Universal Construction (code for pi)

local history � histi[m] (the predicate of line 16 is then false), it has already been

Distributed Universality 479

locally applied; pi consequently assigns my opi[m] to operi[m], where is saved its next
operation on the object m (line 27).

If ac opi[m] /∈ � histi[m] (line 16), the behavior of pi depends on the fact that the
tag of ac opi[m] is commit or adopt. If the tag is adopt (the predicate of line 17 is
then false), pi defines ac opi[m] as the next operation it will propose for the object
m, which is saved in operi[m] (line 25): it “adopts” ac opi[m]. If the tag is commit
(line 17), pi adds (applies) the operation ac opi[m] to its local history (line 18). More-
over, if ac opi[m] has been issued by pi itself (i.e., ac opi[m] = my opi[m], line 19),
pi computes the result locally returned by ac opi[m] (line 20), adds this result to the set
of results res (line 21), defines its next local operation to apply to the object m (line 22).
Finally, pi assigns my opi[m] to operi[m] (line 24).

Repeat loop: making public its progress (lines 30-31) Finally, pi makes public its cur-
rent local histories (one per object) by writing them in GSTATE [i] (line 30), and re-
turns local results if any (line 31). It then progresses to the next round.

Theorem 1. The algorithm of Figure 1 is a non-blocking linearizable (k, 1)-universal
construction.

Generosity wrt obstruction-freedom We observe that the construction of Figure 1 is also
obstruction-free (k, k)-universal. That is, the construction guarantees that each process
will be able to complete all its pending operations in a finite number of steps, if all
the other processes “hold still” long enough. Thus, if once in a while all the processes
except one “hold still” long enough, then all the k objects (and not “at least one”) are
guaranteed to always make progress.

4 A Contention-Aware Wait-Free (k, �)-Universal Construction

4.1 A Contention-Aware Non-blocking k-Universal Construction

Contention-aware universal construction A contention-aware universal construction
(or object) is a construction (object) in which the overhead introduced by synchro-
nization primitives which are different from atomic read/write registers (like k-SC ob-
jects) is eliminated in executions when there is no contention. When a process invokes
an operation on a contention-aware universal construction (object), it must be able to
complete its operation by accessing only read/write registers in the absence of con-
tention. Using other synchronization primitives is permitted only when there is con-
tention. (This notion is close but different from the notion of contention-sensitiveness
introduced in [27].)

A contention-aware non-blocking (k, 1)-universal construction A contention-aware
(k, 1)-universal construction is presented in Figure 2. At each round r, it uses two adopt-
commit objects per constructed object m, namely AC [2ri − 1][m] and AC [2ri][m],
instead of a single one. When considering the basic construction of Figure 1, the new
lines are prefixed by N, while modified lines are postfixed by M.

A process pi first invokes, for each object m, the adopt-commit object AC [2ri −
1][m] to which it proposes operi[m] (new line N1). Its behavior depends then on the

480 M. Raynal, J. Stainer, and G. Taubenfeld

for each m ∈ {1, . . . , k} do
my opi[m] ← my listi[m].next(); operi[m] ← my opi[m] end for.

repeat forever
(1) ri ← ri + 1;
(N1) for each m ∈ {1, . . . , k} do

(tagi[m], ac opi[m]) ← AC [2ri − 1][m].propose(operi[m]) end for;
(N2) if (∃m ∈ {1, . . . , k} : tagi[m] = adopt) then
(2M) (ksc obj, ksc op) ← kSC [ri].propose(ac opi[1..k]);
(3M) (tagi[ksc obj], ac opi[ksc obj]) ← AC [2ri][ksc obj].propose(ksc op);
(4M) for each m ∈ {1, . . . , k} \ {ksc obj} do

(tagi[m], ac opi[m]) ← AC [2ri][m].propose(ac opi[m]) end for
(N3) end if;
lines 5- 31 of the construction of Figure 1
end repeat.

Fig. 2. Contention-aware Non-Blocking (k, 1)-Universal Construction (code for pi)

number of objects for which it has received the tag commit. If it has obtained the tag
commit for all the objects m (the test of the new line N2 is then false), pi proceeds
directly to the code defined by the lines 5- 31 of the basic construction described in Fig-
ure 1, thereby skipping the invocation of the synchronization object kSC[r] associated
with round r.

Otherwise, the test of the new line N2 is true and there is at least one object for
which pi has received the tag adopt. This means that there is contention. In this case,
the behavior of pi is similar to the lines 2-4 of the basic algorithm where, at lines 2
and 4, the input parameter operi[m] is replaced by the value of ac opi[m] obtained at
line N1 (the corresponding lines are denoted 2M and 4M). Moreover, at line 3, ri is
replaced by 2ri (new line 3M).

