
Noname manuscript No.
(will be inserted by the editor)

Waiting in Concurrent Algorithms

Gadi Taubenfeld

Received: date / Accepted: date

Abstract Between the two extremes, lock-based algorithms, which involve
“a lot of waiting”, and wait-free algorithms, which are “free of locking and
waiting”, there is an interesting spectrum of different levels of waiting. This
unexplored spectrum is formally defined and its properties are investigated.
New progress conditions, called k-waiting, for k ≥ 0, which are intended to
capture the “amount of waiting” of processes in asynchronous concurrent al-
gorithms, are introduced. To illustrate the utility of the new conditions, they
are used to derive new lower and upper bounds, and impossibility results for
well-known basic problems such as consensus, election, renaming and mutual
exclusion. Furthermore, the relation between waiting and fairness is explored.

Keywords Synchronization · wait-freedom · locks · enabled process · enabling
step · k-waiting · consensus · election · renaming · mutual exclusion.

1 Introduction

Concurrent access to a data structure shared among several processes must
be synchronized in order to avoid interference between conflicting operations.
Mutual exclusion locks are the de facto mechanism for concurrency control on
concurrent data structures: a process accesses the data structure only inside a
critical section code, within which the process is guaranteed exclusive access.
However, using locks may degrade the performance of synchronized concurrent
applications, as it enforces processes to wait for a lock to be released.

A preliminary version of the results presented in this paper, appeared in 4th international
conference on networked systems (NETYS 2016), Marrakech, Morocco, May 2016 [25].

The Interdisciplinary Center
P.O.Box 167, Herzliya 46150, Israel
E-mail: tgadi@idc.ac.il



2 Gadi Taubenfeld

A promising approach, which overcomes some of these difficulties, is the de-
sign of concurrent data structures and algorithms which avoid locking. The ad-
vantages of such algorithms are that they are not subject to priority inversion,
are resilient to failures, and do not suffer significant performance degradation
from scheduling preemption, page faults or cache misses. Although desirable,
such implementations are often complex, difficult to design, inefficient, mem-
ory consuming and require the use of strong synchronization primitives.

Implementations which use locks are usually easier to program than imple-
mentations which avoid locking and waiting. Such lock-based implementations
usually require “a lot of waiting”, compared to implementations which avoid
waiting, and may force operations that do not conflict to wait for one another,
precluding disjoint-access parallelism.

In this paper, we show that between these two extremes: “a lot of waiting”
(i.e., locks) and “free of locking and waiting”, there is an interesting spectrum
of different levels of waiting. We identify and formally define this unexplored
spectrum, by introducing new progress conditions, called k-waiting, for k ≥
0, which are intended to capture the “amount of waiting” of processes in
asynchronous concurrent algorithms.

Intuitively, these new progress conditions can be described as follows. A
process is enabled, if it does not need to wait for an action by any other process
in order to complete its operation. A step is an enabling step, if after executing
that step at least one process which was not enabled becomes enabled. For a
given k ≥ 0, the k-waiting progress condition guarantees that every process
that has a pending operation, will always become enabled once at most k
enabling steps have been executed.

To illustrate the utility of the new progress conditions, we use them to
derive new lower and upper bounds, and impossibility results for well-known
basic problems such as consensus, election, renaming and mutual exclusion.
Furthermore, the relation between waiting and fairness is explored.

2 The k-waiting progress conditions

In this section, we discuss and formally define the new notion of k-waiting.
An implementation of an operation may involve several basic steps. A basic
step, like reading, updating or testing, may involve accessing a shared memory
location. An implementation of each operation of a concurrent data structure
is divided into two continuous sections of code: the doorway code and the body
code. When a process invokes an operation it first executes the doorway code
and then executes the body code. The doorway, by definition, must be wait-
free: its execution requires only bounded number of steps and hence always
terminates.

A process executes a sequence of steps as defined by its algorithm. A
(global) state of an algorithm is completely described by the values of the
(local and shared) objects and the values of the location counters of all the
processes. An execution (also called a run) is defined as a sequence of alter-



Waiting in Concurrent Algorithms 3

nating states and steps (also referred to as events). It is convenient to define
an execution as a sequence of steps omitting all the states except the initial
state. Since the states in an execution are uniquely determined by the steps
and the initial state, no information is lost by omitting the states. For two
executions r and r′, r′ is an extension of r if and only if r is a prefix of r′.

