
Contention-sensitive Data Structures and

Algorithms∗

Gadi Taubenfeld†

March 28, 2017

Abstract

A contention-sensitive data structure is a concurrent data structure in which the over-
head introduced by locking is eliminated in common cases, when there is no contention,
or when processes with non-interfering operations access it concurrently. When a pro-
cess invokes an operation on a contention-sensitive data structure, in the absence of
contention or interference, the process must be able to complete its operation in a small
number of steps and without using locks. Using locks is permitted only when there
is interference. We formally define the notion of contention-sensitive data structures,
propose four general transformations that facilitate devising such data structures, and
illustrate the benefits of the approach by implementing a contention-sensitive consensus
algorithm, a contention-sensitive double-ended queue data structure, and a contention-
sensitive election algorithm.

Keywords: Contention-sensitive, interference, synchronization, locks, shortcut code,
disable-free, prevention-free, livelock, starvation, k-obstruction-free, wait-free.

∗A preliminary version of the results presented in this paper, has appeared in Proceedings of the 23rd

International Symposium on Distributed Computing (DISC 2009), Elche, Spain, September 2009.
†The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel. tgadi@idc.ac.il

1

1 Introduction

1.1 Motivation

Concurrent access to a data structure shared among several processes must be synchronized
in order to avoid interference between conflicting operations. Mutual exclusion locks are
the de facto mechanism for concurrency control on concurrent data structures: a process
accesses the data structure only inside a critical section code, within which the process is
guaranteed exclusive access. Any sequential data structure can be easily made concurrent
using such a locking approach. The popularity of this approach is largely due to the appar-
ently simple programming model of such locks, and the availability of lock implementations
which are reasonably efficient.

When using locks, the granularity of synchronization is important. Using a single lock
to protect the whole data structure, allowing only one process at a time to access it, is
an example of coarse-grained synchronization. In contrast, fine-grained synchronization
enables to lock “small pieces” of a data structure, allowing several processes with non-
interfering operations to access it concurrently. Coarse-grained synchronization is easier to
program but is less efficient compared to fine-grained synchronization.

Using locks may, in various scenarios, degrade the performance of concurrent applica-
tions, as it enforces processes to wait for a lock to be released. Moreover, slow or stopped
processes may prevent other processes from ever accessing the data structure. Locks can
introduce false conflicts, as different processes with non-interfering operations contend for
the same lock, only to end up accessing disjoint data.

A promising approach is the design of concurrent data structures and algorithms which
avoid locking. The advantages of such algorithms are that they are not subject to prior-
ity inversion, they are resilient to failures, and they do not suffer significant performance
degradation from scheduling preemption, page faults or cache misses. On the other hand,
such algorithms may impose too much overhead upon the implementation and are often
complex.

We propose an intermediate approach for the design of concurrent data structures,
which incorporates ideas from the work on data structures which avoid locking. While
the approach guarantees the correctness and fairness of a concurrent data structure un-
der all possible scenarios, it is especially efficient in common cases when there is no (or
low) contention, or when processes with non-interfering operations access a data structure
concurrently.

1.2 Contention-sensitive data structures: The basic idea

Contention for accessing a shared object is usually rare in well designed systems. Con-
tention occurs when multiple processes try to acquire a lock at the same time. Hence,
a desired property in a lock implementation is that, in the absence of contention, a pro-
cess can acquire the lock extremely fast, without unnecessary delays. Furthermore, such
fast implementations decrease the possibility that processes which invoke operations on the
same data structure in about the same time but not simultaneously, will interfere with each
other. However, locks were introduced in the first place to resolve conflicts when there is
contention, and acquiring a lock always introduces some overhead, even in the cases where
there is no contention or interference.

2

We propose an approach which, in common cases, eliminates the overhead involved in
acquiring a lock. The idea is simple: assume that, for a given data structure, it is known
that in the absence of contention or interference it takes some fixed number of steps, say at
most 10 steps, to complete an operation, not counting the steps involved in acquiring and
releasing the lock. According to our approach, when a process invokes an operation on a
given data structure, it first tries to complete its operation, by executing a short code, called
the shortcut code, which does not involve locking. Only if it does not manage to complete
the operation fast enough, i.e., within 10 steps, it tries to access the data structure via
locking. The shortcut code is required to be wait-free. That is, its execution by a process
takes only a finite number of steps and always terminates, regardless of the behavior of the
other processes.

Using an efficient shortcut code, although eliminates the overhead introduced by locking
in common cases, introduces a major problem: we can no longer use a sequential data
structure as the basic building block, as done when using the traditional locking approach.
The reason is simple, many processes may access the same data structure simultaneously
by executing the shortcut code. Furthermore, even when a process acquires the lock, it is
no longer guaranteed to have exclusive access, as another process may access the same data
structure simultaneously by executing the shortcut code.

Thus, a central question which we are facing is: if a sequential data structure cannot
be used as the basic building block for a general technique for constructing a contention-
sensitive data structure, then what is the best data structure to use? Before we proceed
to discuss formal definitions and general techniques, which will also help us answering the
above question, we demonstrate the idea of using a shortcut code to avoid locking – in the
absence of synchronization conflicts – by presenting a contention-sensitive solution to the
binary consensus problem using atomic read/write registers and a single lock.

1.3 A simple example: Contention-sensitive consensus

The consensus problem is to design an algorithm in which all correct processes reach a
common decision based on their initial opinions. A consensus algorithm is an algorithm
that produces such an agreement. While various decision rules can be considered such as
“majority consensus”, the problem is interesting even where the decision value is constrained
only when all processes are unanimous in their opinions, in which case the decision value
must be the common opinion. A consensus algorithm is called binary consensus when the
number of possible initial opinions is two.

Processes are not required to participate in the algorithm, however, once a process starts
participating it is guaranteed that it may fail only while executing the shortcut code. The
algorithm uses an array x[0..1] of two atomic bits, and two atomic registers y and out. After
a process executes a decide() statement, it immediately terminates.

Contention-sensitive Binary Consensus: program for process pi with input ini ∈
{0, 1}.

shared x[0..1] : array of two atomic bits, initially both 0
y, out : atomic registers which range over {⊥, 0, 1}, initially both ⊥

1 x[ini] := 1 // start shortcut code

3

2 if y =⊥ then y := ini fi

3 if x[1− ini] = 0 then out := ini; decide(ini) fi
4 if out 6=⊥ then decide(out) fi // end shortcut code

5 lock if out =⊥ then out := y fi unlock ; decide(out) // locking

When a process runs alone (either before or after a decision is made), it reaches a decision
after accessing the shared memory at most five times. Furthermore, when all the concur-
rently participating processes have the same preference – i.e., when there is no interference
– a decision is also reached within five steps and without locking. Two processes with con-
flicting preferences, which run at the same time, will not resolve the conflict in the shortcut
code if both of them find y =⊥. In such a case, some process acquires the lock and sets the
value of out to be the final decision value. The assignment out := y requires two memory
references and hence it involves two atomic steps.

1.4 Interference

In the context of physics (wave propagation) or telecommunications (signal disruption)
the notion of interference is well understood and defined. In the distributed computing
literature, the notion of interference is extensively used but is not formally defined. Below
I explain what interference means in the context of distributed computing.

The notion of interference between operations, which is commonly used in distributed
computing, has different interpretations at the semantic (abstract) level and at the imple-
mentation level. At the semantic level, when referring only to the meaning (i.e., definitions)
of the operations, (two or more) operations interfere if the execution of one may effect the
results of the others. For example, when solving consensus, the operations of participating
processes may interfere if they have different preferences. However, if all preferences are the
same then, the final result is determined regardless of the implementation. At the imple-
mentation level, operations interfere if the execution of one effects in any way (by disrupting
or delaying) the execution of the other operations. For example, this may happen when
using locks, where a process has to wait for a lock to be released.

