
Tight space bounds for ℓ-exclusion∗

Gadi Taubenfeld†

November 23, 2013

Abstract

The ℓ-exclusion problem is to design an algorithm which guarantees that up to ℓ processes and
no more may simultaneously access identical copies of the same non-sharable resource when
there are several competing processes. For ℓ = 1, the 1-exclusion problem is the familiar mutual
exclusion problem.

The simplest deadlock-free algorithm for mutual exclusion requires only one single-writer
non-atomic bit per process [6, 9, 16]. This algorithm is known to be space optimal [7, 9].
For over 20 years now it has remained an intriguing open problem whether a similar type of
algorithm, which uses only one single-writer bit per process, exists also for ℓ-exclusion for
some ℓ ≥ 2.

We resolve this longstanding open problem. For any ℓ and n, we provide a tight space
bound on the number of single-writer bits required to solve ℓ-exclusion for n processes. It
follows from our results that it is not possible to solve ℓ-exclusion with one single-writer bit per
process, for any ℓ ≥ 2.

In an attempt to understand the inherent difference between the space complexity of mutual
exclusion and that of ℓ-exclusion for ℓ ≥ 2, we define a weaker version of ℓ-exclusion in
which the liveness property is relaxed, and show that, similarly to mutual exclusion, this weaker
version can be solved using one single-writer non-atomic bit per process.

Keywords: Mutual Exclusion, ℓ-exclusion, space complexity, tight bounds.

∗A preliminary version of the results presented in this paper, appeared in proceedings of the 25th international sym-
posium on distributed computing (DISC 2011), Rome, Italy, September 2011. In: LNCS 6950 Springer Verlag 2011,
110–124.

†The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel. tgadi@idc.ac.il

1

1 Introduction

1.1 Motivation

The ℓ-exclusion problem, which is a natural generalization of the mutual exclusion problem, is to
design an algorithm which guarantees that up to ℓ processes and no more may simultaneously access
identical copies of the same non-sharable resource when there are several competing processes. A
solution is required to withstand the slow-down or even the crash (fail by stopping) of up to ℓ − 1
of the processes. A process that fails by crashing simply stops executing more steps of its program,
and hence, there is no way to distinguish a crashed process from a correct process that is running
very slowly. For ℓ = 1, the 1-exclusion problem is the familiar mutual exclusion problem.

A good example, which demonstrates why a solution for mutual exclusion does not also solve
ℓ-exclusion (for ℓ ≥ 2), is that of a bank where people are waiting for a teller. Here the processes
are the people, the resources are the tellers, and the parameter ℓ is the number of tellers. We notice
that the usual bank solution, where people line up in a single queue, and the person at the head of
the queue goes to any free teller, does not solve the ℓ-exclusion problem. If ℓ ≥ 2 tellers are free, a
proper solution should enable the first ℓ people in line to move simultaneously to a teller. However,
the bank solution, requires them to move past the head of the queue one at a time. Moreover, if the
person at the front of the line “fails”, then the people behind this person wait forever. Thus, a better
solution is required which will not let a single failure tie up all the resources.

The simplest deadlock-free algorithm for mutual exclusion, called the One-bit algorithm, re-
quires only one single-writer non-atomic shared bit per process [6, 9, 16]. The One-bit algorithm is
known to be space optimal [7, 9]. For over 20 years now it has remained an intriguing open prob-
lem whether a similar type of algorithm, which uses only one single-writer bit per process, exists for
ℓ-exclusion for some ℓ ≥ 2. In [19], Peterson refers to the One-bit algorithm, and writes: “Unfor-
tunately, there seems to be no obvious generalization of their algorithm to ℓ-exclusion in general”.
He further points out that it is an interesting open question whether this can be done even for n = 3
and ℓ = 2, where n is the number of processes. This problem is one of the oldest open problems in
concurrent computing.

In this paper we resolve this longstanding open problem. For any ℓ and n, we provide a tight
space bound on the number of single-writer bits required to solve the ℓ-exclusion problem for n
processes. It follows from our results that it is possible to solve the problem with one single-writer
bit per process, only in the case where ℓ = 1.

1.2 The ℓ-exclusion Problem

To illustrate the ℓ-exclusion problem, consider the case of buying a ticket for a bus ride. Here a
resource is a seat on the bus, the parameter ℓ is the number of available seats, The number of people
who are trying to buy tickets (the processes) is assumed to be bigger than ℓ, so the ticket buyers
are competing for the ℓ available seats. In the ℓ-exclusion problem, a passenger needs only to make
sure that there is some free seat on the bus, but not to reserve a particular seat. A stronger version,
called ℓ-assignment (or slotted ℓ-exclusion), would also require to reserve a particular seat.

More formally, it is assumed that each process is executing a sequence of instructions in an
infinite loop. The instructions are divided into four continuous sections of code: the remainder,
entry, critical section and exit. The ℓ-exclusion problem is to write the code for the entry code and
the exit code in such a way that the following basic requirements are satisfied.

2

ℓ-exclusion: No more than ℓ processes are at their critical sections at the same time.

A faulty process is a process that is delayed forever. More formally, we say that a process p fails
in an infinite run y, if there exists a finite prefix x of y such that p is not in its remainder at the end
of x and the suffix of y obtained by removing x from y, does not involve p. We shall use the terms,
failed process and crashed process, interchangeably.

ℓ-deadlock-freedom: If strictly fewer than ℓ processes fail and a non-faulty process is trying to
enter its critical section, then some non-faulty process eventually enters its critical section.

We notice that the above standard definition of the ℓ-deadlock-freedom requirement is (slightly)
stronger than only requiring that “if fewer than ℓ processes are in their critical sections, then it is
possible for another process to enter its critical section, even though no process leaves its critical
section in the meantime”.

The ℓ-deadlock-freedom requirement may still allow “starvation” of individual processes. It is
possible to consider stronger progress requirements which do not allow starvation. In the sequel,
by an ℓ-exclusion algorithm we mean an algorithm that satisfies both ℓ-exclusion and ℓ-deadlock-
freedom. We also make the standard requirements that (1) the exit code is required to be wait-free:
once a non-faulty process starts executing its exit code, it always finishes it regardless of the activity
of the other processes, and (2) a non-faulty process cannot stay in its critical section forever.

In an attempt to pinpoint the reason for the inherent difference between the space complexity of
mutual exclusion and that of ℓ-exclusion for ℓ ≥ 2, we will also consider a weaker version of the
ℓ-exclusion problem in which the liveness property is relaxed. Let n be the number of processes,

Weak ℓ-deadlock-freedom: If strictly fewer than ℓ processes fail, at least one non-faulty process
is trying to enter its critical section, and at least n − ℓ processes are in their remainders, then
some non-faulty process eventually enters its critical section, provided that no process leaves its
remainder in the meantime.

The weak ℓ-deadlock-freedom property guarantees that as long as no more than ℓ processes try to
enter their critical sections, all non-faulty processes should succeed regardless of how many pro-
cesses crash. By a weak ℓ-exclusion algorithm we mean an algorithm that satisfies (1) ℓ-exclusion,
(2) 1-deadlock-freedom, and (3) weak ℓ-deadlock-freedom. For ℓ = 1, a weak 1-exclusion algo-
rithm is a mutual exclusion algorithm.

1.3 Results

Our model of computation consists of an asynchronous collection of n processes that communicate
only by reading and writing single-writer registers. A single-writer register can be written by one
predefined process and can be read by all the processes. A register can be atomic or non-atomic.
With an atomic register, it is assumed that operations on the register occur in some definite order.
That is, reading or writing an atomic register is an indivisible action. When reading or writing a
non-atomic register, a process may be reading a register while another is writing into it, and in that
event, the value returned to the reader is arbitrary [15]. Our results are:

A space lower bound. For any ℓ ≥ 2 and n > ℓ, any ℓ-exclusion algorithm for n processes
must use at least 2n− 2 bits: at least two bits per process for n− 2 of the processes and at least one
bit per process for the remaining two processes. (Here a bit can be atomic or non-atomic.)

3

A matching space upper bound. For ℓ ≥ 2 and n > ℓ, there is an ℓ-exclusion algorithm for
n processes that uses 2n − 2 non-atomic bits: two bits per process for n − 2 of the processes and
one bit per process for the remaining two processes.

An optimal weak ℓ-exclusion algorithm. For ℓ ≥ 2 and n > ℓ, there is a weak ℓ-exclusion
algorithm for n processes that uses one non-atomic bit per process.

