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ABSTRACT
Assuming that there is an a priori agreement between processes

on the names of shared memory locations, as done in almost all

the publications on shared memory algorithms, is tantamount to

assuming that agreement has already been solved at the lower-level.

From a theoretical point of view, it is intriguing to �gure out how

coordination can be achieved without relying on such lower-level

agreement. In order to be�er understand the new model, we have

designed new algorithms without relying on such a priori lower-

level agreement, and proved space lower bounds and impossibility

results for several important problems, such as mutual exclusion,

consensus, election and renaming. Using these results, we identify

fundamental di�erences between the standard model where there

is a lower-level agreement about the shared register’s names and

the strictly weaker model where there is no such agreement.
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1 INTRODUCTION
A central issue in distributed systems is how to coordinate the

actions of asynchronous processes. In the context where processes

communicate via reading and writing from shared memory, in

almost all published concurrent algorithms it is assumed that the

shared memory locations have global names which are a priori

known to all the participating processes. From a theoretical point

of view, it is intriguing to �gure out what and how coordination

can be achieved without relying on such lower-level agreement

about the names of the memory locations.

We assume that all inter-process communications are via shared

registers which are initially in a known state. Access to the registers

is via atomic read and write operations. However, from the point

of view of the processes, the registers do not have global names: the

�rst register examined and the subsequent order in which registers

are scanned may be di�erent for each process. �at is, a single

register may be considered the ��h register by one process and the

eighth by another. Even the order of the names may be di�erent.
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�us, for example, one process may scan four registers in order 3,

2, 1, 4 while another scans 2, 4, 1, 3.

We call algorithms that are correct for a model where the regis-

ters do not have global names, memory-anonymous algorithms. �e

lack of global names makes it convenient to think of each process

as being assigned an initial register and an ordering of the registers

which determines how it scans the registers. Our interest in such

a weak computational model is of a theoretical nature; however,

the plasticity of memory-anonymous algorithms – their ability to

operate for any assigned ordering of the registers – may be found

useful in practice. When using such algorithms, speci�c ordering

can be assigned for reducing memory contention which may help

in improving performance. Furthermore, various optimizations

enable reordering memory references as it allows much be�er per-

formance. Because of its plasticity, memory-anonymous algorithms

may need to use only a small number of memory barriers to prevent

reordering.

In order to be�er understand the new model, we have designed

new memory-anonymous algorithms, proved space lower bounds

and impossibility results for several important problems, which

include mutual exclusion, consensus, election and renaming. Using

these results, we identify fundamental di�erences between the

standard model where there is a lower-level agreement about shared

register’s names and the strictly weaker model where there is no

such agreement.

2 PRELIMINARIES
Our model of computation consists of a fully asynchronous col-

lection of n processes which communicate via atomic read/write

registers that do not have global names. �us, algorithms should be

correct assuming a very powerful adversary, which can determine

(essentially) the order in which processes access the registers.

�e fact that the registers do not have global names implies that

only multi-writer multi-reader (MWMR) registers are possible. A

MWMR register can both be wri�en and read by all the processes.

With an atomic register, it is assumed that operations on the register

occur in some de�nite order. �at is, reading or writing an atomic

register is an indivisible action. In the sequel, by registers we mean

atomic registers. Asynchrony means that there is no assumption

on the relative speeds of the processes. Each process has a unique

identi�er which is a positive integer. It is not assumed that the

identi�ers are taken from the set {1, ...,n}. �us, a process does

not a priori know the identi�ers of the other processes.

A symmetric algorithm is an algorithm in which the processes are

executing exactly the same code and the only way for distinguishing

processes is by comparing identi�ers. Identi�ers can be wri�en,

read and compared, but there is no way of looking inside any



identi�er. �us, it is not possible to know whether an identi�er is

odd or even. Two variants of symmetric algorithms can be de�ned:

• Symmetric with equality, means that a process can deter-

mine if two identi�ers are the same or not, but if they are

di�erent then nothing else can be determined.

• Symmetric with arbitrary comparisons, means that a pro-

cess can learn something about identi�ers if two unequal

identi�ers are compared. For example, comparisons can be

de�ned that depend on a total order.

We assume that there is no a priori agreement between the pro-

cesses regarding the order of their identi�ers. �us, throughout the

paper, we assume that only comparisons for equality are allowed.

Furthermore, a process will only compare its own identi�er with

another, and not compare it with a constant value.

In some cases, we will assume that processes may fail by crashing;

that is, they fail only by never entering the algorithm or by leaving

the algorithm at some point and therea�er permanently refraining

from writing the shared registers. A process that crashes is said to

be faulty, otherwise it is correct.
Several progress conditions have been proposed for algorithms in

which processes may fail. Wait-freedom guarantees that every active

process will always be able to complete its pending operations in a

�nite number of its own steps [14]. Obstruction-freedom guarantees

that an active process will be able to complete its pending operations

in a �nite number of its own steps, if all the other processes “hold

still” long enough [15]. Obstruction-freedom does not guarantee

progress under contention.

In a model where participation is required, every correct pro-

cess must eventually become active and execute its code. A more

common and practical situation is one in which participation is not

required. �roughout the paper, we will assume that participation

is not required.

3 MEMORY-ANONYMOUS MUTUAL
EXCLUSION

None of the published mutual exclusion algorithms (that I know of)

using registers is memory-anonymous. Below we present the �rst

memory-anonymous mutual exclusion algorithm for two processes.

3.1 �e problem
�e mutual exclusion problem is to design an algorithm that guaran-

tees mutually exclusive access to a critical section among a number

of competing processes [Dij65]. It is assumed that each process

is executing a sequence of instructions in an in�nite loop. �e in-

structions are divided into four continuous sections: the remainder,

entry, critical and exit. �e exit section is required to be wait-free –

its execution must always terminate. It is assumed that processes

do not fail, and that a process always leaves its critical section.

