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Abstract

Most concurrent data structures being designed today are versions of known sequential data
structures. However, in various cases it makes sense to relax the semantics of traditional concur-
rent data structures in order to get simpler and possibly more efficient and scalable implemen-
tations. For example, when solving the classical producer-consumer problem by implementing
a concurrent queue, it might be enough to allow the dequeue operation (by a consumer) to re-
turn and remove one of the two oldest values in the queue, and not necessarily the oldest one.
We define infinitely many possible relaxations of several traditional data structures and objects:
queues, stacks, multisets and registers, and examine their relative computational power.

Keywords: Relaxed data structure, consensus number, synchronization, wait-freedom, queue,
stack, multiset, k-register.

1 Introduction

1.1 Motivation

Early in our computer science education, we learn how to implement sequential data structures. In
the context of sequential data structures, implementing a queue in which it is fine for a dequeue
operation to return one of the two oldest items in the queue, instead of always returning the oldest
item, does not help in making the problem of efficiently implementing a queue easier to solve.
Maybe for that reason, we sometimes tend to overlook the fact that in the context of concurrent
programming, such relaxations might help a lot.

Assume that you need to solve the classical producer-consumer synchronization problem by
implementing a concurrent queue. In some cases, it might be fine to allow the consumer to return
and remove one of the two oldest items in the queue, and not necessarily the oldest one as is usu-
ally required. More generally, in some cases it makes senses to relax the semantics of traditional
concurrent data structures in order to get more efficient and scalable concurrent implementations.

∗A preliminary version of the results presented in this paper appeared in: (1) the Proceedings of the 22nd International
Colloquium on Structural Information and Communication Complexity (SIROCCO 2015) [28], and (2) the Proceedings
of the 14th International Conf. on Distributed Computing and Networking (ICDCN 2013) [31].
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There is a trade-off between synchronization and the ability of an implementation to scale per-
formance with the number of processors. Amdahl’s law, implies that even a small fraction of inher-
ently sequential code limits scaling. Using semantically weaker data structures may help in reducing
the synchronization requirements and hence improves scalability for many-core systems. As a re-
sult, there is a recent trend towards implementing semantically weaker data structures for achieving
better performance and scalability [27].

Important research has already been done on implementing semantically weaker data structure
(see for example, [2, 3, 8, 16, 27, 29]). While these implementations address complexity issues, less
research has been done on the computability of relaxed data structures. In this paper we investigate
the computability of (wait-free) relaxed data structures, by considering infinitely many possible
relaxations of several traditional data structures and objects: queues, stacks, multisets (i.e., bags)
and registers, and examine their relative computational power. Our results demonstrate, for example,
that for a concurrent queue small changes in its semantics dramatically effects its computational
power, and that similar results do not apply for a concurrent stack.

1.2 Data structures with relaxed specifications

We will assume that processes can try to access a shared object at the same time, however, although
operations of concurrent processes may overlap, each operation should appear to take effect instan-
taneously. In particular, operations that do not overlap should take effect in their “real-time” order.
This type of correctness requirement for shared objects is called linearizability [14].

A concurrent queue is a linearizable data structure that supports enqueue, dequeue and peek op-
erations, by several processes, with the usual queue semantics.1 Below we generalize this traditional
notion of a concurrent queue.

A concurrent queue w.r.t. the numbers a, b and c, denoted queue[a, b, c], is a linearizable data
structure that supports the enq.a(v), deq.b() and peek.c() operations, by several processes, with the
following semantics: The enq.a(v) operation inserts the value v at one of the a positions at the end
of the queue;2 the deq.b() operation returns and removes one of the values at the b positions at the
front of the queue; the peek.c() operation returns one of the values at the c positions at the front
of the queue without removing it. If the queue is empty the deq.b() and the peek.c() operations
return a special symbol. We emphasize that the queue queue[a, b, c], is implemented w.r.t. some
fixed numbers a, b and c; these number are defined a priori and are not parameters that are passed
at run time.

When defining the queue queue[a, b, c], the numbers a, b and c can take the values of any
positive integer, and the two special values 0 and ∗. When a, b or c equals 0, it means that the cor-
responding operation is not supported; when it equals ∗, it means that the corresponding operation
can insert, remove or return (depending on the type of operation) a value at an arbitrary position
(i.e., a position chosen by an adversary).

Thus, queue[1, 1, 1] is the traditional FIFO queue (which is sometimes called augmented queue),
where the values are dequeued in the order in which they were enqueued, and where the peek opera-
tion reads the oldest value in the queue without removing it; queue[1, 1, 0] is a queue which supports
the standard enqueue and dequeue operations but does not support a peek operation; queue[1, 1, ∗]

1The enqueue operation inserts a value to the queue and the dequeue operation returns and removes the oldest value
in the queue. That is, the values are dequeued in the order in which they were enqueued. The peek operation reads the
oldest value in the queue without removing it. If the queue is empty the dequeue and the peek operations return a special
symbol.

2A position of an item in a queue or in a stack is simply the number of items which precede it plus one.
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is a queue where the peek operation returns an arbitrary value that is currently in the queue; finally
queue[∗, ∗, 0] is exactly a linearizable multiset object that supports insert and remove operations, by
several processes, with the usual multiset semantics.

Relaxed versions of other traditional data structures are defined similarly. A relaxed concurrent
stack, denoted stack[a, b, c], is a linearizable data structure that supports the push.a(v), pop.b()
and top.c() operations, by several processes, with the obvious semantics. The object stack[∗, ∗, 0] is
equivalent to the object queue[∗, ∗, 0] and corresponds to a multiset object. The object stack[1, 0, 1]
is exactly an atomic read/write register, where the push and top operations correspond to the write
and read operations, respectively. For k ≥ 1, the object stack[1, 0, k] is exactly a k-atomic register
as defined in Section 8.

1.3 Consensus numbers

A process executes correctly its algorithm until it possibly crashes. After it has crashed it executes
no more steps. A process that crashes is said to be faulty, otherwise it is non-faulty (i.e., correct).

The (binary) consensus problem is to design an algorithm in which all non-faulty processes
reach a common decision based on their initial opinions. The problem is defined as follows: There
are n processes p1, p2, . . . , pn. Each process pi has an input value xi ∈ {0, 1}. The requirements of
the consensus problem are that there exists a decision value v such that: (1) each non-faulty process
eventually decides on v, and (2) v ∈ {x1, x2, . . . , xn}. In particular, if all input values are the same,
then that value must be the decision value.