Interestingly, for the case of k = 1, the above universal construction is the first
known contention-aware (1, 1)-universal construction.

Theorem 2. The algorithm of Figure 2 is a non-blocking contention-aware (k, 1)-
universal construction.

It is possible to still reduce the number of uses of underlying k-SC synchronization
objects. by replacing the lines N1-N3 in Figure 2 as described in Figure 3. There is one
modified line (N2M) and three new lines (NN1, NN2, and NN3). More precisely, if after
it has used the adopt-commit objects AC [2ri−1][m], for each constructed object m, pi
has received only tags adopt (modified line N2M), it executes the lines 2M, 3, and 4M,
as in basic contention aware construction of Figure 2. Differently, if it has received the
tag commit for at least one constructed object, it invokes AC[2r][m] for all the objects
m for which it has received the tag adopt (new lines NN1-NN3).

4.2 On the Process Side: From Non-blocking to Wait-Freedom

The aim here is to ensure that each correct process executes an infinite number of op-
erations on each object that progresses forever. As far as the progress of objects is

Distributed Universality 481

(N1) for each m ∈ {1, . . . , k} do
(tagi[m], ac opi[m]) ← AC [2ri − 1][m].propose(operi[m]) end for;

(N2M) if (∀m ∈ {1, . . . , k} : tagi[m] = adopt) % ∀m replaces ∃ m%
(2M) then (ksc obj, ksc op) ← kSC [ri].propose(ac opi[1..k]);
(3) (tagi[ksc obj], ac opi[ksc obj]) ← AC [2ri][ksc obj].propose(ksc op);
(4M) for each m ∈ {1, . . . , k} \ {ksc obj} do

(tagi[m], ac opi[m]) ← AC [2ri][m].propose(ac opi[m]) end for
(NN1) else for each m ∈ {1, . . . , k} do
(NN2) if (tagi[m] = adopt) then

(tagi[m], ac opi[m]) ← AC [2ri][m].propose(ac opi[m]) end if
(NN3) end for
(N3) end if.

Fig. 3. Efficient Contention-aware Non-Blocking (k, 1)-Universal Construction (code for pi)

concerned, it is important to notice that it is possible that, in a given execution, several
objects progress forever.

Going from non-blocking to wait-freedom requires to add a helping mechanism to
the basic non-blocking construction. To that end, the following array of atomic registers
is introduced.

– LAST OP [1..n, 1..m]: matrix of atomic SWMR (single-writer/multi-readers) reg-
isters such that LAST OP [i,m] contains the last operation of my listi invoked by
pi. Initialized to ⊥, such a register is updated each time pi invokes my listi.next()
(initialization, line 11n and line 22). So, we assume that LAST OP [i,m] is im-
plicitly updated by pi when it invokes the function next().

Then, for each object m, the lines 24 and 27 where is defined operi[m] (namely, the
proposal for the constructed object m submitted by pi to the next k-SC object) are
replaced by the following lines (|s| denotes the size of the sequence s).

(L1) j ← |� histi [m]| mod n+ 1; next prop m ← LAST OP [j,m];
(L2) if next prop m /∈ ({⊥} ∪ � histi[m])
(L3) then operi[m] ← next prop m
(L4) else operi[m] ← my opi[m]
(L5) end if.

This helping mechanism is close to the one proposed in [14]. It uses, for each object
m, a simple round-robin technique on the process identities, computed from the current
state of m as known by pi, i.e., from � histi[m]. More precisely, the helping mechanism
uses the number of operations applied so far to m (to pi’s knowledge) in order to help
the process pj such that j = |� hist i[m]| mod n+ 1 (line L1). To that end, pi proposes
the last operation issued by pj on m (line L3) if (a) there is such an operation, and
(b) this operation has not yet been appended to its local history of m (predicate of line
L2). This operation has been registered in LAST OP [j,m] when pj executed its last
invocation of my listj[m].next(). If the predicate of line L2 is not satisfied, pi proceed
as in the basic algorithm (line L4).

482 M. Raynal, J. Stainer, and G. Taubenfeld

Theorem 3. When replacing the lines 24 and 27 by lines L1-L5, the algorithms of
Figure 1 and Figure 2 define a wait-free contention-aware linearizable (k, 1)-universal
construction.

Let us remark that requiring wait-freedom only for a subset of correct processes, or only
for a subset of objects that progress forever is not interesting, as wait-freedom for both
(a) all correct processes, and (b) all the objects that progress forever, does not require
additional computing power.