1.4 Related Work

To place our results in perspective, we give a brief history of the ℓ-exclusion problem. The mu-
tual exclusion problem was first stated and solved for n processes by Dijkstra in [10]. Numerous
solutions for the problem have been proposed since it was first introduced in 1965. Because of
its importance and as a result of new hardware and software developments, new solutions to the
problem are being designed all the time.

In [7, 9], Burns and Lynch have shown that any deadlock-free mutual exclusion algorithm for
n processes must use at least n shared registers, even when multi-writer registers are allowed. This
important lower bound can be easily generalized to show that also any ℓ-exclusion algorithm for n
processes must use at least n shared registers for any ℓ ≥ 1. The One-bit mutual exclusion algo-
rithm, which uses n non-atomic bits and hence provides a tight space upper bound, was developed
independently by Burns [6] (also appeared in [9]), and by Lamport [16].

The ℓ-exclusion problem, which generalizes the mutual exclusion problem, was first defined and
solved in [12, 13]. For a model which supports read-modify-write registers, a tight space bound of
Θ(n2) shared states is proved in [12, 13], for the ℓ-exclusion problem for fixed ℓ assuming the strong
FIFO-enabling liveness property (and strong robustness). There is a large gap between the constants
in the upper and lower bounds. Both depend on ℓ, but the constant in the upper bound is exponential
in ℓ, while the constant in the lower bound is linear in ℓ. Without the strong liveness property and
when not requiring that the exit code be wait-free, O(n) states suffice for mutual exclusion using
read-modify-write registers [18]. Several algorithms for ℓ-exclusion, which are based on strong
primitives such as fetch-and-increment and compare-and-swap, are considered in [3]. The “bank
example” in Section 1.1 is from [13].

In [19], Peterson has proposed several ℓ-exclusion algorithms for solving the problem using
atomic read/write registers satisfying various progress properties ranging from ℓ-deadlock-freedom
to FIFO-enabling. The simplest algorithm in [19] requires a single 3-valued single-writer atomic
register per process. A FIFO-enabling ℓ-exclusion algorithm using atomic registers is presented
also in [1], which makes use of concurrent time-stamps for solving the problem with bounded size
memory. Long-lived and adaptive algorithms for collecting information using atomic registers are
presented in [2]. The authors employ these algorithms to transform the ℓ-exclusion algorithm of
[1], into its corresponding adaptive long-lived version. An ℓ-exclusion algorithm using O(n2) non-
atomic single-writer bits which does not permits individual starvation of processes, is presented in
[11].

In [8], an interesting tight bound regarding the ℓ-assignment problem is proved. Namely, that
ℓ ≥ 2k + 1 is a necessary and sufficient condition for solving ℓ-assignment problem using atomic
registers where k is the maximal number of possible faults. In [4], a simpler version of the ℓ-
assignment problem, called distinct CS, is considered. Finally, in [5], the ℓ-exclusion problem
(called in [5] the “identical-slot critical section” problem) is considered in a completely asyn-
chronous distributed network. The message complexity of the solution is unbounded. Many known

4

mutual exclusion, ℓ-exclusion and ℓ-assignment algorithms are discussed in detail in [20].

2 A Space Lower Bound

In this section we assume a model where the only shared objects are atomic registers. It is obvious
that the space lower bound applies also for non-atomic registers. In the following, by a register
(bit), we mean an atomic single-writer register (bit).

Theorem 2.1 For any ℓ ≥ 2 and n > ℓ, any ℓ-exclusion algorithm for n processes must use at least
2n− 2 bits: at least two bits per process for n− 2 of the processes and at least one bit per process
for the remaining two processes.

In the next section we will provide a matching upper bound. Interestingly, Theorem 2.1 follows
from the following special case when ℓ = 2 and n = 3.

Theorem 2.2 Any 2-exclusion algorithm for 3 processes must use at least 4 bits: at least two bits
for one of the processes and at least one bit for each one of the remaining two processes.

Proof of Theorem 2.1: We observe that any ℓ-exclusion algorithm, say A, where ℓ ≥ 2 for processes
p1, ..., pn (where n > ℓ), can be transformed into a 2-exclusion algorithm, say A′, for processes
p1, p2, p3, where the space for each one of the three processes in A′ is the same as the space for
the corresponding process in A. Let the ℓ − 2 processes p4, ..., pℓ+1 execute A until they enter
their critical sections and then let them crash, and let st be the global state immediately after these
ℓ− 2 processes crash (by the ℓ-deadlock-freedom requirement, such an execution exists). A′ is now
constructed from A by replacing each one of the single-writer registers of processes p4, ..., pn, with
a constant whose value equals the value of the corresponding register in state st . The programs
of processes p1, p2, p3 in A′ are the same as in A, except the fact that in A′ whenever a process
needs to read the value of a register of one of the processes p4, ..., pn, it does so by accessing the
corresponding constant.

It follows from Theorem 2.2 and the above transformation that, for any three processes from the
set of n processes which participate in A, one of three processes must “own” at least two bits and
each one of remaining two processes must “own” at least one bit. Thus, the n processes together
must use at least 2n− 2 bits: two bits per process for n− 2 of the processes and one bit per process
for the remaining two processes.

For the rest of the section, we focus on proving Theorem 2.2.

2.1 A Formal Model

Our model of computation, for proving the lower bound, consists of an asynchronous collection of n
deterministic processes that communicate via single-writer atomic registers. An event corresponds
to an atomic step performed by a process. The events which correspond to accessing registers are
classified into two types: read events which may not change the state of the register, and write
events which update the state of a register but do not return a value. An event specifies which
process performs it, a read event specifies the value that is read from a register, and a write event
specifies the value that is written into a register. A (global) state of an algorithm is completely
described by the values of the registers and the values of the location counters of all the processes.

5

A run is a sequence of alternating states and events (also referred to as steps). For the purpose
of the lower bound proof, it is more convenient to define a run as a sequence of events omitting all
the states except the initial state. Since the states in a run are uniquely determined by the events and
the initial state, no information is lost by omitting the states. Each event in a run is associated with
a process that is involved in the event. We use the notation ep to denote an instance of an arbitrary
event at a process p.

We will use x, y and z to denote runs. The notation x ≤ y means that x is a prefix of y, and
x < y means that x is a proper prefix of y. When x ≤ y, we denote by (y − x) the suffix of y
obtained by removing x from y. Also, we denote by x; seq the sequence obtained by extending x
with the sequence of events seq. We will often use statements like “at the end of run x process
p is in its remainder”, and implicitly assumed that there is a function which for any finite run and
process, lets us know whether a process is in its remainder, entry, critical section, or exit code, at
the end of that run. Also, saying that an extension y of x involves only processes from the set P
means that all events in (y − x) are only by processes in P . It is assumed that the processes are
deterministic. That is, if x; ep and x; e′p are runs then ep = e′p.

Next we define the looks like relation which captures when two runs are indistinguishable to a
given process.

Definition 2.1 Run x looks like run y to process p, if the subsequence of all events by p in x is the
same as in y, and the values of all the registers at the end of x are the same as at the end of y.

The looks like relation is also called the indistinguishability relation in the literature. The looks like
relation is an equivalence relation for a given process p. The next step by a process always depends
on the previous step taken by the process and the current values of the registers. It should be clear
that if two runs look alike to a given process then the next step by this process at the end both runs
is the same.

Lemma 2.3 Let x be a run which looks like run y to every process in a set P . If z is an extension
of x which involves only processes in P then y; (z − x) is a run.

Proof: By a simple induction on k – the number of events in (z − x). The basis when k = 0 holds
trivially. We assume that the Lemma holds for k ≥ 0 and prove for k + 1. Assume that the number
of events in (z − x) is k + 1. For some event e, it is the case that z = z′; e. Since the number of
events in (z′ − x) is k, by the induction hypothesis y′ = y; (z′ − x) is a run. Let p ∈ P be the
process which involves in e. Then, from the construction, the runs z′ and y′ look alike to p, which
implies that the next step by p at the end of both runs is the same. Thus, since z = z′; e is a run,
also y′; e = y; (z − x) is a run.

Lemma 2.4 In a model where only single-writer registers are used, any ℓ-exclusion algorithm,
where ℓ ≥ 1, must use at least one single-writer register per process.

Proof: Let x be a run in which all the processes are in their remainders at the end of x, and let z be
an extension of x, by events which involve only process p, in which p is in its critical section (such
a run z exists by the ℓ-deadlock-freedom property). We show that there must be a write event which
involves p in (z − x). This implies that that each process p must have at least one single-writer
register.