The notion of a consensus number is central to our investigation and is formally defined below.
A wait-free implementation of an object guarantees that any process can complete any operation in
a finite number of steps, regardless of the speed of the other processes. A register is an object that
supports read and write operations. A register can be atomic or non-atomic. With an atomic register,
it is assumed that operations on the register (i.e, on the same memory location) occur in some
definite order. That is, reading or writing an atomic register is an indivisible action. When reading
or writing a non-atomic register (also called safe register), a process may be reading a register while
another is writing into it, and in that event, the value returned to the reader is arbitrary.

The consensus number of an object of type o, denoted CN(o), is the largest n for which it is
possible to solve consensus for n processes in a wait-free manner using any number of objects of
type o and any number of atomic registers. If no largest n exists, the consensus number of o is
infinite (denoted ∞) [11]. Classifying objects by their consensus numbers is a powerful technique
for understanding the relative computational power of shared objects.

The consensus hierarchy is an infinite hierarchy of objects such that the objects at level i of
the hierarchy are exactly those objects with consensus number i. It is known that, in the consensus
hierarchy, for every positive i, in a system with i processes: (1) no object at level less than i together
with atomic registers can implement any object at level i; and (2) each object at level i together with
atomic registers can implement any object at level i or at a lower level [11].

1.4 Contributions

New definitions. The definitions of concurrent queues and stacks with relaxed specifications to-
gether with the following technical results provide a deeper understanding of the computability
issues which are involved in the development of relaxed data structures.
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Relaxing the enqueue operation. First we show that, while CN(queue[1, 1, 1]) = ∞, the consen-
sus number drops to two when the enqueue operation is allowed to insert an item at any position at
random, regardless whether the peek and dequeue operations are relaxed or not. That is,

CN(queue[∗, 1, 1]) = 2. (R1)

It follows from R1 and the known result that CN(queue[∗, ∗, 0]) = 2 (i.e., that the consensus num-
ber of a multiset object is 2), that: for every b ∈ Z+∪{∗}, c ∈ Z+∪{0, ∗} :CN(queue[∗, b, c]) = 2.
(Z+ is the set of all positive integers.) Next, we show that the consensus number of all the queues
in which the peek operation is not relaxed (i.e., peek always returns the element at the front of the
queue) is infinity, even when the enqueue operation is allowed to insert an item at any one of the
last k positions for any fixed k. That is,

For every a ∈ Z+ : CN(queue[a, 0, 1]) = ∞ (R2)

In contrast with R2, the consensus numbers of all possible relaxations of a concurrent stack are at
most 2. In particular, CN(stack[1, 1, 1]) = 2 and CN(stack[1, 0, 1]) = 1 [7, 11, 21] (as already
mentioned, the object stack[1, 0, 1] is exactly an atomic read/write register).

Relaxing the peek operation. Next, we show that the consensus number of all the queues in
which the peek operation is relaxed (i.e., peek is not required to always return the oldest value in
the queue), is exactly two, regardless of how far the enqueue and dequeue operations are relaxed, as
long as these operations are supported. That is,

CN(queue[1, 1, 2]) = 2. (R3)

It follows from R3 and the known result that the consensus number of a multiset object is 2 [15],
that: for every a ∈ Z+ ∪ {∗}, b ∈ Z+ ∪ {∗}, c ̸= 1 : CN(queue[a, b, c]) = 2.

Not supporting the dequeue operation. The situation changes dramatically when dequeue is not
supported. The consensus number of all the queues where the dequeue operation is not supported
and the peek operation is slightly relaxed, is just 1. That is,

CN(queue[1, 0, 2]) = 1. (R4)

Thus, while CN(queue[1, 0, 1]) = ∞ and CN(queue[1, 1, 2]) = 2, by removing the dequeue op-
eration from the object queue[1, 1, 2], we get an object with consensus number one. It follows from
R4 that: for every a ∈ Z+ ∪ {0, ∗} : CN(queue[a, 0, 2]) = 1.

Atomic registers vs. relaxed queues. It is known that CN(atomic register) = 1 [21]. It is
easy to see that a queue[∗, 0, 2] has a trivial wait-free implementation from a single atomic register.
While, for every a ∈ Z+, atomic registers and queue[a, 0, 2] both have consensus number 1, we
observe that,

A queue[a, 0, c] has no wait-free implementation from atomic registers, (R5)
for every two positive integers a and c.
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All the above results hold for both an initialized queue and an uninitialized queue. These cases differ,
for example, when the enqueue operation is not supported. For an initialized queue, CN(queue[0, 1, 0]) =
2 [11], while for an uninitialized queue, it is obvious that CN(queue[0, 1, 1]) = 1.

Relaxed registers. It is common to assume that operations on the same memory location are atomic
– they occur in some definite order. However, this assumption can be relaxed allowing the possibility
of concurrent operation on the same memory location. In [20], three classes of shared registers are
defined, which support read and write operations, called —safe, regular and atomic—depending on
their properties when several reads and/or writes are executed concurrently. We consider relaxations
of these notions, called k-safe, k-regular and k-atomic, and prove that,

It is possible to wait-free implement multi-writer multi-reader multi-valued (R6)
1-atomic registers (the strongest type) using single-writer single-reader
k-safe bits (the weakest type), for every k ≥ 1.

Thus, for every k ≥ 1, k-safe registers and 1-atomic registers have the same computational power.

2 Preliminaries

2.1 Model of computation

Our model of computation consists of an asynchronous collection of n ≥ 2 processes that commu-
nicate via shared objects. We use P to denote the set of all processes. Asynchrony means that there
is no assumption on the relative speeds of the processes. Processes may fail by crashing, which
means that a failed process stops taking steps forever. In an asynchronous system there is no way to
distinguish between a faulty and a very slow process.

An event corresponds to an atomic step performed by a process. For example, the events which
correspond to accessing registers are classified into two types: read events which may not change
the state of the register, and write events which update the state of a register but do not return a
value. We use the notation ep to denote an instance of an arbitrary event at a process p.

A run is a pair (f, R) where f is a function that assigns initial states (values) to the objects
and R is a finite or infinite sequence of events. An implementation of an object from a set of other
objects, consists of a non-empty set C of runs, a set P of processes, and a set of shared objects
O. For any event ep at a process p in any run in C, the object accessed in ep must be in O. Let
x = (f, R) and x′ = (f ′, R′) be runs. Run x′ is a prefix of x (and x is an extension of x′), denoted
x′ ≤ x, if R′ is a prefix of R and f = f ′. When x′ ≤ x, (x − x′) denotes the suffix of R obtained
by removing R′ from R. Let R;T be the sequence obtained by concatenating the finite sequence R
and the sequence T . Then x;T is an abbreviation for (f, R;T ).