�e mutual exclusion problem is to write the code for the entry

and the exit sections in such a way that the following two basic

requirements are satis�ed.

• Deadlock-freedom: If a process is trying to enter its critical

section, then some process, not necessarily the same one,

eventually enters its critical section.

• Mutual exclusion: No two processes are in their critical

sections at the same time.

Satisfaction of the above two properties is the minimum required

for a mutual exclusion algorithm.

3.2 A result for two processes and its
implications

We prove the following result:

Theorem 3.1. �ere is a memory-anonymous symmetric deadlock-
free mutual exclusion algorithm for two processes usingm ≥ 2 regis-
ters if and only ifm is odd.

In the standard model, where there is a lower-level a priori agree-

ment regarding the registers names, the following three general

properties hold:

• If a problem has a solution using ` registers then it also

has a solution usingm registers, for everym ≥ `. (Simply

ignorem−` of the registers. �is requires a prior agreement

on whichm − ` registers should be ignored.)

• For every n ≥ 2, if a problem has a solution for n processes,

with distinct identi�ers taken from the set {1, ...,n}, using

registers then it has a solution (not necessarily symmetric)

using n registers. (�is follows from the fact that multi-

writer registers can be wait-free implemented from single-

writer registers.)

• For every n ≥ 2, there is a symmetric mutual exclusion

algorithm for n processes using n registers, which uses

only comparisons for equality. (See [23].)

It follows immediately from �eorem 3.1, that these three properties

do not hold for a model where there is no lower-level agreement

regarding the registers names assuming comparisons for equality.

3.3 A memory-anonymous mutual exclusion
algorithm

We present below a memory-anonymous deadlock-free mutual

exclusion algorithm for two processes using m registers, for any

odd number of registersm ≥ 3. �e question whether there is an

algorithm for more than two processes is open (at �rst glance this

open problem looks simple, but it is not).

Each participating process scans them shared registers trying to

write its identi�er into each one of them registers. While accessing a

register, a process may �nd that another process has already “visited”

that register. In such a case, the process does not write into that

register and continues to the next one. Once a process completes

scanning the m registers and possibly writing its identi�er to some

of them, it scans the registers again, this time only reading their

values. If it �nds that its identi�er is wri�en in all them registers,

it safely enters its critical section. If its identifer is wri�en in less

than dm/2e registers, it gives up and sets the registers in which its

name is wri�en back to their initial values. If its identifer is wri�en

in at least dm/2e registers (but not in all), it starts all over again.

On exiting its critical section, a process sets all the registers back

to their initial values.

As the m registers do not have global names, each process in-

dependently numbers them. We use the notation p.i[j] to denote

the jth register according to process i numbering, for 1 ≤ j ≤ m.

Recall, that a process’ identi�er is a positive integer. �e code of

the algorithm appears in Figure 1.



Code of process i

Constants:
m: an odd integer greater than 2 //m is the # of shared registers

Shared variables:
p.i[1..m]: array ofm atomic registers, initially all 0 //m ≥ 3 is odd

Local variables:
myview[1..m]: array ofm variables

j: ranges over {1, ...,n}
1 repeat //begin entry code
2 for j = 1 tom do if p.i[j] = 0 then p.i[j] = i � od //scan and write
3 for j = 1 tom do myview[j] := p.i[j] od //read the shared array
4 if i appears in less than dm/2e of the entries of myview[1..m] then //lose
5 for j = 1 tom do if p.i[j] = i then p.i[j] = 0 � od //clean up
6 repeat //wait for CS to be released
7 for j = 1 tom do myview[j] := p.i[j] od //read the shared array
8 until ∀j ∈ {1, ...,m} : myview[j] = 0 //try again
9 �
10 until ∀j ∈ {1, ...,m} : myview[j] = i //end entry code
11 critical section
12 for j = 1 tom do p.i[j] = 0 od //exit code

Figure 1: A memory-anonymous symmetric deadlock-free mutual exclusion algorithm for two processes

In the �rst for loop (lines 2) process i scans them registers trying

to set them all to its identi�er. If it does not succeed to set at least

dm/2e, it resets the registers with its identi�er back to 0 (line 5)

and then waits for the critical section to be released (lines 6–8).

If it �nds out that its identi�er is wri�en in all the m registers, it

safely enters its critical section (line 10). Otherwise, it go back to

the beginning of the repeat loop (line 1) and starts all over again.

In its exit code, process i resets all the registers back to 0 (line 12).

3.4 Correctness proof
Below we present a correctness proof for the algorithm.

Theorem 3.2. �e algrithm satis�es mutual exclusion.

Proof. Let i and j be the identi�ers of the two processes. As-

sume that process i is in its critical section, while process i is in its

entry code. Before i enters its critical section the expression in line

10, ∀j ∈ {1, ...,m} : myview[j] = i must be evaluated to true. �is

means that, before i has entered its critical section, there is a single

point in time where the value of each one of the m ≥ 3 shared

registers equals i . A�er that point, process j might write once into

one of the registers overwriting the i value. �us, process j, when

executing line 4, will �nd that its identi�er, j, appears in less that

dm/2e of the entries of the shared array (actually, the value j may

appear in at most one entry) and will change back to 0 the single

entry in which its identi�er may appears (line 5). From that point

on, as long as i is in its critical section, the value i will appear in at

least m − 1 entries of the shared array, preventing j for entering its

critical section. �

Theorem 3.3. �e algorithm is deadlock-free.

