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Abstract

A new notion of process failure explicitly related to contention has recently been introduced by

one of the authors (NETYS 2018). More precisely, given a predefined contention threshold λ, this

notion considers the executions in which process crashes are restricted to occur only when process

contention is smaller than or equal to λ. If crashes occur after contention bypassed λ, there are no

correctness guarantees (e.g., termination is not guaranteed). It was shown that, when λ = n − 1,

consensus can be solved in an n-process asynchronous read/write system despite the crash of one

process, thereby circumventing the well-known FLP impossibility result. Furthermore, it was shown

that when λ = n−k and k ≥ 2, k-set agreement can be solved despite the crash of 2(k−1) processes.

This article considers two types of process crash failures: “λ-constrained” crash failures (as

previously defined), and classical crash failures (that we call “any time” failures). It presents two

algorithms suited to these types of failures. The first one is a generic k-set agreement algorithm,

whose genericity dimension is related to the value of λ. For λ = n − k, it solves k-set agreement,

where k = m + f , in the presence of t = 2m + f − 1 crash failures, 2m being λ-constrained

failures, and (f − 1) being any time failures. The second algorithm solves (n+ f)-renaming in the

presence of t = m+f crash failures, m being (n− t−1)-constrained failures, and f being any time

failures. It follows that the differentiation between λ-constrained crash failures and any time crash

failures enlarges the space of executions in which the impossibility of k-set agreement and renaming

in the presence of asynchrony and process crashes can be circumvented. In addition to its behavioral

properties, both algorithms have a noteworthy first class property, namely, their simplicity.

Keywords: Agreement algorithm, Asynchronous system, Atomic register, Concurrency, Contention,

ℓ-Mutual exclusion, Participating process, Process crash failure, Read/write register, Renaming, k-

Set agreement.

1 Definitions and Motivation

1.1 Processes, Failures, Communication

The system is composed of n asynchronous sequential processes, denoted p1, ..., pn, which communi-

cate by reading and writing atomic registers. The model parameter t denotes the maximal number of

processes that may crash during a run. A process crash is a premature definitive halting. A process that

crashes is called faulty, otherwise it is correct. The model parameter t denotes the maximal number

of processes that can be faulty in an execution. It is assumed that all correct processes participate, i.e.,

∗A preliminary version of this paper was presented at the 20th International Symposium on Stabilization, Safety, and

Security of Distributed Systems (SSS’18), Springer LNCS 11201 (2018).
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execute their local algorithm. (Let us notice that this assumption is a classical –very often left implicit–

assumption encountered in message-passing distributed algorithms [17].)

Let us call contention the current number of processes that started executing. The model parameter

λ denotes a predefined contention threshold. So, an execution can be divided into two parts: a prefix in

which the contention is≤ λ and a suffix in which contention is > λ. Hence, we consider a failure model

in which there are two types of crashes: the ones that can occur only when contention is ≤ λ that we

call “λ-constrained”, and the ones that can appear at “any time”; λ-constrained crashes were introduced

in [20] under the name “weak failures”.

1.2 Motivation for Considering λ-Constrained Failures

As discussed in [20], the new type of λ-constrained failures enables us to design algorithms that can

tolerate several traditional “any time” failures plus several additional λ-constrained failures (i.e., weak

failures). More precisely, assume that a problem can be solved in the presence of t traditional failures,

but cannot be solved in the presence of t + 1 such failures. Yet, the problem might be solvable in the

presence of t1 ≤ t “any time” failures plus t2 λ-constrained failures, where t1 + t2 > t.
Adding the ability to tolerate λ-constrained failures to algorithms that are already designed to cir-

cumvent various impossibility results, such as the Paxos algorithm [14] and indulgent algorithms in

general [11, 12], would make such algorithms even more robust against possible failures. An indul-

gent algorithm never violates its safety property, and eventually satisfies its liveness property when the

synchrony assumptions it relies on are satisfied. An indulgent algorithm which in addition (to being

indulgent) tolerates λ-constrained failures may, in many cases, satisfy its liveness property even before

the synchrony assumptions it relies on are satisfied.