Using a lock, any two operations may interfere (at the implementation level) with each
other. That is, locks do not distinguish between operations that are semantically non-
interfering. Consider, for example, the contention-sensitive consensus from Section 1.3.
Assume that there are million processes. When all the concurrently participating processes
have the same preference a decision is reached within five read/write steps of each process.
On the other hand, when implementing consensus using coarse-grained locking, these million
processes may have to go through the lock one at a time.

1.5 Progress conditions

A process executes a sequence of steps as defined by its algorithm. A process executes
correctly its algorithm until it (possibly) crashes. After it has crashed a process executes no
more steps. Given a run, a process that crashes is said to be faulty in that run, otherwise
it is correct. In an asynchronous system there is no way to distinguish between a faulty
process and a process that is very slow. We will consider both the case where it is assumed
that processes never fail and the case where processes may fail by crashing.

4

Several progress conditions have been proposed for data structures which avoid locking,
and in which processes may fail by crashing. Wait-freedom guarantees that every active
process will always be able to complete its pending operations in a finite number of steps
[14]. Non-blocking (which is also called lock-freedom) guarantees that some active process
will always be able to complete its pending operations in a finite number of steps [18].
Obstruction-freedom guarantees that an active process will be able to complete its pending
operations in a finite number of steps, if all the other processes “hold still” long enough
[15]. Obstruction-freedom does not guarantee progress under contention.

Several progress conditions have been proposed for data structures which may involve
waiting. Livelock-freedom guarantees that processes not execute forever without making
forward progress. More formally, livelock-freedom guarantees that, in the absence of process
failures, if a process is active, then some process, must eventually complete its operation. A
stronger property is starvation-freedom which guarantees that each process will eventually
make progress. More formally, starvation-freedom guarantees that, in the absence of process
failures, every active process must eventually complete its operation.

1.6 Contributions

We assume that processes communicate via shared objects. One such object is an atomic
register. Reading or writing an atomic register is an indivisible action.

Contention-sensitive data structures. We define the new notion of contention-sensitive
data structures by identifying four properties any such data structure must satisfy; and dis-
cuss three additional “nice to have” properties. This involves introducing a new notion
called a disable-free code segment (Section 3).

A contention-sensitive election algorithm. We present a contention-sensitive elec-
tion algorithm, using only atomic read/write registers (Section 4). A contention-sensitive
election algorithm, by definition, is not required to tolerate failures. Hence, this result does
not contradict the known impossibility result that, in the presence of one crash failure, it
is not possible to solve election using only atomic read/write registers [31, 42].

A contention-sensitive double-ended queue. We implement a contention-sensitive
double-ended queue. To increase the level of concurrency, two locks are used: one for the
left-side operations and the other for the right-side operations (Section 5).

Three transformations. We present three transformations that facilitate devising
contention-sensitive data structures.

• Transformation 1 converts any contention-sensitive data structure which satisfies
livelock-freedom into a corresponding contention-sensitive data structure which sat-
isfies starvation-freedom. Transformation 1 adds only one memory reference to the
shortcut code (Section 6.1).

• Transformation 2 converts any obstruction-free data structure into the correspond-
ing contention-sensitive data structure which satisfies livelock-freedom (Section 6.2).

• The new notions of a prevention-freedom progress condition (of which obstruction-
freedom is a special case) and an exit-safe data structure are defined. Transforma-

5

tion 3 converts any prevention-free exit-safe data structure into the corresponding
contention-sensitive data structure which satisfies livelock-freedom (Section 6.3).

Generalizations. We define the notion of a k-contention-sensitive data structure in which
locks are used only when contention goes above k, and illustrate this notion by implementing
a 2-contention-sensitive consensus algorithm. Then, for each k ≥ 1, we define a progress
condition called k-obstruction-freedom, and present a (forth) transformation that converts
any k-obstruction-free data structure into the corresponding k-contention-sensitive data
structure which satisfies livelock-freedom (Section 7).

The motivation for using k-contention-sensitive data structures over course-grained or
fine-grained locking is simple. Let’s ignore for a moment the benefits gained when the
operations are non-interfering, as explained in Subsection 1.4 and focus only on contention.
When using locks, a process must always acquire a lock. With a k-contention-sensitive data
structure, as long as contention is at most k, all the participating processes will execute
the shortcut code only which is potentially faster (depending on the implementation) than
acquiring the lock followed by executing the critical section and releasing the lock.

Speculative lock elision [34] is a hardware technique which allows multiple processes
to concurrently execute critical sections protected by the same lock; when misspecula-
tion, due to data conflicts, is detected rollback is used for recovery, and the execution fall
back to acquiring the lock and executing non-speculatively. My motivation for introducing
contention-sensitivity (in software) is similar. Furthermore, unlike speculative lock elision,
k-contention-sensitivity enables to avoid locking in some cases, even when there is interfer-
ence.

2 Preliminaries

We focus on an architecture in which n processes communicate asynchronously via shared
objects. Asynchrony means that there is no assumption on the relative speeds of the
processes. Processes may fail by crashing, which means that a failed process stops taking
steps forever. Numerous implementations of locks have been proposed over the years to
help coordinating the activities of the various processes.

We are not interested in implementing new locks, but rather assume that we can use
existing locks. We are not at all interested whether the locks are implemented using atomic
registers, semaphores, etc. We do assume that a lock implementation guarantees that: (1)
no two processes can acquire the same lock at the same time, (2) if a process is trying to
acquire the lock, then in the absence of failures some process, not necessarily the same one,
eventually acquires that lock, and (3) the operation of releasing a lock is wait-free.

We mention below several types of shared objects used in this paper. A register is a
shared object which supports two operations: reading and writing. A single-writer register
can be written by one predefined process and can be read by all the processes. A multi-
writer register can both be written and read by all the processes. With an atomic register,
it is assumed that operations on the register occur in some definite order. That is, reading
or writing an atomic register is an indivisible action. We will consider only atomic registers.
In the sequel, by registers we mean atomic registers.

The implementation of the contention-sensitive double-ended queue, presented in Sec-
tion 5, is based on shared objects which support load-link/store-conditional/validate

6

(LL/SC/VL) operations. For a given object o, the operations LL/SC/VL are defined as
follows: (1) LL(o) returns o’s value. (2) SC(o, v) by process p succeeds if and only if no
process has successfully written to o since p’s last LL on o. If SC succeeds, it changes o’s
value to v (or to the value of v, if v is a variable) and returns true. Otherwise, o’s value
remains unchanged and SC returns false. (3) VL(o) by p returns true if and only if no
process performed a successful SC on o since p’s last LL on o. Otherwise, VL returns false.

In Section 7, a swap object is being used. A swap object, supports the swap operation
which takes a shared register and a local register, and atomically exchange their values.

An event corresponds to an atomic step performed by a process. For example, the events
which correspond to accessing registers are classified into two types: read events which may
not change the state of the register, and write events which update the state of a register
but does not return a value. A (global) state of an algorithm is completely described by the
values of the registers and the values of the location counters of all the processes. A run is
a sequence of alternating states and events (also referred to as steps). Sometimes, it would
be more convenient to define a run as a sequence of events omitting all the states except
the initial state.

In a model where participation is required, every process must eventually become active
and execute its code. A more interesting and practical situation is one in which participation
is not required, as is usually assumed when solving resource allocation problems or when
designing concurrent data structures. We always assume that participation is not required.

3 Defining contention-sensitive data structures

An implementation of a contention-sensitive data structure is divided into two continuous
sections of code: the shortcut code and the body code. When a process invokes an operation
it first executes the shortcut code, and if it succeeds to complete the operation, it returns.
Otherwise, the process tries to complete its operation by executing the body code, where it
usually first tries to acquire a lock. Once it succeeds to acquire the lock and complete the
operation by executing the body code, it releases the acquired lock and returns. Below we
formally define the notion of a contention-sensitive data structure.

