
A Closer Look at Fault Tolerance∗

Gadi Taubenfeld†

February 22, 2017

Abstract

The traditional notion of fault tolerance requires that all the correct participating processes
eventually terminate, and thus, is not sensitive to the number of correct processes that should
terminate as a result of failures. Intuitively, an algorithm that in the presence of any number
of faults always guarantees that all the correct processes except maybe one terminate, is more
resilient to faults than an algorithm that in the presence of a single fault does not even guarantee
that a single correct process ever terminates. However, according to the standard notion of fault
tolerance both algorithms are classified as algorithms that can not tolerate a single fault.

To overcome this difficulty, we generalize the traditional notion of fault tolerance in a way
which enables to capture more sensitive information about the resiliency of an algorithm. Then,
we present several algorithms for solving classical problems which are resilient under the new
notion. It is well known that, in an asynchronous systems where processes communicate ei-
ther by reading and writing atomic registers or by sending and receiving messages, important
problems such as, consensus, set-consensus, election, perfect renaming, implementations of a
test-and-set bit, a shared stack, a swap object and a fetch-and-add object have no deterministic
solutions which can tolerate even a single fault. We show that while, some of these problems
have solutions which guarantee that in the presence of any number of faults most of the correct
processes will terminate; other problems do not even have solutions which guarantee that in the
presence of just one fault at least one correct process terminates. All our results are presented
in the context of crash failures in asynchronous systems.

Keywords: Fault tolerance, crash failures, shared memory, message passing, election, test-and-
set, renaming, consensus, set-consensus, stack, swap, fetch-and-add.

∗A preliminary version of the results presented in this paper, has appeared in proceedings of the 31st annual symposium
on principles of distributed computing (PODC 2012), Madeira, Portugal, July 2012.

†The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel. tgadi@idc.ac.il

1

1 Introduction

1.1 Motivation

According to the standard notion of fault tolerance, an algorithm is t-resilient if in the presence
of up to t faults, all the correct processes can still complete their operations and terminate. Thus,
an algorithm is not t-resilient, if as a result of t faults there is some correct process that can not
properly terminate. This traditional notion of fault tolerance is not sensitive to the number of correct
processes that may or may not complete their operations as a result of the failure of other processes.

Consider for example the renaming problem, which allows processes, with distinct initial names
from a large name space, to get distinct new names from a small name space. A renaming algorithm
that in the presence of any number of faults always guarantees that most of the correct processes,
but not necessarily all, get distinct new names is clearly more resilient than a renaming algorithm
that in the presence of a single fault does not guarantee that even one correct process ever gets a
new name. However, using the standard notion of fault tolerance, it is not possible to compare the
resiliency of such algorithms – as both are simply not even 1-resilient. This motivates us to suggest
and investigate a more general notion of fault tolerance.

We generalize the traditional notion of fault tolerance by allowing a limited number of partici-
pating correct processes not to terminate in the presence of faults. Every process that do terminate is
required to return a correct result. Thus, our definition guarantees safety but may sacrifice liveness
(termination), for a limited number of processes, in the presence of faults. The consequences of
violating liveness are often less severe than those of violating safety. In fact, there are systems that
can detect and abort processes that run for too long. Sacrificing liveness for few of the processes
allows us to increase the resiliency of the whole system.

1.2 Model and Basic Definitions

Our model of computation consists of an asynchronous collection of n processes that communicate
either by reading and writing atomic registers or by sending and receiving messages. The processes
have unique identifiers. With an atomic register, it is assumed that operations on the register occur
in some definite order. That is, reading or writing an atomic register is an indivisible action.

With required participation every process must eventually execute its code. However, a more
interesting and practical situation is one in which participation is not required, as is usually assumed
when solving resource allocation problems. Unless explicitly stated, when the shared memory
model is considered, it is assumed that participate is not required. When the message passing model
is considered, it is assumed that participate is required, a process starts participating spontaneously
or when receiving a first message.

Once a process starts participating it may fail by crashing. A crash failure is a failure of a
process where after it has failed the process executes no more steps. All our results are presented in
the context of process crash failures in asynchronous systems.

In the literature, it is common to assume that the identifiers of the n processes are integers taken
from the range {1, ..., n}. However, there may be situations when there are many more identifiers
than processes. For example, there might be a small number of processes, say 50, but their identifiers
can be taken from the range {0, ..., 232}. In such a case identifiers cannot be easily used to index
registers, and hence it is better to use symmetric algorithms.

Symmetric Algorithms: A symmetric algorithm is an algorithm in which the only way

2

for distinguishing processes is by comparing identifiers, which are unique. Identifiers
can be written, read and compared, but there is no way of looking inside any identifier.
Thus, identifiers cannot be used to index shared registers.

Designing symmetric algorithms is especially important, when the designed algorithms are intended
to be used as a building blocks in an environment where the processes’ name space is not known in
advance. Most of the algorithms presented in this paper are symmetric.

1.3 Fault Tolerance

For the rest of the paper, n denotes the number of processes, t denotes the number of faulty pro-
cesses, and N = {0, 1, ..., n}.

Definition: For a given function f : N → N , an algorithm is (t, f)-resilient if in
the presence of t′ faults at most f(t′) participating correct processes may not terminate
their operations, for every 0 ≤ t′ ≤ t.

It seems that (t, f)-resiliency is interesting only when requiring that f(0) = 0. That is, in the ab-
sence of faults all the participating processes must terminate. The standard definition of t-resiliency
is equivalent to (t, f)-resiliency where f(t′) = 0 for every 0 ≤ t′ ≤ t. Thus, the familiar notion of
wait-freedom is equivalent to (n− 1, f)-resiliency where f(t′) = 0 for every 0 ≤ t′ ≤ n− 1. The
new notion of (t, f)-resiliency is quite general, and in this paper we focus mainly on the following
three levels of resiliency.

• An algorithm is almost-t-resilient if it is (t, f)-resilient, for a function f where f(0) = 0 and
f(t′) = 1, for every 1 ≤ t′ ≤ t. Thus, in the presence of any number of up to t faults, all the
correct participating processes, except maybe one process must terminate.

• An algorithm is partially-t-resilient if it is (t, f)-resilient, for a function f where f(0) = 0
and f(t′) = t′, for every 1 ≤ t′ ≤ t. Thus, in the presence of any number t′ ≤ t faults, all the
correct participating processes, except maybe t′ of them must terminate.

• An algorithm is weakly-t-resilient if it is (t, f)-resilient, for a function f where f(0) = 0,
and in the presence of any number of up to t ≥ 1 faults, if there are two or more correct
participating processes, then one correct participating process must terminate. (Notice that
for n = 2, if one process fails the other one is not required to terminate.)

These new definitions are also interesting from a theoretical point of view and enable a better un-
derstanding of fault tolerance. For n ≥ 3 and t < n− 2, the notion of weakly-t-resiliency is strictly
weaker than the notion of partially-t-resiliency. For n ≥ 3, the notion of weakly-t-resiliency is
strictly weaker than the notion of almost-t-resiliency. For n ≥ 3 and t ≥ 2, the notion of partially-
t-resiliency is strictly weaker than the notion of almost-t-resiliency. For all n, partially-1-resiliency
and almost-1-resiliency are equivalent. For n = 2, these three notions are equivalent.