When facing a failure related impossibility result, such as the impossibility of consensus in the

presence of a single faulty process [10], one is often tempted to use a solution which guarantees no

resiliency at all. We point out that there is a middle ground: tolerating λ-constrained (weak) failures

enables to tolerate failures some of the time. Also, traditional t-resilient algorithms tolerate failures only

some of the time (i.e., as long as the number of failures is at most t). After all, something is better than

nothing.

The type of λ-constrained failures which are assumed to occur only before a specific predefined

threshold on the level of contention is reached, is in particular useful in systems in which contention is

usually low. Another possible type of weak failures, also defined in [20], in which failures are assumed

to occur only after a specific predefined threshold on the level of contention is reached, may correspond

to a situation where, when there is high contention, processes are slowed down and, as a result, give up

and abort.

Finally, the new failure model establishes a link between contention and failures, which enables us

to better understand various known impossibility results, like the impossibility result for consensus [10]

and its generalizations [6, 13, 18].

1.3 Content of the Paper

This paper presents algorithms suited to the previously defined types of crash failures (namely, λ-

constrained and any time crash failures). As announced in the abstract, the first algorithm is a generic

k-set agreement algorithm for k ≥ 2 (Section 2). Its genericity dimension lies in the value of λ = n− ℓ,
ℓ ≥ k. When instantiated with λ = n − k, it solves (m + f)-set agreement (hence k = m + f ), while

tolerating t = 2m + f − 1 crash failures, up to 2m being (n − k)-constrained failures, and (f − 1)
being any time failures. The second algorithm (Section 3) solves the (n + f)-renaming problem in the

presence of t = m+ f crash failures, m of them being (n− t− 1)-constrained failures, and f being any

time failures.
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1.4 High Level Objects

To make the presentation of the proposed algorithms easier, the basic read/write system is enriched with

two types of objects, namely ℓ-mutual exclusion and snapshot. Both can be built on top of a crash-prone

asynchronous read/write system.

Deadlock-free ℓ-mutual exclusion Such an object, which provides the processes with the operations

acquire() and release(), allows up to ℓ of them to simultaneously execute their critical section. It is

defined by the following properties.

• Mutual exclusion. No more than ℓ processes can simultaneously be in their critical section.

• Deadlock-freedom. If less than ℓ processes crash, and processes are invoking the operation

acquire(), at least one of them will terminate its invocation.

It is shown in [2, 9, 19] that ℓ-mutual exclusion can be built on top of an asynchronous crash-prone

read/write system. In the one-shot version, a process invokes acquire() and release() at most once.

Snapshot A snapshot object provides two operations denoted write() and snapshot() [1, 3]. Such an

object can be seen as an array of single-writer multi-reader atomic register SN [1..n] such that:

(a). when pi invokes write(v), it writes v into SN [i]; and

(b). when pi invokes snapshot(), it obtains the value of the array SN [1..n] as if it read simultaneously

and instantaneously all its entries.

Said another way, the operations write() and snapshot() are atomic. Snapshot objects can be imple-

mented on top of asynchronous crash-prone read/write systems [1, 3, 16].

2 k-Set Agreement (k ≥ 2)

This section presents a k-set agreement algorithm that allows to circumvent the known impossibility

result for solving k-set agreement in crash-prone asynchronous read/write systems where t ≥ k [6, 13,

18].

2.1 k-Set Agreement: Definition

A k-set agreement (k-SA) object is a one-shot object introduced by S. Chaudhuri [8] to study the relation

linking the number of failures and the agreement degree attainable in a set of crash-prone asynchronous

processes. Such an object provides a single operation denoted propose(), which allows the invoking

process to propose a value and obtain a result (called decided value). Assuming each correct process

proposes a value, each process must decide on a value such that the following properties are satisfied.

• Validity. A decided value is a proposed value.

• Agreement. At most k different values are decided.