Process p is enabled at the end of run x if there exists an event ep such that x; ep is a run. For
simplicity, whenever we say that p is enabled at x we mean that p is enabled at the end of x. Also,
we write xp to denote either x; ep when p is enabled in x, or x when p is not enabled in x. Register
r is a local register of p if only p can access r. For any sequence R, let Rp be the subsequence of
R containing all events in R which involve p. Runs (f, R) and (f ′, R′) are indistinguishable for p,
denoted by (f, R)[p](f ′, R′), iff Rp = R′

p and f(r) = f ′(r) for every local register r of p.

The runs of an asynchronous implementation of an object must satisfy several properties. For
example, if a write event which involves p is enabled at run x, then the same event is enabled at any
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finite run that is indistinguishable to p from x. In the following proofs, we will implicitly make use
of few such straightforward properties.

2.2 Three simple observations

The following lemmas are easy consequences of the above properties and definitions.

Lemma 2.1 Let w, x and y be runs of an algorithm and p be a process such that (1) w ≤ x and
w[p]y, and (2) the states of all the objects (local and shared) that p can access are the same in w
and y, and (x − w) contains only events of p. Then, z = y; (x − w) is a run of the algorithm and
x[p]z.

Proof: By induction on the length of (x− w).

Next, we state two simple lemmas regarding relaxed queues. The first states that in any component,
going from a ∈ Z+ to a+ 1 or to ∗ does not increase the power of the object since it just gives the
adversary more choices of what to return. The second lemma states that going from a ∈ Z+∪{0, ∗}
to 0 in any component does not increase the power of the object, since it just eliminates a possible
operation.

Lemma 2.2 For every a1, b1, c1, a2, b2, c2 in Z+ ∪ {0, ∗},
if ((a2 = ∗ ∧ a1 ̸= 0) ∨ 0 < a1 ≤ a2 ∨ a2 = 0) ∧ ((b2 = ∗ ∧ b1 ̸= 0) ∨ 0 < b1 ≤ b2 ∨ b2 =
0) ∧ ((c2 = ∗ ∧ c1 ̸= 0) ∨ 0 < c1 ≤ c2 ∨ c2 = 0)
then CN(queue[a1, b1, c1]) ≥ CN(queue[a2, b2, c2]).

Proof: The proof of the lemma follows immediately from the definitions.

Lemma 2.3 For every a, b, c in Z+ ∪ {0, ∗},

1. CN(queue[0, b, c]) ≤ CN(queue[a, b, c]), and

2. CN(queue[a, 0, c]) ≤ CN(queue[a, b, c]), and

3. CN(queue[a, b, 0]) ≤ CN(queue[a, b, c]).

Proof: The proof of the lemma follows immediately from the definitions.

We notice that the statement of Lemma 2.2 subsumes that of Lemma 2.3, since it covers the case of
a2, b2 or c2 being 0.

2.3 Known results

Lemma 2.4 (a) CN(queue[∗, ∗, 0]) = 2, (b) CN(queue[1, 1, 0]) = 2, and
(c) CN(stack[1, 1, 1]) = 2.
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The proofs that CN(queue[∗, ∗, 0]) = 2, CN(queue[1, 1, 0]) = 2, and CN(stack[1, 1, 0]) = 2
(with and without initialization) are from [11, 15]. The wait-free consensus algorithm which uses a
single queue and registers from [15], is also correct when the queue is replaced with a stack or with
a multiset. Proving that CN(stack[1, 1, 1]) = 2, can be establish by modifying the existing proof
from [11], that CN(queue[1, 1, 0]) = 2.3

3 Basic properties of wait-free consensus algorithms

The first four lemmas below are known and have appeared (using different notations) or follow from
known impossibility proofs for wait-free consensus. The definitions below refer to runs of a given
consensus algorithm. A (finite) run x is v-valent if in all extensions of x where a decision is made,
the decision value is v (v ∈ {0, 1}). A run is univalent if it is either 0-valent or 1-valent, otherwise
it is bivalent. We say that two univalent runs are compatible if they have the same valency, that is,
either both runs are 0-valent or both are 1-valent. A run is critical if: (1) it is bivalent, and (2) any
extension of the run is univalent. A run (f, R) is an empty run if the length of R is 0 (that is, no
process has taken a step yet). Recall that n ≥ 2.

Lemma 3.1 In every wait-free consensus algorithm, if two univalent runs are indistinguishable for
some process p, and the states of all the objects that p can access are the same at these runs, then
these (univalent) runs must be compatible.

Proof: Let w and y be univalent runs, such that w[p]y and the states of all the objects (local and
shared) that p can access are the same at w and y. By the wait-free property, w has an extension
x such x − w contains only events of process p, and p has decided in x. Let w be v-valent, for
v ∈ {0, 1}. Then p decide v in x. (The event in which p decides on v, may be implemented by p
writing v into a special single-writer output register.) By Lemma 2.1, z = y; (x − w) is a run of
the algorithm such that z[p]x. Since p decides on v (i.e., p writes v to its output register) in z, z is
v-valent. Hence, since y ≤ z, y must also be v-valent.

Lemma 3.2 Every wait-free consensus algorithm has a bivalent empty run.

Proof: We show that a bivalent empty run must exist. Assume to the contrary that every empty run
is univalent. The empty run with all 0 inputs must be 0-valent, and similarly the empty run with
all 1 inputs must be 1-valent. Thus, by Lemma 3.1, all the empty runs with all but one 0 inputs
are 0-valent, and similarly all the empty runs with all but one 1 inputs are 1-valent. By repeatedly
applying this argument i times we get that, all the empty runs with all but i 0 inputs are 0-valent,
and similarly all the empty runs with all but i 1 inputs are 1-valent. Thus, when i is half the number
of processes, we get that there are two empty runs x0 and x1 that differ only at the value of a single
input, for process p, such that x0 is 0-valent and x1 is 1-valent. However, this contradicts Lemma
3.1. Hence, an empty bivalent run exists.

Lemma 3.3 Every wait-free consensus algorithm has a critical run.