Definition: The problem of implementing a contention-sensitive data structure is to write
the shortcut code and the body code in such a way that the following four requirements are
satisfied,

• Fast path: In the absence of contention or interference, each operation must be
completed while executing the shortcut code only.

• Wait-free shortcut: The shortcut code must be wait-free – its execution should
require only a finite number of steps and must always terminate. (Completing the
shortcut code does not imply completing the operation.)

• Livelock-freedom: In the absence of process failures, if a process is executing the
shortcut code or the body code, then some process, not necessarily the same one,
must eventually complete its operation.

7

• Linearizability: Although operations of concurrent processes may overlap, each op-
eration should appear to take effect instantaneously. In particular, operations that do
not overlap should take effect in their “real-time” order.

It is possible to consider replacing linearizability with a weaker consistency requirement,
such as sequential consistency [21]. Sequential consistency is defined as follows: The result
of any execution is the same as if the operations of all the processes were executed in some
sequential order, and the operations of each individual process appear in this sequence in
the order specified by its program.

Livelock-freedom may still allow that individual processes may never complete their
operations. We will examine also solutions which do not allow such a behavior.

• Starvation-freedom: In the absence of process failures, if a process is executing
the shortcut code or the body code, then this process, must eventually complete its
operation.

Next, we define two additional desirable properties. They are “nice to have”, but it is not
required that each correct implementation satisfies them. Both these properties add some
limited ability to tolerate process failures. The first property has to do with a process
failure that happens while executing the shortcut code, the second property has to do
with a process failure that happens while executing the body code. In both cases, under
various assumptions, such failures should not prevent other processes from completing their
operations. First, we introduce a new notion called disable-freedom.

A code segment is disable-free, if a process that fails while executing that code segment
may not prevent other processes from completing their operations. A disable-free code
segment is not necessarily wait-free and vice versa. To illustrate this point, consider the
following program for two processes in which a single atomic register, called x, is used. Each
process executes the following three lines and terminates: (1) x := 0; (2) x := 1; (3) while

x 6= 1 do skip od. Consider the code segment which consists of lines 1 and 2. It is clearly
wait-free, but it is not disable-free since a process that fails just before executing line 2 may
cause the other process to spin forever (in line 3). On the other hand, the code segment
which consists of only line 3 is disable-free but is not wait-free.

• Disable-free shortcut: A process that fails (or that is very slow) while executing
the shortcut code, may not prevent other processes from accessing the data structure
and completing their operations.

We point out that the shortcut code of the consensus algorithm presented in the introduction
is disable-free. The second “nice to have” property is,

• Weak-blocking body: Let p be a process that has failed while executing the body
code, and let q be a process that has started executing the shortcut code after p has
failed. Furthermore, assume that the operations of p and q are non-interfering, and
that no other process is concurrently participating. Then, the fact that p has failed
should not prevent q from completing its operation while executing the shortcut code.

The implementation of the body code can be either coarse-grained, or fine-grained.

8

4 A contention-sensitive election algorithm

The election problem is to design an algorithm in which all participating processes choose
one process as their leader. More formally, each process that starts participating eventually
decides on a value from the set {0, 1} and terminates. It is required that exactly one of the
participating processes decides 1. The process that decides 1 is the elected leader. Notice
that it is not required that a process which is not elected needs to know the identity of
the leader. This variant of the problem is sometimes called “implementing a test-and-set
object”. Processes are not required to participate in the algorithm.

4.1 The algorithm

The following algorithm solves the election problem for any number of processes, and is
related to the splitter constructs from [20, 26, 29]. A single lock is used. It is assumed that
after a process executes a decide() statement, it immediately terminates.

We start with an intuitive description of the algorithm. While executing the shortcut,
each participating process is assigned into one of three groups. We name these groups: east,
north and west (the reader may think as if the processes are arriving from the south). This
splitting of the processes is implemented using two shared registers called x and y. The
initial value of x is immaterial and the initial value of y is 0.

• The east group. A process first sets x to its id, and then checks the value of y. If it
finds that y = 1, it knows that some other process has already set y to 1. At that
point we say that the process belongs to the east group. The process gives up on
being elected and decides 0. Just before deciding, the process notifies everybody that
the east group is not empty, by setting a shared bit called b (which is initially 0) to 1.

• The north group. A process first sets x to its id, and then checks the value of y. If it
finds that y = 0, it knows that no other process has yet written into y. The process
sets y to 1, and checks the value of x. If the value of x equals to its id, it knows that
no other process has set x since it has written to x. At that point we say that the
process belongs to the north group. At most one process may belong to north group.
The process notifies everybody that the north group is not empty, by setting a shared
register called z (which is initially 0) to its id. Then, the process checks b to decide
whether the east group is empty or not. If b = 0 (the east group is empty) it decides
1 and becomes the elected leader, otherwise the process is moved to the west group.

• The west group. A process first sets x to its id, and then checks the value of y. If it
finds that y = 0, the process sets y to 1, and checks the value of x. If the value of x is
different from its id, it knows that there is contention. At that point we say that the
process belongs to the west group. Next, the process tries to acquire the lock. Once
it acquires the lock it does the following:

– If it was in the north group before (i.e., z equals its id) and no leader is elected
yet, then it sets a shared register called done (which is initially 0) to 1, releases
the lock, and decides 1. That is, it is the elected leader.

– Otherwise, the process concludes that at least one other process has moved to
the east or north groups. It waits until this process “ reveals itself” by setting

9

either the b bit or the z register. After waiting, if z = 0 and no leader is yet
elected (i.e., done = 0), it knows that no process can be elected from the north
group. It sets done to 1, releases the lock, and decides 1. That is, it is the elected
leader.

– Otherwise, if after waiting it finds out that either the north group is not empty
(i.e., z = 1) or a leader has been elected (i.e., done = 1), it releases the lock, and
decides 0.

The algorithm with a detailed correctness proof appears below.

Contention-sensitive Election: Process i’s program

shared x, z: atomic registers, initially z = 0 and the initial value of x is immaterial
b, y, done: atomic bits, initially all 0

local leader : local register, the initial value is immaterial

1 x := i // begin shortcut
2 if y = 1 then b := 1; decide(0) fi // I am not the leader – east
3 y := 1
4 if x = i then z := i; if b = 0 then decide(1) fi fi // I am the leader! – north

// end shortcut

5 lock // locking – west
6 if z = i ∧ done = 0 then leader = 1 // I am the leader!
7 else await b 6= 0 ∨ z 6= 0
8 if z = 0 ∧ done = 0 then leader = 1; done := 1 // I am the leader!
9 else leader = 0 // I am not the leader
10 fi

11 fi

12 unlock ; decide(leader) // unlocking

When a process runs alone before a leader is elected, it is elected and terminates after
accessing the shared memory six times. Furthermore, all the processes that start running
after a leader is elected terminate after three steps. The algorithm does not satisfy the
disable-free shortcut property: a process that fails just before the assignment to b in line 2
or fails just before the assignment to z in line 4, may prevent other processes spinning in
the await statement (line 7) from terminating.

4.2 A correctness proof

In any execution, define the latecomers to be the processes that start participating in the
election algorithm after the first process decides (and terminates). Let m be the number
of early processes that start participating in the election algorithm before some process
decides.

Lemma 4.1 In any execution of the election algorithm the following properties hold: (1)
At most m− 1 early processes decide in line 2. (2) The latecomers all decide in line 2. (3)
At least one early process decides while executing the shortcut code or at least one latecomer
decides in line 2. (4) At most one process writes into z in line 4, at most one process decides

10

in line 4, and if m = 1 then exactly one process decides in line 4. (5) The shortcut code is
wait-free.