• Termination. Every correct process decides a value.

When k = 1, k-set agreement boils down to consensus, whose impossibility in the presence of asyn-

chrony and a single process crashed was proved in [10] for message-passing systems, and in [15] for

read/write systems. It was later shown in [6, 13, 18] that it is impossible to solve k-set agreement in

crash-prone asynchronous read/write systems where t ≥ k. Hence, as the k-set agreement read/write-

based algorithm presented in [20] works despite up to t = 2(k − 1) λ-constrained failures (where

λ = n − k), the introduction of contention-related failures in [20] is a noteworthy advance in fault-

tolerance, which enlarges the space of executions in which k-set agreement can be solved.
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2.2 k-Set Agreement with (n− k)-Constrained Crash failures

For simplicity in the presentation, the generic k-set agreement algorithm is presented incrementally. Its

base version, that considers λ = n − k (i.e., ℓ = k when considering the general version, Section 2.3),

is presented in this section.

Properties of the base algorithm In addition to the model and problem parameters n, t, k, and λ =
n−k, the algorithm considers two integers m ≥ 0 and f ≥ 1, such that m+ f = k and t = 2m+ f −1
(or, equivalently, t = 2k − f − 1). Its fault-tolerance properties are summarized in Table 1.

The k-set agreement algorithm: Fault-tolerance properties

total # of failures tolerated t = 2m+ f − 1

“λ-constrained” crash failures 2m

“any time” crash failures f − 1

Table 1: k-Set agreement: tolerated crash failures with λ = n− k and k = m+ f

More generally, the parameters m and f , where k = m + f , can be seen as parameters allowing the

user to tune the type of crash failures that are dominant in the considered application context. At one

extreme, the pair of values 〈m, f〉 = 〈0, k〉 maximizes the number of any time failures, and allows up to

k− 1 any time crash failures. At the other extreme, the pair 〈m, f〉 = 〈k− 1, 1〉 maximizes the number

of λ-constrained failures: it allows up to 2(k − 1) λ-constrained failures and no any time failure.

Since t = 2m + f − 1 we can say that, intuitively, one any time failure “equals” two (n − k)-
constrained failures. That is, it is possible to trade one strong (any time) failure for two weak (λ-

constrained) failures and vice versa, as demonstrated in Table 2.

The k-set agreement algorithm: tradeoffs

total # of failures m = 0 m = ⌈k/2⌉ m = k − 1

t = 2m+ f − 1 f = k f = ⌊k/2⌋ f = 1

2m “λ-constrained” crash failures 0 2⌈k/2⌉ 2(k − 1)

f − 1 “any time” crash failures k − 1 ⌊k/2⌋ − 1 0

Table 2: k-Set agreement: tradeoffs “λ-constrained/any time” crash failures, when λ = n− k

Interestingly, the particular instance 〈m, f〉 = 〈k − 1, 1〉 boils down to a specific case of the algorithm

described in [20]. Additionally, as it will become clear in its description, Algorithm 1 presented below

sheds new light on a relation linking k-set agreement and ℓ-mutual exclusion.

It is then shown that this algorithm works in a more general model where the contention threshold

λ = n− k is replaced by any contention threshold value λ = n− ℓ where ℓ ≥ k.

Base algorithm The algorithm, which, as announced in the Introduction, assumes assumes all correct

processes participate, is characterized by the following theorem.

Theorem 1 For any n ≥ 1, n > t ≥ 0, m ≥ 0, and f ≥ 1 such that t = 2m+ f − 1 and k = m+ f ,

it is possible to solve k-set agreement for n processes in the presence of at most t crash failures, 2m of

them being λ-constrained failures (where λ = n− k), and f − 1 of them being any time failures.
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operation propose(ini) is

(1) PART .write(up);
(2) repeat parti ← PART .snapshot();
(3) counti ← |{x such that parti[x] = up}|;
(4) until counti ≥ n− t end repeat;

(5) if counti ≤ λ then groupi ← 2 else groupi ← 1 end if;

(6) launch in parallel the threads T1 and T2.