6

Assume to the contrary that (z − x) involves only steps by p, and there is no write event which
involves p in (z−x). Since none of the events in (z−x) involve the other processes, z looks like x
to all processes other than p. By the ℓ-deadlock-freedom property, there is an extension of x which
does not involve p in which ℓ processes (not including p) enter their critical sections. Since z looks
like x to all the processes other than p, by Lemma 2.3, a similar extension exists starting from z.
That is, ℓ additional processes can enter their critical sections in an extension of z, while p is still in
its critical section. This violates the ℓ-exclusion property.

2.2 A high-level description of the proof of Theorem 2.2

Before getting into specific details, we give below a very high-level intuitive description of the lower
bound proof, so that the readers can have the big picture already in their mind while following the
proof.

To prove Theorem 2.2, we assume to the contrary that there exists a 2-exclusion algorithm,
called 2EX , for three processes which uses only three shared bits. By Lemma 2.4, 2EX uses one
single-writer bit per process. We show that this assumption leads to a contradiction. This is done by
constructing an infinite run in which at least two (out of the three) processes participate infinitely
often and where no process ever enters its critical section. The existence of such an infinite run
violates the 2-deadlock-freedom requirement.

The construction of the above infinite run is done as follows. First we introduce (in Subsection
2.4) the key concept of a locked process. Intuitively, process p is locked at the end a given run, if p
must wait for at least one other process to take a step before it may enter its critical section. Next
we prove the following two lemmas for the algorithm 2EX:

1. There exists a run x0, such that all three processes are locked at the end x0, and no process is
in its critical section at the end of any prefix of x0 (Lemma 2.7).

2. For any run x, such that all three processes are locked at the end x, there exists an extension z
of x such that (1) all the processes are locked at the end of z, (2) exactly two of the processes
are involved in the suffix of z obtained by removing x from z, and (3) no process is in its
critical section at the end of any prefix of z (Lemma 2.14).

Starting from such run x0, we repeatedly apply the result mentioned in item (2) above, to construct
the desired infinite run, in which at least two processes take infinitely many steps, but no process
ever enters its critical section.

Thus, for any 2-exclusion algorithm for 3 processes which uses one single-writer bit per process,
there exists an infinite run in which at least two processes take infinitely many steps, but no process
ever enters its critical section. The existence of such a run implies that the algorithm does not satisfy
2-deadlock-freedom, which leads to a contradiction.

2.3 Changing the value of a bit

All the definitions and lemmas below refer to the arbitrary 2-exclusion algorithm for three processes,
called 2EX , which uses one single-writer bit per process.

For process p and run x, we use the notation value(x, p) to denote the value at the end of run x,
of the single-writer bit that only p is allowed to write into. I.e., the value of p’s single-writer bit at
the global state immediately after the last event of x has occurred.

7

Lemma 2.5 Let P be a set of processes where |P | ≤ 2, let z be a run in which the processes in
P are in their critical sections at the end of z, and let x be the longest prefix of z such that the
processes in P are in their remainders at the end of x. If (z− x) involves only steps by processes in
P , then value(x, p) ̸= value(z, p) for every p ∈ P .

Proof: Assume to the contrary that value(x, p) = value(z, p) for some p ∈ P .

Case 1: |P | = 1 = {p}. Since none of the events in (z − x) involves the other two processes, x
looks like z to all processes other than p. By the 2-deadlock-freedom property, there is an extension
of x which does not involve p in which the other two processes enter their critical sections. Since x
looks like z to all processes other than p, by Lemma 2.3, a similar extension exists starting from z.
That is, the other two processes can enter their critical sections in an extension of z, while p is still
in its critical section. This violates the 2-exclusion property.

Case 2: |P | = 2 = {p, q}, value(x, p) = value(z, p) and value(x, q) = value(z, q). Since
none of the events in (z − x) involves the third process, call it process r, x looks like z to r. By the
2-deadlock-freedom property, there is an extension of x which involves only r in which r enters its
critical section. Since x looks like z to r, by Lemma 2.3, a similar extension exists starting from z.
That is, r can enter its critical section in an extension of z, while p and q are still in their critical
sections. This violates the 2-exclusion property.

Case 3: |P | = 2 = {p, q}, value(x, p) = value(z, p) and value(x, q) ̸= value(z, q). By the
2-deadlock-free property, there is an extension y of x in which q is in its critical section at the end
of y and (y − x) involves only q. By case 1 above, value(x, q) ̸= value(y, q). Since none of the
events in (y − x) and in (z − x) involves r, y looks like z to r. (Notice that, here we use also the
fact that the shared registers are single-writer bits.) By the 2-deadlock-freedom property, there is an
extension of y which involves only r in which r enters its critical section. Since y looks like z to
r, by Lemma 2.3, a similar extension exists starting from z. That is, r can enter its critical section
in an extension of z, while p and q are still in their critical sections. This violates the 2-exclusion
property.

Lemma 2.6 Let z be a run in which p is in its remainder at the end of z, and assume that there is a
prefix of z in which process p is in its critical section (at the end of that prefix). Let x be the longest
prefix of z such that p is in its critical section at the end of x. If (z − x) involves only steps by p,
then value(x, p) ̸= value(z, p).

Proof: Assume to the contrary that (z−x) involves only steps by p, and value(x, p) = value(z, p).
Since none of the events in (z−x) involves the other processes, z looks like x to all processes other
than p. By the 2-deadlock-freedom property, there is an extension of z which does not involve p in
which the other two processes enter their critical sections. Since z looks like x to all the processes
other than p, by Lemma 2.3, a similar extension exists starting from x. That is, the other two
processes can enter their critical sections in an extension of x, while p is still in its critical section.
This violates the 2-exclusion property.

2.4 Locking

Next we introduce the key concept of a locked process. Intuitively, process p is locked at the end of
a given run, if p must wait for at least one other process to take a step before it may enter its critical
section.

8

Definition 2.2 For process p and run x, p is locked at the end of x, if (1) p is in its entry code at
the end of x, and (2) for every extension y of x such that (y − x) involves only steps by p, p is in its
entry code at the end of y.

Lemma 2.7 There exists a run x0, such that all three processes are locked at the end of x0, and no
process is in its critical section at the end of any prefix of x0.

Proof: The run x0 is constructed as follows. We start from (any) one of the possible initial states,
and denote the initial values of the three bits of the processes p1, p2, p3 in the initial state by
init(p1), init(p2) and init(p3), respectively. We first let p1 run alone until it is about to write
and change the value of its single-writer bit from init(p1) to 1− init(p1) for the last time before it
may enter its critical section if it continues to run alone (by Lemma 2.5 such a write must eventually
happen). We suspend p1 just before it writes and repeat this procedure with p2 and then with p3.
Then we let the processes p1, p2, p3 write the values 1− init(p1), 1− init(p2), 1− init(p3), respec-
tively, into their bits. The resulting run, where all three bits are set to values which are different from
their initial values, is x0. Each process p ∈ {p1, p2, p3}, cannot distinguish x0 from a run in which
before p has executed this last write, the other two processes run alone, flipped the values of their
bits (by Lemma 2.5), and have entered their critical sections. Thus, it follows from the 2-exclusion
property and Lemma 2.3, that there cannot be an extension of x0 by steps of p only in which p is in
its critical section, which implies that each one of the three processes is locked at the end of x0.

Lemma 2.8 Assume that x looks like z to p. Process p is locked at the end of x if and only if p is
locked at the end of z.

Proof: Assume to the contrary that p is locked at the end of x and p is not locked at the end of z.
By definition, there is an extension ẑ of z such that (ẑ − z) involves only p and p is in its critical
section at the end of ẑ. Since x looks like z to p, by Lemma 2.3, a similar extension exists starting
from x. That is, p is in its critical section at the end of x; (ẑ − z). This contradicts the assumption
the p is locked at the end of x. Since the looks like relation is symmetric, the result follows.

Lemma 2.9 Assume that p is in its remainder at the end of x. For every q ̸= p, q is not locked at
the end of x.

Proof: This follows immediately from the 2-deadlock-freedom requirement.

2.5 Locking and Values

The following lemmas relate between locked processes and the values of their bits.

Lemma 2.10 Assume that the three processes are locked at the end of x, and let z be an extension
of x such that some process p is not involved in (z−x) and some other process q is in its remainder
at the end of z. Then, value(x, q) ̸= value(z, q).