Proof: As for Property 1, we observe that a process that decides in line 2, must first read
that y = 1 at the first statement in line 2. Before that happens some other process, say i,
must have set y to 1 in line 3. Thus, i is an early process that does decide in line 2. To
prove Property 2, observe that when a latecomer tests the value of y in line 2, it always
finds that y = 1 and hence can not continue to line 3 and must decide in line 2.

To prove Property 3, observe that it follows from Property 2, that only the m early
processes may not decide while executing the shortcut code. Let us assume that all the
m early processes do not decide while executing the shortcut code. Let i be the last early
process to set x to i in line 1. When i tests the value of x at the statement in line 4, either
x 6= i or x = i. If x 6= i, then some latecomer process, say j, must have modified x and, by
property 2, j decides in line 2. If x = i then (since i does not decide in line 4) i must find
that b 6= 0 which implies that some latecomer has set b to 1, and later decides in line 2.

To prove Property 4, assume to the contrary that two processes i and j either both write
into z in line 4 or both decide in line 4. Assume without loss of generality that process i

tests the value of x at the statement in line 4 after j does so. This implies that x is not
written by any process between i’s assignment x := i in line 1 and i’s read of x in line 4.
Thus, j reads of x in the statement in 4 preceded i’s assignment in the statement in line 1,
which in turn implies that j assigned 1 to y in the statement in line 3 before i’s read of y in
line 2. Thus, i must have read y = 1 at the statement in line 2 and then decide in line 2, a
contradiction. When m = 1, the first process to decide runs alone without any interference.
In such a case, going through the code, that process must decide in line 4. The correctness
of Property 5 is obvious.

Theorem 4.2 Every participating process eventually decides and terminates; and, assum-
ing that at least one process participates, exactly one process decides 1 and is elected as the
leader.

Proof: The third property of Lemma 4.1 assures that some process must decide in line 2 or
in line 4, and perform the assignment to b or to z enabling all the await statements (line 7)
to terminate. Thus, eventually, every participating process decides and terminates. There
are exactly three locations where a process can be elected: in line 4 deciding on 1; in line 6
setting leader to 1; and in line 8 setting leader to 1.

We first prove that if a process decides in line 4 and becomes a leader, then nobody else
becomes a leader by setting leader to 1 in line 6 or in line 8. To see why this holds, observe
that: (1) a process that reaches the await statement in line 7, can set leader to 1 in line 8
and later become the leader only if b is set to 1 before z is set to a value other than 0, and
(2) a process i can decide in line 4 and become a leader, only if b is set to 1 after z is set
to i. Thus, if process i decides in line 4, by Lemma 4.1(4) only process i has written into z

(afterwhich z = i), and this write must have happened before b was set to 1. This implies
that every other process j that tests z in line 6, finds that z 6= j and does not set leader to
1 in line 6, and every other process that reaches the await statement in line 7, finds later
when it tests z line 8 that z 6= 0 and also is not elected.

If a process, after acquiring the lock, becomes a leader by setting leader to 1 in line
6, it means that this process has found that z equals its id. Since, by Lemma 4.1(4) an

11

assignment to z may happen at most once, any other process that will acquire the lock later
will not be able to become a leader by setting leader to 1 in either line 6 or in line 8.

If a process becomes a leader by setting leader to 1 in line 8, before it releases the lock
it sets done to 1, preventing any other process that acquires the lock later from becomes a
leader by setting leader to 1 in either line 6 or in line 8. Thus, at most one leader is elected.

Finally, we prove that at least one leader is elected. If some process sets leader to 1
in line 8, then we are done. So assume that no process sets leader to 1 and done to 1 in
line 8. Since done is only modified in line 8, its value must always stay 0. Furthermore,
assume that some process executes the test in line 8, otherwise it is easy to see that a leader
must have been elected. Thus, the test at line 8 fails, since z = i for some process i. By
Lemma 4.1(4), an assignment to z may happen at most once, and it only happens in line
4. So, after process i sets z, it tests b. If b = 0 then i is elected and we are done, so assume
that b 6= 0. Thus, when i executes later the test in line 6, it finds that z = i and that done
= 0, and is elected.

Theorem 4.3 The election algorithm satisfies the following four requirements: fast path,
wait-free shortcut, livelock-freedom, and linearizability.

Proof: The second and forth properties of Lemma 4.1 imply that the fast path requirement
is satisfied. As the shortcut code includes no await statements, wait-free shortcut is satisfied.
To prove that the livelock-freedom property is satisfied, we observe that the third property
of Lemma 4.1 assures that some process must decide in line 2 or in line 4, and perform
the assignment to b or to z enabling all the await statements (line 7) to terminate. Thus,
eventually, every participating process decides and terminates. As for linearizability, the
operation of the elected leader is linearized at the beginning of its operation, while the
operation of each other process is linearized at the end of its operation.

5 A contention-sensitive double-ended queue data structure

In [15], two obstruction-free CAS-based implementations of a double-ended queue are pre-
sented; the first is implemented on a linear array, the second on a circular array. In the
following, a contention-sensitive double-ended queue data structure implementation, which
is based on the implementations from [15], is presented. The double-ended queue is im-
plemented on an infinite array (denoted Q) and is based on shared objects which support
load-link/store-conditional/validate (LL/SC/VL) operations.

Two locks are used: llock (left lock) is used by the left-side operations and rlock (right
lock) is used by the right-side operations. Two values lnil (left null) and rnil (right null)
that are different from the data values are used, and the following invariant is maintained:

For every two integer values i < j, Q[j] = lnil implies Q[i] = lnil , and Q[i] = rnil
implies Q[j] = rnil .

Two pointers are used: Lptr (left pointer) which holds the index of the rightmost lnil value,
and Rptr (right pointer) which holds the index of the leftmost rnil value. A rightpush(value)
(resp. leftpush(value)) operation changes the leftmost rnil (resp. rightmost lnil) value to

12

value. A rightpop (resp. leftpop) operation changes the rightmost (resp. leftmost) data value
to rnil (resp. lnil) and returns that value.

The right-side operations, rightpush and rightpop, are shown in Figure 1. The left-side
operations, leftpush and leftpop, are symmetric to the right-side operations, and hence are
not presented.

When a process p invokes a right-side operation, p first reads the Rptr pointer to find the
index of the exact location, say k, of the rightmost lnil value. Then, it LL(Q[k]) and also
LL Q[k]’s adjacent location Q[k− 1]. In order to prevent interference by another right-side
operation, process p first SC to the adjacent location Q[k − 1] in case of a push operation
or to Q[k] in case of a pop operation (without changing that location’s value). If this SC
succeeds, the process SC to Q[k] in case of a push operation or to Q[k− 1] in case of a pop
operation. As a result of this approach, two concurrent right-side push and pop operations
can each cause the other to retry. In such a case, p tried to acquire the rightlock and, in
its critical section, p continually repeats the above sequence of steps trying to complete its
operation.

A concurrent left-side and right-side operations can interfere if they try to apply a SC
to the same memory location. We observe that in such a case if as a result one of the
two types of operations has to retry, then it must be the case that an operation of the
other type must be completed. Since Rptr is updated using an atomic write operation, the
implementation in Figure 1 does not satisfy the disable-free shortcut and the weak-blocking
body properties.

Theorem 5.1 The implementation in Figure 1, correctly implements a contention-sensitive
double-ended queue and satisfies the following four requirements: fast path, wait-free short-
cut, livelock-freedom, and linearizability.

Proof: In the absence of interference, a process completes its (push or pop) operation after
executing at most one atomic read, one atomic write, two LL, two SC and one VL operations,
and without locking. Thus, the fast path requirement is satisfied. As the shortcut code
includes no await statements, the wait-free shortcut property is also clearly satisfied.