3To our surprise, we could not find any publication in which it is claimed that CN(stack[1, 1, 1]) = 2. Nevertheless,
we consider it as a known result.
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Proof: Let Cons be an arbitrary wait-free consensus algorithm. By Lemma 3.2, Cons has an
empty bivalent run x0. We begin with x0 and pursue the following round-robin bivalence-preserving
scheduling discipline (Recall that P denotes a set of processes, x and y denote runs and yp is an
extension of the run y by one event of process p):

1 x := x0; P := ∅; i := 0 /* initialization */
2 repeat
3 if x has a bivalent extension ypi which involves pi
4 then x := ypi /* bivalent extension of x */
5 else P := P ∪ {pi} /* no such bivalent extension */
6 i := i+ 1(mod n) /* round-robin */
7 until |P | = n.

If the above procedure does not terminate, then there is an infinite run with only bivalent finite
prefixes. However, the existence of such a run contradicts the definition of a wait-free consensus
algorithm. Hence, the procedure will terminate with some critical run x.

Lemma 3.4 Let x be a critical run of a wait-free consensus algorithm and let p and q be two
different processes such that the runs xp and xq are not compatible. Then, in their next events from
x, p and q are accessing the same object, and this object is not a register.

Proof: We consider the following three possible cases, and show that each one of them leads to a
contradiction. We will assume that in the last event in xp process p is accessing some object, say o,
and in the last event in xq process q is accessing some object, say o′.

Case 1. o ̸= o′. Since the next events from x of p and q are independent, xpq[p]xqp, and the
values of all objects are the same in both xpq and xqp. Hence, by Lemma 3.1, xpq and xqp are
compatible; since xpq is an extension of xp and xqp is an extension of xq, it must be that xp and
xq are also compatible. A contradiction.

Case 2. o = o′ is a register and in xp the last event is a write event by p to o. Since p writes
to o in its next operation from x, the value of o must be the same in xp and xqp. (Here we use
the fact that the write by p overwrites the possible changes of o made by q.) Hence, xp[p]xqp and
the values of all the objects, which are not local to q, are the same in xp and xqp. By Lemma 3.1,
xp and xqp are compatible. Since xqp is an extension of xq, it must be that xp and xq are also
compatible. A contradiction.

Case 3. o = o′ is a register and in xp the last event is a read event by p. Thus, xpq[q]xq, and
the values of all the objects, which are not local to p, are the same in both xpq and xq. Hence by
Lemma 3.1, xpq and xq are compatible. Since xpq is an extension of xp, it must be that xp and xq
are also compatible. A contradiction.

Thus, it must be the case that o = o′ and o is not a register.

Lemma 3.5 Let x be a critical run of a wait-free consensus algorithm, and assume that the next
event of p from x is a relaxed peek event which may return one of the two oldest items in a queue.
Let xp1 (resp. xp2) denotes an extension of x by a peek event by p that has returned the oldest (resp.
second oldest) item in a queue. Then, xp1 and xp2 are compatible.
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Proof: Let p and q be two different processes. Because the value the peek operation by p returns
(i.e., the first or second) does not affect the state of the queue object visible to q, it follows that
xp1[q]xp2 and the states of all the objects that q can access are the same at these runs. Thus, by
Lemma 3.1, xp1 and xp2 are compatible.

4 Relaxing the enqueue operation

It is obvious that CN(queue[1, 0, 1]) = ∞. Each process inserts its input value into the queue using
an enqueue operation, and then uses a peek operation to find out what is the value at the front of the
queue and decides on it. Also, it is obvious that, for an uninitialized queue, CN(queue[0, 1, 1]) =
1.4 That is, a relaxed uninitialized queue where the enqueue operation is not supported is useless.
Assume a queue object where only the enqueue operation may be relaxed. We show that only when
the enqueue operation can insert a value at an arbitrary position, the consensus number drops to
two; otherwise, in all other possible relaxations in which the enqueue operation is supported, the
consensus number is not effected (i.e., it is ∞).

Theorem 4.1 CN(queue[∗, 1, 1]) = 2.

Proof: It follows immediately from Lemma 2.2, Lemma 2.3, and Lemma 2.4(a) that
CN(queue[∗, 1, 1]) ≥ 2. We prove that CN(queue[∗, 1, 1]) ≤ 2. A possible correct behavior of a
queue[∗, 1, 1] object, is that every enqueue operation always inserts a data item at the head of the
queue. In such a case, the queue[∗, 1, 1] object, behaves like a stack[1, 1, 1] object. This implies that
CN(queue[∗, 1, 1]) ≤ CN(stack[1, 1, 1]). Thus, by Lemma 2.4(c), CN(queue[∗, 1, 1]) ≤ 2.

Corollary 4.2 For every b ∈ Z+ ∪ {∗}, c ∈ Z+ ∪ {0, ∗} : CN(queue[∗, b, c]) = 2.

Proof: The corollary follows from Lemma 2.2, Lemma 2.3, Lemma 2.4(a) and Theorem 4.1.

Next we show that when the enqueue operation is relaxed but can not insert a value at an arbitrary
position, the consensus number is infinity.

Theorem 4.3 For every a ∈ Z+ : CN(queue[a, 0, 1]) = ∞.

Proof: For any given number a ∈ Z+, we present a simple consensus algorithm for any number
of processes using a singe queue[a, 0, 1] object. Each process first enqueues its input value a + 1
times. Then, the process uses a peek operation to find out the value of the first item in the queue, and
decides on that value. Clearly, once some process finishes to enqueue its input value a + 1 times,
the value of the item at the head of the queue never changes. The result follows.

Corollary 4.4 For every a ∈ Z+, b ∈ Z+ ∪ {0, ∗} : CN(queue[a, b, 1]) = ∞.

Proof: The corollary follows immediately from Lemma 2.2, Lemma 2.3 and Theorem 4.3.

4This is false, if the queue initially contains one element. In such a case, two processes can solve consensus, by
deciding on the input of the process that successfully dequeues the element.
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5 Relaxing the peek operation

Assume a queue object where only the peek operation may be relaxed. We show that in all possible
relaxations of the peek operation the consensus number drops (from infinity) to two.

Theorem 5.1 CN(queue[1, 1, 2]) = 2.