Proof. We show that if a process is trying to enter its critical

section, then some process eventually enters its critical section. In

the �rst for loop (lines 2) each process scans the m registers trying

to set those that are 0 to its identi�er. If the process is running

alone it will clearly succeed to set them all to its identi�er and

will enter its critical section. When there is contention (i.e., both

processes are in their entry code) since m ≥ 3 is an odd number,

exactly one of the two processes must �nd that less than dm/2e
of the registers are set to its identi�er, will give up, wait in the

inner repeat loop (lines 6–8), enabling the other process to write

all them registers and to enter its critical section. In its exit code, a

process resets all the registers back to 0 enabling a possibly waiting

process to continue. �us, it is not possible for both processes to

simultaneously be in their entry codes forever. �

3.5 A general space lower bound
�e result that there is a memory-anonymous symmetric deadlock-

free mutual exclusion algorithm for two processes using m ≥ 2

registers only if m is odd is a special case of the following more

general result. Two integers x and y are said to be relatively prime
if their greatest common divisor is 1. We notice that a number is

not relatively prime to itself.

Theorem 3.4. �ere is a memory-anonymous symmetric deadlock-
free mutual exclusion algorithm for n processes usingm ≥ 2 registers
only if for every positive integer 1 < ` ≤ n,m and ` are relatively
prime.

Proof. We assume to the contrary that there is a memory-

anonymous symmetric deadlock-free mutual exclusion algorithm

for n processes using m ≥ 2 registers such that for some positive

integer 1 < ` ≤ n, m and ` are not relatively prime. �is means

that there is a number 1 < ` ≤ m such that ` dividesm.



�e lack of global names for the registers makes it convenient

to think of each process as being assigned an initial register and

an ordering of the registers which determines how it scans the

registers when it runs alone. For example, if a process scans three

registers, named 3,4 and 5, in the order 5445334 then the ordering

would be 543, omi�ing duplications.

We arrange the registers as a unidirectional ring of sizem, where

the direction of the unidirectional ring corresponds to the direction

in which the processes scan the registers. So, we pick up ` pro-

cesses, and assign these ` processes the same ring ordering, though

potentially di�erent initial registers. �at is, the processes scan the

registers by “walking” around the ring in the same direction. �e

distance between two registers on the ring is the smallest number

of registers between them plus 1. For each process, we assign an ini-

tial register such that the distance between any two neighbouring

initial registers is exactlym/l . (Two initial registers are neighbours

when there is no other initial register between them.)

We run the ` processes in lock steps. We �rst let each one of

them take one step (in some order), and then let each one of them

takes another step, and so on. Since only comparisons for equality

are allowed, processes that take the same number of steps will be at

the same state, and thus it is not possible to break symmetry. �us,

either all the processes will enter their critical sections at the same

time violating mutual exclusion, or no process will ever enter its

critical section violating deadlock-freedom. A contradiction. �

4 A MEMORY-ANONYMOUS
OBSTRUCTION-FREE CONSENSUS
ALGORITHM

�e multi-valued consensus problem is to design an algorithm in

which all non-faulty processes reach a common decision based on

their initial opinions. It is impossible to solve consensus with a

single crash failure using registers only (even in the classical model)

[11, 16]. �is implies that there is no wait-free consensus algorithm

using registers. Below we focus on the design of an obstruction-free

consensus algorithm.

�e consensus problem is de�ned as follows: there are n pro-

cesses, and each process has some input value. �e requirements of

the consensus problem are that there exists a decision value v such

that: (1) Agreement: all non-faulty process that eventually decide,

decide on the same value v , and (2) Validity: v is the input value of

at least one of the processes. We recall that obstruction-freedom

requires that each process that runs alone, for su�ciently long time,

must eventually decide.

When there are only two possible input values, the problem is

called binary consensus. We solve the general multi-valued version

of the problem. Our algorithm uses a key idea from an earlier

algorithm, which uses single-writer registers and snapshot objects

(and hence is not memory-anonymous) [5].

4.1 �e consensus algorithm
�e algorithm uses an array of 2n − 1 shared registers, where each

register is de�ned as a record which has two �elds: an id �eld

that can store a process identi�er and a val �eld which stores the

preference of a process. Each participating process scans the 2n − 1

shared registers trying to write its identi�er and preference into

each one of the 2n − 1 registers. Before each write, the process

scans the shared array and operates as follows: if its identi�er

and preference appears in all the 2n − 1 registers, it decides on its

preference, and terminates; otherwise, if some preference appears

in at least n of the value �elds, the process adopts this preference

as its new value.

A�erwards, the process �nds some arbitrary entry in the shared

array that does not contain both its identi�er and preference and

writes the pair containing its identi�er and preference into that

entry. Once the process �nishes writing it repeats the above steps

until its identi�er and preference appear in all the 2n − 1 registers,

at which point it can decide on its current preference and terminate.

As in the previous section, we use the notation p.i[j] to denote

the jth register according to process i numbering, for 1 ≤ j ≤ 2n−1.

�e code of the algorithm appears in Figure 2.

A�er process i sets its initial preference to its input (line 1), it

executes the repeat loop (lines 2–8) until its identi�er and prefer-

ence appears in all the 2n − 1 registers. Within the repeat loop,

it �rst copies the values of the shared array into the local array

myview[1..2n − 1] (line 3). If some value appears in at least n of

the val �elds of the entries of myview[1..2n − 1] (line 4), the pro-

cess adopts this value as its preference, by writing this value into

mypref (line 5). �en, the process �nds some arbitrary entry in

myview[1..2n − 1] that does not contain the pair (i,mypref ) (line

6) and writes this pair into that entry (line 7). Clearly, such an

arbitrary entry exists. Once the process exits the repeat loop, it

decides on the value of mypref and terminates.

Remark: De�ning each register as a record which has two �elds

with global names, is done only for convenience. �e two values in

these �elds can be encoded as a single value, removing the need

for using more than one �eld. A similar comment applies also for

the renaming algorithm presented in the next section.