A beginning process is a process that is about to start executing the first
step of some operation. An active process, is a process that has already exe-
cuted the first step of some operation, but has not completed that operation
yet. A process has passed the doorway of a given operation, if it has finished
the doorway code and reached the body code of that operation.

2.1 An enabled process and an enabling step

The following definitions refer to both beginning and active processes.

A strongly enabled process: A process is strongly enabled at the
end of a given execution r, if, at the end of any possible extension of r,
it does not need to wait for an action by any other process in order to
complete its operation, nor can an action by any other process prevent
it from doing so. Thus, by executing sufficiently many steps, it will be
able to complete its operation, independently of the actions of the other
processes.1

Being strongly enabled is a stable property, if a process is strongly enabled at
some point then, by definition, it must also be strongly enabled at any later
point during the operation.

A weakly enabled process: A process is weakly enabled at the end
of a given execution r, if, at the end of any possible extension of r,
it does not need to wait for an action by any other process in order
to complete its operation, however, actions by other processes (while
they occur) may prevent it from doing so. Thus, at the end of any
extension of r, by executing sufficiently many steps, the process will
be able to complete its operation, provided that (from some point on)
other processes do not take steps. Put another way, process p is weakly
enabled at the end of a given execution r, if at the end of any possible
extension of r, when p runs alone it eventually terminates.

We say that a process is disabled if it is not weakly enabled. We notice that
once a process becomes weakly enabled, it cannot later become disabled. If a
process is weakly enabled at some point then, by definition, it must be weakly
or strongly enabled at any later point during the operation. Thus being weakly
enabled is also a stable property. A strongly enabled process is, by definition,
also weakly enabled. For an execution (run) r and a step s, we denote by r; s
the execution obtained by extending r with the step s.

1 In the case of a beginning process, “its operation” means the operation that the process
is about to start executing.



4 Gadi Taubenfeld

An enabling step: A step is a strong enabling (resp. weak enabling)
step, at the end of a given execution, if after executing that step at least
one process which was not strongly (resp. weakly) enabled becomes
strongly (resp. weakly) enabled. More formally, s is a strong (resp.
weak) enabling step at the end of execution r, if there exists at least
one process, say p, such that p is not strongly (resp. weakly) enabled at
the end of r and p is strongly (resp. weakly) enabled at the end of r; s.

We notice that a strong enabling step is not necessarily also a weak enabling
step, and vice versa. A single strong (resp. weak) enabling step may cause
several processes, not necessarily just one, to become strongly (resp. weakly)
enabled. If s is a strong (resp. weak) enabling step at the end of r, and r′ is
an extension of r; s, then we say that s is a strongly (resp. weakly) enabling
step in r′. For two executions r and r′, we use the notation r ≤ r′ to denote
the fact that r′ is an extension of r. When r ≤ r′, we denote by (r′ − r) the
suffix of r′ obtained by removing r from r′.

2.2 k-waiting

The following definition is central for our investigation.

k-waiting: For k ≥ 0, the strong (resp. weak) k-waiting progress con-
dition guarantees that every process, that has passed its doorway, will
always become strongly (resp. weakly) enabled once at most k strong
(resp. weak) enabling steps have been executed. More formally, the
strong (resp. weak) k-waiting progress condition guarantees that, for
every two executions r and r′ and for every process p, if (1) p has
passed its doorway at the end of r, (2) r ≤ r′, (3) p has not completed
its operation during (r′ − r), and (4) at (r′ − r) there are (at least) k
steps which are strong (resp. weak) enabling steps, then p is strongly
(resp. weakly) enabled at the end of r′.

An algorithm that satisfies strong k-waiting, does not necessarily also satisfy
weak k-waiting, and vice versa. To simplify the presentation, in the sequel, we
will omit the type of a k-waiting progress condition (i.e., strong or weak), the
type of an enabling step or the type of an enabling process, when it can be
understood from the context or when the statement applies in both cases.

The k-waiting progress conditions capture the time a process may have
to wait before it becomes enabled. Consider an implementation of a data
structure which is protected by a single lock and assume that n processes
access the lock simultaneously. In such a scenario, each strong enabling step
enables exactly one process to acquire the lock, complete its operation and
release the lock. The last process captures the lock, after at least, strong n−1
enabling steps have been executed. Thus, such a lock-based data structure at
best, satisfies strong (n− 1)-waiting.