Proof: It follows from Lemma 2.3 and Lemma 2.4(b) that CN(queue[1, 1, 2]) ≥ 2. Below we
prove that CN(queue[1, 1, 2]) ≤ 2. By contradiction, assume that we have a wait-free consensus
algorithm for three processes p, q and g using only queue[1, 1, 2] objects and registers. By Lemma
3.3, the algorithm has a critical run x. By definition of a critical run, for two of the processes, say p
and q, a run resulting by an extension of x by a single event of p and a run resulting by an extension
of x by a single event of q are not compatible. Thus, by Lemma 3.4, in their next events from x, p
and q are accessing the same object, which must be a queue[1, 1, 2] object. By Lemma 3.5, if the
next event of p (resp. q) from x is a relaxed peek event which may return one of the two oldest items
in a queue, xp1 and xp2 (resp. xq1 and xq2) are compatible. Below, when the next event of p from
x is a peek event, xp refers to xp1 and xp2.

Without loss of generality, we can assume the xp is 0-valent and xq is 1-valent. Since xp is
0-valent also xpq is 0-valent. Since xq is 1-valent also xqp is 1-valent. Thus, xpq and xqp are not
compatible. Next, we consider all the possible cases, regarding the next two events of p and q from
x and show that each one of these cases leads to a contradiction.

Case 1. Both events are peek events. Because a peek operation does not have any effect on
the state of a queue[1, 1, 2] object, it follows that xpq[g]xqp and the states of all the objects that g
can access are the same at these runs. Thus, by Lemma 3.1, xpq and xqp must be compatible, a
contradiction. Notice that we do not really care what value a peek operation returns (i.e., the oldest
or second oldest), since this will not affect the state of the object visible to g.

Case 2. Exactly one of the two events is a peek event. Because the peek operation does not
have any effect on the state of a queue[1, 1, 2] object and the other operation has the same effect in
both xpq and xqp, it follows that xpq[g]xqp and the states of all the objects that g can access are the
same at these runs. Thus, by Lemma 3.1, xpq and xqp must be compatible, a contradiction. Notice
that again we do not really care what value the peek operation returns.

Case 3. Both events are dequeue events. In the last two events in xpq and xqp the same
two items were removed from the queue, thus, xpq[g]xqp and the states of all the objects that g
can access are the same at these runs. Thus, by Lemma 3.1, xpq and xqp must be compatible, a
contradiction.

Case 4. One event is a enqueue and the other is a dequeue. Assume w.l.o.g. that the enqueue
event is by p and the dequeue event is be q. If the queue is nonempty, the two events commute since
each operates on a different end of the queue. Thus, xpq and xqp are indistinguishable for all the
processes and the states of all the objects is the same in xpq and xqp, and thus by Lemma 3.1 the
contradiction is immediate. If the queue is empty, xp[g]xqp and the states of all the objects that
g can access are the same at these runs. Thus, by Lemma 3.1, xp and xqp must be compatible, a
contradiction.

Case 5. Both events are enqueue events. Assume that p enqueues the value vp and q enqueues
the value vq. Consider the runs xpq and xqp. The valency of each one of these two runs is deter-
mined by the process that has taken the first step from x. If p or q runs uninterrupted starting from
either xpq or xqp, the only way for each one of them to observe the queue’s state is via a dequeue
or a peek operation. However, since the peek operation can return one of the first two items at the
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head of the queue, a peek can not be used to determine which process enqueue operation was first.
More precisely, after the two enqueue events by p and q, in all extension of x,

1. as long as the values vp and vq are not at the head of queue, the adversary can force every
peek event to always return the item at the head of the queue, and thus it is not possible to
decide which process enqueue event was first;

2. if the values vp and vq are at the head of queue (in some order), the adversary can force every
peek operation to always return the same value, say vp, regardless whether vp is the first or
second element. Thus, again, it is not possible to decide which process enqueue event was
first.

Thus, the only way for a process to determine which process went first is via dequeue operations.
Next we consider the following two extensions of xpq and xqp.

• Let y be an extension of xpq that results from the following execution: Starting from x let p
enqueue vp and then let q enqueue vq. Run p uninterrupted until it dequeues vp (as explained
above this is the only way for p to observe which process went first). Then, run q uninterrupted
until it dequeues vq.

• Let y′ be an extension of xqp that results from the following execution: Starting from x let q
enqueue vq and then let p enqueue vp. Run p uninterrupted until it dequeues vq Then, run q
uninterrupted until it dequeues vp.

Since y is and extension of xpq, y is 0-valent, and since y′ is and extension of xqp, y′ is 1-valent.
Clearly, y[g]y′ and the states of all the objects that g can access are the same at these runs. Thus, by
Lemma 3.1, y and y′ must be compatible, a contradiction.

Corollary 5.2 For every a ∈ Z+ ∪ {∗}, b ∈ Z+ ∪ {∗}, c ̸= 1 : CN(queue[a, b, c]) = 2.

Proof: The corollary follows from Lemma 2.2, Lemma 2.4(a) and Theorem 5.1.

6 Not supporting the dequeue operation

The consensus number of all the queues where the dequeue operation is not supported and the peek
operation is relaxed, is just 1. Put another way, while CN(queue[1, 0, 1]) = ∞ and CN(queue[1, 1, 2]) =
2, by removing the dequeue operation from the object queue[1, 1, 2], we get an object with consen-
sus number one. That is,

Theorem 6.1 CN(queue[1, 0, 2]) = 1.

Proof: By contradiction, assume that we have a wait-free consensus algorithm for two processes p
and q using only queue[1, 0, 2] objects and registers. By Lemma 3.3, the algorithm has a critical run
x. By definition of a critical run, a run resulting by an extension of x by a single event of p and a
run resulting by an extension of x by a single event of q are not compatible. By Lemma 3.4, in their
next events from x, p and q are accessing the same object, which must be a queue[1, 0, 2] object.
By Lemma 3.5, if the next event of p (resp. q) from x is a relaxed peek event which may return one
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of the two oldest items in a queue, xp1 and xp2 (resp. xq1 and xq2) are compatible. Below, when
the next event of p from x is a peek event, xp refers to xp1 and xp2.

Without loss of generality, we assume the xp is 0-valent and xq is 1-valent. Since xp is 0-
valent also xpq is 0-valent. Since xq is 1-valent also xqp is 1-valent. Thus, xpq and xqp are not
compatible. Next, we consider all the possible cases, regarding the next events of p and q from x
and show that each one of these cases leads to a contradiction.