A note on obstruction-free election: In the election problem,

each participating process that terminates, outputs the identi�er

of some participating process before terminating. It is required

that all the participants which terminate output the same identi�er,

which identi�es the elected leader. Obstruction-freedom requires

that each process that runs alone, for su�ciently long time, must

eventually output a value and terminate. In asynchronous systems

where processes communicate using registers, election is impossi-

ble with one faulty process even with registers which have global

names [11, 19, 26].
1

It is straightforward to use the above consen-

sus algorithm for constructing a memory-anonymous symmetric

obstruction-free election algorithm: Each process simply uses its

own identi�er as its initial input.

4.2 Correctness proof
Below we present a correctness proof for the consensus algorithm.

Theorem 4.1 (agreement under obstruction-freedom). Ev-
ery participating process, that runs alone for su�ciently long time,
eventually decides; and all the participating processes that decide,
decide on the same value and terminate.

1
An algorithm that tolerates a single failure does not necessarily satis�es obstruction-

freedom, and vice versa.



Code of process i with input ini

Shared variables:
p.i[1..2n − 1]: array of 2n − 1 atomic registers, initially all �elds are 0

Local variables:
myview[1..2n − 1]: array of 2n − 1 variables, each entry has two �elds id and val .
mypref : integer ; j: ranges over {1, ..., 2n − 1}

1 mypref := ini
2 repeat
3 for j = 1 to 2n − 1 do myview[j] := p.i[j] od //read the shared array
4 if ∃ value , 0 which appears in at least n of the val �elds of the entries of myview[1..2n − 1]
5 then mypref := value � //update preference
6 j := an arbitrary index k ∈ {1, ..., 2n − 1} such that myview[k] , (i,mypref ) //search
7 p.i[j] := (i,mypref ) // write
8 until ∀j ∈ {1, ..., 2n − 1} : myview[j] = (i,mypref ) //my id appears everywhere
9 decide(mypref ) //decide

Figure 2: A memory-anonymous symmetric obstruction-free consensus algorithm

Proof. Let process i be the �rst process to decide, and denote

the value that i decides on by v . �is means that, before deciding,

process i has found that the value of each one of the 2n − 1 shared

registers equals (i,v). Each one of the other n − 1 processes might

write into one of the registers overwriting the (i,v) value. �us,

all the other processes, when executing line 4, will �nd that v
appears in at leastn of theval �elds of the entries of myview[1..2n−
1], and each one of them will change its preference to v (line 5).

From that point on, the only possible decision value is v . Next, we

show that each process eventually decides (and terminates) under

obstruction-freedom (that is, if it runs alone for su�ciently long

time). When a process, say process j, runs alone from some point

on in a computation, j will read the shared array (line 3) and set

its preference to v (if it is not v already). From that point on, in

each iteration of the repeat loop, process j will set one entry of the

shared array to (j,v). �us, a�er at most 2n−1 iterations the values

of all the 2n − 1 entries will equal (j,v), and process j will be able

to exit the repeat loop, decide v and terminate. �

Theorem 4.2 (validity). �e decision value is the input of a
participating process.

Proof. At each point the current preference of a process is

either its initial input or a value (di�erent from 0), it has read from

the val �eld of a shared register. Since a process may only write

its preference into the val �eld of a shared registers, the result

follows. �

5 A MEMORY-ANONYMOUS
OBSTRUCTION-FREE PERFECT RENAMING
ALGORITHM

A renaming algorithm allows processes with initially distinct names

from a large name space to acquire distinct new names from a small

name space. A perfect renaming algorithm allows n processes with

initially distinct names from a large name space to acquire distinct

new names from the set {1, ...n}. A perfect renaming algorithm is

adaptive if, for any 1 ≤ k ≤ n, when only k processes participate,

they acquire distinct new names from the set {1, ...k}. In asynchro-

nous systems where processes communicate using atomic registers

there is no perfect renaming algorithm which can tolerate a single

failure even with registers which have global names [1, 19, 26]. We

show that there is a memory-anonymous obstruction-free adaptive

perfect renaming algorithm using registers.

It is straightforward to solve perfect renaming in a model where

there is an a priori agreement on the names of the registers, given

that there is a solution for the election problem. �is is done as

follows: n − 1 (obstruction-free) election objects are used. �e

election objects are indexed 1,2,….,n − 1. Each process scans the

objects, in order, starting with object number 1. At each step, the

process applies the election operation, and either: moves to the

next object if it is not elected in object i < n − 1, stops if it is being

elected, or stops if it not elected in object n − 1. �e process is

assigned either the name equal to the index of the object on which

its election operation has succeeded, or n if it is not elected in all

n − 1 objects. �is trivial solution requires a priori agreement on

an ordering for the election objects, and hence would not work in a

model where there is no a priori agreement on the registers names.

5.1 �e perfect renaming algorithm
�e basic idea, as in the above trivial solution, is for each process

to participate in up to n election “games”, and to acquire a name

according to the game in which it is elected. However, the solution

does not require a priori agreement on an ordering for the election

games. �is is achieved by playing each one of these games in the

same shared space. �e algorithm uses an array of 2n − 1 shared

registers, where each register is de�ned as a record which has four
�elds: an id and val �elds, each can store a process identi�er, a

round �eld which can store a number between 1 to n, and a history
�eld which stores a set of pairs of the form (identi�er, value) where

value ∈ {1, ...,n}.



Code of process i

Shared variables:
p.i[1..2n − 1]: array of 2n − 1 registers, initially the �elds id, val, round, and history are 0,0,0 and ∅, resp.