4.3 On the Object Side: From One to � Objects That Always Progress

Definition: (k, �)-Simultaneous consensus Let (k, �)-simultaneous consensus (in short
(k, �)-SC), 1 ≤ � ≤ k, be a strengthened form of k-simultaneous consensus where
(instead of a single pair) a process decides on � pairs (x1, v1), ..., (x�, v�) (all different
in their first component). The agreement property is the same as for a k-SC object,
namely, if (x, v) and (x, v′) are pairs decided by two processes, then v = v′.

Notations Let (k, �)-UC be any algorithm implementing the k-universal construction
where at least � objects always progress4. Let ARWn,n−1[(k , �)-SC] beARWn,n−1[∅]
enriched with (k , �)-SC objects, and ARWn,n−1[(k , �)-UC] be ARWn,n−1[∅] en-
riched with a (k, �)-UC algorithm.

A contention-aware wait-free (k, �)universal construction A contention-aware wait-
free (k, �)-UC algorithm can be implemented on top of ARWn,n−1[(k , �)-SC] as fol-
lows. This algorithm is the algorithm of Figure 2, where lines 24 and 27 are replaced
by the lines L1-L5 introduced in Section 4.2, and where the lines 2M, 3M, and 4M, are
modified as follows (no other line is added, suppressed, or modified).

– Line 2M: the k-simultaneous consensus objects are replaced by (k, �)-simultaneous
consensus objects, Hence, the result returned to a process is now a set of � pairs
whose first components are all distinct. It is denoted {(ksc obj1, ksc op1), ...,
(ksc obj�, ksc op�)}. Let L be the corresponding set of � different objects, i.e.,
L = {ksc obj1, ..., ksc obj�}. As already indicated, two different processes can be
returned different sets of � pairs.

– Line 3M: process pi executes this line for each object m ∈ L. These � invocations
of the adopt-commit object (i.e.,AC [2ri][ksc objx].propose(ksc opx), 1 ≤ x ≤ �)
can be executed in parallel, which means in any order. Let us notice that if several
processes invokes AC [2ri][ksc objx].propose() on the same object ksc objx, they
invoke it with the same operation ksc opx.

– Line 4M: AC [2ri][m].propose(operi[m]) is invoked only for the remaining ob-
jects, i.e., the objects m such that m ∈ {1, ..., k} \ L. As in the algorithm of Fig-
ure 2, the important point is that a process invokes AC [2ri][ksc objx].propose()
first on the set L of the objects output by the (k, �)-SC object associated with the
current round, and only after invoke it on the other objects.

4 It is possible to express (k, �)-UC as an object accessed by appropriate operations. This is not
done here because such an object formulation would be complicated without providing us with
more insight on the question we are interested in.

Distributed Universality 483

Theorem 4. With respect to the model ARWn,n−1[∅], (k, �)-UC and (k , �)-SC have
the same computational power: (a) a (k, �)-UC algorithm can be wait-free implemented
in ARWn,n−1[(k , �)-SC], and, reciprocally, (b) a (k , �)-SC object can be wait-free
built in ARWn,n−1[(k , �)-UC].

This theorem shows that (k, �)-SC objects are both necessary and sufficient to ensure
that at least � objects always progress in a set of k objects. Let us remark that this
is independent from the fact that the implementation of the k-universal construction
is non-blocking or wait-free (going from non-blocking to wait-freedom requires the
addition of a helping mechanism, but does not require additional computational power).

5 Conclusion

Our main objective was to build a universal construction for any set of k objects, each
defined by a sequential specification, where at least � of these k objects are guaranteed
to progress forever. To that end, we have introduced a new object type, called (k, �)-
simultaneous consensus ((k, �)-SC), and have shown that this object is both necessary
and sufficient (hence optimal and universal) when one has to implement such a universal
construction. We have related the notions of obstruction-freedom, non-blocking, and
contention-awareness for the implementation of k-universal constructions. The paper
has also introduced a general notion of algorithm generosity, which captures a property
implicitly addressed in other contexts. The constructions presented in the paper can
be seen as innovative generalizations of the universality notions introduced in [12,14].
More specifically, we have presented the following suite of constructions:

– A contention-aware construction, based on k-SC objects and atomic registers, which
is both obstruction-free (k, k)-universal and wait-free k-universal (Section 3).

– A contention-aware (k, �)-universal construction based on (k, �)-SC objects which
is both obstruction-free (k, k)-universal and wait-free (k, �)-universal (Section 4).

Finally, a simple obstruction-free (1, 1)-universal construction based on atomic regis-
ters only, and elements for a theory of (k, �)-universality can be found in [25].