Case 1. Both events are peek events. Because a peek operation does not have any effect on the
states of the queue[1, 0, 2] object, it follows that xp1[p]xqp1 and the states of all the objects that p
can access are the same at these runs. Thus, by Lemma 3.1, xp1 and xqp1 must be compatible, a
contradiction. We do not really care what value a peek operation by q returns since this will not
affect the state of the object visible to p.5

Case 2. Exactly one of the two events is a peek event. Assume w.l.o.g. that the peek event is by
process q. Because the peek operation does not have any effect on the states of the queue[1, 0, 2]
object and the operation by p has the same effect in both xp and xqp, it follows that xp[p]xqp and
the states of all the objects that p can access are the same at these runs. Thus, by Lemma 3.1, xp
and xqp must be compatible, a contradiction. Notice that again we do not really care what value the
peek operation returns.

Case 3. Both events are enqueue events. Assume that p enqueues the value vp and q enqueues
the value vq. Consider the 0-valent run xpq and the 1-valent run xqp. The valency of each one
of these two runs is determined by the process that has taken the first step from x. If p or q runs
uninterrupted starting from either xpq or xqp, the only way for each one of them to observe the
queue’s state is via a peek operation. Since the peek operation can return one of the first two items
at the head of the queue, a peek can not be used to determine which process enqueue operation was
first. More precisely:

1. If the queue is not empty at x then after the two enqueue events by p and q, the adversary can
force every peek event to always return the item at the head of the queue, and thus it is not
possible for p or q to decide which process enqueue event was first.

2. If the queue is empty at x then after the two enqueue events by p and q, the values vp and vq
are at the head of queue (in some order). Now the adversary can force every peek operation
by p to always return vp, and every peek operation by q can always return vq. Thus, again, it
is not possible to decide which process enqueue event was first.

Thus, it can not be that both events are enqueue events, a contradiction.

Corollary 6.2 For every a ∈ Z+ ∪ {0, ∗}, c ≥ 2 : CN(queue[a, 0, c]) = 1.

Proof: The corollary follows from Lemma 2.2, Lemma 2.3 and Theorem 6.1.

5Notice that we reach a contradiction, by assuming that p’s peek operation returns the first element in both passes.
Since this implies that it cannot be the case that both events by p and q are peek events, there is no need to consider the
sub-case where p’s peek operation returns the first element in one path and the second element is the other path.
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7 Atomic registers vs. relaxed queues

It is known that CN(atomic register) = 1 [21]. It is easy to see that a queue[∗, 0, 1] has a triv-
ial wait-free implementation from a single atomic register, which raises the question whether also
queue[1, 0, 2] has a wait-free implementation from atomic registers. The answer to this question is
negative. We prove the following general result:

Theorem 7.1 A queue[a, 0, c] has no wait-free implementation from atomic registers, for every two
integers a ≥ 1 and c ≥ 1.

Proof: The (n, k)-set consensus problem is to design an algorithm for n processes, where each
process starts with an input value from some domain, and must choose some participating process’
input as its output. All n processes together may choose no more than k distinct output values.
An (n, k)-set consensus object (or algorithm) is an object which solves the (n, k)-set consensus
problem. One of the most celebrated impossibility results in distributed computing is that, for any
1 ≤ k < n, a wait-free (n, k)-set consensus object can not be implemented using any number of
wait-free (n, k + 1)-set consensus objects and atomic registers [5, 13, 26].

We show that, for any for every two positive integers a and c, a wait-free (a+c, a+c−1)-set con-
sensus object has a simple wait-free implementation using a single (initially empty) queue[a, 0, c]
object, as follows. Each process pi inserts its input value vi into the queue using an enq.a(vi) oper-
ation, and then uses a peek.c() operation to find a value in one of the c positions at the front of the
queue, and decides on it. During the execution any one of the a+ c− 1 values that are inserted first
into the queue can occupy (at some point in time) one of the c positions at the front of the queue.
Any value that is inserted later will never occupy one of the c positions at the front of the queue.
Thus, processes together will never choose more than a+ c−1 distinct output values. Since, for ev-
ery two positive integers a and c, it is possible to solve in a wait-free manner the (a+c, a+c−1)-set
consensus problem using a queue[a, 0, c] object, but it is not possible to solve (a+ c, a+ c− 1)-set
consensus in a wait-free manner using atomic registers, the result follows.

8 Relaxed registers

It is common to assume that operations on the same memory location are atomic – they occur in
some definite order. However, this assumption can be relaxed allowing the possibility of concurrent
operation on the same memory location. In [20], Lamport has defined three classes of shared regis-
ters which support read and write operations, called —safe, regular and atomic—depending on their
properties when several reads and/or writes are executed concurrently. Below we consider natural
generalizations of Lamport’s notions.

8.1 k-safe, k-regular and k-atomic registers

Unless otherwise stated, for the rest of this section. it is assumed that each register is a single-writer
multi-reader register. Such a register can be written by one predefined process and can be read by
all the processes. Let k be a positive integer.

• The weakest possibility is a k-safe register, in which it is assumed that a read not concurrent
with any write obtains one of the k most recently written values. No assumption is made
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about the value obtained by a read that overlaps a write, except that it must obtain one of the
possible values of the register. We consider the initial value as the first written value.

• The next stronger possibility is a k-regular register, in which it is assumed that a read not
concurrent with any write obtains one of the k most recently written values. A read that
overlaps a write obtains either the new value or one of the k most recently written values.
That is, a read that overlaps any series of writes obtains either one of the values being written
or one of the k most recently written values before the first of the writes.

• The final possibility is a k-atomic register, in which the reads and writes behave as if they
occur in some definite order, and a read obtains one of the k most recently written values. In
other words, for any execution, there is some way of totally ordering the overlapping reads
and writes so that the value returned by the each read is one of the k most recently written
values in the execution which has no overlapping. (Operations that do not overlap should take
effect in their “real-time” order.)

We observe that Lamport’s familiar notions of safe, regular and atomic registers are equivalent to the
notions of 1-safe, 1-regular and 1-atomic registers, respectively. We will use the notion k-register
as an abbreviation for k-safe, k-regular and k-atomic registers, when the exact type of a register is
not important. We notice that, for k ≥ 1, a k-atomic register is exactly the object stack[1, 0, k], as
defined in the Introduction.

8.2 Two constructions

We present two constructions of registers, by indicating how write operations and read operations
are performed. A register can be either a single-writer single-reader (SWSR) register, a single-writer
multi-reader (SWMR) register or a multi-writer multi-reader (MWMR) register. Unless explicitly
stated, we assume that a register is a SWMR register. We require that the constructions satisfy the
wait-freedom progress condition.