We say that an algorithm is almost-wait-free if it is almost-(n−1)-resilient, thus, in the presence
of any number of faults, all the participating correct processes, except maybe one process must
terminate. We say that an algorithm is partially-wait-free if it is partially-(n − 1)-resilient, thus,
in the presence of any number of t ≤ n − 1 faults, all the correct participating processes, except
maybe t of them must terminate. We say that an algorithm is weakly-wait-free if it is weakly-(n−1)-
resilient, thus, in the presence of any number of faults, if there are two or more correct participating
processes then one correct participating processes must terminate.

3

In an asynchronous shared memory system which supports atomic registers or in a message
passing system, important problems such as consensus, set-consensus, election, perfect renaming,
implementations of a test-and-set bit, a shared stack, a swap object and a fetch-and-add object, have
no solutions which can tolerate even a single fault. Rather surprisingly, as we will show later, while
some of these problems have solutions which satisfy almost-wait-freedom, other problems do not
even have weakly-1-resilient solutions.

1.4 Contributions

New Definitions. We generalize the traditional notion of fault tolerance. Together with the tech-
nical results, the new definitions provide a deeper understanding of complexity and computability
issues which are involved in the development of fault-tolerant algorithms.

Election. In this problem one or more processes independently initiate their participation in an
election to decide on a leader. Each participating process should eventually output either 0 or 1 and
terminate. At most one process may output 1, and in the absence of faults exactly one of the par-
ticipating processes should output 1. The process which outputs 1 is the elected leader. It is known
that there is no 1-resilient election algorithm, when processes communicate either by reading and
writing atomic registers or by sending and receiving messages. We show that:

(1) There is an almost-wait-free symmetric election algorithm using ⌈log n⌉+2 atomic
registers. (2) There is an almost-wait-free symmetric election algorithm with n2 − n
message complexity.

Message complexity is the total number of message sent. The known space lower bound for election
in the absence of faults is ⌈log n⌉+ 1 atomic registers [38].

Test-and-set. A test-and-set bit is an object that supports two operations, called test-and-set and
reset. A test-and-set operation on a single bit takes as argument a shared bit b, assigns the value
1 to b, and returns the previous value of b (which can be either 0 or 1). A reset operation takes as
argument a shared registers b and writes the value 0 into b. We show that:

(1) There is an almost-wait-free symmetric implementation of a test-and-set bit for n
processes using n+1 atomic registers. (2) Any implementation of a test-and-set bit for
n processes using registers must use at least n registers, even in the absence of faults.

It is known that in asynchronous systems where processes communicate using atomic registers there
are no 1-resilient implementations of a test-and-set bit [31].

Perfect Renaming. A perfect renaming algorithm allows n processes with initially distinct names
from a large name space to acquire distinct new names from the set {1, ...n}. A one-shot renaming
algorithm allows each process to acquire a distinct new name just once. A long-lived renaming al-
gorithm allows processes to repeatedly acquire distinct names from a small name space and release
them. We show that in a shared memory model:

(1) There is a partially-wait-free symmetric one-shot perfect renaming algorithm using
either n − 1 almost-wait-free election objects or O(n log n) registers. (2) There is a
partially-wait-free symmetric long-lived perfect renaming algorithm using either n− 1
almost-wait-free test-and-set bits or O(n2) registers.

4

It is known that in asynchronous systems where processes communicate either by atomic registers
or by sending and receiving messages, there is no 1-resilient perfect renaming algorithm [5, 33, 42].

Fetch-and-add, swap, stack. A fetch-and-add object supports an operation which takes as ar-
guments a shared register r, and a value val. The value of r is incremented by val, and the old value
of r is returned. A swap object supports an operation which takes as arguments a shared registers
and a local register and atomically exchange their values. A shared stack is a linearizable object that
supports push and pop operations, by several processes, with the usual stack semantics. We show
that:

There are partially-wait-free implementations of a fetch-and-add object, a swap object,
and a stack object using atomic registers.

The result complements the results that in asynchronous systems where processes communicate
using registers there are no 1-resilient implementations of fetch-and-add, swap, and stack objects
[11, 23].

Consensus and Set-consensus. The k-set consensus problem is to find a solution for n processes,
where each process starts with an input value from some domain, and must choose some participat-
ing process’ input as its output. All n processes together may choose no more than k distinct output
values. The 1-set consensus problem, is the familiar consensus problem. We show that:

(1) For n ≥ 3 and 1 ≤ k ≤ n − 2, there is no weakly-k-resilient k-set-consensus
algorithm using either atomic registers or sending and receiving messages. In partic-
ular, for n ≥ 3, there is no weakly-1-resilient consensus algorithm using either atomic
registers or messages. (2) For n ≥ 3 and 1 ≤ k ≤ n − 2, there is no weakly-k-
resilient k-set-consensus algorithm using almost-wait-free test-and-set bits and atomic
registers.

Our results strengthen the know results that, in asynchronous systems where processes communicate
either by atomic registers or by sending and receiving messages, there is no 1-resilient consensus
algorithm [21, 31], and there is no k-resilient k-set-consensus algorithm [10, 24, 37].

The table below summarizes the results discussed in this paper. We use the following abbrevia-
tions: “SM” for shared memory, “MP” for message passing, “Yes” means that it is possible to solve
the problem, and “No” means that it is impossible to solve the problem. In the shared memory
model, the (space) complexity bounds are the number of atomic registers required. In the message
passing model, the complexity bounds are the number of messages used.

5

Problem Model Results
Weakly Partially Almost Complexity

wait-free wait-free wait-free upper bound lower bound
Election SM Yes Yes Yes ⌈log n⌉+ 2 ⌈log n⌉+ 1

symmetric from [38]
Election MP Yes Yes Yes n2 − n

symmetric
Test-and-set SM Yes Yes Yes n+ 1 n

symmetric
Perfect renaming SM Yes Yes O(n log n)
one-shot symmetric
Perfect renaming SM Yes Yes O(n2)
long-lived symmetric
Stack, Swap, SM Yes Yes
Fetch-and-add asymmetric
Consensus, SM/MP No No No
Set-consensus

2 Almost-wait-free Symmetric Election

In the leader election problem, processes do not have inputs. Each participating process should
eventually output either 0 or 1 and terminate. At most one process may output the value 1, and in
the absence of faults exactly one of the participating processes should output 1. The process which
outputs 1 is elected as a leader. It is not require that the processes know the identity of the leader.
The elected leader must be one of the participating processes, thus, there can not be an a priori
leader. Notice that, in the presence of faults, it is not required in the above definition that a leader
must eventually be elected.

In asynchronous systems where processes communicate either using atomic registers or by send-
ing and receiving messages, election is impossible with one faulty process [21, 33, 42]. We show
below that almost-wait-free symmetric election is possible in such asynchronous systems. This pos-
sibility result for election is later used for solving perfect renaming. We point out that, it follows
from the results presented in Section 6 for the consensus problem, that for a stronger definition of
election in which it is required that the processes know (i.e., output) the identity of the leader, even
weakly-1-resilient strong-election is impossible.

2.1 Election using atomic registers

In [38], an election algorithm which is not weakly-1-resilient is presented. It is correct under the fol-
lowing assumptions: (1) processes never fail, and (2) only the elected leader is required to terminate.
The election algorithm presented below, is based on the algorithm from [38].