Local variables:
myview[1..2n − 1]: array of 2n − 1 variables, each entry has four �elds id, val, round, history
mypref : integer ; j: ranges over {1, ..., 2n − 1}
myround,mytemp: ranges over {1, ...,n}, initially 1

myhistory: a set of pairs of the form (identi�er, value) where value ∈ {1, ...,n}, initially ∅

1 repeat
2 mypref := i //i tries to win in the current round
3 repeat //in each round one process wins and gets a new name
4 for j = 1 to 2n − 1 do myview[j] := p.i[j] od //read the shared array
5 if ∃ j ∃ v : (i,v) ∈ myview[j].history //i already got new name!
6 then return(v) � //return new name and terminate
7 mytemp := maxj ∈{1, ...,2n−1} myview[j].round //finding the maximum round #
8 if mytemp > myround then //i is lagging behind
9 j := an arbitrary index k ∈ {1, ..., 2n − 1} such that myview[k].round = mytemp
10 mypref := myview[j].val //catching up
11 myhistory := myview[j].history //catching up
12 myround := myview[j].round � //catching up
13 if ∃ v , 0 such that among the entries of myview[1..2n − 1] whose round �elds equals myround

v appears in at least n of the val �elds of these entries

14 then mypref := v � // change preference
15 j := an arbitrary index k ∈ {1, ..., 2n − 1} such that

myview[k] , (i,mypref ,myround,myhistory) //search
16 p.i[j] := (i,mypref ,myround,myhistory) //write
17 until ∀j ∈ {1, ..., 2n − 1} : myview[j] = (i,mypref ,myround,myhistory) //success
18 if mypref = i then return(myround) � //return new name and terminate
19 myhistory := myhistory ∪ {(mypref ,myround)} //update history
20 myround := myround + 1 //increment round
21 until myround = n //a single process left
22 return(n) //last process to acquire a name

Figure 3: A memory-anonymous symmetric obstruction-free adaptive perfect renaming algorithm

�e algorithm precedes in rounds, where in each round the

processes elect one of the participating processes as a leader. �ese

rounds are local and do not require global synchronization. In each

round, say r , each participating process scans the 2n − 1 registers

trying to write its preference, which in this case is its identi�er,

into each one of the 2n − 1 registers. In addition, the process also

writes into each one of the 2n − 1 registers a set which includes the

history of all the processes that were elected in previous rounds.

Eventually, the processes will agree on some value, say id, in round

r and id will identify the leader for round r . �e process whose

identity equals id will eventually be assigned the value r as its new

name. Once a process is elected in round r , it does not participate

in later rounds. A process that notices that a leader is elected in

around r , updates its history by adding the pair (id, r ) to its history,

and continues to round r + 1. A�er n rounds, all the processes

will be assigned new names. As before, we use the notation p.i[j]
to denote the jth register according to process i numbering, for

1 ≤ j ≤ 2n − 1. �e code of the algorithm appears in Figure 3.

A�er process i sets its initial preference to its own identi�er (line

2), it executes the inner repeat loop (lines 3–17) until its identi�er

and preference appears in all the 2n− 1 registers. Within the repeat

loop, it �rst copies the values of the shared array into the local

array myview[1..2n − 1] (line 4). It then checks if its identi�er

appears in the history of some process (line 5). If so, it means

that it was elected as a leader in one of the previous rounds, in

which case it returns the round number in which it was elected

as its new name and terminates. Otherwise, if it sees that it is

lagging behind (line 8), it is catching up by updating its preference,

history and round number (lines 9-12). If some value appears in at

least n of the val �elds of the entries of myview[1..2n − 1] whose

round �elds equals myround (line 13), the process adopts this value

(identi�er) as its new preference (line 14). �en, the process �nds

some arbitrary entry in myview[1..2n− 1] that does not contain the

tuple (i,mypref ,myround,myhistory) (line 15) and writes it into

that entry (line 16). Once the process exits the inner repeat loop,

it �rst checks if it was elected in the current round, and if so it



returns the round number and terminates (line 18). Otherwise, it

updates its history (line 19) and round number (line 19). In case its

round number reaches n, it exits the outer repeat loop, returns n as

its new name and terminates. Otherwise, it continues to the next

round.

5.2 Correctness proof
Below we present a correctness proof for the renaming algorithm.

Theorem 5.1 (Termination under obstruction-freedom).

Every participating processes, if it runs alone for su�ciently long
time, acquires a new name and terminate.

Proof. Assume that at some point in time some a process, say

process i , runs alone. One of the following four scenarios must

happen:

(1) Process i checks if its identi�er appears in the history of

some process (line 5). If so, it returns the round number in

which it was elected as its new name and terminates (line

6).

(2) Process i , if needed, updates once its mypref ,myround and

myhistory variables (lines 10, 11, 12, 14). From that point

on, in each iteration of the inner repeat loop (lines 3–17),

process i sets one entry of the shared array to

(i,mypref ,myround,myhistory). �us, a�er at most 2n−1

iterations the values of all the 2n − 1 entries equal

(i,mypref ,myround,myhistory), and process i is able to

exit the inner repeat loop. Once process i exits the inner

repeat loop, it checks if mypref = i , and if so it returns the

round number and terminates (line 18).

(3) Process i incrementsmypref by 1 (line 20). In casemypref =
n, it exits the outer repeat loop, returns n as its new name

and terminates.

(4) Process i continues alone to the next round. It �rst sets

mypref to i (line 2). From that point on, in each iteration of

the inner repeat loop (lines 3–17), process i sets one entry of

the shared array to (i, i,myround,myhistory). �us, a�er

at most 2n − 1 iterations the values of all the 2n − 1 entries

equal (i, i,myround,myhistory), and process i is able to

exit the inner repeat loop. Once process i exits the inner

repeat loop, since mypref = i , it returns the current round

number as its new name and terminates (line 18).

�is completes the proof. �

Theorem 5.2 (Uniqeness). Every participating processes ac-
quires unique name from the set {1, ...n}.