% Both threads and the operation terminate when pi invokes return() (line 7 or 12).

thread T1 is

(7) loop forever if DEC 6= ⊥ then return(DEC ) end if end loop.

thread T2 is

(8) if groupi = 1 ∨m > 0 then

(9) MUTEX [groupi].acquire();
(10) if DEC = ⊥ then DEC ← ini end if;

(11) MUTEX [groupi].release();
(12) return(DEC )
(13) end if.

Algorithm 1: k-SA despite up to 2m “λ-constrained” and f − 1 “any time” failures (λ = n− k)

Remark 1 The proof of Theorem 1 is given in Section 2.4, when taking ℓ = k.

In the algorithm described below, it is assumed that the identity of a process pi is its index i.

Shared objects The processes cooperate through the following objects.

• PART [1..n]: snapshot object, initialized to [down, · · · , down], used to indicate participation.

• DEC : atomic register initialized to ⊥ (a value which cannot be proposed). It will contain values

(one at a time) that can be decided.

• MUTEX [1]: one-shot deadlock-free f -mutex object.

• MUTEX [2]: one-shot deadlock-free m-mutex object.

For the special case where m = 0 and f = k, in the proposed algorithm no process will ever try to

access the MUTEX [2] object. Thus, there is no need to define the notion of a 0-mutex object.

Local variables Each process pi manages the following local variables: parti is used to locally store

a copy of the snapshot object PART ; counti is a local counter; and groupi a binary variable whose

value belongs to {1, 2}.

Behavior of a process pi Algorithm 1 describes the behavior of a process pi. When it invokes

propose(ini) (where ini is the value it proposes), pi first indicates it is participating (line 1). Then

it invokes the snapshot object until at least n − t processes are participating (lines 2-4). When this oc-

curs, pi enters group 1 or group 2 according to the value of its counter counti (line 5), and launches in

parallel two threads T1 and T2 (line 6).

In the thread T1, pi loop forever until DEC contains a proposed value. When this happens pi decides

it (line 7). The execution of return() at line 7 or 12 terminates the invocation of propose().
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The thread T2 is the core of the algorithm. Process pi tries to enter the critical section controlled

by either the f -mutex or the m-mutex object MUTEX [groupi] (line 9). If it succeeds and DEC has

still its initial default value, pi assigns it the value ini it proposed (line 10). Finally, pi releases the

critical section (line 11), and decides (line 12). Let us remind that, as far as MUTEX [1] (respectively,

MUTEX [2]) is concerned, up to f (respectively, m) processes can simultaneously execute line 10.

Intuitively this explains why at most k = m+ f different values can be decided.

Remark 2 The reader can check that the line 8 (together with line 13) and line 11 can be suppressed

without compromising the correctness of the algorithm. This is a side-effect of task T1. For clarity, we

nevertheless keep these lines.

2.3 k-Set Agreement with (n− ℓ)-Constrained Crash failures

The generic algorithm considers an additional contention-related parameter ℓ such that ℓ ≥ k. Instead of

λ = n− k, its contention threshold is now λ = n− ℓ. Hence, Section 2.2 corresponds to the particular

case where k = ℓ. In a very interesting way, this generic algorithm is nothing else than ... Algorithm 1.

The only change is not in the text of the algorithm, but in the value of the contention threshold λ. The

fault-tolerance properties of Algorithm 1 where λ = n − ℓ are summarized in Table 3, which extends

Table 1.

total # of failures tolerated t = 2m+ ℓ− k + f − 1

“λ-constrained” crash failures 2m+ ℓ− k

“any time” crash failures f − 1

Table 3: Tolerated crash failures when λ = n− ℓ, k = m+ f , and ℓ ≥ k.