9

Proof: Assume to the contrary that value(x, q) = value(z, q). Let r be the third process. By the
2-deadlock-freedom requirement, there is an extension ẑ of z such that (1) (ẑ − z) involves only r,
and (2) r is in its critical section at the end of ẑ. There are two cases.

Case 1: value(x, r) = value(ẑ, r). In this case, x looks like ẑ to p. By Lemma 2.8, p is locked
at the end of ẑ. This violates Lemma 2.9 (i.e., this violates the 2-exclusion property).

Case 2: value(x, r) ̸= value(ẑ, r). By Lemma 2.6 and the assumption that the exit code is
wait-free, there is an extension z′ of ẑ, such that (1) (z′− ẑ) involves only r, (2) r is in its remainder
at the end of z′, and (3) value(ẑ, r) ̸= value(z′, r). Thus, value(x, r) = value(z′, r). This implies
that x looks like z′ to p. By Lemma 2.8, p is locked at the end of z′. This violates Lemma 2.9.
Thus, we have reached a contradiction. The result follows.

Lemma 2.11 Assume that the three processes are locked at the end of x, and let z be an extension
of x such that some process p is not involved in (z − x) and some other process q is in its critical
section at the end of z. Then, value(x, q) = value(z, q).

Proof: By Lemma 2.6 and the assumption that the exit code is wait-free, there is an extension z′ of z,
such that (1) (z′− z) involves only q, (2) q is in its remainder at the end of z′, and (3) value(z, q) ̸=
value(z′, q). By Lemma 2.10, value(x, q) ̸= value(z′, q) Thus, value(x, q) = value(z, q).

Lemma 2.12 Assume that the three processes are locked at the end of x. For every two processes p
and q there is an extension z of x such that: (1) (z− x) involves only p and q, (2) p is in its critical
section at the end of z, (3) q is in its remainder at the end of z, (4) value(x, p) = value(z, p), and
(5) value(x, q) ̸= value(z, q).

Proof: We construct z as follows. Starting from x we first let p and q run until one of them enters its
critical section. This is possible by the 2-deadlock-freedom requirement. Then, we let the process
that has entered its critical section, say process q, continue alone until it reaches its remainder
(recall that the exit code is assumed to be wait-free). At that point, we let the other process, say
process p, run alone until it enters its critical section (again, this is possible by the 2-deadlock-
freedom requirement). The resulting run, at the end of which p is in its critical section, and q
is in its remainder is z. We notice that only p and q are involved in (z − x). By Lemma 2.11,
value(x, p) = value(z, p), and by Lemma 2.10, value(x, q) ̸= value(z, q).

2.6 Flexibility

Intuitively, process p is flexible at the end of a given run, if p can change the value of its bit without
a need to wait for some other process to take a step.

Definition 2.3 For process p and run x, p is flexible at the end of x, if there exists an extension z of
x such that: (1) (z − x) involves only steps by p, (2) for every x ≤ y ≤ z, p is in its entry code at
the end of y, and (3) value(x, p) ̸= value(z, p).

Lemma 2.13 Let x be a run such that the three processes are locked at the end of x. Then, at least
two processes are flexible at the end of x.

10

Proof: We assume that p1, p2 and p3 are locked at the end of x. By the 2-deadlock-freedom property,
if we extend x by letting processes p1 and p2 taking steps alternately, eventually one of the two must
enter its critical section. Let ẑ be the shortest extension of x such that at the end of ẑ both processes
are still in their entry code, but the next step of one of them is already in a critical section.

Case 1: for some y where x ≤ y ≤ ẑ, either value(x, p1) ̸= value(y, p1) or value(x, p2) ̸=
value(y, p2). Let y be the shortest run where x < y ≤ ẑ, and
value(x, p1) ̸= value(y, p1) or value(x, p2) ̸= value(y, p2). This means that only one process,
say p1, changed its bit in y, and all the steps of p2 in (y − x) are invisible to p1 and p3. Thus,
it is possible to remove from y all the events in which p2 is involved in (y − x) and get a new
run z. Clearly z looks like y to p1 and hence value(y, p1) = value(z, p1), which implies that
value(x, p1) ̸= value(z, p1). Thus, z is a witness for the fact that p1 is flexible at the end of x.

Case 2: for all y where x ≤ y ≤ ẑ, value(x, p1) = value(y, p1) and value(x, p2) = value(y, p2).
Thus, all the steps of the p1 in (ẑ−x) are invisible to p2 and p3, and all the steps of the p2 in (ẑ−x)
are invisible to p1 and p3. Thus, it is possible to remove from ẑ all the events in which p2 is involved
in (ẑ−x) and get a new run z1, and similarly, it is possible to remove from ẑ all the events in which
p1 is involved in (ẑ − x) and get a new run z2. Clearly, z1 looks like ẑ to p1 and z2 looks like ẑ
to p2. By definition, either the next step of p1 from z1 is already a step in its critical section, or the
next step of p2 from z2 is already a step in its critical section. This contradicts the assumption that
all the processes are locked at the end of x.

We conclude that either p1 or p2 is flexible at the end of x. Assume without loss of generality
that p1 is flexible at the end of x. We repeat the above argument to show that either p2 or p3 is
flexible at the end of x.

2.7 Main Lemma and Proof of Theorem 2.2

We are now ready to prove the main lemma and complete the proof of Theorem 2.2.

Lemma 2.14 (main lemma) Let x be a run such that all three processes are locked at the end of x.
Then, there exists an extension z of x such that (1) all the processes are locked at the end of z, (2)
exactly two of the processes are involved in (z − x), and (3) for every x ≤ y ≤ z, all the processes
are in their entry codes at the end of y.

Proof: We will construct the run z and show that z satisfies the required properties. We start from
the run x in which the three processes, p1, p2, p3 are locked at the end of x. By Lemma 2.13 at least
two processes are flexible at the end of x. Without loss of generality, we assume that p2 and p3 are
flexible at the end of x. We construct an extension of x, called x2, which involves only process p2
as follows. Starting from x, we let p2 run alone until it is about to write and change the value of
its single-writer bit from value(x, p2) to 1− value(x, p2). We suspend p2 just before it writes, and
call this run x2. For later reference, we denote by ep2 the write event that p2 is about to take once
activated again, and denote by x′2 the run x2; ep2 . See Figure 1 for illustration of all the runs which
are constructed for the proof of Lemma 2.14.

Similarly, we construct an extension of x, called x3, which involves only process p3 as follows.
Starting from x, we let p3 run alone until it is about to write and change the value of its single-writer
bit from value(x, p3) to 1− value(x, p3). We suspend p3 just before it writes, and call this run x3.
For later reference, we denote by ep3 the write event that p3 is about to take once activated again,
and denote by x′3 the run x3; ep3 .

11

x

x13x12

w

x2 x3

x2′′ x3
′

x23

y1

x13

ep2
ep2

x13 x12

ep3
ep3

ep3

ep2
ep2

ep3
ep3

ep3
ep3

y3′ z

same for p3

same for p3

y2

z2 z3

ep2
ep2

z2z2

ep2
ep2

z2z2

ep3
ep3

z3z3

p2

p1+p3p1+p2

p2+p3

p1 p1+p3
(x13-x)

only p1

(y1-x2)′

ep3
ep3

ep2
ep2

x23′x23′

p3

ep2
ep2

p3 p2

y3

ep3
ep3

z3z3

p2 p3

p3 p2

ep2
ep2

z2z2

ep3
ep3

z3z3

y2′

same for p2

only p2

(z2-x23)

only p3

(y3-x23)

v1,v2,v3v1,v2,v3
p1 in CS
p2 in Rem

v1,v2,v3
p2 in Rem
p3 in CS

v1,v2,v3
p1 in CS

v1,v2,v3
p1 in CS
p3 in Rem

same for p2

v1,v2,v3
p1 in CS

ep2
ep2

z2z2

v1,v2,v3
p1 in CS
p3 in CS

v1,v2,v3

v1,v2,v3

v1,v2,v3
p1 in CS
p3 in Rem

v1,v2,v3
p2 in CS

v1,v2,v3

p1+p2
(x12-x)

v1,v2,v3
p1 in CS
p2 in Rem

v1,v2,v3
p3 in CS

v1,v2,v3

v1,v2,v3p1

v1,v2,v3

Figure 1: Illustration of all the runs in the proof of Lemma 2.14. For i ∈ {1, 2, 3, }, vi =
value(x, pi) and vi = 1 − vi. Rem and CS are abbreviations for Remainder and Critical Section,
respectively.