To see that the livelock-freedom property is satisfied, we observe that a process first
tries to complete its right-side operation by executing the shortcut code. If there is no
contention the process will complete its operation without locking. Otherwise if the process
does not succeed in completing its operation by executing the shortcut code, it tries to
acquire rlock . A process that is holding rlock may experience interference from some other
right-side operations. However, either some process will manage to complete its right-side
operation or, because the number of processes is finite, this interference will vanish after
some finite time. At that point, the process that holds rlock will be able to complete its
operation, assuming there is no interference by a left-side operation.

Next we show that there can not be alivelock as a result of interference between con-
current left-side and right-side operations. Assume to the contrary that such a livelock can
occur. This means that eventually there will be two processes which hold the two locks
and each one of the other processes that are involved in the livelock will be waiting for a
lock to be released. Let’s focus on the two active operations invoked by the two processes
that are holding the two locks. Two concurrent left-side and right-side operations interfere,
when they both try to apply SC to the same memory location. In such a case, focusing
only on the above two active operations, one of the SC will fail and the other will succeed.

13

Contention-sensitive double-ended queue: program for each one of the n processes

shared Q[−∞..∞]: infinite array; initially, Q[i] = lnil for all i < 0 and
Q[i] = rnil for all i ≥ 0

Lptr ,Rptr : integers; initially, Lptr = −1 and Rptr = 0
local done, empty : boolean; cur , prev : both range over {all data values, lnil , rnil}

k: integer

rightpush(value) // value 6∈ {lnil , rnil}
1 k := Rptr ; prev := LL(Q[k − 1]); cur := LL(Q[k]); // k index of leftmost rnil
2 if cur = rnil ∧ prev 6= rnil then // Rptr is updated
3 if SC(Q[k − 1], prev) then // prevent interfering operations
4 if SC(Q[k], value) then // push new value
5 Rptr := Rptr + 1; return("ok") fi fi fi // update Rptr

6 lock(rlock)

7 done := false // set local variable
8 repeat

9 k := Rptr ; prev := LL(Q[k − 1]); cur := LL(Q[k]) // k index of leftmost rnil
10 if cur = rnil ∧ prev 6= rnil then // Rptr is updated
11 if SC(Q[k − 1], prev) then // prevent interfering operations
12 if SC(Q[k], value) then // push new value
13 Rptr := Rptr + 1; done := true fi fi fi // update Rptr
14 until (done)

15 unlock(rlock) ; return("ok") // unlocking section

rightpop()
1 k := Rptr ; prev := LL(Q[k − 1]); cur := LL(Q[k]) // k index of leftmost rnil
2 if cur = rnil ∧ prev 6= rnil then // Rptr is updated
3 if prev = lnil ∧VL(Q[k − 1]) then return("empty") // adjacent lnil & rnil
4 else if SC(Q[k], rnil) then // prevent interfering operations
5 if SC(Q[k − 1], rnil) then // pop value
6 Rptr := Rptr − 1; return(prev) fi fi fi fi // update Rptr

7 lock(rlock)

8 done := false ; empty := false // set local variables
9 repeat

10 k := Rptr ; prev := LL(Q[k − 1]); cur := LL(Q[k]) // k index of leftmost rnil
11 if cur = rnil ∧ prev 6= rnil then // Rptr is updated
12 if prev = lnil ∧VL(Q[k − 1]) then empty := true // adjacent lnil and rnil
13 else if SC(Q[k], rnil) then // prevent interfering operations
14 if SC(Q[k − 1], rnil) then // pop value
15 Rptr := Rptr − 1; done := true fi fi fi fi // update Rptr
16 until (done ∨ empty)

17 unlock(rlock) ; if done then return(prev) else return("empty") fi // unlocking

Figure 1: A contention-sensitive double-ended queue data structure. The left-side operations,
leftpush and leftpop, are symmetric to the right-side operations. The first 5 lines (6 lines, resp.) of
the rightpush (rightpop, resp.) operation is the shortcut code. Two locks are used: llock (left lock)
is used by the left-side operations and rlock (right lock) is used by the right-side operations.

14

As a result, one of the two operations will have to retry, and the other operation will be
successfully completed. A contradiction. This explains why livelock-freedom is satisfied.

Next we consider linearizability. In the following, RHj refers to line #j in the code of
the rightpush method, and RPj refers to line #j in the code of the rightpop method.

Each rightpush(value) operation is linearized to the point at which it changes an rnil
to value (RH4, RH12). We show that when a rightpush(value) operation changes the value
of some Q[k] from rnil to value (RH4, RH12), Q[k − 1] 6= rnil . Before the assignment to
Q[k] takes place and the rightpush operation succeeds, it is verified that Q[k − 1] 6= rnil
and then there is a successful SC to Q[k− 1], without changing its value (RH3, RH11). We
show that after the successful SC to Q[k − 1], and before the successful SC to Q[k] (RH4,
RH12), no concurrent operation could not have changed Q[k − 1] to rnil .

Only rightpop operations may assign rnil . Assume that some concurrent rightpop op-
eration tries to SC to Q[k − 1], between the two successful SC to Q[k − 1] and Q[k] by the
rightpush operation. This implies that the preceding SC to Q[k] by rightpop operation was
successful, which in turn implies that the LL of Q[k − 1] by the rightpop operation, must
have happened before the successful SC to Q[k − 1] by the rightpush operation. Thus the
SC to Q[k − 1] by the rightpop operation must fail.

Each rightpop operation that returns value is linearized to the point at which it changes
an array location from value to rnil (RP5, RP14). We show that when a rightpop operation
changes the value of some Q[k−1] from value to rnil (RP5, RP14), Q[k] = rnil . (The proof
is similar to the one proved in the previous paragraph.) Before the assignment to Q[k − 1]
takes place and the rightpop operation succeeds, it is verified that Q[k] = rnil and then
there is a successful SC to Q[k], without changing its value (RP4, RP13). We show that
after the successful SC to Q[k], and before the successful SC to Q[k − 1] (RP5, RP14), no
concurrent operation could not have changed Q[k] from rnil to something else.

Only rightpush operations may change Q[k] from rnil to something else. Assume that
some concurrent rightpush operation tries to SC to Q[k], between the two successful SC to
Q[k] and Q[k−1] by the rightpop operation. This implies that the preceding SC to Q[k−1]
by rightpush operation was successful, which in turn implies that the LL of Q[k] by the
rightpush operation, must have happened before the successful SC to Q[k] by the rightpop
operation. Thus the SC to Q[k] by the rightpush operation must fail.

Each rightpop operation that returns "empty" is linearized to the point at which it was
last executed the statement “cur := LL(Q[k])” (RP1, RP10). We show that if a rightpop
operation returns "empty", then at the moment when it was last executed the statement
“cur := LL(Q[k])”, Q[k − 1] = lnil ∧ Q[k] = rnil , which means that the queue was empty
at that moment. The string "empty" is returned only if VL(Q[k − 1]) returns true (RP3,
RP12). Thus, from the time the statement “prev := LL(Q[k− 1])” was last executed (RP1,
RP10) until the validation (RP3, RP12), the value of Q[k−1] has not changed. In particular,
Q[k − 1] equals lnil at the moment the value rnil was assigned to cur , when the statement
“cur := LL(Q[k])” was last executed (RP1, RP10). (The last value of cur is known from
the test in RP2, RP11.)

The left-side operations, which are symmetric to the to right-side operations, are lin-
earized similarly. Furthermore, a location in Q changes only when an operation is linearized
as above.