As before, the parameters m and f , where k = m+f , allow the user to tune the type of crash failures that

are dominant in the considered application context. At one extreme, the pair of values 〈m, f〉 = 〈0, k〉
maximizes the number of any time failures (k − 1). At the other extreme, the pair 〈m, f〉 = 〈k − 1, 1〉
maximizes the number of λ-constrained failures (up to k+ ℓ− 2 λ-constrained failures and no any time

failure). This is summarized in Table 4 which generalizes Table 2.

total # of failures m = 0 m = ⌈k/2⌉ m = k − 1

t = 2m+ ℓ− k + f − 1 f = k f = ⌊k/2⌋ f = 1

2m+ ℓ− k “λ-constrained” crash failures ℓ− k 2⌈k/2⌉+ ℓ− k ℓ+ k − 2

f − 1 “any time” crash failures k − 1 ⌊k/2⌋ − 1 0

Table 4: k-Set agreement: tradeoffs “λ-constrained/any time” crash failures when λ = n− ℓ

2.4 Proof of Algorithm 1 for λ = n− ℓ and ℓ ≥ k

Lemma 1 At most n − ℓ processes have a counter less or equal to n − ℓ when leaving the repeat loop

(lines 2-4).

Proof Assume by contradiction that more than n− ℓ processes have their counter less or equal to n− ℓ
when leaving the repeat loop (2-4). P being this set of processes, we have |P | ≥ n−ℓ+1. Moreover, let

pi be the last process of P that invokes PART .snapshot() (line 1). It follows from the atomicity of the
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write() and snapshot() operations on the object PART that counti ≥ |P | ≥ n− ℓ+1, a contradiction.

✷Lemma 1

Lemma 2 In the presence of at most t = 2m+ ℓ− k+ f − 1 crash failures, 2m+ ℓ− k of them being

(n− ℓ)-constrained, if processes participate in MUTEX [1], at most f − 1 of them can fail.

Proof If a process pi participates in MUTEX [1] it follows from line 5 that counti > n − ℓ when it

exited the repeat loop (lines 2-4). Thus, the contention was at least n − ℓ + 1 when pi exited the loop

and, due to the definition of “(n − ℓ)-constrained crash failures”, there is no more such failures. As

t = 2m+ ℓ− k + f − 1, it follows that, if processes participate in MUTEX [1], at most f − 1 of them

can fail. ✷Lemma 2

Theorem 2 (Termination) In the presence of at most t = 2m+ℓ−k+f−1 crash failures, 2m+ℓ−k
of them being (n− ℓ)-constrained, every correct process eventually terminates.

Proof Since there is at most t processes that may fail and participation is required, at least n−t processes

set their participating flag to up in the snapshot object PART (line 1). Thus, no correct process remains

stuck forever in the repeat loop (lines 2-4).

First, assume m = 0. By Lemma 1, at most n−ℓ processes have a counter less or equal to n−ℓ when

they exit the repeat loop (lines 2-4). Thus, at most n− ℓ processes belong to group 2. If m = 0, there is

n− t = n−f +1 correct processes and, since k = f and ℓ ≥ k, n−f +1 > n−k ≥ n− ℓ. So, among

the processes participating in MUTEX [1], at least one of them is correct and at most f−1 of them crash

before returning from MUTEX [1].release() (line 11). Due to the deadlock-freedom property of the one-

shot f -mutex object MUTEX [1], at least one correct process eventually enters its critical section and,

if DEC has not already been written, writes its input into DEC . It then follows from task T1 that, if it

does not terminate at line 11, every other correct process will decide and terminate.

Now, assume m > 0. There are two cases.

• If at least y ≥ f processes participate in MUTEX [1], it follows from Lemma 2 that at most f − 1
of them crash before returning from MUTEX [1].release() (line 11), and consequently all other

processes participating in MUTEX [1] are correct. As y > f − 1 and f > 0, there is at least

one such correct process, say px. Due to the deadlock-freedom property of the one-shot f -mutex

object MUTEX [1], px eventually enters its critical section and, if DEC has not already been

written, writes its input into DEC .

• Otherwise, less than f processes participate in MUTEX [1]. There are two sub-cases.