12

Next we construct an extension of x, called x23, which involves only p2 and p3. We let p2 run
alone until it is about to write and change the value of its single-writer bit from value(x, p2) to
1 − value(x, p2). We suspend p2 just before it writes and then let p3 run alone until it is about to
write and change the value of its single-writer bit from value(x, p3) to 1−value(x, p3). We suspend
p3 just before it writes. Then we let the processes p2 and p3 write the values 1 − value(x, p2) and
1−value(x, p3) respectively, into their bits in an arbitrary order. The resulting run, where the bits of
p2 and p3 are set to values which are different from their values at the end of x, is run x23. Thus, the
run x23 is the run x2; (x3 − x); ep2 ; ep3 (the order in which ep2 and ep3 are executed is immaterial).
We observe that x2; (x3 − x) looks like x3; (x2 − x) to all the processes.

We consider also the following two extensions of x. By Lemma 2.12, there exists an extension
of x which we will call run x12, such that (x12 − x) involves only p1 and p2, p1 is in its critical
section at the end of x12, p2 is in its remainder at the end of x12, value(x, p1) = value(x12, p1),
and value(x, p2) ̸= value(x12, p2). By Lemma 2.12, there exists another extension of x which we
will call run x13, such that (x13 − x) involves only p1 and p3, p1 is in its critical section at the end
of x13, p3 is in its remainder at the end of x13, value(x, p1) = value(x13, p1), and value(x, p3) ̸=
value(x13, p3).

We notice that (x12 − x) must include a write event by p2, and the last write event by p2 in
(x12−x) sets the value of p2 single-writer bit to 1−value(x, p2). Similarly, (x13−x) must include
a write event by p3, and the last write event by p3 in (x13 − x) sets the value of p3 single-writer bit
to 1− value(x, p3).

Let the run x̂12 be the run x; (x3 − x); (x12 − x); ep3 , and let the run x̂13 be the run
x; (x2 − x); (x13 − x); ep2 . Clearly, x23 looks like x̂12 to p3, and x23 looks like x̂13 to p2. In-
formally, this implies that at the end of x23, process p2 “suspects” that p1 is in its critical section
and p3 is in its remainder; and process p3 “suspects” that p1 is in its critical section and p2 is in its
remainder. Since p2 is in its remainder at the end of x̂12, by Lemma 2.9, p3 is not locked at the end
of x̂12, and hence by Lemma 2.8, p3 is also not locked at the end of x23. Similarly, since p3 is in its
remainder at the end of x̂13, by Lemma 2.9, p2 is not locked at the end of x̂13, and hence by Lemma
2.8, p2 is also not locked at the end of x23.

Since both p2 and p3 are not locked at the end of x23, there is an extension y2 of x23 by steps
of p2 only in which p2 is in its critical section at the end of y2, and there is (another) extension y3
of x23 by steps of p3 only in which p3 is in its critical section at the end of y3. Since both (y2 − x)
and (y3 − x) do not involve p1, by Lemma 2.11, value(x, p2) = value(y2, p2) and value(x, p3) =
value(y3, p3). Thus, value(x23, p2) ̸= value(y2, p2) and value(x23, p3) ̸= value(y3, p3). This
means that in (y2−x23) there is a write event by p2, denoted ez2p2 , which changes the value of the bit
of p2 to value(x, p2), and in (y3 − x23) there is a write event by p3, denoted ez3p3 , which changes the
value of the bit of p3 to value(x, p3). Let run z2 be the shortest extension of x23 such that z2; ez2p2 is
a prefix of y2, and let run z3 be the shortest extension of x23 such that z3; ez3p3 is a prefix of y2.

Next we construct the extension z of x23 which involves only p2 and p3. We first let p2 run
alone until it is about to change the value of its single-writer bit to value(x, p2). We suspend p2 just
before it writes and then let p3 run alone until it is about to change the value of its single-writer bit
to value(x, p3). We suspend p3 just before it writes. Then we let the processes p2 and p3 write the
values value(x, p2) and value(x, p3) respectively, into their bits in an arbitrary order. The resulting
run, where the bits of p2 and p3 are set to values which are the same as their values at the end of
x, is the run z. That is, z is exactly the run z2; (z3 − x23); e

z2
p2 ; e

z3
p3 (the order in which the last two

write events are executed is immaterial). Below we prove that the three processes are locked at the
end of z.

13

Since (z − x) does not involve p1, x looks like z to p1, and thus by Lemma 2.8, p1 is locked at
the end of z. To prove that the also p2 and p3 are locked at the end of x, we will show that each one
of them cannot distinguish between z and another run at the end of which the other two processes
are in their critical sections. We now construct these two runs.

By Lemma 2.12, there exists an extension of x which we will call run w, such that (w − x)
involves only p2 and p3, p3 is in its critical section at the end of w, p2 is in its remainder at the end
of w, value(x, p3) = value(w, p3), and value(x, p2) ̸= value(w, p2). Clearly w looks like x′2 to
p1. Since p2 is in its remainder at the end of w, by Lemma 2.9, p1 is not locked at the end of w, and
hence by Lemma 2.8, p1 is also not locked at the end of x′2. Thus, there is an extension y1 of x′2 by
steps of p1 only, in which p1 is in its critical section at the end of y1. Since x′2 − x does not involve
steps by p1, value(x, p1) = value(x′2, p1). Since (y1 − x) does not involve steps by p3, by Lemma
2.11, value(x, p1) = value(y1, p1). Thus also value(x′2, p1) = value(y1, p1).

Recall that x23 = x2; (x3 − x); ep2 ; ep3 . We observe that (1) (x3 − x) involves only p3 and
does not change the value of the bit of p3, and (2) (y1 − x′2) involves only p1 and does not change
the value of the bit of p1. Thus, by Lemma 2.3 (applied several times), the sequence of events,
x′23 = x2; (x3 − x); ep2 ; (y1 − x′2); ep3 is a legal run in which p1 is in its critical section at the end
of this legal run.

Since x′23 looks like x23 to p2 and to p3, by Lemma 2.3, x′23; (y3 − x23) is a run in which both
p1 and p3 are in their critical sections at the end of the run, and x′23; (z2 − x23) is a legal run. Since
(z2 − x23) involves only p2 and the value of the bit of p3 does not change, by Lemma 2.3, the
sequence y′3 = x′23; (z2 − x23); (y3 − x23); e

z2
p2 is a legal run in which both p1 and p3 are in their

critical sections at the end of this legal run. Process p2, cannot distinguish z from a run in which
before p2 executed its last write in z, the other two processes have entered their critical sections.
That is, z looks like y′3 to p2. Thus, it follows from the 2-exclusion property and Lemma 2.3, that
there cannot be an extension of z by steps of p2 only in which p2 is in its critical section at the end
of this extension. This implies that p2 is locked at the end of z.

Similarly, since x′23 looks like x23 to p2 and to p3, by Lemma 2.3, x′23; (y2 − x23) is a run in
which both p1 and p2 are in their critical sections at the end of the run, and x′23; (z3−x23) is a legal
run. Since (z3 − x23) involves only p3 and the value of the bit of p3 does not change, by Lemma
2.3, the sequence y′2 = x′23; (z3 − x23); (y2 − x23); e

z3
p3 is a legal run in which both p1 and p2 are

in their critical sections at the end of the run. Process p3, cannot distinguish z from a run in which
before p3 executed its last write in z, the other two processes have entered their critical sections.
That is, z looks like y′2 to p3. Thus, it follows from the 2-exclusion property and Lemma 2.3, that
there cannot be an extension of z by steps of p3 only in which p3 is in its critical section at the end
of the extension. This implies that p3 is locked at the end of z.

To conclude, we have shown that all three processes are locked at the end of z. Furthermore, it
follows from the construction that two of the processes, p2 and p3, are involved in (z − x), and that
for every x ≤ y ≤ z, all the processes are in their entry codes at the end of y.

Proof of Theorem 2.2: We have assumed to the contrary that 2EX is a 2-exclusion algorithm for
3 processes which uses one single-writer bit per process. We show that this leads to a contradiction.
By Lemma 2.7, there exists a run x0, such that all three processes are locked at the end of x0,
and no process is in its critical section at the end of any prefix of x0. Starting from such a run x0
(which exists by Lemma 2.7), we repeatedly apply the result of Lemma 2.14 to construct the desired
infinite run, in which at least two processes take infinitely many steps, but no process ever enters its
critical section. That is, we begin with x0 and pursue the following locking-preserving scheduling
discipline:

14

1 x := x0; /* initialization */
2 repeat
3 let z be an extension of x. The existence of z is proved in Lemma 2.14, where all the

processes are locked at the end of z, two processes are involved in (z − x), and
for every x ≤ y ≤ z, all the processes are in their entry codes at the end of y.