Theorem 2.1 There is an almost-wait-free symmetric election algorithm using ⌈log n⌉ + 2 atomic
registers.

The algorithm below is for n processes each with a unique identifier taken from some (possibly
infinite) set which does not include 0. The algorithm uses the shared registers turn and done and the
array of registers V with ⌈log n⌉ entries indexed 1 through ⌈log n⌉. All these registers are initially
0. Also, for each process, the local variables level and j are used. We denote by e.turn, e.done and
e.V[*] the shared registers of the specific election algorithm (object) named e. This should simplify

6

the construction of algorithms that use election as a basic building block.

AN ALMOST-WAIT-FREE SYMMETRIC ELECTION: process p’s program.

function election (e: object name) return:value in {0, 1}; /* access election object e */
1 e.turn := p;
2 for level := 1 to ⌈log n⌉ do
3 repeat
4 if e.done = 1 then return(0) fi; /* not the leader */
5 if e.turn ̸= p then
6 for j := 1 to level − 1 do if e.V [j] = p then e.V [j] := 0 fi od;
7 return(0) fi /* not the leader */
8 until e.V [level] = 0;
9 e.V [level] := p;
10 if e.turn ̸= p then
11 for j := 1 to level do if e.V [j] = p then e.V [j] := 0 fi od;
12 return(0) fi /* not the leader */
13 od;
14 e.done := 1; return(1). /* leader! */
end function

A process becomes the leader if it manages to write its id into all the registers during the period
that e.turn equals its id. Any process that notices that e.turn is no longer equals its id, gives up on
becoming the leader, and erases any write it has made (lines 6 & 11).

The register done is used to guarantee that in the absence of faults, all the participating processes
will terminate. In the absence of faults, the elected leader will set done to 1, enabling all the other
processes to observe it and terminate. Without the register done, we are back to the solution from
[38] which, even in the absence of faults, only guarantees that the elected leader terminates.

There are runs of the algorithm in which every process manages to set ⌈log n⌉ registers before
discovering that another process has modified e.turn, and as a result has to set back to 0 some of the
registers before terminating. Proving the correctness of the algorithm is rather challenging, due to
the existence of such runs.

In [38], it has been proven that, even in the absence of faults, any election algorithm for n
processes must use at least ⌈log n⌉+ 1 registers. (This lower bound holds even for non-symmetric
algorithms.) Thus, our algorithm which uses ⌈log n⌉ + 2 registers, provides an almost tight space
upper bound.

2.2 A correctness proof for the election algorithm

The proof of the election algorithm is an adaptation of the proof for the algorithm from [38] which
guarantees that only the leader terminates, and is correct only in the absence of faults. The fact that
our election algorithm uses ⌈log n⌉+ 2 atomic registers is obvious from inspecting the algorithm.

Theorem 2.2 (liveness) In the absence of faults, at least one leader is elected.

Proof: First we observe that there is no finite run in which all the n processes return 0 and terminate.
This is so, because in each run, the last process to write into turn never returns 0, unless some other
process sets done to 1 and returns 1.

7

Assume to the contrary that no leader is elected. Let r be an infinite run with no faults where no
leader is elected, and let p be the last processes to write to turn in run r. Let q be the process with
the highest value of level when p writes to turn. At some point q will notice that turn ̸= q, and will
set back to 0, all the entries of the array V which equal to q. Repeat this argument with the new
highest process. Thus, any entry of the array V which process p may wait on, will eventually be set
back to 0, enabling p to proceed until it is elected. A contradiction.

We say that a process is at level k, when the value of its private level register is k. We say that a
group of processes P have noticed together that V [k] = 0, if each process in P : (1) is at level k,
and (2) has notice that V [k] = 0 (when executing the until statement in line 8), before any other
process in P has written V [k] (by executing the assignment in line 9).

Lemma 2.3 For any k ∈ {1, ..., ⌈log n⌉} and for any group of processes P , if the processes P have
noticed together that V [k] = 0 then at most one process in P can either (1) continue to level k + 1
or (2) change any register other than V [k].

Proof: Assume that a set of processes, denoted P , are at level k, and they have noticed together
that V [k] = 0. One of these processes, say p ∈ P , must be the last to update turn. If k = 1, each
process in P − {p} will notice that turn is different from its id (line 10), possibly write 0 into V [1]
(line 11), and return 0 (line 12).

Assume k > 1. To reach level k, each process in P must have seen in all the levels smaller then
k that turn is equal to its id. Thus, before p has set turn to its id, each of the other processes in P ,
must have seen in all the levels smaller then k that turn is equal to its id.

Since the processes in P have noticed together that V [k] = 0, by definition, it must be the case
that before any of the processes in P − {p} could execute the assignment at line 9, p has already
set V [1], ..., V [k − 1] to its id. This implies that by the time each process in P − {p} executes the
statement in line 9, the following two conditions hold: (1) turn is different from its id, and (2) the
values of the registers V [1], ..., V [k− 1] are all different from its id. Thus, by the time each process
in P − {p} executes the if statement in line 10 it finds out that turn is different from its id, possibly
writes 0 into V [k] (line 11), and returns 0 (line 12), without a need to write 0 to any of the registers
V [1], ..., V [k − 1]. Process p, may continue to level k + 1 or itself notices that turn ̸= p and sets
some or all of the registers V [1], ..., V [k− 1] to 0, but it is the only process, among the processes in
P , that may set any shared register other than V [k].

Theorem 2.4 (safety) At most one leader is elected.

For proving the theorem, an accounting system of credits is used. Initially, the number of credits is
2n − 1. New credits can not be created during the execution of the algorithm. The credit system
ensures that a process acquires exactly 2k−1 credits before it can reach level k. Being elected is
equivalent to reaching level log n + 1. Thus, the credit system ensures that a process must acquire
2logn+1−1 = n credits before it can be elected. Once a process is elected, it may not release any of
its credits. Thus, it is not possible for two processes to get elected.

Without loss of generality it is assumed that n, the number of processes, is a power of 2. Initially,
each process holds 1 credit, and each register V [k] where 1 ≤ k ≤ log n holds 2k−1 credits. Thus,
the total number of credits is n +

∑logn
k=1 2k−1 = 2n − 1. As a results of an operation taken

by a process credits may be transferred from a register to a process and vice versa, and between
processes. We list below 4 rules which capture all possible operations by processes and their effect:

8

1. No transfer of credits: No credits are transferred when a process (1) checks the value of a
register, (2) writes into turn, or (3) executes a return statement.

2. Transferring credits between a register and a process: When a process writes its id into
register V [k], changing V [k]’s value from 0 to its id, 2k−1 credits are transferred from V [k]
to that process. When a process writes 0 into register V [k] which does not already holding 0,
2k−1 credits are transferred to V [k] from that process.

Remark: This is the only rule for transferring credits between a register and a process. Ini-
tially, V [k] holds 2k−1 credits, so the first time V [k]’s value changes, it has enough credits to
transfer. Before any subsequent transfer from V [k] to a process, its value has to be set back
to 0, and each time this happens V [k] gets back 2k−1 credits. So, V [k] always has enough
credits to transfer to a process that changes V [k]’s value from 0 to its id (line 9).