15

6 Three transformations

Recall the question raised in the introduction: If a sequential data structure cannot be used
as the basic building block for constructing a contention-sensitive data structure, what is
the best data structure to use? The following three transformations that facilitate devising
such data structures provide an answer. The correctness proofs of the transformations are
straightforward and are left as an exercise for the reader.

6.1 From livelock-freedom to starvation-freedom

The transformation converts any contention-sensitive data structure, denoted A, which
satisfies livelock-freedom into a corresponding contention-sensitive data structure, denoted
B, which satisfies starvation-freedom. It adds only one memory reference to the shortcut
code. It is an extension of a known transformation, for the mutual exclusion problem, that
has appeared in [39] (page 83).

It is assumed that A is implemented using a single lock, and that the body of A is divided
into three continuous sections of code: locking, main-body, and unlocking. When a process
invokes an operation on A it first executes the shortcut code of A, and if it succeeds to
complete the operation, it returns. Otherwise, it executes the body code, where it first tries
to acquire the single lock by executing the locking code. If it succeeds to acquire the lock,
it executes the main-body. If it succeeds to complete the operation, it releases the lock.

Using A, we construct B as follows: In addition to the objects used in A, we use an
atomic register called turn which is big enough to store a process identifier, a boolean array
called flag, and a boolean bit called contention. All the processes can read and write turn
and the contention bit, the processes can read the bit flag[i], but only process i can write
flag[i]. The processes are numbered 1 through n.

When process i invokes an operation on B it first executes the shortcut code of B. In
this shortcut i first checks if there is contention or interference by testing the value the
contention bit. If there is no contention or interference (i.e., contention = false) then i

executes the shortcut of A. Otherwise, i starts executing the body code of B.

In the body code, it first sets flag[i] to true letting everybody know that it is around.
Then, i waits until one of two events happens: either turn = i which means that it is
process’ i turn to proceed or until flag[turn] = false which means that the process that it
is its turn to proceed is not active. Then, process i executes the locking part of A trying
to acquire the lock. Once it succeeds, it sets the contention bit to true letting all the
newcomers know that there is contention; it executes the main-body of A; and sets the
contention bit back to false. Before it release the lock, process i checks the flag[turn] bit
and if the value is false it increments turn by 1, giving priority to the next process in line.
Finally it executes the unlocking code of A.

The exact code is given below. The statement “await condition” is used as an abbrevi-
ation for “while ¬condition do skip”.

Transformation 1: process i’s program.

Initially: flag[i] = false, contention = false, the initial value of turn is an arbitrary number
between 1 to n.

1 if contention = true then goto lock fi // begin shortcut of B

16

2 shortcut of A // end shortcut of B

3 lock: flag[i] := true // begin body of B
4 await (turn = i or flag[turn] = false)
5 locking of A

6 contention := true
7 main-body of A
8 contention := false

9 flag[i] := false
10 if flag[turn] = false then turn := (turn mod n) + 1 fi

11 unlocking of A // end body of B

Setting the contention bit to true, happens after acquiring the lock which implies that there
has been contention and interference. Evaluating the condition flag[turn] = false requires
two memory references, one to read turn and the other to read the flag bit.

It is easy to see that the transformation satisfies starvation-freedom. Assume some
arbitrary process, say i, starts executing B. Then, either i terminates after executing
the shortcut, or i reaches the await statement in line 4. Each process that acquires the
lock eventually executes line 10 in which turn is incremented if flag[turn] = false. This
guarantees that eventually process i will move past the await statement. Furthermore,
either process i will acquire the lock or the value of turn will be set to i. Once turn = i, no
newcomers will be able to move past the await statement in line 4, enabling i to eventually
acquire the lock and complete its operation.

6.2 From obstruction-freedom to livelock-freedom

Next we present a transformation that converts a obstruction-free data structure, denoted
DS, into a corresponding contention-sensitive data structure. The idea is to use a lock to
choke down parallelism and eventually eliminate interference on an obstruction-free data
structure.

Let us denote by first(DS) the number of steps that a process needs to take in order to
complete its operation of DS when there is no contention. In simple data structures like
queues and stacks, first(DS) would be a known constant. In a data structure like a linked
list, first(DS) may depend on the current length of the list. Thus, a linked list may have
the property that first(DS) increases as the execution progresses. In the specific case of a
lined list, first(DS) can be calculated by having each process records in a shared location
the number of insert and delete operations it has preformed so far. Now, each process can
read these numbers and calculate first(DS).

The following transformation is restricted to obstruction-free data structure implemen-
tations, in which a process, after taking an a priori known number of steps, can figure out
what first(DS) should be.1 The transformation uses a single lock.

1A simpler way to deal with the case that first(DS) can change over time is to restrict attention only
to bounded obstruction-free data structures. For a given bounded obstruction-free data structure, there is a
finite bound such that every operation completes within that number of steps after it encounters no more
interference. Restricting attention only to bounded obstruction-freedom seems too restrictive.

17

Transformation 2: program for a process which invokes operation op.

1 execute up to first(DS) steps of DS // shortcut
2 if op is completed then return response fi

3 lock // body
4 continue to execute steps of DS until op is completed

5 unlock

First a process tries to complete its operation op of DS without holding the lock. If there
is no contention the process will complete its operation without locking. Otherwise, if after
taking first(DS) steps, it does not succeed in completing its operation, it tries to acquire
the lock. As a result of such an approach, a process that is already holding the lock may
experience interference. However, either some process will manage to complete its operation
without holding the lock, or (since the number of processes is finite) this interference will
eventually vanish.

6.3 From prevention-freedom to livelock-freedom

We introduce a new progress condition, called prevention-freedom, which is an interesting
generalization of the obstruction-freedom progress condition. Then, we present a trans-
formation that converts a prevention-free data structure, into a corresponding contention-
sensitive livelock-free data structure. Since obstruction-freedom is a special case of prevention-
freedom, Transformation 3 below generalizes Transformation 2.

For a given implementation of a concurrent data structure, DS, assume that each state-
ment is uniquely numbered by a natural number. Let Si denote the set of all the numbers
of statements in the code of process pi (where i ∈ {1, ..., n}). For s ∈ Si, we say that process
pi is at s if the next step of pi is to execute the statement numbered s. Let Gi be a subset of
Si. In the following definition, intuitively, the Gi’s include location in the codes such that
a process that is suspended or even crashed in one of these locations does not block other
processes.

Prevention-freedom: A data structure is prevention-free w.r.t. {G1, ..., Gn}
if it is guaranteed that each process pi will be able to complete its pending
operations in a finite number of steps, if all the other processes simultaneously
“hold still” long enough, where each process pj 6= pi “holds still” (i.e., waits) at
some gj ∈ Gj .

Each gj ∈ Gj is called a gate. Prevention-freedom guarantees that if n − 1 processes are
suspended or even crashed while each one of them is at a gate, the remaining process is
not effected and can complete its operation. We assume that when a process does not
invoke an operation, it is at a gate. A data structure is obstruction-free if and only if, it is
prevention-free w.r.t. {S1, ..., Sn}. In an obstruction-free data structure each (number of a)
statement is a gate.

The exit-safe property: We say that a prevention-free data structure is exit-
safe if, for every process p, it is always the case that after p invokes an operation
of DS and takes first(DS) steps, either (1) p completes its operation or (2) by

18

taking a finite number of additional steps p always reaches a gate, regardless of
the behavior of the other processes.

Below we present a transformation which converts a prevention-free exit-safe data struc-
ture, denoted DS, into a corresponding contention-sensitive data structure. The following
transformation is restricted to prevention-free data structure implementations, in which a
process, after taking an a priori known number of steps, can figure out what first(DS)
should be. The transformation uses a single lock.