4 x := z /* "locking extension" of x */
5 forever

The above scheduling discipline, implies that there is an infinite run of 2EX in which at least two
processes take infinitely many steps, but no process ever enters its critical section. The existence of
such a run implies that 2EX does not satisfy 2-deadlock-freedom. A contradiction.

3 A Space Upper Bound: The Two-bits Algorithm

In this section we provide a tight space upper bound for ℓ-exclusion. To make the upper bound as
strong as possible, we will assume that the registers are non-atomic.

Theorem 3.1 For ℓ ≥ 2 and n > ℓ, there is an ℓ-exclusion algorithm for n processes that uses
2n− 2 non-atomic bits: two bits per process for n− 2 of the processes and one bit per process for
the remaining two processes.

We present below a space optimal algorithm which is inspired by Peterson’s ℓ-exclusion algorithm
which requires one 3-valued single-writer atomic register per process [19].

3.1 The Two-bits Algorithm

Our algorithm is for n processes each with unique identifier taken from the set {1, ..., n}. For each
process i ∈ {2, ..., n− 1}, the algorithm requires two single-writer non-atomic bits, called Flag1[i]
and Flag2[i]. For process 1 the algorithm requires one single-writer non-atomic bit, called Flag1[1],
and for process n the algorithm requires one single-writer non-atomic bit, called Flag2[n]. In addi-
tion two local variables, called counter and j, are used for each process. ℓ is used as a constant.

THE TWO-BITS ℓ-EXCLUSION ALGORITHM: process i ∈ {1, ..., n} program.

Shared: Flag1[1..n− 1], Flag2[2..n]: arrays of non-atomic bits, initially all entries are 0.
Local: counter, j: integer ranges over {0, ..., n}.
Constant: Flag1[n] = 0, Flag2[1] = 0. /* used for simplifying the presentation */

1 if i ̸= n then Flag1[i] := 1 fi; /* save one bit */
2 repeat
3 repeat
4 counter := 0;
5 for j := 1 to n do
6 if (j < i and Flag1[j] = 1) or (Flag2[j] = 1)
7 then counter := counter + 1 fi od
8 until counter < ℓ;

15

9 if i ̸= 1 then Flag2[i] := 1 fi; /* save one bit */
10 counter := 0;
11 for j := 1 to n do
12 if (j < i and Flag1[j] = 1) or (j ̸= i and Flag2[j] = 1)
13 then counter := counter + 1 fi od
14 if counter ≥ ℓ then if i ̸= 1 then Flag2[i] := 0 fi fi
15 until counter < ℓ;
16 critical section;
17 if i ̸= 1 then Flag2[i] := 0 fi; if i ̸= n then Flag1[i] := 0 fi;

In line 1, process i (where i ̸= n) first indicates that it is contending for the critical section by setting
Flag1[i] to 1. Then, in the first repeat loop (lines 3–8) it finds out how many processes have higher
priority than itself.

A process k has higher priority than process i, if its second flag bit Flag2[k] is set to 1,
or if k < i and Flag1[k] = 1.

If fewer than ℓ processes have higher priority, i exits the repeat loop (line 8). Otherwise, process
i waits by spinning in the inner repeat loop (lines 3–8), until fewer than ℓ processes have higher
priority. Once it exits the inner loop it sets its second flag, Flag2[i], to 1 (for i ̸= 1). Then, again,
it finds out how many processes have higher priority than itself. If fewer than ℓ processes have
higher priority, process i exits the outer repeat loop (line 15) and can safely enter its critical section.
Otherwise, the process sets its second flag bit back to 0, and goes back to wait in the inner repeat
loop (lines 3–8). In the exit code a process simply sets its flag bits to 0.

3.2 Correctness Proof

We are assuming in this section that the registers are non-atomic. Thus, the individual read or write
operations of different processes may overlap in time. A detailed model of non-atomic operations
appears in [15]. In our case, to simplify the presentation, we only slightly modify the model pre-
sented in Subsection 2.1 as follows. With each read or write operation we associate two events, one
event which marks the beginning of the operation and a corresponding event which marks the end
of the operation. As before, a run is a sequence of events omitting all the states except the initial
state. Thus, for an operation op, the pair of events begin.op and the corresponding end .op which
appear in run x, mark the duration of op in x. Two operations op1 and op2 overlap in run x, if either
begin.op2 appears in x after begin.op1 and before the corresponding end .op1 , or vice versa. As
already mentioned, when a read operation of a non-atomic register overlaps a write operation into
it, the value returned to the reader is arbitrary.

Theorem 3.2 The two-bits algorithm satisfies ℓ-exclusion.

Proof: Assume to the contrary that the algorithm does not satisfy ℓ-exclusion. This means that there
is some finite run x and ℓ+ 1 processes, denoted i1, ..., iℓ+1, such that all these ℓ+ 1 processes are
in their critical sections at the end of x. For every process i ∈ {i1, ..., iℓ+1} such that i ̸= 1, let
xi be the shortest prefix of x such that for every z, xi ≤ z ≤ x, Flag2[i] = 1 at the end of z. If
1 ∈ {i1, ..., iℓ+1}, let x1 be the shortest prefix of x such that for every z, x1 ≤ z ≤ x, Flag1[1] = 1
at the end of z. That is, in the last (end operation) event of xi, process i ̸= 1 sets Flag2[i] to 1
(line 9) for the last time before entering its critical section. If 1 ∈ {i1, ..., iℓ+1} then in the last

16

(end operation) event of x1, process 1 sets Flag1[i] to 1 (line 1) for the last time before entering its
critical section.

Clearly xi is shorter than x. Let us assume without loss of generality that xi1 ≤ xi2 ≤ ... ≤
xiℓ+1 . This implies that for every z, xiℓ+1 ≤ z ≤ x, Flag2[i] = 1 at the end of z for every
i ∈ {i1, ..., iℓ+1} where i ̸= 1, and Flag1[1] = 1 at the end of z if 1 ∈ {i1, ..., iℓ+1}. This
means that before process iℓ+1 has finished changing Flag2[iℓ+1] to 1 (or Flag1[1] to 1 in case iℓ+1

is process 1), the values of all the flag bits of at least ℓ other processes are already set to 1 and
thereafter stay continuously 1. Thus, before it enters its critical section, process iℓ+1 will find that
the values of the flag bits of ℓ (or more) other processes are 1 (lines 11–14). That is, it will find out
that at least ℓ other processes have higher priority. We emphasize that, as explained above, during
the time that iℓ+1 reads the bits of these ℓ processes, these bits are not written to and thus, although
the flag bits are non-atomic, iℓ+1 will find out that they are set to 1. However, from the algorithm, a
process, after changing its second flag bit to 1 (first bit in case of process 1) can not enter its critical
section as long as it finds that ℓ or more other processes have higher priority. This contradict the
fact that iℓ+1 has succeeded to enter its critical section.

Theorem 3.3 The two-bits algorithm is ℓ–deadlock-free.

Proof: We say that a process p fails in an infinite run x∞, if there exists a finite prefix x of x∞

such that p is not in its remainder at the end of x and (x∞ − x) does not involve p. Assume to the
contrary that the algorithm is not ℓ-deadlock-free. This means that there is an infinite run, denoted
x∞, in which: at most ℓ− 1 processes have failed, at least one non-faulty process is trying to enter
its critical section, and all non-failed processes are unable to enter their critical sections from some
point on. Let F , where |F | ≤ ℓ− 1, denote the set of all faulty processes in x∞.

Thus, there is a finite prefix x of x∞ where: (1) each process p ̸∈ F is either in its remainder
or in its entry code at the end of x, (2) there is at least one process p ̸∈ F which is in its entry
code at the end of x, and (3) no process changes to another region in any extension y of x where
y < x∞. Let m be the number of processes not in F that are in their entry codes at the end of x,
and let ℓ′ = min{ℓ,m}. In the following, we only consider runs which are prefixes of x∞. Thus,
for example, by “extension of x” we mean “extension of x which is a prefix of x∞”.