– If a correct process pi participates in MUTEX [1], it follows from this sub-case assumption

and the deadlock-freedom property of the one-shot f -mutex object MUTEX [1], that pi
eventually enters its critical section and, if DEC = ⊥, writes its input inx into this atomic

register.
– Otherwise, no correct process participates in MUTEX [1]. By Lemma 1, at most n − ℓ

processes have a counter less or equal to n− ℓ when they exit the repeat loop (lines 2-4). So

at most n − ℓ processes participate in MUTEX [2]. Since no correct process participates in

MUTEX [1], all correct processes (they are at least n− t) participate in MUTEX [2]. Thus,

at most (n − ℓ) − (n − t) = t − ℓ = 2m + ℓ − k + f − 1 − ℓ = 2m − k + f − 1 =
2m− (m+ f) + f − 1 = m− 1 processes that participate in MUTEX [2] fail. Hence, due

to the deadlock-freedom property of the one-shot m-mutex object MUTEX [2], at least one

correct process enters its critical section and, if DEC = ⊥, writes its input into DEC .

In both cases, every other correct process will decide and terminate.
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✷Theorem 2

Theorem 3 (Agreement and validity) At most k different values are decided, and each of them is the

input of some process.

Proof If a process decides (line 7 or line 12), it decides on the current value of DEC , which –due to the

predicates of line 7 or line 10– has previously been set –at line 10– to the value proposed by a process.

Due to the predicate and the assignment of DEC at line 10, and the fact that MUTEX [1] is a f -mutex

object, it follows that at most f processes assign a value to DEC in the critical section controlled by

MUTEX [1]. Due to a similar argument, at most m processes assign a value to DEC in the critical

section controlled by MUTEX [2]. Thus, at most m+ f = k different values can be written into DEC ,

and each of them is a proposed value. ✷Theorem 3

3 M -Renaming where M = n+ f

3.1 M -Renaming: Definition

The renaming object was introduced in the context of message-passing system [4]. An introductory

survey to renaming in crash-prone asynchronous read/write systems is presented in [7].

An M -renaming object allows n processes with initially distinct names from a large name space to

acquire distinct new names from a smaller name space {1, ...,M}, where M is a predefined value known

by the processes. A one-shot renaming object allows each process to acquire a distinct new name just

once. A long-lived renaming object allows processes to repeatedly acquire distinct names and release

them. In this paper, we consider one-shot renaming objects.

A process pi accesses an M -renaming object R using the operation R.rename(idi), where idi is its

original name, which returns a new name. A process pi knows neither its index i, nor the original names

of the other processes. The properties defining such an object are the following.

• Validity. A new name belongs to the set {1, ...,M}.

• Agreement. No two processes obtain the same new name.

• Termination. If a process invokes R.rename(id) and does not crash, it returns from its invocation.

In the classical n-process model (i.e., a model where only any time crash failures are considered),

it is known that with t any time failures, there is a tight (n + t) bound on the size of new name space

for renaming for infinitely many values of n. We will show how this result can be circumvented. The

interested reader will find renaming algorithms in textbooks such as [5, 16, 19].

3.2 Properties of the Algorithm

Considering a new name space of size M = n+f , Section 3.3 presents a general M -renaming algorithm

that, in addition to the model and problem parameters n, t, and λ = n− t− 1, as previously, considers

two integers m ≥ 0 and f ≥ 0, such that t = m + f . The fault-tolerance properties of this algorithm

are summarized in Table 5.