Transformation 3: First a process tries to complete its operation op of DS
without holding the lock. If there is no contention the process will complete
its operation without locking. Otherwise if the process, after taking first(DS)
steps, does not succeed in completing its operation it continues taking steps
until it reaches a gate, and at that point it “exits” the DS code, and tries to
acquire the lock. Once it acquires the lock it “enters” the DS code at the same
point where it left it – i.e., through the gate – and continues taking steps trying
to complete the operation op. If op is completed it releases the lock.

A data structure which is constructed using Transformation 3, does not necessarily satisfy
the disable-free shortcut property or the weak-blocking body property.

7 Generalizations

In this section we present an interesting generalization of the notion of contention-sensitives
data structures, called k-contention-sensitive data structures, where k ≥ 1. A k-contention-
sensitive data structure is a data structure in which contention resolution using locks is used
only when contention goes above k. It is defined by modifying the fast path requirement.

As in the definition of contention-sensitive data structure from Section 3, an implemen-
tation of a k-contention-sensitive data structure is divided into two continuous sections of
code: the shortcut code and the body code. When a process invokes an operation it first
executes the shortcut code, and if it succeeds to complete the operation, it returns. Oth-
erwise, the process tries to complete its operation by executing the body code, where it
usually first tries to acquire a lock. Once it succeeds to acquire the lock and complete the
operation by executing the body code, it releases the acquired lock and returns. Below we
formally define the notion of a k-contention-sensitive data structure.

Definition: The problem of implementing a k-contention-sensitive data structure is to
write the shortcut code and the body code in such a way that the following four require-
ments are satisfied,

k-fast path: When there is contention of at most k processes, or when there is
no interference, each operation must be completed while executing the shortcut
code only.

The other three requirements, namely, wait-free shortcut, livelock-freedom and linearizabil-
ity, are as defined in Section 3.

19

We demonstrate this idea, by presenting a 2-contention-sensitive consensus algorithm.
The algorithm uses atomic registers and a single swap object. It is known that there is
no wait-free consensus algorithm for more than two processes, using atomic registers and
atomic swap objects [14].

2-Contention-sensitive Consensus: program for process pi with input vi ∈ {0, 1}.

shared x[0..1] : array of two atomic bits, initially both 0
y, out : atomic registers which range over {⊥, 0, 1}, initially both ⊥
z : a swap object which ranges over {⊥, 0, 1}, initially ⊥

local ini : a register which ranges over {⊥, 0, 1}

0 ini := vi; swap(z, ini); if ini =⊥ then ini := vi fi // start shortcut code
1 x[ini] := 1
2 if y =⊥ then y := ini fi

3 if x[1− ini] = 0 then out := ini; decide(ini) fi
4 if out 6=⊥ then decide(out) fi // end shortcut code

5 lock if out =⊥ then out := y fi unlock ; decide(out) // locking

Processes are not required to participate, however, once a process starts participating it is
guaranteed that it may fail only while executing the shortcut code. Once a process decides,
it immediately terminates. For a set of processes P , let |P | denote the size of P . Consider
the following generalization of the notion of obstruction-freedom:

k-obstruction-freedom: For any k ≥ 1, the progress condition k-obstruction-
freedom guarantees that for every set of processes P where |P | ≤ k, every process
in P will be able to complete its pending operations in a finite number of steps,
if all the processes not in P do not take steps for long enough.

These progress conditions cover the spectrum between obstruction-freedom and wait-freedom;
1-obstruction-freedom is the same as obstruction-freedom, and in a system of k processes, k-
obstruction-freedom is the same as wait-freedom. The following transformation converts any
k-obstruction-free data structure, denoted DS, into a corresponding k-contention-sensitive
data structure which satisfies livelock-freedom. Let us denote by k-first(DS) the number
of steps that a process needs to take in order to complete its operation of DS when the
contention level is at most k. The following transformation is restricted to data structure
implementations, in which a process, after taking an a priori known number of steps, can
figure out what first(DS) should be.

Transformation 4: First a process tries to complete its operation op of DS
without holding the lock. If the contention level is at most k, the process will
complete its operation without locking. Otherwise if the process, after taking
k-first(DS) steps, does not succeed in completing its operation it “exits” the DS
code, and tries to acquire the lock. In this case it is sufficient to use a k-exclusion
lock.2 Once it acquires the lock it “enters” the DS code at the same point where

2A k-exclusion lock guarantees that: (1) no more than k processes can acquire the lock at the same
time, (2) if strictly fewer than k processes fail (are delayed forever) then if a process is trying to acquire the
lock, then some process, not necessarily the same one, eventually acquires the lock, and (3) the operation of
releasing a lock is wait-free.

20

it left it and continues taking steps trying to complete the operation op. If op
is completed it releases the lock.

A similar transformation can be designed for the following weaker condition:

k-obstacle-freedom: For any k ≥ 1, the condition k-obstacle-freedom guaran-
tees that for every set of processes P where |P | ≤ k, some process in P with
pending operations will be able to complete its operations in a finite number of
steps, if all the processes not in P do not take steps for long enough.

We notice that, 1-obstacle-freedom is the same as obstruction-freedom, and in a system of
k processes, k-obstacle-freedom is the same as non-blocking. The correctness proofs of the
2-contention-sensitive consensus algorithm and of Transformation 4 are rather simple and
are left as an exercise for the reader.

8 Related work

Mutual exclusion locks were first introduced by Edsger W. Dijkstra in [5]. Since then,
numerous implementations of locks have been proposed [32, 39]. Algorithms for several
concurrent data structures based on locking have been proposed since at least the 1970s [4, 7,
19, 24]. Speculative lock elision [34] is a hardware technique which allows multiple processes
to concurrently execute critical sections protected by the same lock; when misspeculation,
due to data conflicts, is detected rollback is used for recovery, and the execution falls back
to acquiring the lock and executing non-speculatively.

The benefit of avoiding locking has already been considered in [6]. Implementations of
data structures which avoid locking have appeared in many papers, a few examples are [6,
10, 13, 28, 37, 43]. Several progress conditions have been proposed for data structures which
avoid locking. The most extensively studied conditions, in order of decreasing strength, are
wait-freedom [14], non-blocking [18], and obstruction-freedom [15]. All strategies that avoid
locks are called lockless [17] or lock-free [27]. (In some papers, lock-free means non-blocking.)

Non-blocking and wait-freedom (although desirable) may impose too much overhead
upon the implementation, and are often complex. Requiring implementations to satisfy
only obstruction-freedom can simplify the design of algorithms. However, since it does not
guarantee progress under contention, such algorithms may suffer from livelocks. Various
contention management techniques have been proposed to improve progress of obstruction-
free algorithms under contention while still avoiding locking [11, 35]. Other works inves-
tigated boosting obstruction-freedom by making timing assumption [3, 8, 38] and using
failure detectors [12].

In [41], it is shown that between the two extremes, lock-based algorithms, which involve
“a lot of waiting”, and wait-free algorithms, which are “free of locking and waiting”, there
is an interesting spectrum of different levels of waiting. New progress conditions, called
k-waiting, for k ≥ 0, which are intended to capture the “amount of waiting” of processes
in asynchronous concurrent algorithms, were introduced. To illustrate the utility of the
new k-waiting conditions, they are used in [41] to derive new lower and upper bounds, and
impossibility results for well-known basic problems such as consensus, election, renaming
and mutual exclusion. Furthermore, the relation between waiting and fairness was explored.

21

It is known that even in the presence of only one crash failure, it is not possible to solve
consensus using atomic read/write registers only [9, 22]. Wait-free consensus algorithms
that use read and write operations in the absence of (process) contention, or even in the
absence of step contention, and revert to using strong synchronization operations when
contention occurs, are presented in [2, 23]. A wait-free consensus algorithm that in any
given execution uses objects with consensus number above k, only when contention goes
above k, appeared in [30].