Let us denote by Q the set of all non-faulty processes that manage to exit the inner repeat loop
(i.e, the repeat loop in lines 3–8) infinitely often in (x∞ − x). We prove that Q is an empty set.
Assume to the contrary that |Q| > 0. Let p be the process with the largest identifier in Q. First, we
observe that since no process changes to another region in any extension of x, in any extension of x,
no process ever sets its first flag bit (i.e, Flag1[∗]) back to 0. Also, the second flag bit of a process
(i.e, Flag2[∗]) is set to 1 only if its first flag bit is set to 1. Thus, since p has the largest identifier in
Q, once p finds that there are at least ℓ processes with higher priority than itself, in some extension
x′ of x, p must also find that there are at least ℓ processes with higher priority than itself, in any
extension of x′ (which is a prefix of x∞). (Recall that, a process k has higher priority than process
i, if its second flag bit Flag2[k] is set to 1, or if k < i and Flag1[k] = 1.)

Thus, because of the similarity in the way the counting (of processes with higher priority) is
done in the two for statements (lines 5–7 and lines 11–13), if p fails the test in line 15 of the outer
repeat loop then p will also later fail the test in line 8 of the inner repeat loop. Thus, p will not
be able to exit the inner repeat loop, a contradiction. We conclude that Q is an empty set, which
implies that there is an extension y of x such that in (x∞ − y) all the events happen in the inner

17

loop. Intuitively, this means that all the non-faulty processes (in the entry code) are stuck forever in
the inner repeat loop.

Thus, in any extension of y of x, the first flag bits (i.e, Flag1[∗]) of the non-faulty processes in
the entry code are set to 1, and all their other bits are set to 0. Let k be the non-faulty process with
the smallest identifier, among all the non-faulty processes which are at the inner repeat loop in run
y. When process k executes the for loop (lines 5–7), it must find that the (non-atomic) second flag
bits (i.e., Flag2[∗]) of all the non-faulty processes in the range k + 1 through n are 0. Hence, since
there are at most ℓ − 1 faulty processes, k must eventually exit the inner repeat loop, and later k
must exit the outer repeat loop, and move into its critical section. This contradicts the assumption
that no process changes its region in any extension of x. Thus, Algorithm 2 is ℓ-deadlock-free.

3.3 The (ℓ, k)-exclusion Problem

The (ℓ, k)-exclusion problem is a simple generalization of the ℓ-exclusion problem. The problem
is to write the code for the entry code and the exit code in such a way that the ℓ-exclusion and
the k-deadlock-freedom requirements are satisfied, where k ≤ ℓ. The (ℓ, ℓ)-exclusion problem is
the familiar ℓ-exclusion problem, and the (1, 1)-exclusion problem is the familiar mutual exclusion
problem. It is easy to see that, for any k ≤ ℓ, a (k, k)-exclusion algorithm or an (ℓ, ℓ)-exclusion
algorithm is also an (ℓ, k)-exclusion algorithm.

Theorem 3.4 There is an (ℓ, k)-exclusion algorithm for n processes that uses,

1. 2(n− ℓ+ k)− 2 non-atomic single-writer bits, for n > ℓ ≥ k ≥ 2.

2. n− ℓ+ 1 non-atomic single-writer bits, for n > ℓ ≥ 1 and k = 1.

Proof: To solve the (ℓ, k)-exclusion problem for n processes, we let the first ℓ−k processes enter and
exit their critical sections whenever they want (no synchronization is needed) and use an algorithm
for k-exclusion for the rest n−(ℓ−k) processes. It is easy to see that such a construction of an (ℓ, k)-
exclusion algorithm satisfies the ℓ-exclusion and the k-deadlock-freedom requirements. When k ≥
2 we use the Two-bits k-exclusion algorithm (from Subsection 3.1), which uses 2(n−ℓ+k)−2 non-
atomic single-writer bits, for n− ℓ+k processes. When k = 1 we use the One-bit mutual exclusion
algorithm (from [6, 9, 16]), which uses n − ℓ + 1 non-atomic single-writer bits, for n − ℓ + 1
processes. The result follows.

4 Weak ℓ-exclusion

A weak ℓ-exclusion algorithm is an algorithm that satisfies (1) ℓ-exclusion, (2) 1-deadlock-freedom,
and (3) weak ℓ-deadlock-freedom. Recall that weak ℓ-deadlock-freedom requires that: if strictly
fewer than ℓ processes fail, at least one non-faulty process is trying to enter its critical section, and
at least n − ℓ processes are in their remainders, then some non-faulty process eventually enters its
critical section, provided that no process leaves its remainder in the meantime. For ℓ = 1, a weak 1-
exclusion algorithm is a mutual exclusion algorithm. Next we show that the tight bound for mutual
exclusion [7, 9], of one bit per process, holds for weak ℓ-exclusion.

Theorem 4.1 There is a weak ℓ-exclusion algorithm for n processes which uses one single-writer
non-atomic bit per process, for ℓ ≥ 1.

18

We present below a space optimal algorithm which generalizes the known One-bit mutual exclusion
algorithm [6, 9, 16].

4.1 The Algorithm

There may be up to n processes potentially contending to enter their critical sections, each has a
unique identifier from the set {1, ..., n}. The algorithm makes use of a shared array Flag , where,
for every 1 ≤ i ≤ n, all the processes can read the boolean registers Flag [i], but only process i can
write Flag [i]. ℓ is used as a constant. Initially all entries of the Flag array are 0; the initial values
of all the local variables are immaterial.

ALGORITHM 2: process i ∈ {1, ..., n} program.

Shared: Flag [1..n]: array of non-atomic bits, initially all entries are 0.
Local: lflag [1..n]: array of bits; counter , j: integer ranges over {0, ..., n}.

1 counter := 0;
2 repeat
3 if counter < ℓ then Flag [i] := 1 fi;
4 counter := 0;
5 for j := 1 to i− 1 do lflag [j] := Flag [j]; counter := counter + lflag [j] od;
6 if counter ≥ ℓ and Flag [i] = 1 then Flag [i] := 0 fi;
7 until Flag [i] = 1;
8 for j := i+ 1 to n do lflag [j] := Flag [j]; counter := counter + lflag [j] od;
9 while counter ≥ ℓ do
10 for j := 1 to n do
11 if (Flag [j] = 0) and (lflag [j] = 1)
12 then lflag [j] := 0; counter := counter − 1 fi
13 od
14 od
15 critical section;
16 Flag [i] := 0;

In lines 1–7, process i first indicates that it is contending for the critical section by setting its flag bit
to 1 (line 3), and then it tries to read the flag bits of all the processes which have identifiers smaller
than itself. If fewer than ℓ of these bits are 0, i exits the repeat loop (line 7). Otherwise, i sets its
flag bit to 0, waits until the values of fewer than ℓ of the flag bits of processes which have identifiers
smaller than itself are 0 and starts all over again. In line 8, i reads the flag bits of all the processes
which have identifiers greater than itself and remembers their values. Then, in the while loop in
lines 9–14, it continuously reads the n flag bits, and it exits the loop only when it finds that at least
n − ℓ of the flag bits have been 0 at least once since it has set its flag bit to 1. At that point it can
safely enter its critical section.

4.2 Correctness Proof

We are assuming in this section that the registers are non-atomic. Thus, the individual read or write
operations of different processes may overlap in time. In Subsection 3.2, it is explained how such a
non-atomic behaviour is modeled.

19

Theorem 4.2 Algorithm 2 satisfies ℓ-exclusion.

Proof: Assume to the contrary that the algorithm does not satisfy ℓ-exclusion. This means that there
is some finite run x and there are ℓ + 1 processes, denoted i1, ..., iℓ+1, such that all these ℓ + 1
processes are in their critical sections at the end of x. For every process i ∈ {i1, ..., iℓ+1}, let xi be
the shortest prefix of x such that for every z, xi ≤ z ≤ x, Flag [i] = 1 at the end of z. That is, in the
last event of xi process i sets Flag [i] to 1 (line 3) for the last time before entering its critical section.
Clearly xi is shorter than x. Let us assume without loss of generality that xi1 ≤ xi2 ≤ ... ≤ xiℓ+1 .
This implies that for every z, xiℓ+1 ≤ z ≤ x, Flag [i] = 1 at the end of z for every i ∈ {i1, ..., iℓ+1}.
This means that before process iℓ+1 completes changing its flag bit to 1, the values of the flag bits
of at least ℓ other processes are already set to 1 and thereafter stay continuously 1. Thus, before it
enters its critical section, process iℓ+1 has to find that the values of the flag bits of ℓ (or more) other
processes are 1. We emphasize that, as explained above, during the time that iℓ+1 reads these ℓ bits
they are not written and thus, although the flag bits are non-atomic, iℓ+1 will find out that they are
set to 1. However, from the algorithm, a process, after changing its flag bit to 1 cannot enter its
critical section as long as it finds that the values of the flag bits of ℓ (or more) other processes are 1.
This contradicts the fact that iℓ+1 has succeeded to enter its critical section in x.