Proof. Assume that process i acquires the name r . �is means

that, at some point in time during round r (before i acquires the

name r ), for every j ∈ {1, ..., 2n−1},p.i[j].val = i andp.i[j].round =
r . �is happens immediately a�er some process (not necessarily

i) has updated a shared register. Each one of the other n − 1 pro-

cesses might write into one of the 2n − 1 registers during round r
overwriting the value of a register. �us, all the other processes,

when executing line 13 during round r , will �nd that v appears in

at least n of the val �elds of the entries of myview[1..2n − 1], and

each one of them will change its preference to v during round r
(line 14). From that point on, the only possible leader for round r

is i . �us, no other process will be assigned the value r . Since the

number assigned to a process corresponds to the round at which it

was elected or n if not elected in the �rst n − 1 rounds, the assigned

name must be from the set {1, ...n}. �

Theorem 5.3 (Adaptivity). For any 1 ≤ k ≤ n, when only k
processes participate, they acquire new names from the set {1, ...k}.

Proof. If only k < n processes participate, the algorithm will

terminate a�er k rounds. Since the number assigned to a process

corresponds to the round at which it was elected (or n if not elected

in the �rst n − 1 rounds), the assigned name must be from the set

{1, ...k}. �

6 IMPOSSIBILITY RESULTS AND SPACE
LOWER BOUNDS

We �rst address the following question: Is a model in which there

is no agreement regarding the names of the registers strictly weaker
than a model in which there is such agreement? �e assumption

that there is a lower-level a priori agreement regarding an object

name can be viewed as an a�ribute of the object itself. A named
object is an object for which there is an a priori agreement regarding

its name, while an unnamed object (also called anonymous object) is

an object for which there is no agreement regarding its name. Is it

possible to implement a named register using unnamed registers?

We prove the following result:

Theorem 6.1. A model in which there is no agreement regarding
the names of the registers is strictly weaker than a model in which
there is such agreement, even when assuming that processes never fail.
�us, it is not possible to implement a single named register using any
number of unnamed registers, even when assuming that processes
never fail.

In the previous sections we have assumed that the number of

processes, n, is �nite and a priori known. Here we investigate the

design of algorithms assuming no a priori agreement on the number
of processes. Our results apply to both the case where the number

of processes is �nite but not a priori known, and the case where the

number of processes is unbounded. We say that that the number of

processes is unbounded when, in each run, the number of processes

that are simultaneously active in any given point in time (i.e., in

any state) is �nite but can grow without bound.

We prove below three impossibility results for a model where

the processes communicated via unnamed registers and there is

no a priori known bound on number of processes. �ese results

also hold for algorithms which are not symmetric. �e results are

for deadlock-free mutual exclusion, obstruction-free consensus

and obstruction-free adaptive perfect renaming. �e impossibility

result for deadlock-free mutual exclusion does not hold when using

named registers. �us, the result for deadlock-free mutual exclusion

implies �eorem 6.1. �e impossibility proofs below are all based

on covering arguments and have the same structure.

6.1 Preliminaries
For proving the impossibility results we will use the following

notions and notations. An event corresponds to an atomic step per-

formed by a process. A (global) state of an algorithm is completely



described by the values of the (local and shared) registers and the

values of the location counters of all the processes. A run is de�ned

as a sequence of alternating states and events (also referred to as

steps). For the purpose of the proofs below, it is more convenient to

de�ne a run as a sequence of events omi�ing all the states except

the initial state. Since the states in a run are uniquely determined

by the events and the initial state, no information is lost by omi�ing

the states.

We will use x , y and z to denote runs. When x is a pre�x of

y (and y is an extension of x), we denote by (y − x) the su�x of

y obtained by removing x from y. Also, we denote by x ; seq the

sequence obtained by extending x with the sequence of events seq.

Saying that an extensiony of x involves only processes from the set

P means that all events in (y − x) are only by processes in P . Runs

x and y are indistinguishable for process p, if the subsequence of all

events by p in x is the same as in y, the initial values of the local

registers of p in x are the same as in y, and the (current) values of

all the shared registers in x are the same as in y.

Process p covers a register in run x , if x can be extended by an

event in which p writes to some register. If every process in a set of

processes P covers a register iny then P is a set of covering processes
in y. A block write by a set of covering processes P is an execution

in which each process in P performs a single write (and nothing

else). Notice that if process p covers register reg in run x then p
covers reg in any extension of x which does not involve p. Also,

if every process in P covers a di�erent register then the order of

writes does not ma�er since the resulting runs are indistinguishable

to all the processes.

6.2 An impossibility result for deadlock-free
mutual exclusion

A deadlock-free mutual exclusion algorithm for an unbounded

number of processes using named registers was presented in [17].

We prove that there is no such algorithm using unnamed registers.

�ese possibility and impossibility results imply �eorem 6.1.

Theorem 6.2. �ere is no deadlock-free mutual exclusion algo-
rithm using unnamed registers when the number of processes is not a
priori known.

Proof. We assume to the contrary that there is a deadlock-free

mutual exclusion algorithm using unnamed registers assuming that

the number of processes is not a priori known, and show that this

assumption leads to a contradiction.

A process must write at least once before it enters its critical

section. Otherwise, we can let the process enter its critical section,

and since it le� no trace, if we let other processes run, by deadlock-

freedom, one of them will also enter its critical section violating

the mutual exclusion requirement.

Let y be a run in which some process, say q, runs alone until it

enters its critical section, and let write(y,q) be the set of di�erent

registers to which q has wri�en iny. Let P be a set of processes such

that q < P and |P | = |write(y,q)|. Since the number of processes

is not a priori known (and thus can be as big as we need), we can

always �nd such a set P , for any size of write(y,q).
For each processp ∈ P , let r .p denotes a run in whichp runs alone

until it �rst covers some register. Since all the registers are unnamed,

we can let each process scan the registers in an order which ensures

that: (1) for each processp ∈ P , in r .p processp covers some register

in write(y,q), and (2) for each pair of processes {p,p′} ⊆ P , in r .p
and r .p′ processes p and p′ cover di�erent registers.