A process at level k may changes V [k]’s value back to 0 at most once (line 11). Under the
assumption, which we justify later, that the credit system ensures that a process acquires
exactly 2k−1 credits before it can reach level k, and that these 2k−1 credits are not used for
something else, a process always has enough credits to transfer to V [k] if it changes V [k]’s
value to 0.

3. Transferring credits between processes when moving to an upper level: Let P be a max-
imal1set of processes that have noticed together that V [k] = 0. By Lemma 2.3, at most one
process from P can continue to level k + 1. Assume process p ∈ P continues to level k + 1.
We consider two cases:

• At level k, when executing line 9, process p changes V [k]’s value from 0 to its id. By
rule 2, 2k−1 credits are transferred from V [k] to p. Thus, p has 2k credits available,
2k−1 credits from reaching level k, plus 2k−1 credits from V [k], giving p the total of 2k

credits it needs for level k + 1.
• At level k, when executing line 9, process p does not change V [k]’s value from 0 to its

id. This implies that there must be another process q ∈ P that, before p has executed
line 9, was the last process to change V [k]’s value back to 0. By rule 2, 2k−1 credits are
transferred from V [k] to q. Thus, q has 2k credits available, 2k−1 credits from reaching
level k, plus 2k−1 credits from V [k]. In this case, immediately after p executes line 9,
2k−1 credits are transferred from q to p, leaving q with 2k−1 credits and giving p the
total of 2k credits (2k−1 credits from reaching level k, plus 2k−1 credits from q) it needs
for level k + 1.

By Lemma 2.3, each process in P (including q) that does not continue to the level k + 1 can
only execute V [k] := 0 (line 11), transferring (by Rule 2) to V [k] the 2k−1 credits it has by
getting this far, if it succeeds in changing V [k]’s value back to 0.

4. Transferring credits between processes without moving to an upper level: Let P be a
maximal set of processes that have noticed together that V [k] = 0, and assume that no process
in P continues to level k + 1. By Lemma 2.3, at most one process in P , say process p, can
change any register other than V [k]. We consider two cases:

• At level k, when executing line 9, process p changes V [k]’s value from 0 to its id. By
rule 2, 2k−1 credits are transferred from V [k] to p, Thus, p has 2k credits available, 2k−1

credits from reaching level k, plus 2k−1 credits from V [k].
1A set of processes P is maximal with respect to property ϕ, if (1) P satisfies ϕ, and (2) there is not set Q, such that

P ⊂ Q and Q satisfies ϕ.

9

• At level k, when executing line 9, process p does not change V [k]’s value from 0 to its
id. This implies that there must be another process q ∈ P that, before p has executed
line 9, was the last process to change V [k]’s value back to 0. By rule 2, 2k−1 credits are
transferred from V [k] to q, giving q a total of 2k credits. In this case, immediately after
p executes line 9, 2k−1 credits are transferred from q to p, leaving q with 2k−1 credits,
and giving p a total of 2k credits (2k−1 credits from reaching level k, plus 2k−1 credits
from q).

Setting to 0 every variable from V [1] to V [k] accounts for 2k − 1 credits (i.e.,
∑k

i=1 2
i−1 =

2k − 1), so (in both cases) p has enough credits and no new credits should be created by p
when it sets to 0 multiple registers.

By Lemma 2.3, each process in P − {p} (including q) can only execute V [k] := 0 (line 11),
transferring (by Rule 2) to V [k] the 2k−1 credits it has by getting this far, if it succeeds in
changing V [k]’s value back to 0.

Given the above description of the accounting system, we can now justify the following two claims
made earlier:

1. A process acquires exactly 2k−1 credits before it can reach level k.
This is proven by induction on the level k. For k = 1, the claim follows immediately from
the fact that initially each process has one credit. We assume that the claim holds for level
k and prove that it also holds for level k + 1. By Rule 3, before process p moves to level
k+1, it gets additional 2k−1 credits either from V [k] or from another process. Thus, p has 2k

credits available, 2k−1 credits by the induction hypothesis (from reaching level k) plus 2k−1

as explained above, giving p the total of 2k credits it needs for level k + 1.

2. No new credits are created.
As already explained in Rule 2, V [k] always has enough credits to transfer to a process that
changes V [k]’s value from 0 to its id. Furthermore, since the credit system ensures that a
process acquires exactly 2k−1 credits before it can reach level k, and since these 2k−1 credits
are not used for something else, a process at level k always has enough credits to transfer to
V [k] if it changes V [k]’s value to 0.

By Lemma 2.3, at most one process in a maximal set of processes P that have noticed together
that V [k] = 0, say process p, can change any register other than V [k]. By Rule 4, p has 2k

credits available, 2k−1 credits from reaching level k plus 2k−1 from either V [k] or from
another process. As already explained in Rule 4, setting to 0 every variable from V [1] to V [k]
accounts for 2k − 1 credits (i.e.,

∑k
i=1 2

i−1 = 2k − 1), so (in both cases) p has enough credits
and no new credits should be created by p when it sets to 0 multiple registers.

As already mentioned, initially, the number of credits is 2n − 1. No new credits are created, and a
process must acquire n credits before it can be elected. Once a process is elected, it may not release
any of its credits. Thus, it is not possible for two processes to get elected.

Theorem 2.5 (almost-wait-freedom) In the absence of faults, every participating process eventu-
ally terminates. In the presence of faults, every correct participating process, except maybe one,
eventually terminates.

10

Proof: Once a leader is elected and returns, all correct participating processes will eventually find
out that done = 1 and terminate. In particular, in the absence of faults, since by Theorem 2.2 at
least one leader is eventually elected, all the participating processes will terminate. Also, regardless
of the number of faults, a correct process which is not the last to write into turn, will eventually
either (1) notices this fact, returns 0 and terminates or (2) it will reach line 14, return 1 (i.e., be
elected) and terminates. Thus, in the presence of faults, only the last correct process to write into
turn may be blocked (as a result of a faulty process not setting one of the entries of V back to 0), in
which case no leader will be elected.

2.3 Election in a message passing system

We present a simple election algorithm in which the process with the maximum identifer is elected.

Theorem 2.6 There is an almost-wait-free symmetric election algorithm with n2−n message com-
plexity.

Proof: In the algorithm each process sends its identifer to every other process, and collects, through
the messages seen, identifiers of other processes. As soon as a process collects an identifer which
is bigger than itself it returns 0. If a process collects the identifiers of all the other n− 1 processes,
and finds out that it is the process with the maximum identifer, it returns 1. In the code below my .id
refers to the identifier of the process executing the algorithm, and message.val refers to the value
of the message received. Each process has a local counter variable which is initially set to 0.

ALMOST-WAIT-FREE SYMMETRIC ELECTION ALGORITHM:
program for a process with identifier my .id .

1 send my .id to all the other processes;
2 each time a message is received do
3 if my .id < message.val then return(0) else counter := counter + 1 fi;
4 if counter = n− 1 then return(1) fi /* leader! */
5 od

Clearly, in the absence of faults exactly one process is elected and it is always the process with
the maximum identifier. In the presence of faults, only the correct participating process with the
maximum identifier among the currently participating processes may not terminate, all the other
processes will get a message from it, return 0 and terminate. The message complexity is n2 − n,
since each process sends one message to each other process.