The first construction implements a single-writer multi-reader multi-valued k-safe, k-regular or
(k + 1)-atomic register, denoted r, from single-writer single-reader multi-valued k-safe, k-regular
or k-atomic registers, respectively.

Construction 8.1 Let k be an arbitrary natural number, and let r1, ..., rn be SWSR multi-valued
k-registers, where each ri (i ∈ {1, ..., n}) can be written by the same single process and read by
process pi. We construct a SWMR multi-valued k-register r as follows:

• The write operation r := value is performed as follows: for i = 1 to n do ri := value;

• The read operation of r by process pi is performed by letting pi read the value of ri.

The above construction is similar to Construction 8.1 from [20] which was designed for 1-registers.
We prove the following theorem for the general case of k-registers.

Theorem 8.1 The following claims are correct w.r.t. Construction 8.1, for any k ≥ 1,

1. If r1, ..., rn are SWSR k-safe registers or r1, ..., rn are SWSR k-regular registers then r is a
SWMR k-safe register or a SWMR k-regular register, respectively.

2. If r1, ..., rn are SWSR k-atomic registers then r is a SWMR (k + 1)-atomic register.
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3. If r1, ..., rn are SWSR k-atomic registers then r is not a SWMR k-atomic register.

Proof: A read of r by process pi that does not overlap a write of r, also does not overlap a write of
ri. If ri is k-register (i.e., if ri is k-safe, k-regular or k-atomic), then this read must obtain one of
the k most recently written values into r. This is enough to show that if ri is k-safe then r is k-safe.
If a read of ri by process pi overlaps a write of ri, then it overlaps a write of the same value to r. In
such a case, if ri is k-regular then this read must obtain either the last value written or one of the k
most recently written values into ri (and hence into r). This implies that if ri is k-regular then r is
k-regular.

Now, assume that ri is k-atomic, and that a read of ri by process pi overlaps a write of the value
v into r. Then (1) if v was already written into ri, this read must obtain either the value v or one of
the k − 1 most recently written values into ri before v; or (2) if v was not written into ri yet, this
read must one of the k most recently written values into ri. Since the linearization point of write of
v into r might be before the linearization point of the read of v, in both cases above, the returned
value is one of the k + 1 most recently written values into r. This implies that if ri is a SWSR
k-atomic register then r is a SWMR k + 1-atomic register.

Assume that r1, ..., rn are k-registers. If a read of r by two different processes pi and pj both
overlap the same write of value v into r, it is possible for pi to get the new value v and for pj to get
the kth written value into r before the value v was written. This is possible even in the case where
the read by pi precedes the read by pj . This possibility is not allowed by a k-atomic register. Thus,
r is not a k-atomic register.

The second construction implements a SWMR multi-valued 1-safe or 1-regular register from SWMR
multi-valued k-safe or k-regular registers, respectively.

Construction 8.2 Let k be an arbitrary natural number, and let r′ be a SWMR multi-valued k-
registers. We construct a SWMR multi-valued 1-register r as follows:

• The write operation r := value is performed as follows: for i = 1 to k do r′ := value;

• The read operation of r by process p is performed by letting p read the value of r′.

Theorem 8.2 The following claims are correct w.r.t. Construction 8.2, for any k ≥ 1,

1. If r′ is a SWMR k-safe register or a SWMR k-regular register then r is a SWMR 1-safe register
or a SWMR 1-regular register, respectively.

2. If r′ is a SWMR k-atomic register then r is not a SWMR 1-atomic register.

Proof: A read of r by process p that does not overlap a write of r, also does not overlap any of the
latest k writes of r′. Thus, all the k most recently written values into r′ are identical and equal the
most recent value written into r′. Since r′ is k-register, in the case of no overlap, a read of r must
obtain one of the k most recently written values into r′, and thus it must obtain the most recent value
written into r′. This is enough to show that if r′ is k-safe then r is 1-safe.

If a read of r′ by process p overlaps a write of r′, then it overlaps a write of the same value to r.
In such a case, if r′ is k-regular then this read must obtain either the new value or one of the k most
recently written values into r′ (and hence into r). However, since each value is written k times, each
of the k most recently written values equals either the new value or the most recent value written
before the new value. This implies that if r′ is k-regular then r is 1-regular.
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We have assumed that r′ is a k-register. Thus, during a write of r, the k most recently written
values into r′ equals either the new value or the most recent value written before the new value. If
a read of r by two different processes pi and pj both overlap the same write of value v into r, it is
possible for pi to get the new value v and pj the old value. This is possible even in the case where
the read by pi precedes the read by pj . This possibility is not allowed by a 1-atomic register. Thus,
r is not a 1-atomic register.

We notice that Construction 8.2 can be used for implementing a 2-atomic register from k-atomic
registers. It would be interesting to find a similar simple and efficient construction also for imple-
menting 1-atomic register from k-atomic registers.

8.3 Main result regarding relaxed registers

Our result is about computability of using k-registers. We show that for every k ≥ 1, k-safe
registers and 1-atomic registers have the same computational power. More precisely, it is possible
to wait-free implement multi-writer multi-reader multi-valued 1-atomic registers using single-writer
single-reader k-safe bits, for every k ≥ 1.

Theorem 8.3 For every k ≥ 1, it is possible to construct a MWMR 1-atomic register using SWSR
k-safe bits.

Proof: It follows from Construction 8.1 and Construction 8.2 that it is possible to implement a
SWMR 1-safe bit using SWSR k-safe bits. A well known result is that it is possible to implement a
MWMR multi-valued 1-atomic register from SWMR 1-safe bits (see Chapter 4 of [10]). The result
follows. 6

For k ≥ 1, the object stack[1, 0, k] is exactly a k-atomic register. Thus, the following corollary
follows immediately from Theorem 8.3:

Corollary 8.4 For every k ≥ 1, a stack[1, 0, 1] object can be implemented from stack[1, 0, k]
objects.

There are several classical synchronization algorithms, such as a mutual exclusion algorithm and a
ℓ-exclusion algorithm, that only use SWMR 1-safe registers, for interprocess communication [30].
Using Construction 8.2, such algorithms can be very easily and efficiently modified to use only
k-safe registers, for every k ≥ 1. Examples of such modifications can be found in [31].

8.4 Practical implications

Various optimizations enable reordering memory references as it allows much better performance.
When a correct operation depends on ordered memory references, memory barriers are used to
prevent reordering [22, 23]. Memory barriers are required to enable good performance and scal-
ability. The reason for that is the fact that CPUs are orders of magnitude faster than are both the
interconnects between them and the memory they are attempting to access [24].