Since, for each p ∈ P there are no writes in r .p, we can construct

a run, called x , as follows: we pick an arbitrary process p ∈ P , and

let it execute exactly the same steps as in r .p, then we pick another

process from P and repeat this procedure. We continue until each

process in P covers some register inwrite(y,q). By construction, in

x the processes in P together cover all the registers in write(y,q).
Let x ′ be an extension of x by a block write by P . By the deadlock-

freedom property, there exists an extension z of x ′ in which only

processes in P take steps and some process in P is in its critical

section.

Next we construct a run, ρ, in which two processes are in their

critical sections at the same time. We start the construction with the

run x . Since no process writes a shared register in x , only processes

in P participate in x and q < P , it follows that x ;y is a legal run.

Let w be an extension of x ;y by a block write by P . Since the block

write by P overwrites all the values wri�en by process q in x ;y,

it follows that w and x ′ are indistinguishable for all the processes

P . �us, any extension of x ′ by processes in P is also a possible

extension of w . In particular, ρ = w ; (z − x ′) is a legal run. By

construction at the end of ρ two processes, q < P and some process

in P , are in their critical sections. A contradiction. �

6.3 An impossibility result and a space lower
bound for obstruction-free consensus

In Section 4, we have presented an obstruction-free consensus

for n processes using unnamed registers, where n is a (known)

positive integer. We show that no such algorithm exists when

the number of processes is not a priori known. Interestingly, it

is shown in [25], how to construct an obstruction-free consensus

algorithm using named registers when the number of processes is

�nite and not a priori known or even when the number of processes

is unbounded. For a �nite number of processes n, the question

whether it is possible to solve obstruction-free consensus using

n − 1 named registers is still open. We resolve this question for

unnamed registers.

Theorem 6.3. �ere is no obstruction-free consensus algorithm
(1) when the number of processes is not a priori known using (an
unlimited number of) unnamed registers, and (2) for n ≥ 2 processes
using n − 1 unnamed registers.

Proof. We assume to the contrary that there is an obstruction-

free consensus algorithm when the number of processes is not a

priori known using unnamed registers (resp. for n ≥ 2 processes

using n − 1 unnamed registers), and show that this assumption

leads to a contradiction.

A process that runs alone must write at least once before it

decides. Otherwise, we let a process with inputv ∈ {0, 1} run alone

until it decides v , �en (assuming the process never writes), we let

a process with input 1 −v run alone until it decides on 1 −v . �is

would violate the agreement requirement.

Let y be a run in which some process, say q, with input 0 runs

alone until it decides 0, and let write(y,q) be the set of di�erent



registers to which q has wri�en in y. Let P be a set of processes,

all with input 1, such that q < P and |P | = |write(y,q)|. Since the

number of processes is not a priori known (resp. since there are n
processes and only n − 1 registers), we can always �nd such a set

P , for any possible size of write(y,q).
For each processp ∈ P , let r .p denotes a run in whichp runs alone

until it �rst covers some register. Since all the registers are unnamed,

we can let each process scan the registers in an order which ensures

that: (1) for each processp ∈ P , in r .p processp covers some register

in write(y,q), and (2) for each pair of processes {p,p′} ⊆ P , in r .p
and r .p′ processes p and p′ cover di�erent registers.

Since, for each process p ∈ P , there are no writes in r .p, we can

construct a run, called x , as follows: we pick an arbitrary process

p ∈ P , and let it execute exactly the same steps as in r .p, then we

pick another process in P and repeat this procedure. We continue

until each process in P covers some register in write(y,q). By

construction, in x the processes in P together cover all the registers

in write(y,q). Let x ′ be an extension of x by a block write by P . By

the obstruction-freedom and the validity properties, there exists an

extension z of x ′ in which (1) only some process p ∈ P takes steps

and (2) p decides 1.

Next we construct a run, ρ, in which two processes decide on

di�erent values. We start the construction with the run x . Since no

process writes a shared register in x , only processes in P participate

in x and q < P , it follows that x ;y is a legal run. Let w be an

extension of x ;y by a block write by P . Since the block write by P
overwrites all the values wri�en by process q in x ;y, it follows that

w and x ′ are indistinguishable for all the processes P . �us, any

extension of x ′ by processes in P is also a possible extension of w .

In particular, ρ = w ; (z − x ′) is a legal run. By construction at the

end of ρ, q decides 0 and p decides 1. A contradiction. �

Corollary 6.4. �ere is no obstruction-free implementation of a
single named register using any number of unnamed registers.

Proof. �e corollary follows immediately from �eorem 6.3 and

the fact that it is possible to construct an obstruction-free consensus

algorithm using named registers when the number of processes is

�nite and not a priori known [25]. �
Remark: �e k-set consensus problem is to design an algorithm

for n processes, where each process starts with an input value

from some domain, and must choose some participating process

input as its output. All n processes together may choose no more

than k distinct output values. �e 1-set consensus problem, is the

familiar consensus problem. It is possible to generalize �eorem 6.3,

and prove that for every k ≥ 1, there is no obstruction-free k-set

consensus algorithm when the number of processes is not a priori

known using (an unlimited number of) unnamed registers.

6.4 An impossibility result and a space lower
bound for adaptive perfect renaming

In Section 5, we have presented an obstruction-free adaptive perfect

renaming for n processes using unnamed registers, where n is a

positive integer. Below we show that no such algorithm exists using

only n − 1 unnamed registers, or when the number of processes is

not a priori known.

Theorem 6.5. �ere is no obstruction-free adaptive perfect renam-
ing algorithm (1) when the number of processes is not a priori known
using (an unlimited number of) unnamed registers, and (2) for n ≥ 2

processes using n − 1 unnamed registers.

Proof. We assume to the contrary that there is an obstruction-

free adaptive perfect renaming algorithm when the number of

processes is not a priori known using unnamed registers (resp. for

n ≥ 2 processes using n − 1 unnamed registers), and show that this

assumption leads to a contradiction.