3 Almost-wait-free Symmetric Test-and-set Bit

We show that n registers are necessary and n + 1 registers are sufficient for implementing a single
almost-wait-free test-and-set bit using registers for n processes. A test-and-set bit supports two
atomic operations, called test-and-set and reset. A test-and-set operation takes as argument a shared
bit b, assigns the value 1 to b, and returns the previous value of b (which can be either 0 or 1). A
reset operation takes as argument a shared bit b and writes the value 0 into b.

11

The sequential specification of an object specifies how the object behaves in sequential runs,
that is, in runs when its operations are applied sequentially. The sequential specification of a test-
and-set bit is quite simple. In sequential runs, the first test-and-set operation returns 0, a test-and-set
operation that happens immediately after a reset operation also returns 0, and all other test-and-set
operations return 1. We require that, although operations of processes may overlap, each operation
should appear to take effect instantaneously. In particular, operations that do not overlap should
take effect in their “real-time” order. This correctness requirement is called linearizability [25].

3.1 An upper bound

The algorithm below is for n processes each with a unique identifier taken from some (possibly
infinite) set which does not include 0. It makes use of exactly n registers which are long enough
to store a process identifier and one atomic bit. The algorithm is based on the symmetric mutual
exclusion algorithm presented in [38].

Theorem 3.1 There is an almost-wait-free symmetric algorithm which implements a test-and-set
bit using atomic registers. The algorithm is for n processes and uses n+ 1 atomic registers.

The algorithm uses a register, called turn, to indicate who has priority to return 1, n−1 lock registers
to ensure that at most one process will return 1 between resets, and a bit, called winner, to indicate
whether some process already returned 1. Initially the values of all these shared registers are 0. In
addition, each process has a private boolean variable, called locked. We denote by b.turn, b.winner
and b.lock[*] the shared registers for the implementation of a specific test-and-set bit, named b.

AN ALMOST-WAIT-FREE SYMMETRIC TEST-AND-SET BIT: process p’s program.

function test-and-set (b:bit) return:value in {0, 1}; /* access bit b */
1 if b.turn ̸= 0 then return(0) fi; /* lost */
2 b.turn := p;
3 repeat
4 for j := 1 to n− 1 do /* get locks */
5 if b.lock[j] = 0 then b.lock[j] := p fi od
6 locked := 1;
7 for j := 1 to n− 1 do /* have all locks? */
8 if b.lock[j] ̸= p then locked := 0 fi od;
9 until b.turn ̸= p or locked = 1 or b.winner = 1;
10 if b.turn ̸= p or b.winner = 1 then
11 for j := 1 to n− 1 do /* lost, release locks */
12 if b.lock[j] = p then b.lock[j] := 0 fi od
13 return(0) fi;
14 b.winner := 1; return(1). /* wins */
end function

function reset (b:bit); /* access bit b */
1 b.winner := 0; b.turn := 0; /* release locks */
2 for j := 1 to n− 1 do
3 if b.lock[j] = p then b.lock[j] := 0 fi od.
end function

12

In the test-and-set operation, a process, say p, initially checks whether b.turn ̸= 0, and if so returns
0. Otherwise, p takes priority by setting b.turn to p, and attempts to obtain all the n − 1 locks by
setting them to p. This prevents other processes that also saw b.turn = 0 and set b.turn to their ids
from entering. That is, if p obtains all the locks before the other processes set b.turn, they will not be
able to get any of the locks since the values of the locks are not 0. Otherwise, if p sees b.turn ̸= p
or b.winner = 1, it will release the locks it holds, allowing some other process to proceed, and will
return 0. In the reset operation, p sets b.turn to 0, so the other processes can proceed, and releases
all the locks it currently holds.

3.2 A correctness proof for the test-and-set algorithm

We prove that our implementation is linearizable w.r.t. the sequential specification of a test-and-set
bit mentioned earlier. For that it is enough to prove the following theorems. We say that run is well
structured, if in that run a reset operation may be initiated only by a process that its last operation
(before applying the reset operation) is a test-and-set operation which has returned 0. We say that a
process is a winner in a given finite run, if the last completed operation of that process in the run is
a test-and-set operation which has returned 0.

Theorem 3.2 (safety) There is at most one winner in any well structured run.

Proof: Assume some process p is a winner. We show that no other process can become a winner
before p preforms a reset operation. When process p last accessed turn and the n − 1 locks, the
value of each of these n shared registers was p. Any other process has to set all the n − 1 locks
and see turn set to its value for it to become a winner. But a process always checks a lock before
writing it, and can only change one lock which has been already set (and not released yet) by some
other process. So if all the n shared registers have the value p, and each of the remaining n − 1
processes can overwrite at most one such register, at least one shared register must still hold the
value p, preventing processes other than p from becoming winners.

We say that a pending test-and-set operations is potentially successful if no process has become a
winner since the operation was issued.

Theorem 3.3 (liveness) In the absence of faults, at least one process will eventually become a
winner, in any given run with potentially successful pending test-and-set operations.

Proof: Assume to the contrary that no process will become a winner. Since no process becomes a
winner, turn is not set back to 0, and hence turn must eventually have a nonzero value, say p, and
this value will not change thereafter. Every participating process other than p will eventually notice
turn = p, it will release the locks it holds, will return 0 and thereafter will not update any other
registers because turn is not zero. At this point, since process p always finds turn = p, nothing is
preventing process p from getting all the locks and becoming a winner. A contradiction.

Theorem 3.4 (almost-wait-freedom) In the absence of faults, every participating process (i.e,
pending operation) eventually returns. In the presence of faults, every correct participating pro-
cess, except maybe one, eventually returns.

13

Proof: Once some process becomes the winner and returns 1, as long as the winner does not initiate
a reset operation, all correct participating processes will eventually find out that done = 1 and return
0. In particular, in the absence of faults, since by Theorem 3.3 at least one process will eventually
become the winner, all the participating processes will return. Also, regardless of the number of
faults, a correct process which is not the last to write turn, will eventually either notice this fact and
return 0 or becomes the winner and returns 1. Thus, in the presence of faults, only the last process
to write turn may be blocked.

3.3 A lower bound

We show that the n+ 1 space upper bound is almost tight.

Observation 3.5 (lower bound) Even in the absence of faults, any implementation of a test-and-set
bit for n processes using atomic registers must use at least n atomic registers.

Proof: In [15, 17], it is proven that any deadlock-free mutual exclusion algorithm for n processes
must use at least n shared registers. On the other hand, it is trivial to implement a deadlock-free
mutual exclusion algorithm for n processes using a single test-and-set bit, say x, as follows: A
process first keeps on accessing x until, in one atomic step, it succeeds to change x from 0 to 1.
Then, the process can safely enter its critical section. The exit code is to reset x to 0. It is trivial to
show that the algorithm satisfies mutual exclusion and is deadlock-free. The result follows.

4 Partially-wait-free Symmetric Perfect Renaming

A renaming algorithm allows processes with initially distinct initial names from a large name space
to acquire distinct new names from a small name space. A perfect renaming algorithm allows n
processes with initially distinct names from a large name space to acquire distinct new names from
the set {1, ...n}. A one-shot renaming algorithm allows each process to acquire a distinct new name
just once. A long-lived renaming algorithm allows processes to repeatedly acquire distinct names
and release them (however, once a process acquires a new name it must first release it before trying
to acquire another one).