Similarly to the case of k-set agreement, the parameters m and f , where t = m+ f , allows the user to

tune the type of crash failures and (here) the size of the name space that are dominant in the considered

application context. At one extreme, the pair of values 〈m, f〉 = 〈0, t〉 maximizes the number of any

time failures (which is good) but also maximizes the size of the name space (which is bad). At the other

extreme, the pair 〈m, f〉 = 〈t, 0〉 maximizes the number of λ-constrained failures and minimizes the

size of the name space (which is good). This is demonstrated in Table 6.
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The (n+ f)-renaming algorithm: Fault-tolerance properties

total # of failures tolerated t = m+ f

“λ-constrained” crash failures m

“any time” crash failures f

Table 5: M -Renaming: tolerated crash failures, with λ = n− t− 1

The (n+ f)-renaming algorithm: Tradeoffs

total # of failures m = 0 m = ⌈k/2⌉ m = t

t = m+ f f = t f = ⌊k/2⌋ f = 0

m “λ-constrained” crash failures 0 ⌈k/2⌉ t

f “any time” crash failures t ⌊k/2⌋ 0

The size of name space n+ t n+ ⌊k/2⌋ n

Table 6: M -Renaming: tradeoffs “λ-constrained/any time” crash failures, with λ = n− t− 1

3.3 Algorithm

The proposed renaming algorithm, which allows us to circumvent the (n + t) tight bound on the size

of name space for renaming for infinitely many values of n, is amazingly simple. As the previous k-set

algorithm, it assumes that all correct processes participate. It is characterized by the following theorem

(which follows from Theorems 5 and 6).

Theorem 4 For any n ≥ 1, n > t ≥ 0, m ≥ 0, and f ≥ 0 such that t = m + f , it is possible to

solve (n + f)-renaming for n processes in the presence of at most t crash failures, m of them being

λ-constrained failures (where λ = n− t− 1), and f of them being any time failures.

Shared objects The processes cooperate through the following objects.

• PART [1..n]: snapshot object, initialized to [down, · · · , down], used to indicate participation.

• RENAMINGf : (n + f)-renaming object which can tolerate up to f any time crash failures for

a model where participation is not required. The fact that participation is not required means that

a process that does not participate is not consider faulty. The object is not assumed to tolerate

any additional λ-constrained failures. An example of such an algorithm is described in [5] (pages

359-360).

Local variables Each process pi manages the following local variables: parti is used to locally store

a copy of the snapshot object PART ; counti is a local counter; idi and new_namei are used to store

the original and new names, respectively.

Behavior of a process pi Algorithm 2 describes the behavior of a process pi. Every process pi keeps

on taking snapshots until it notices that n − t processes (including itself) are participating. Then, the

process invokes the rename operation of the underlying object RENAMINGf , stores the value of its

new name in new_namei, and returns this value.
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operation rename(idi) is

(1) PART .write(up);
(2) repeat parti ← PART .snapshot();
(3) counti ← |{x such that parti[x] = up}|
(4) until counti ≥ n− t end repeat;

(5) new_namei ← RENAMINGf .rename(idi);
(6) return(new_namei).

Algorithm 2: (n + f)-renaming despite up to m “(n − t − 1)-constrained” and f “any time” failures,

where t = m+ f

3.4 Proof

Lemma 3 In the presence of at most t = m+f crash failures, m of them being (n−t−1)-constrained,

if processes participate in RENAMINGf , at most f of them can fail.

Proof If a process pi participates in RENAMINGf it follows from line 4 that the predicate counti ≥
n− t is satisfied when it exited the repeat loop (lines 2-4). Thus, the contention was at least n− t when

pi exited the loop and, due to the definition of “(n− t− 1)-constrained crash failures”, there is no more

such failures. As t = m + f , it follows that, if processes participate in RENAMINGf , at most f of

them can fail. ✷Lemma 3

Theorem 5 (Termination) In the presence of at most t = m + f crash failures, m of them being

(n− t− 1)-constrained, every correct process eventually terminates.

Proof Since there is at most t processes that may fail and participation is required, at least n−t processes

set their participating flag to up in the snapshot object PART (line 1). Thus, no correct process remains

stuck forever in the repeat loop (lines 2-4).