We point out that k-waiting does not guarantee that every process that
has passed through its doorway becomes enabled no later than when k other



Waiting in Concurrent Algorithms 5

processes have become enabled. The reason for that is that a single enabling
step may cause several processes to become enabled. For a given k-waiting
algorithm, the lower k is, the higher is the potential that the algorithm, when
executed, will exhibit a high concurrency behaviour. However, as in the case of
using locks, algorithms which satisfy k-waiting for k > 0, may require processes
to wait for one another, and thus, in some scenarios slow or stopped processes
may prevent other processes from ever completing their operations.

In some scenarios wait-free algorithms (i.e., algorithms in which all the pro-
cesses are always strongly enabled), preform better than lock-based algorithms
and visa versa. For example, in scenarios when a process needs to hold a lock
only for very short time, when there are no failures, no scheduling preemption
and almost no page faults or cache misses, fine-grained lock-based algorithms
might perform better. The decision whether to use a wait-free or a lock-based
implementation depends on the assumption regarding the environment (i.e.,
the expectations regarding, failures, page faults, etc.). Similarly, one should
not expect that for k < k′, a k-waiting algorithm would always (in all possible
scenarios) preform better than the corresponding k′-waiting algorithm.

As in the case of wait-free or lock-based algorithms, when evaluating a k-
waiting algorithm, it is not enough just to identify what progress condition it
satisfies, it is also necessary to find out its time (step) complexity. The number
of steps before and after enabling events can be arbitrary large, the k-waiting
progress condition only gives an indication of how much time a process will
have to wait without making progress and does not give any indication of its
execution time while not waiting. Put another way, k-waiting is not intended to
capture the overall time required for executing an operation, only the waiting
time interval during the execution of an operation.

2.3 Simple examples

Below we give three examples of very simple algorithms, and for each algo-
rithm we determine the smallest k for which the algorithm is k-waiting. In
the examples we use an atomic register called x. An atomic register supports
atomic read and write operations. Thus, for example, the statement x := x+1
is not atomic and involves two operations: (1) reading the value of x, and then
(2) writing a new value into x.

Example 1. An (n− 1)-waiting algorithm: Code of process i (1 ≤ i ≤ n)
shared x: atomic register, initially 1.

1 wait until x = i;
2 x := x + 1.

In Example 1, only process 1 is initially enabled, and process i > 1 becomes
enabled only after process i− 1 executes line 2.

Example 2. A 0-waiting algorithm: Code of process i (1 ≤ i ≤ n)
shared x: atomic register, initially 1.



6 Gadi Taubenfeld

1 wait until x ≥ 1;
2 x := x + 1.

In Example 2, all the n processes are initially enabled.

Example 3. A 1-waiting algorithm: Code of process i (1 ≤ i ≤ n)
shared x: atomic register, initially 1.

1 wait until (x = i or x ≥ 2);
2 x := x + 1.

In Example 3, only process 1 is initially enabled, and every process i > 1
becomes enabled after process 1 executes line 2.

3 Computational model and basic observations

Our model of computation consists of an asynchronous collection of n deter-
ministic processes that communicate via shared objects. Asynchrony means
that there is no assumption on the relative speeds of the processes. In most of
the cases we considered, the shared objects are registers which supports read
and write operations. A register can be atomic or non-atomic. With an atomic
register, it is assumed that operations on the register occur in some definite
order. That is, reading or writing an atomic register is an indivisible action,
and concurrent operations are ordered in their “real time” order. When read-
ing or writing a non-atomic register, a process may be reading a register while
another is writing into it, and in that event, the value returned to the reader
is arbitrary. We will consider only atomic registers. In the sequel, by registers
we mean atomic registers.

An event corresponds to an atomic step performed by a process. For ex-
ample, the events which correspond to accessing registers are classified into
two types: read events which may not change the state of the register, and
write events which update the state of a register but do not return a value.
A (global) state of an algorithm is completely described by the values of the
registers and the values of the location counters of all the processes. A run is
a sequence of alternating states and events.