It is well known that, in asynchronous systems where processes communicate by reading and
writing atomic registers there is no 1-resilient perfect renaming algorithm [5, 33, 42]. Contrary to
this impossibility result, we show that there is a partially-wait-free perfect renaming algorithm in
such a shared memory systems. A partially-wait-free renaming algorithm, should guarantee that t
failures, where 1 ≤ t ≤ n− 1, may prevent at most t correct participating processes from acquiring
new names.

Theorem 4.1 There is a partially-wait-free symmetric one-shot perfect renaming algorithm using
either n− 1 almost-wait-free election objects or O(n log n) registers.

Proof: First we present an algorithm which uses n − 1 almost-wait-free election objects. The
election objects are indexed 1,2,....,n − 1. Each process scans the objects, in order, starting with
object number 1. At each step, the process applies the election operation, and either: moves to the
next object if it is not elected in object i < n−1, stops if it is being elected, or stops if it not elected

14

in object n − 1. The process is assigned either the name equal to the index of the object on which
its election operation has succeeded, or n if it is not elected in all n − 1 objects. Notice that at
most n − i + 1 processes may participate in object i, for 1 ≤ i ≤ n − 1. Thus, by Theorem 2.1,
the almost-wait-free, election object indexed i, where 1 ≤ i ≤ n − 1, can be implemented using
⌈log(n− i+ 1)⌉+ 2 atomic registers. Thus, the number of registers used are at most:

3(n− 1) +
n∑

i=2

log i = 3(n− 1) + log n! = O(n log n).

The result follows.

Theorem 4.2 There is a partially-wait-free symmetric long-lived perfect renaming algorithm using
either n− 1 almost-wait-free test-and-set bits or O(n2) atomic registers.

Proof: First we present an algorithm which uses n − 1 almost-wait-free test-and-set bit bits. The
bits have initial values 0, and are indexed 1,2,....,n−1. Each process scans the bits, in order, starting
with bit number 1. At each step, the process applies a test-and-set operation, and either: moves to
the next bit if the returned value is 1 in bit i < n− 1, stops when the returned value is 0, or stops if
the returned value is 1 in bit n− 1. The process is assigned the name equal to the index of the bit on
which its (last) test-and-set operation returned 0, or n if the returned value is 1 in all n − 1 bits. A
process which is assigned the name i can later release this name by applying a reset operation to the
i’th bit setting its value back to 0. A process which is assigned the name n doesn’t have to access
any shared bit to release the name n. At most n − i + 1 processes may concurrently access the bit
indexed i, for 1 ≤ i ≤ n − 1. Thus, by Theorem 3.1, the bit indexed i, where 1 ≤ i ≤ n − 1, can
be implemented using n− i+ 2 registers. Thus, the number of registers used are:

n∑
i=2

(i+ 1) =
n2 + 3n− 4

2
.

The result follows.

5 Partially-wait-free fetch-and-add, swap, and stack objects

A fetch-and-add object supports one operation, which takes as arguments a shared register r, and
a value val. The value of r is incremented by val, and the old value of r is returned. A swap
object supports one operation, which takes as arguments a shared registers and a local register and
atomically exchange their values. A concurrent stack is a linearizable object that supports push
and pop operations, by several processes, with the usual stack semantics. A sequential process is a
process that has at most one pending operation at any given time.

Lemma 5.1 Assume that there is a wait-free implementation for n sequential processes of an ob-
ject o using wait-free test-and-set bits and atomic registers. Then, there is a partially-wait-free
implementation for n processes of o using atomic registers only.

15

Proof: Let A be a wait-free implementation for n sequential processes of an object o using k wait-
free test-and-set bits, denoted TS1, ..., TSk and registers. Let A′ be the implementation A where
each wait-free test-and-set bit TSi, where i ∈ {1, ..., k}, is replaced with an implementation of an
almost-wait-free test-and-set bit, denoted TS

′
i , from atomic registers. Recall that by Theorem 3.1,

it is possible to implement almost-wait-free test-and-set bit using atomic registers.

While executing A′, a failure of a process, say p, may prevent at most one correct process from
completing its operation in A′. To see that, consider two cases: (1) the failure occurred during the
execution of an operation, by p, on some almost-wait-free test-and-set bit TS

′
i (i ∈ {1, ...,K}), and

(2) the failure occurred while p did not execute an operation on some almost-wait-free test-and-set
bit. In the first case, by definition of almost-wait-freedom, the failure of p may prevent at most one
correct process from completing its operation on TS

′
i and has no effect on the other processes. In

particular, the failure of p has no effect on processes executing an operation on TS
′
j , where i ̸= j.

In the second case, since the original algorithm A is a wait-free, such a failure would not prevent
any correct process from completing its operation in A′.

Thus, a failure of t processes may prevent at most t correct processes from completing their
operations. This implies that A′ is a partially-wait-free implementation of o using almost-wait-free
test-and-set bits and registers. The result follows.

Theorem 5.2 There are partially-wait-free implementations for n processes of a fetch-and-add ob-
ject, a swap object, and a stack object using atomic registers only.

Proof: In [3], a class of shared objects, called Common2, were defined. Each object in Com-
mon2 is known to have a wait-free implementation from registers together with any other object
in Common2, for an arbitrary number of sequential processes. Commonly used primitives such as
test-and-set, fetch-and-add, swap, and stack are in Common2 [2, 3]. Thus, any of the objects in
Commom2 has a wait-free implemention using registers and wait-free test-and-set bits, for arbitrary
number of sequential processes. (The implementations presented in [3] are not symmetric.) This
last observation together with Lemma 5.1 implies that there are partially-wait-free implementations
for n processes of a fetch-and-add object, a swap object, and a stack object using atomic registers
only.

6 Impossibility Results for Consensus and Set-consensus

The k-set consensus problem is to find a solution for n processes, where each process starts with
an input value from some domain, and must choose some participating process’ input as its output.
All n processes together may choose no more than k distinct output values. The 1-set consensus
problem, is the familiar consensus problem for n processes.

The consensus and set-consensus problems belong to a class of problems called colorless tasks.
Colorless tasks (also called convergence tasks [11]) allow a process to adopt an input or output
value of any other participating process, so the task can be defined in terms of input and output sets
instead of vectors.

For proving the following lemma we need to assume a model where participation is required.
Recall that with required participation every process must eventually execute its code.

16

Lemma 6.1 Assume a model where participation is required, n ≥ 3 and t ≤ n−2. When processes
communicate either by reading and writing atomic registers or by sending and receiving messages,
for any colorless task T : there is a weakly-t-resilient algorithm which solves T if and only if there
is a t-resilient algorithm which solves T .

Proof: Let A be a weakly-t-resilient algorithm using atomic registers which solves T . We use
A to implement a t-resilient algorithm, called A′, which uses atomic registers and solves T . An
additional shared register called output is used, which has initial value ⊥. Every process executes
as in A, and before it terminates it writes its output into output. During its execution of A, a process
also continuously checks whether output ̸= ⊥, and in case the test is positive, it adopts the value of
output as its own output value and terminates. Since participation is required, n ≥ 3 and t ≤ n− 2,
one correct process will eventually terminate. Once one correct process writes its output into output,
it is guaranteed that each participating correct will eventually either terminates according its code
in A, or will notice that output ̸= ⊥, and terminates. The resulting algorithm is A′. Proving the
other direction is trivial. The proof for the case where communication is by sending and receiving
messages is almost the same. Instead of writing to output, a process sends its decision to everyone
before terminating. Each process that receives a message with such a decision value, decides on
that value, sends it to everyone and terminates.