6The known constructions of a MWMR multi-valued 1-atomic register from SWMR 1-safe bits, are complicated and
are not practically useful for transforming algorithms that use strong type of registers into algorithms that use weak type
of registers.
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Without using memory barriers, as a result of reordering, a read from an atomic register may
obtain some older value when compared to the value this read would return in the in order execution
of the original program code. Suppose that in some setting where reordering is possible, a read may
obtain, in the worst case, one of the 5 most recently written values when compared to the value it
would return in the in order execution. In such a case, no harm done, if the program which uses
1-atomic registers, was designed in the first place to work correctly assuming that communication
is done via 5-atomic registers.

Consider the following design strategy: Design your algorithms to be correct when k-atomic
registers are used for some k > 1. Now replace the k-atomic registers with the stronger 1-atomic
registers. In such algorithms the use of memory barriers may not be necessary in some cases, even
when reordering is possible. Thus, there is a tradeoff between the number of memory barriers
needed to ensure correctness and the type of k-registers used. Put another way, proving correctness
w.r.t. k-registers while actually using 1-registers provides some level of resiliency against memory
reordering. Finding the exact level of resiliency provided using such a design strategy, as a function
of k, is an interesting research topic which is not covered in this paper.

9 Related work

The design of concurrent data structures has been extensively studied [10, 30]. However, there are
limitations in achieving high scalability in their design [4, 6]. Two progress conditions that have
been proposed for data structures which avoid locking are wait-freedom [11] (defined earlier), and
obstruction-freedom [12]. Obstruction-freedom, a weak form of implementations that do not use
locks, guarantees that an active process will be able to complete its pending operations in a finite
number of its own steps, if all the other processes “hold still” long enough.

It is shown in [4] that the worst-case operation time complexity of obstruction-free implemen-
tations is high, even in the absence of step contention. In [6], an Ω(n) lower bound is proven on
the time to perform a single instance of an operation in any implementation of a large class of data
structures shared by n processes, such as counters, stacks, and queues. It is suggested in [6] that
“it might be beneficial to replace linearizable implementations of strongly ordered data structures,
such as stacks and queues, with more relaxed data structures, such as pools and bags”.

In [27], it is pointed out that concurrent data structures will have to go through a substantial
“relaxation process” in order to support scalability: “The data structures of our childhood – stacks,
queues, and heaps – will soon disappear, replaced by looser unordered concurrent constructs based
on distribution and randomization”. A few examples are given in [27] showing how relaxing a
stack’s LIFO ordering guarantees can result in higher performance and greater scalability.

Another approach to weaken the requirement of traditional data structures is not to change at all
the definition of the data structures, but rather to relax the traditional correctness requirements (i.e.,
linearizability [14] and sequential consistency [17]). A tutorial which describes many issues related
to memory consistency models can be found in [1]. In the context of relaxing the consistency con-
dition linearizability [14], two relaxations of a queue were presented in [3]. In [16], a k-FIFO queue
was implemented, which may dequeue elements out of FIFO order up to a constant k ≥ 0. There are
various implementations of relaxed data structures where insertion-order is of no importance, such
as pools and bags, see for example [2, 29]. In [9], a systematic and formal framework is presented
for obtaining new data structures by quantitatively relaxing existing ones.

The relative power of various shared objects has been studied extensively in shared memory
environments where processes may fail benignly, and where every operation is wait-free. In [11],
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a hierarchy of progressively stronger shared objects, is defined. Objects at each level are able to
perform tasks which are impossible for objects at the lower levels.

The consensus problem was defined in [25]. The impossibility result that there is no consensus
algorithm that can tolerate even a single crash failure was first proved for the asynchronous message-
passing model in [7], and later has been extended for the shared memory model with atomic registers
in [21]. The impossibility result that, for 1 ≤ k ≤ n − 1 there is no k-resilient k-set-consensus
algorithm for n processes using atomic registers, is from [5, 13, 26] (set-consensus is defined in
section 6). It is shown in [11] that traditional data types, such as sets which support insert and
remove operations, queues which support enqueue and dequeue operations (i.e., queue[1, 1, 0]),
stacks which supports push and pop operations (i.e., stack[1, 1, 0]), all have consensus number
exactly two. In the proofs of [11], it is assumed that the data structures are initialized. The same
results also hold for the case of uninitialized data structures [15, 30]. It is trivial to show that
CN(queue[1, 1, 1]) = ∞.

A formalism for reasoning about concurrent systems which does not assume that read and write
are atomic operations is developed in [18, 19]. This formalism has been further developed in [20],
where it is used to specify several classes of interprocess communication mechanism and to prove
correctness of algorithms for implementing them. In particular, a very weak form of (non-atomic)
shared register, called safe register, is defined [20]. A safe register can be written and read concur-
rently, but read errors may occur during the writing of a shared register. Following the publication
of [20], many papers were published about implementing one type of shared register from another.
In particular it is now known how to implement a MWMR atomic register from SWSR safe bits.
A compilation of some of these results can be found in Chapter 4 of [10]. A discussion on how
memory barriers are used to prevent reordering can be found in [22, 23, 24].

10 Discussion

Synchronization inherently limits parallelism. As a result, there is a recent trend towards imple-
menting semantically weaker data structures which reduce the need for synchronization and thus
achieve better performance and scalability. We have considered infinitely many possible relaxations
of queues and stacks, and examined their relative computational power by determining their consen-
sus numbers. We have also introduced the new notions of k-safe, k-regular and k-atomic registers,
and showed how to implement 1-atomic registers (the strongest type) in terms of k-safe registers
(the weakest type).

Our results demonstrate, somewhat surprisingly, that each one of the infinitely many relaxed ob-
jects considered has one of the following three consensus numbers: 1, 2 or ∞. Another conclusion
is that a queue is more sensitive than a stack to changes in its semantics. It would be interesting to
extend our results to other data structures. Various limitations in achieving high scalability in the
design of traditional data structures have been demonstrated in [4, 6]. Can these results be extended
to cover some of the relaxed data structures presented in this paper?

It would be interesting to find out the internal structure among relaxed objects in the same level
of the consensus hierarchy. In particular, for i ∈ Z+, is it possible to implement a queue[1, 1, i+1]
object using queue[1, 1, i + 2] objects and registers? Is it possible to implement a queue[1, 1, 2]
object using queue[1, 1, 0] objects and registers?
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