A process executes correctly its algorithm until it (possibly) crashes. After
it has crashed it executes no more steps. Given a run, a process that crashes is
said to be faulty in that run, otherwise it is correct. In an asynchronous system
there is no way to distinguish between a faulty and a very slow process. We will
consider both the case where processes never fail and the case where processes
may fail by crashing.

Several progress conditions have been proposed for data structures which
avoid locking, and in which processes may fail by crashing. Wait-freedom guar-
antees that every active process will always be able to complete its pending
operations in a finite number of steps [12]. Non-blocking (which is sometimes
called lock-freedom) guarantees that some active process will always be able to



Waiting in Concurrent Algorithms 7

complete its pending operations in a finite number of steps [15]. Obstruction-
freedom guarantees that an active process will be able to complete its pending
operations in a finite number of steps, if all the other processes “hold still”
long enough [13].

Observation 1

1. An algorithm satisfies strong 0-waiting if and only if it satisfies wait-
freedom.

2. An algorithm satisfies weak 0-waiting if and only if it satisfies obstruction-
freedom.

Proof (1) In a wait-free algorithm, by definition, every beginning process is
strongly enabled. Thus, a wait-free algorithm satisfies strong 0-waiting. In a
strong 0-waiting algorithm, by definition, every process that has passed its
doorway is strongly enabled. Since the doorway is wait free, it follows that
also every beginning process is strongly enabled. Thus, a strong 0-waiting
algorithm satisfies wait-freedom. (2) In an obstruction-free algorithm, by def-
inition, every beginning process is weakly enabled. Thus, an obstruction-free
algorithm satisfies weak 0-waiting. In a weak 0-waiting algorithm, by defini-
tion, every process that has passed its doorway is weakly enabled. Since the
doorway is wait free, it follows that also every beginning process is weakly
enabled. Thus, a weak 0-waiting algorithm satisfies obstruction-freedom. ut

Several progress conditions have been proposed for data structures, which
may involve waiting in the context where processes never fail. Livelock-freedom
guarantees that, in the absence of process failures, if a process is active, then
some process must eventually complete its operation. A stronger property is
starvation-freedom which guarantees that, in the absence of process failures,
every active process must eventually complete its operation.

In a model where participation is required, every process must eventually
become active and execute its code. A more interesting and practical situation
is one in which participation is not required, as is usually assumed when solving
resource allocation problems or when designing concurrent data structures. We
always assume that participation is not required.

In general, wait-freedom is a strictly stronger progress condition than 0-
waiting and starvation-freedom combined. However, this is not the case for
n = 2.

Observation 2 Any weak 0-waiting starvation-free algorithm for two pro-
cesses is wait-free.

Proof Assume to the contrary that, there is a 0-waiting starvation-free al-
gorithm for two processes which is not wait-free. Let the names of the two
processes be p and q. Since the algorithm is 0-waiting and starvation-free, it
follows that,

– By 0-waiting, if only p (resp. q) participates and p (resp. q) does not fail
then p (resp. q) will eventually properly terminate.



8 Gadi Taubenfeld

– By 0-waiting, if both p and q participate and p does not fail but q fails then
from some point on p will run alone and will eventually properly terminate.

– By 0-waiting, if both p and q participate and q does not fail but p fails then
from some point on q will run alone and will eventually properly terminate.

– By starvation-freedom, if both p and q participate and none of them fails
then both eventually properly terminate.

The fact that in all the above runs, a correct participating process always prop-
erly terminates, implies that the implementation also satisfies wait-freedom for
two processes. That is, the above runs are exactly the runs in which correct
processes are required to terminate when wait-freedom is assumed. A contra-
diction. ut

4 Consensus and election

The consensus problem is to find a solution for n processes, where each process
starts with an input value from some domain, and must choose some partici-
pating process’ input as its output. All n processes together must choose the
same output value. In the election problem one or more processes indepen-
dently initiate their participation in an election to decide on a leader. Each
participating process should eventually output either 0 or 1 and terminate. At
most one process may output 1, and in the absence of faults exactly one of the
participating processes should output 1. The process which outputs 1 is the
elected leader.

4.1 A 2-waiting consensus algorithm

In [21], an election algorithm is presented, using dlog ne+ 1 registers, which is
correct under the following assumptions: (1) processes never fail, and (2) only
the elected leader is required to terminate. A modified version of the election
algorithm from [21], is used below for proving the following theorem,

Theorem 1 There are strong and weak 2-waiting starvation-free consensus
algorithms and strong and weak 2-waiting starvation-free election algorithms
for n ≥ 2 processes, using dlog ne+ 2 registers.