Following the notion contention-sensitive data structures introduced in the conference
version of this paper [40], hybrid implementations of concurrent objects in which lock-based
code and lock-free code are merged in the same implementation of a concurrent object, are
discussed in [33].

Consistency conditions for concurrent objects are linearizability [18] and sequential con-
sistency [21]. A tutorial on memory consistency models can be found in [1]. Transactional
memory is a methodology which has gained momentum in recent years as a simple way for
writing concurrent programs [16, 36, 44]. It has implementations that use locks and others
that avoid locking, but in both cases the complexity is hidden from the programmer. In [25],
a constructive critique of locking and transactional memory: their strengths, weaknesses,
and challenges, is presented.

9 Discussion

None of the known synchronization techniques is optimal in all cases. Despite the known
weaknesses of locking and the many attempts to replace it, locking still predominates. There
might still be hope for a “silver bullet”, but until then, it would be constructive to also
consider integration of different techniques in order to gain the benefit of their combined
strengths. Such integration may involve using a mixture of objects which avoid locking (also
called lockless objects) together with lock-based objects; and, as suggested in this paper,
fusing lockless objects and locks together in order to create new interesting types of shared
objects.

Acknowledgements: I wish to thank the two anonymous referees for their constructive
suggestions.

References

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Computers, 29(12):66–76, September 1996.

[2] H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with reads and writes in
the absence of step contention. Proceedings of the 19th International Symposium on
Distributed Computing, LNCS 3724, 122–136, 2005.

[3] M. K. Aguilera and S. Toueg. Timeliness-based wait-freedom: a gracefully degrading
progress condition. In Proc. 27rd ACM Symp. on Principles of Distributed Computing,
pages 305–314, 2008.

22

[4] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta Informatica,
9:1–21, 1977.

[5] E. W. Dijkstra. Solution of a problem in concurrent programming control. CACM,
8(9):569, 1965.

[6] W. B. Easton. Process synchronization without long-term interlock. In Proc. of the
3rd ACM symp. on Operating systems principles, pages 95–100, 1971.

[7] C. S. Ellis. Extendible hashing for concurrent operations and distributed data. In Proc.
of the 2nd ACM symposium on Principles of database systems, pages 106–116, 1983.

[8] E. F. Fich, V. Luchangco, M. Moir, and N. Shavit. Obstruction-free algorithms can be
practically wait-free. Proc. of the 19th International Symp. on Distributed Computing,
LNCS 3724, pp. 78-92, 2005.

[9] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985.

[10] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In Proc. 23rd ACM
Symp. on Principles of Distributed Computing, pages 50–59, 2004.

[11] R. Guerraoui, M. P. Herlihy and B. Pochon. Towards a theory of transactional con-
tention managers. In Proc. of the 24th Symp. on Principles of Dist. Computing, pp.
258–264, 2005.

[12] R. Guerraoui, M. Kapalka and P. Kouznetsov. The weakest failure detectors to boost
obstruction-freedom. Distributed Computing, 20(6):415–433, 2008.

[13] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proc. 15th
international symp. on distributed computing, LNCS 2180:300–314, 2003.

[14] M. P. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124–149, January
1991.

[15] M. P. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In Proc. of the 23rd International Conf. on Dist. Com-
puting Systems, pages 522–529, 2003.

[16] M. P. Herlihy and J.E.B. Moss. Transactional memory: architectural support for lock-
free data structures. In Proc. of the 20th annual international symp. on Computer
architecture, pages 289–300, 1993.

[17] T. E. Hart, P. E. McKenney, and A. D. Brown. Making lockless synchronization fast:
Performance implications of memory reclamation. In Proc. of the 20th international
Parallel and Distributed Processing Symp., 2006.

[18] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. on Programming Languages and Systems, 12(3):463–492, 1990.

[19] H. T. Kung and P. L. Lehman. Concurrent manipulation of binary search trees. ACM
Transactions on Database Systems, 5(3):354–382, 1980.

23

[20] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. on Computer Systems,
5(1):1-11, 1987.

[21] L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Trans. on Computers, 28(9):690–691, September 1979.

[22] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreli-
able asynchronous processes. Advances in Computing Research, JAI Press, 4:163–183,
1987.

[23] V. Luchangco, M. Moir and N. Shavit. On the uncontended complexity of consensus.
Proc. of the 17th International Symp. on Distributed Computing, LNCS 2848, 45–59,
2003.

[24] P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations on B-trees.
ACM Trans. on Database Systems, 6(4):650–670, 1981.

[25] P. E. McKenney, M. M. Michael and J. Walpole. Why the grass may not be greener
on the other side: A comparison of locking vs. transactional memory. In Proc. of the
4th workshop on Programming languages and operating systems, pp. 1–5, 2007.

[26] M. Moir and J. Anderson. Wait-Free algorithms for fast, long-lived renaming, Science
of Computer Programming 25(1):1–39, 1995.

[27] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report CUCS-
005-91, Columbia University, 1991.

[28] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proc. 15th ACM Symp. on Principles of Distributed
Computing, pages 267–275, 1996.

[29] M. Merritt and G. Taubenfeld. Computing with infinitely many processes. Information
and Computation 233 (2013) 12–31. Also in: LNCS 1914, 164–178, DISC 2000.

[30] M. Merritt and G. Taubenfeld. Resilient consensus for infinitely many processes. Proc.
of the 17th International Symp. on Distributed Computing, LNCS 2848, 1–15, 2003.

[31] S. Moran and Y. Wolfsthal. An extended impossibility result for asynchronous complete
networks. Info. Processing Letters, 26:141–151, 1987.

[32] M. Raynal. Algorithms for mutual exclusion. The MIT Press, ISBN 0-262-18119-3,
107 pages, 1986.

[33] M. Raynal. Concurrent Programming: Algorithms, Principles, and Foundations.
Springer. ISBN 978-3-642-32027-9, 515 pages, 2013.

[34] R. Rajwar and J. R. Goodman, Speculative Lock Elision: Enabling Highly Concurrent
Multithreaded Execution. In Proc. 34th Inter. Symp. on Microarchitecture, pp. 294–
305, 2001.

[35] W. N. Scherer and M. L. Scott. Advanced Contention Management for dynamic soft-
ware transactional memory. In Proc. of the 24th Symp. on Principles of Dist. Com-
puting, pp. 240-248, 2005.

24

[36] N. Shavit and D. Touitou. Software transactional memory. In Proc. 14th ACM Symp.
on Principles of Distributed Computing, pages 204–213, 1995.

[37] H. Sundell and P. Tsigas. Lock-free and practical deques using single-word compare-
and-swap. In 8th International Conference on Principles of Distributed Systems, 2004.

[38] G. Taubenfeld. Efficient transformations of obstruction-free algorithms into non-
blocking algorithms. Proc. of the 21st International Symp. on Distributed Computing,
LNCS 4731, pp. 450–464, 2007.

[39] G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson /
Prentice-Hall, ISBN 0-131-97259-6, 423 pages, 2006.

[40] G. Taubenfeld. Contention-sensitive data structures and algorithms. In 23rd interna-
tional symposium on distributed computing (DISC 2009), September 2009. LNCS 5805
Springer Verlag 2009, 157–171.

[41] G. Taubenfeld. Waiting in Concurrent Algorithms. In 4th international conference on
networked systems (NETYS 2016), Marrakech, Morocco, May 2016.

[42] G. Taubenfeld and S. Moran. Possibility and impossibility results in a shared memory
environment. Acta Informatica, 33(1):1–20, 1996.

[43] J. D. Valois. Implementing lock-free queues. In Proc. of the 7th International Confer-
ence on Parallel and Distributed Computing Systems, pages 212–222, 1994.

[44] Transactional memory. For a list of citations see: http://www.cs.wisc.edu/trans-
memory/.

25