The following results hold for a model where participation is required, and thus also hold for a
model where participation is not required.

Theorem 6.2 For n ≥ 3, there is no weakly-1-resilient consensus algorithm using either reading
and writing atomic registers or sending and receiving messages.

Proof: The proof follows from Lemma 6.1 and the known result that there is no 1-resilient consensus
algorithm using either reading and writing atomic registers or sending and receiving messages [21,
31]. This known impossibility result was proved for a model where participation is required and
thus also trivially holds for a model where participation is not required.

Theorem 6.3 For n ≥ 3 and 1 ≤ k ≤ n − 2, there is no weakly-k-resilient k-set-consensus
algorithm using either reading and writing atomic registers or sending and receiving messages.

Proof: The proof follows from Lemma 6.1 and the known result the there for 1 ≤ k ≤ n − 1, is
no k-resilient k-set-consensus algorithm for n processes using atomic registers [10, 24, 37]. The
impossibility result for the message passing model follows immediately from the one for the shared
memory model. This known impossibility result was proved for a model where participation is
required and thus also trivially holds for a model where participation is not required.

Corollary 6.4 For n ≥ 3 and 1 ≤ k ≤ n − 2, there is no weakly-k-resilient k-set-consensus
algorithm using almost-wait-free test-and-set bits and atomic registers.

Proof: The proof follows immediately from Theorem 3.1 and Theorem 6.3.

17

7 Related Work

The mutual exclusion problem was first stated and solved for n processes by Dijkstra in [20]. Nu-
merous solutions for the problem have been proposed since it was first introduced in 1965. Because
of its importance and as a result of new hardware and software developments, new solutions to the
problem are being designed all the time. In [15, 17], Burns and Lynch have shown that any deadlock-
free mutual exclusion algorithm for n processes using registers must use at least n shared registers,
even when multi-writer registers are allowed. Most modern processor architectures support some
form of “read-modify-write” interprocess synchronization such as test-and-set. Results regarding
solving mutual exclusion using test-and-set bits can be found in [4, 13, 14, 28, 35]. Dozens of
interesting mutual exclusion algorithms and lower bounds are described in details in [36, 39].

The election problem (sometimes called the one shot mutual exclusion problem) is a special
case of the mutual exclusion problem where only one process is allowed enter once its critical
section. This process is the elected leader. A symmetric election algorithm is presented in [38], for
n processes, which uses only three atomic registers, in the absence of failures. The three registers
solution is correct in a model where participation is required. The authors also showed that when
participation is not required, ⌈log n⌉+1 registers are necessary and sufficient for solving the election
problem, in the absence of failures. In addition, in [38], Styer and Peterson have proved that n
registers are necessary and sufficient for deadlock-free symmetric mutual exclusion, while n +
2⌈log n⌉ + 1 registers are sufficient for starvation-free symmetric mutual exclusion. Finally, they
proved that 2n − 1 registers are necessary and sufficient for memoryless starvation-free symmetric
mutual exclusion. We use some key ideas from [38], in our implementations of an almost-wait-free
election object and an almost-wait-free test-and-set bit.

The impossibility result that there are no election algorithm and no perfect renaming algorithm
that can tolerate a single crash failure was first proved for the asynchronous message-passing model
in [6, 33], and later has been extended for the shared memory model in [42]. The one-shot renaming
problem was first solved for message-passing systems [6], and later for shared memory systems
[9]. In [16] a long-lived wait-free renaming algorithm was presented. The ℓ-assignment algorithm
presented in [16], can be used as an an optimal name space long-lived renaming algorithm with
exponential step complexity. Several of the many papers on renaming are [1, 7, 8, 12, 18, 22, 24,
27, 32].

The consensus problem was formally defined in [34]. The impossibility result that there is
no consensus algorithm that can tolerate even a single crash failure was first proved for the asyn-
chronous message-passing model in [21], and later has been extended for the shared memory model
with atomic registers, in [31]. The impossibility result that, for 1 ≤ k ≤ n−1 there is no k-resilient
k-set-consensus algorithm for n processes using atomic registers, is from [10, 24, 37].

Extensions of the notion of fault tolerance, which are different from those considered in this
paper, were proposed recently in[19] where, by introducing new adversaries and new progress con-
ditions, a precise way is presented to characterize adversaries by introducing the notion of disagree-
ment power: the biggest integer k for which the adversary can prevent processes from agreeing
on k values when using registers only; and it is shown how to compute the disagreement power
of an adversary. The ability to solve consensus under various symmetric and asymmetric progress
conditions was studied in [26, 40].

In [41], the author has considered new types of weak crash failures, where failures may occur
only until a certain predefined threshold on the level of contention is reached. The utility of the new
definitions, was illustrated by deriving possibility and impossibility results for the well-known basic

18

problems of consensus and k-set consensus. Weak crash failures should be viewed as fractions of
traditional crash failures, and enable to design algorithms that can tolerate several (traditional) crash
failures plus several additional weak crash failures. Furthermore, adding the ability to tolerate weak
crash failures to algorithms that are already designed to circumvent various impossibility results for
traditional crash failures, such as the Paxos algorithm [30], can make such algorithms even more
robust against possible failures.

A comprehensive discussion of wait-free synchronization is given in [23]. In [3], a class of
objects called Common2 is defined. Each object in Common2 has a wait-free implementation from
registers together with any other object in Common2, for arbitrary number of processes. Commonly
used objects such as test-and-set, fetch-and-add, swap, and stack are in Common2 [2, 3]. In [25],
the related notion of a non-blocking is introduced. It guarantees that some correct process with a
pending operation, will always be able to complete its operation in a finite number of its own steps
regardless of the execution speed of other processes. For one-shot objects (like election, consensus,
one-shot renaming) wait-freedom and non-blocking are the same.

8 Discussion

We have refined the traditional notion of t-resiliency by defining the finer grained notion of (t, f)-
resiliency. In particular, we have extended the investigation of fault-tolerance by presenting several
new notions: weakly-t-resiliency, partially-t-resiliency and almost-t-resiliency.

In the traditional notion of t-resiliency it is assumed that failures are uniform: processes are
equally probable to fail, and failure of one process does not affect the reliability of the other pro-
cesses. As discussed in [29], in real systems, failures may be correlated because of software or
hardware features shared by subsets of processes. Our new resiliency notions can be defined simi-
larly also for such non-uniform failure models, and it would be interesting to extend our results to
cover such failure models.

All our results are presented in the context of crash failures in asynchronous systems, it would be
interesting to consider also other types of failures such as omission failures and Byzantine failures,
and to consider synchronous systems. Another interesting direction would be to extend the results
for other objects. In particular, is there an almost-wait-free (or even a weakly-wait-free) imple-
mentation of a shared queue object from registers? We have assumed that the number of processes
is finite and known. It would be interesting to consider also the case of unbounded concurrency.
Considering failure detectors in the context of the new definition is another interesting direction.

Several other questions are left open. We have presented a symmetric almost-wait-free imple-
mentation of a test-and-set bit from registers. Are there similar symmetric almost-wait-free im-
plementations for perfect renaming, stack, swap and fetch-and-add objects from registers? In case
that there is no almost-wait-free perfect renaming, what is the smallest m for which there is a so-
lution for almost-wait-free renaming in which a process always gets a distinct name in the range
{1, ...,m}? Finally, are there implementations which are more space, time or message efficient than
the implementations presented?