Theorem 4.3 Algorithm 2 is 1-deadlock-free.

Proof: A process p fails in an infinite run x∞, if there exists a finite prefix x of x∞ such that p is
not in its remainder at the end of x and (x∞ − x) does not involve p. An infinite run x∞ is fair if
no process fails in it. Assume to the contrary that the algorithm is not 1-deadlock-free. This means
that there is an infinite fair run, say x∞, and a finite prefix x of x∞ where: (1) each process is
either in its remainder or in its entry code at the end of x, (2) there is at least one process which is
in its entry code at the end of x, and (3) no process changes to another region in any extension y
of x where y < x∞. The third assumption implies also that no process is in its critical section at
the end of x. Let m be the number of processes that are in their entry codes at the end of x, and
let ℓ′ = min{ℓ,m}. In the following, we only consider runs which are prefixes of x∞. Thus, for
example, by “extension of x” we mean “extension of x which is a prefix of x∞”.

Let P = {k1, ..., kℓ′} be the set of ℓ′ processes with the smallest identifiers, among all the m
processes which are in their entry codes at the end of x. Clearly P ̸= ∅. The processes in P , are
either executing the while loop (lines 9–14), or if not then there must be an extension of x in which
they all reach the while loop. This must happen, since at any extension of x, Flag [i] is 0 for all
i < k1, and hence every process in P will eventually, at some extension of x, will find out that
fewer than ℓ of the non-atomic flag bits of the processes which have identifiers smaller than itself
are set to 1, will exit the repeat loop, and reach the while loop.

We conclude that there is an extension of x in which all the processes in P are executing the
while loop. Since it is assumed that no process leaves its entry code (in any extension of x), any
process that reaches the while loop in lines 9–14, must stay there forever (in any extension of x).
Thus, there is an extension of x, say y, in which: each process that is in its entry code, is either in
the while loop, or it is busy-waiting in the repeat loop and its flag bit is forever 0. The reason why
its flag bit is 0 is that if the flag bit is not forever 0 the process has to scan all the bits of processes
smaller then itself and find that at most ℓ− 1 of them are 0; but this is not possible because, in such
a case min{ℓ,m} = ℓ, the bits of processes in P are already set to 1 once they reach the while loop.

Thus, at y only the bits of the processes in the while loop are set to 1. Let k be the process with
the largest identifier, among all the processes which are at the while loop, in run y. When process k

20

executes the while loop, it must find that the (non-atomic) flag bits of all the processes k+1 through
n are 0, and hence it should move into its critical section. (Recall, that when process k exits the
repeat loop, counter < ℓ.) This contradicts the assumption that no process changes its region in
any extension of x. Thus, Algorithm 2 is 1-deadlock-free.

Theorem 4.4 Algorithm 2 is ℓ-weak-deadlock-free.

Proof: The proof is straightforward. Assume that there are at most ℓ processes which are not in their
remainders. Then, when some process, say i, executes the repeat loop, its counter will always be
less than ℓ, and thus it will be able to immediately exit the loop. After executing the for loop at line
8, the value of the counter will be at most ℓ− 1 and after checking the condition of the while loop
at line 9, process i will immediately continue into its critical section.

We point out that for ℓ = 2, the algorithm does not satisfy 2-deadlock-freedom. To see that, run
process p3 alone and let it crash in its critical section. Now run processes p1 and p2 until they set
their flag bits to 1. From that point on, no process will be able to enter its critical section.

5 Discussion

For any ℓ and n, we provide a tight space bound on the number of single-writer bits required to solve
ℓ-exclusion for n processes. It is easy to modify the two-bits algorithm (from Section 3), so that it
uses a single 3-valued single-writer atomic register for n−2 of the processes and one bit per process
for the remaining two processes. This, together with the result stated in Theorem 2.1, provides a
tight space bound for the size and number of single-writer multi-valued registers required to solve
ℓ-exclusion for n processes. We leave open the question of what is the bound for multi-writer
registers.

There are two approaches for proving lower bounds and impossibility results, for distributed
algorithms, by contradiction. The first is to show that a liveness property is violated. The second
is to show that a safety property is violated. The first approach is usually used for cooperation
problems such as consensus. For example, violating the liveness property that eventually all correct
processes must decide [14, 17]. The second approach is usually used for contention problems such
as mutual exclusion. For example, violating the safety property that two processes should never be
in their critical sections at the same time [7, 9]. Interestingly, although ℓ-exclusion is a classical
contention problem, we have used the first approach by violating the 2-deadlock-freedom liveness
property.

The two algorithms are also resilient to the failure by abortion of any finite number of processes.
By an abort-failure of process p, we mean that the program counter of p is set to point to the
beginning of its remainder and that the values of all the single-writer bits of p are set to their initial
(default) values. The process may then resume its execution, however, if a process keeps failing
infinitely often, then it may prevent other processes from entering their critical sections.

Acknowledgement. I wish to thank the three anonymous referees and the associate editor Eric
Ruppert for their constructive suggestions and corrections.

21

References

[1] Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. A bounded first-in, first-enabled
solution to the ℓ-exclusion problem. ACM Transactions on Programming Languages and
Systems, 16(3):939–953, 1994.

[2] Y. Afek, G. Stupp, and D. Touitou. Long-lived adaptive collect with applications. In Proc.
40th IEEE Symp. on Foundations of Computer Science, pages 262–272, October 1999.

[3] J. H. Anderson and M. Moir. Using local-spin k-exclusion algorithms to improve wait-free
object implementations. Distributed Computing, 11, 1997.

[4] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk. Achievable cases in an
asynchronous environment. In Proc. 28th IEEE Symp. on Foundations of Computer Science,
pages 337–346, October 1987.

[5] A. Bar-Noy, D. Dolev, D. Koller, and D. Peleg. Fault-tolerant critical section management in
asynchronous environments. Information and Computation, 95(1):1–20, November 1991.

[6] J. E. Burns. Mutual exclusion with linear waiting using binary shared variables. SIGACT
News, 10(2):42–47, 1978.

[7] J.E. Burns and A.N. Lynch. Mutual exclusion using indivisible reads and writes. In 18th
annual Allerton conference on communication, control and computing, pages 833–842, 1980.

[8] J.E. Burns and G.L. Peterson. The ambiguity of choosing. In Proc. 8th ACM Symp. on Prin-
ciples of Distributed Computing, pages 145–158, August 1989.

[9] J.N. Burns and N.A. Lynch. Bounds on shared-memory for mutual exclusion. Information
and Computation, 107(2):171–184, December 1993.

[10] E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8(9):569, 1965.

[11] D. Dolev, E. Gafni, and N. Shavit. Toward a non-atomic era: ℓ-exclusion as a test case. In
Proc. 20th ACM Symp. on Theory of Computing, pages 78–92, 1988.

[12] M.J. Fischer, N.A. Lynch, J.E. Burns, and A. Borodin. Resource allocation with immunity to
limited process failure. In Proc. 20th IEEE Symp. on Foundations of Computer Science, pages
234–254, October 1979.

[13] M.J. Fischer, N. A.Lynch, J.E. Burns, and A. Borodin. Distributed FIFO allocation of identical
resources using small shared space. ACM Trans. on Programming Languages and Systems,
11(1):90–114, January 1989.

[14] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374–382, 1985.

[15] L. Lamport. On Interprocess Communication, Parts I and II. Distributed Computing, 1, 2
(1986) 77–101.

[16] L. Lamport. The mutual exclusion problem: Part II – statement and solutions. Journal of the
ACM, 33:327–348, 1986.

22

[17] M.C. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, 4:163–183, 1987.

[18] G. L. Peterson. New bounds on mutual exclusion problems. Technical Report TR68, Univer-
sity of Rochester, February 1980 (Corrected, Nov. 1994).

[19] G. L. Peterson. Observations on ℓ-exclusion. In 28th annual allerton conference on commu-
nication, control and computing, pages 568–577, October 1990.

[20] G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson /
Prentice-Hall, ISBN 0-131-97259-6, 423 pages, 2006.

23