By Lemma 3, if processes participate in RENAMINGf , at most f of them can fail. Since, by

definition, (1) RENAMINGf can tolerate f any time failures, and (2) in RENAMINGf participation

is not required, it follows that every operation invoked by a correct processes on RENAMINGf must

return a value. Thus, every correct process eventually terminates. ✷Theorem 5

Theorem 6 (Agreement and validity) In the presence of at most t = m+ f crash failures, m of them

being (n − t − 1)-constrained, (1) no two processes decide on the same new name, and (2) the new

names are in the range [1..n+ f ].

Proof By Lemma 3, at most f processes can fail while executing RENAMINGf . Since, RENAMINGf

is an (n+ f)-renaming object which can tolerate up to f crash failures for a model where participation

is not required, any correct process that participates in RENAMINGf must acquire a unique new name

in the range [1..n+ f ]. ✷Theorem 6

3.5 From M-Renaming to One-shot Concurrent Objects

Let us consider any one-shot concurrent object OB , which provides a single operation op(), and tolerates

up to x any time crash failures in a model where participation is not required.

This section presents an algorithm that transforms OB in an object OB
′ where, assuming all pro-

cesses participate (i.e., invoke op()), allows to withstand additional λ-constrained crash failures. As in

the previous section, the transformation considers the parameters n, t, λ = n − t − 1, m ≥ 0, and

0 ≤ f ≤ x − 1. The fault-tolerance properties of the resulting object OB
′ are summarized in Table 7

(where, let us remind, x is the number of any time crash failures tolerated by the underlying object OB
′).
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total # of failures tolerated t = m+ f

“λ-constrained” crash failures m

“any time” crash failures f ≤ x− 1

Table 7: Crash failures tolerated by OB
′, where λ = n− t− 1

As before, the parameters m and f are parameters that allow the user to tune the type of crash failures

that are dominant in the considered application context.

Algorithm 3 transforms of OB into OB
′. It is the same as Algorithm 2, which implements an M -

renaming object coping with both λ-constrained failures and any time failures. The meaning of the

underlying shared objects and local variables are the same as in Algorithm 2. In addition, resi contains

the result of the underlying invocation OB .op(in) (line 5), where in is the input parameter of op(). The

proof, which is the same as the one given in Section 3.4, is left to the reader.

operation op(in) is % applied to OB
′

(1) PART .write(up);
(2) repeat parti ← PART .snapshot();
(3) counti ← |{x such that parti[x] = up}|
(4) until counti ≥ n− t end repeat;

(5) resi ← OB .op(in);
(6) return(resi).

Algorithm 3: Transformation of the operation op of a one-shot object tolerating up to m “(n − t − 1)-
constrained” failures and f “any time” failures, where t = m+ f

4 Conclusion

This paper addressed a process crash failure model in which some number of processes may crash only

when process contention has not bypassed a predefined threshold λ, while another number of processes

may crash at any time. It has been shown that this failure model allows impossibility results to be

circumvented. To this end, the paper has presented algorithms building k-set agreement and renaming

objects in such a model. So, it extends the set of possible executions in which k-set agreement and

renaming can be solved despite asynchrony and process crashes. The proposed algorithms allow their

users to tune them to specific failure-prone environments. This can be done by appropriately defining

the pair of integers 〈m, f〉. As an example, considering k-set agreement and a contention threshold

λ = n − k, these parameters control the number of crashes allowed to occur before the contention

threshold λ is bypassed, namely 2m = 2(k − f), and the number of failures which can occur at any

time, namely, f − 1. That is, it is possible to trade one strong “any time” failure for two weak “(n− k)-
constrained” failures, and vice versa.

Finally, some issues remain challenging on the open problem side. More specifically, on the com-

plexity/computability side of k-set agreement, it would be interesting to find out whether the upper

bound we have proved on the number of failures t = 2m + f − 1 (where 2m failures are (n − k)-
constrained and f − 1 failures are any time failures) is tight for k ≥ 2. On the algorithm design side,

as there is an algorithm (and a tight bound) for 1-agreement (see [20]), it would be interesting to find a

more general algorithm, i.e., an algorithm which works for k ≥ 1 (and not only for k ≥ 2).
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