Acknowledgements: I wish to thank the three anonymous referees for their constructive sugges-
tions and corrections.

19

References

[1] Y. Afek, H. Attiya, A. Fouren, G. Stupp, and D. Touitou. Long-lived renaming made adaptive.
In Proc. 18th ACM Symp. on Principles of Distributed Computing, pages 91–103, May 1999.

[2] Y. Afek, E. Gafni, and A. Morrison. Common2 extended to stacks and unbounded concur-
rency. In Proc. 25th ACM Symp. on Principles of Distributed Computing, pages 218–227,
2006.

[3] Y. Afek, E. Weisberger, and H. Weisman. A completeness theorem for a class of synchro-
nization objects. In Proc. 12th ACM Symp. on Principles of Distributed Computing, pages
159–170, 1993.

[4] J. H. Anderson and M. Moir. Using k-exclusion to implement resilient, scalable shared objects.
In Proc. 14th ACM Symp. on Principles of Distributed Computing, pages 141–150, August
1994.

[5] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk. Achievable cases in an
asynchronous environment. In Proc. 28th IEEE Symp. on Foundations of Computer Science,
pages 337–346, October 1987.

[6] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk. Renaming in an
asynchronous environment. Journal of the Association for Computing Machinery, 37(3):524–
548, July 1990.

[7] H. Attiya and A. Fouren. Polynomial and adaptive long-lived (2k − 1)-renaming. In Proc.
14th International Symp. on Distributed Computing: Lecture Notes in Computer Science 1914,
pages 149–163, October 2000.

[8] H. Attiya and A. Fouren. Algorithms adapting to point contention. Journal of the ACM,
50(4):144–468, 2003.

[9] A. Bar-Noy and D. Dolev. Shared memory versus message-passing in an asynchronous dis-
tributed environment. In Proc. 8th ACM Symp. on Principles of Distributed Computing, pages
307–318, 1989.

[10] E. Borowsky and E. Gafni. Generalizecl FLP impossibility result for t-resilient asynchronous
computations. In Proc. 25th ACM Symp. on Theory of Computing, pages 91–100, 1993.

[11] E. Borowsky, E. Gafni, N. A. Lynch, and S. Rajsbaum. The BG distributed simulation algo-
rithm. Distributed Computing, 14(3):127–146, 2001.

[12] A. Brodsky, F. Ellen, and P. Woelfel. Fully-adaptive algorithms for long-lived renaming. Dis-
tributed Computing, 24(2):119–134, 2011.

[13] J. E. Burns, M. J. Fischer, P. Jackson, N. A. Lynch, and G. L. Peterson. Shared data require-
ments for implementation of mutual exclusion using a test-and-set primitive. In Proc. of the
International Conf. on Parallel Processing, pages 79–87, August 1978.

[14] J. E. Burns, P. Jackson, N. A. Lynch, M. J. Fischer, and G. L. Peterson. Data requirements for
implementation of N -process mutual exclusion using a single shared variable. Journal of the
Association for Computing Machinery, 29(1):183–205, 1982.

20

[15] J.E. Burns and A.N. Lynch. Mutual exclusion using indivisible reads and writes. In 18th an-
nual allerton conference on communication, control and computing, pages 833–842, October
1980.

[16] J.E. Burns and G.L. Peterson. The ambiguity of choosing. In Proc. 8th ACM Symp. on Prin-
ciples of Distributed Computing, pages 145–158, August 1989.

[17] J.N. Burns and N.A. Lynch. Bounds on shared-memory for mutual exclusion. Information
and Computation, 107(2):171–184, December 1993.

[18] A. Castaneda, S. Rajsbaum, and M. Raynal. The renaming problem in shared memory systems:
An introduction. Computer Science Review, 5(3):229–251, 2011.

[19] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmanns. The disagreement power
of an adversary. In Proc. 28th ACM Symp. on Principles of Distributed Computing, pages
288–289, 2009.

[20] E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8(9):569, 1965.

[21] M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374–382, 1985.

[22] E. Gafni, M. Merritt, and G. Taubenfeld. The concurrency hierarchy, and algorithms for
unbounded concurrency. In Proc. 20th ACM Symp. on Principles of Distributed Computing,
pages 161–169, August 2001.

[23] M. P. Herlihy. Wait-free synchronization. ACM Trans. on Programming Languages and Sys-
tems, 13(1):124–149, January 1991.

[24] M. P. Herlihy and N. Shavit. The topological structure of asynchronous computability. Journal
of the ACM, 46(6):858–923, July 1999.

[25] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. on Programming Languages and Systems, 12(3):463–492, 1990.

[26] D. Imbs, M. Raynal, and G. Taubenfeld. On asymmetric progress conditions. In Proc. 29th
ACM Symp. on Principles of Distributed Computing, pages 55–64, 2010.

[27] M. Inoue, S. Umetani, T. Masuzawa, and H. Fujiwara. Adaptive long-lived O(k2)-renaming
with O(k2) steps. In 15th international symposium on distributed computing, 2001.

[28] E. Kushilevitz and M. O. Rabin. Randomized mutual exclusion algorithms revisited. In Proc.
11th ACM Symp. on Principles of Distributed Computing, pages 275–283, 1992.

[29] P. Kuznetsov. Understanding non-uniform failure models. Distributed computing column
of the Bulletin of the European Association for Theoretical Computer Science (BEATCS),
106:54–77, 2012.

[30] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, July 1998.

[31] M.C. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, 4:163–183, 1987.

21

[32] M. Moir and J. H. Anderson. Wait-free algorithms for fast, long-lived renaming. Science of
Computer Programming, 25(1):1–39, October 1995.

[33] S. Moran and Y. Wolfstahl. Extended impossibility results for asynchronous complete net-
works. Information Processing Letters, 26(3):145–151, 1987.

[34] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, 1980.

[35] G. L. Peterson. New bounds on mutual exclusion problems. Technical Report TR68, Univer-
sity of Rochester, February 1980 (Corrected, Nov. 1994).

[36] M. Raynal. Algorithms for mutual exclusion. The MIT Press, 1986. Translation of: Algorith-
mique du parallélisme, 1984.

[37] M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM Journal on Computing, 29, 2000.

[38] E. Styer and G. L. Peterson. Tight bounds for shared memory symmetric mutual exclusion
problems. In Proc. 8th ACM Symp. on Principles of Distributed Computing, pages 177–191,
August 1989.

[39] G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson / Prentice-
Hall, 2006. ISBN 0-131-97259-6, 423 pages.

[40] G. Taubenfeld. The computational structure of progress conditions. In 24th international
symposium on distributed computing (DISC 2010), September 2010. LNCS 6343 Springer
Verlag 2010, 221–235.

[41] G. Taubenfeld. Brief Announcement: Computing in the presence of weak crash failures. In:
Proc. 35th ACM Symp. on Principles of Distributed Computing (PODC ’16), pages 349–351,
July 2016.

[42] G. Taubenfeld and S. Moran. Possibility and impossibility results in a shared memory envi-
ronment. Acta Informatica, 33(1):1–20, 1996.

22