References

1. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: The k-simultaneous consensus
problem. Distributed Computing 22(3), 185–195 (2010)

2. Anderson, J.H., Moir, M.: Universal constructions for large objects. IEEE Transactions of
Parallel and Distributed Systems 10(12), 1317–1332 (1999)

3. Attiya, H., Guerraoui, R., Hendler, D., Kutnetsov, P.: The complexity of obstruction-free
implementations. Journal of the ACM 56(4), Article 24, 33 (2009)

4. Attiya, H., Welch, J.L.: Distributed computing: Fundamentals, simulations and advanced
topics, 2nd edn., p. 414. Wiley Interscience (2004) ISBN 0-471-45324-2

5. Borowsky, E., Gafni, E., Generalized, F.L.P.: impossibility results for t-resilient asyn-
chronous computations. In: Proc. 25th ACM Symposium on Theory of Computing (STOC
1993), pp. 91–100. ACM Press (1993)

484 M. Raynal, J. Stainer, and G. Taubenfeld

6. Bouzid, Z., Travers, C.: Simultaneous consensus is harder than set agreement in message-
passing. In: Proc. 33rd Int’l IEEE Conference on Distributed Computing Systems (ICDCS
2013), pp. 611–620. IEEE Press (2013)

7. Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally asyn-
chronous systems. Information and Computation 105(1), 132–158 (1993)

8. Ellen, F., Fatourou, P., Kosmas, E., Milani, A., Travers, C.: Universal construction that ensure
disjoint-access parallelism and wait-freedom. In: Proc. 31th ACM Symposium on Principles
of Distributed Computing (PODC), pp. 115–124. ACM Press (2012)

9. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction. In: Proc.
23th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 325–334.
ACM Press (2012)

10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

11. Gafni, E.: Round-by-round fault detectors: unifying synchrony and asynchrony. In: Proc.
17th ACM Symp. on Principles of Distr. Computing (PODC), pp. 143–152. ACM Press
(1998)

12. Gafni, E., Guerraoui, R.: Generalized universality. In: Katoen, J.-P., König, B. (eds.) CON-
CUR 2011. LNCS, vol. 6901, pp. 17–27. Springer, Heidelberg (2011)

13. Guerraoui, R., Kapalka, M., Kouznetsov, P.: The weakest failure detectors to boost
obstruction-freedom. Distributed Computing 20(6), 415–433 (2008)

14. Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming Languages
and Systems 13(1), 124–149 (1991)

15. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-ended
queues as an example. In: Proc. 23th Int’l IEEE Conference on Distributed Computing Sys-
tems (ICDCS 2003), pp. 522–529. IEEE Press (2003)

16. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability. Journal
of the ACM 46(6), 858–923 (1999)

17. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

18. Lamport, L.: On inter-process communications, Part I: Basic formalism. Distributed Com-
puting 1(2), 77–85 (1986)

19. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research 4, 163–183 (1987)

20. Lynch, N.A.: Distributed algorithms, vol. 872. Morgan Kaufmann (1996)
21. Luchangco, V., Moir, M., Shavit, N.N.: On the Uncontended complexity of consensus. In:

Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 45–59. Springer, Heidelberg (2003)
22. Merritt, M., Taubenfeld, G.: Resilient consensus for infinitely many processes. In: Fich, F.E.

(ed.) DISC 2003. LNCS, vol. 2848, pp. 1–15. Springer, Heidelberg (2003)
23. Raynal, M.: Concurrent programming: Algorithms, principles, and foundations, 515 p.

Springer (2013) ISBN 978-3-642-32026-2
24. Raynal, M., Stainer, J.: Simultaneous consensus vs set agreement: A message-passing-

sensitive hierarchy of agreement problems. In: Moscibroda, T., Rescigno, A.A. (eds.)
SIROCCO 2013. LNCS, vol. 8179, pp. 298–309. Springer, Heidelberg (2013)

25. Raynal, M., Stainer, J., Taubenfeld, G.: Distributed universality. Tech Report, pages, IRISA,
Université de Rennes, France (2014)

26. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public
knowledge. SIAM Journal on Computing 29(5), 1449–1483 (2000)

27. Taubenfeld, G.: Contention-sensitive data structures and algorithms. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 157–171. Springer, Heidelberg (2009)

	Distributed Universality
	1Introduction
	2Basic and Enriched Models, and Wait-Free Linearizable Implementation
	2.1Basic Read/Write Model and Enriched Model
	2.2Correct Object Implementation

	3A New Non-blocking k-Universal Construction
	3.1A new Non-blocking k-Universal Construction: Data Structures
	3.2Eliminating Full Object Histories
	3.3A New Non-blocking (k,1)-Universal Construction: Algorithm

	4A Contention-Aware Wait-Free (k,)-Universal Construction
	4.1A Contention-Aware Non-blocking k-Universal Construction
	4.2On the Process Side: From Non-blocking to Wait-Freedom
	4.3On the Object Side: From One to Objects That Always Progress

	5Conclusion
	References