A process that runs alone must write at least once before it

decides. Otherwise, we let some process run alone until (by adap-

tivity) it acquires the new name 1. �en (assuming the process

never writes), we let another process run alone until it also ac-

quires the new name 1. �is would violate the distinct new names

requirement.

Let y be a run in which some process, say q, runs alone until it

acquires the new name 1, and let write(y,q) be the set of di�erent

registers to whichq has wri�en iny. Let P be a set of processes, such

that q < P and |P | = |write(y,q)|. Since the number of processes is

not a priori known (resp. since there are n processes and only n − 1

registers), we can always �nd such a set P , for any possible size of

write(y,q).
For each processp ∈ P , let r .p denotes a run in whichp runs alone

until it �rst covers some register. Since all the registers are unnamed,

we can let each process scan the registers in an order which ensures

that: (1) for each processp ∈ P , in r .p processp covers some register

in write(y,q), and (2) for each pair of processes {p,p′} ⊆ P , in r .p
and r .p′ processes p and p′ cover di�erent registers.

Since, for each process p ∈ P , there are no writes in r .p, we can

construct a run, called x , as follows: we pick an arbitrary process

p ∈ P , and let it execute exactly the same steps as in r .p, then we

pick another process in P and repeat this procedure. We continue

until each process in P covers some register in write(y,q). By

construction, in y the processes in P together cover all the registers

in write(y,q). Let x ′ be an extension of x by a block write by P . By

the obstruction-free property and the adaptivity requirement, there

exists an extension z of x ′ in which (1) only processes P take steps

and (2) the process in P acquire the names 1 through |P |.
Next we construct a run, ρ, in which two processes acquire the

name 1. We start the construction with the run x . Since no process

writes a shared register in x , only processes in P participate in x
and q < P , it follows that x ;y is a legal run. Let w be an extension

of x ;y by a block write by P . Since the block write by P overwrites

all the values wri�en by process q in x ;y, it follows that w and x ′

are indistinguishable for all the processes P . �us, any extension of

x ′ by processes in P is also a possible extension of w . In particular,

ρ = w ; (z − x ′) is a legal run. By construction at the end of ρ,

process q < P and some other process in P both acquire the name 1.

A contradiction. �

7 RELATEDWORK
Our work is inspired by Michael O. Rabin’s paper on solving the

Choice Coordination Problem with k alternatives (k-CCP) [21].

In the k-CCP, n asynchronous processes must choose between

k alternatives. �e agreement on a single choice is complicated

by the fact that there is no a priori agreement on names for the



alternatives. �at is, each process has its own naming convention

for the alternatives. Rabin has assumed that processes communicate

by applying read-modify-write operations to k shared registers

which do not have global names. �e k di�erent registers represent

thek possible alternatives. For the case ofk = 2 and t = n−1 where t
is the possible number of faults, Rabin has presented a deterministic

algorithm usingm = n+2 symbols (for each register), proved a space

lower bound of m ≥ (n/8)1/3 for deterministic algorithms, and

contrasted these deterministic results with a randomized algorithm

which, for m symbols, terminates correctly with probability 1 −
1/2m/2. Because of the use of read-modify-write operations, none
of the algorithmic ideas from [13, 21] were found useful in our case.

�e mutual exclusion problem was �rst introduced by Edsger W.

Dijkstra in [10]. Dijkstra’s original de�nition requires the algorithm

to satisfy only the requirements of mutual exclusion and deadlock-

freedom as de�ned in Section 3. In [7, 8], it is shown that any

deadlock-free mutual exclusion algorithm for n processes using

registers must use at least n shared registers. Dozens of interesting

mutual exclusion algorithms and lower bounds are described in

details in [22, 24]. �e election problem (sometimes called the one

shot mutual exclusion problem) is a special case of the mutual

exclusion problem where only one process is allowed enter once

its critical section. �is process is the elected leader.

�e consensus problem was formally de�ned in [20]. �e impos-

sibility result that there is no consensus algorithm that can tolerate

even a single crash failure was �rst proved for the asynchronous

message-passing model in [11], and later has been extended for

the shared memory model with atomic registers, in [16]. Many

related impossibility results can be found in [2]. Two extensively

studied progress conditions are wait-freedom [14] and obstruction-

freedom [15]. It is shown in [15] that obstruction-free consensus

is solvable using registers. In [5], an obstruction-free consensus

algorithm (which is not memory-anonymous) using single-writer

registers and snapshot objects is presented. Recently, it has been

shown in [27], that any obstruction-free consensus algorithm for

n processes using registers must use at least n − 1 registers. �e

(one-shot) renaming problem was �rst solved for message-passing

systems [1], and later for shared memory systems [4]. Several of

the many papers on renaming are [3, 6, 9, 12, 18]. �e impossibility

result that there are no election algorithm and no perfect renaming

algorithm that can tolerate a single crash failure was �rst proved

for the asynchronous message-passing model in [1, 19], and later

has been extended for the shared memory model in [26].

8 DISCUSSION
We have introduced several results for a model in which there is

no lower-level agreement regarding the names of memory loca-

tions. �e weak communication model considered, enables us to

be�er understand the intrinsic limits for coordinating the actions

of asynchronous processes.

We proved that unnamed registers (i.e, anonymous registers) are

strictly weaker than named registers. Unnamed registers are the

only non-trivial objects, that I know of, which are strictly weaker

than the classical (named) atomic registers. It would be interesting

to investigate the computational power of other unnamed objects,

to consider models where, in addition to unnamed objects, a limited

number of named objects are also available, and to explore models

in which the number of objects and even their locations are not a

priori agreed upon.

Several questions are le� open: the existence of deadlock-free

mutual exclusion algorithms for more than two processes, the exis-

tence of starvation-free mutual exclusion algorithms, �nding tight

space bounds for consensus and renaming, and �nding solutions

for additional problems under various progress conditions.
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