The consensus algorithm presented below uses the shared registers turn and
decision and the array of registers V [1..dlog ne]. All these registers are ini-
tially 0, except for the decision register which is initially ⊥. Also, for each
process, the local variables level and j are used. The processes have unique
identifiers. We will use the statement await condition as an abbreviation for
while ¬condition do skip. The code of the algorithm appears in Figure 1.

The process that is last to write to turn (line 1) attempts to become the
leader and to force all the other processes to decide on its input value. It does
so, by waiting for each of the registers V [j] to be 0 (lines 3-8) and then sets
the register to its id (line 9). A process becomes the leader if it manages to



Waiting in Concurrent Algorithms 9

Code of process p’s program with input value inputp

function consensus;
1 turn := p;
2 for level := 1 to dlogne do
3 repeat
4 if decision 6= ⊥ then return(decision) fi;
5 if turn 6= p then
6 for j := 1 to level− 1 do if V [j] = p then V [j] := 0 fi od;
7 await(decision 6= ⊥); return(decision) fi
8 until V [level] = 0;
9 V [level] := p;
10 if turn 6= p then
11 for j := 1 to level do if V [j] = p then V [j] := 0 fi od;
12 await(decision 6= ⊥); return(decision) fi
13 od;
14 decision := inputp; return(decision)
end function

Fig. 1 A 2-waiting starvation-free consensus

write its id into all the registers during the period that turn equals its id. Any
process that notices that turn is no longer equals its id, gives up on becoming
the leader, and erase any write it has made (lines 6 & 11). The leader writes
its input value into decision, and all the processes decide on that value.

There are runs of the algorithm in which every process manages to set
dlog ne registers before discovering that another process has modified turn,
and as a result has to set back to 0 some of the registers before terminating.
Proving the correctness of the algorithm is rather challenging, due to the
existence of such runs.

It is straightforward to use the above consensus algorithm for solving elec-
tion. Each process uses its identifer as its input. The value that all the processes
decide on in the consensus algorithm, identifies the leader.

4.2 Proof of Theorem 1

The proof of Theorem 1 follows from the detailed correctness proof of the 2-
waiting consensus algorithm given below. The proof of the consensus algorithm
is an adaptation of the proof for the election algorithm from [21]. Part of the
proof is similar to a proof of a similar algorithm that appeared in [26] in the
context of fault tolerant algorithms.

The fact that the algorithm uses dlog ne + 2 registers is obvious from in-
specting the algorithm. In the following, the leader is the process that writes
its input value in to the decision register (line 14). A process is at level k,
when the value of its private level register is k.

Lemma 1 (liveness) In the absence of faults, at least one leader is elected.



10 Gadi Taubenfeld

Proof Assume to the contrary that no leader is elected. Let r be an infinite
run with no faults where no leader is elected, and let p be the last processes
to write to turn in run r. Let q be the process with the highest value of level
when p writes to turn. At some point q will notice that turn 6= q, and set back
to 0, all the entries of the array V which equal to q. Repeat this argument
with the new highest process. Thus, any entry of the array V which process p
may wait on, will eventually be set back to 0, enabling p to proceed until it is
elected. A contradiction. ut
We say that a process is at level k, when the value of its private level register
is k. We say that a group of processes P have noticed together that V [k] = 0,
if each process in P : (1) is at level k, and (2) has notice that V [k] = 0 (when
executing the until statement in line 8), before any other process in P has
written V [k] (by executing the assignment in line 9).

Lemma 2 For any k ∈ {1, ..., dlog ne} and for any group of processes P , if
the processes P have noticed together that V [k] = 0 then at most one process
in P can either (1) continue to level k + 1 or (2) change any register other
than V [k].

Proof Assume that a set of processes, denoted P , are at level k, and they have
noticed together that V [k] = 0. One of these processes, say p ∈ P , must be
the last to update turn. If k = 1, each process in P −{p} will notice that turn
is different from its id (line 10), possibly write 0 into V [1] (line 11), and wait
& return (line 12).

Assume k > 1. To reach level k, each process in P must have seen in all
the levels smaller then k that turn is equal to its id. Thus, before p has set
turn to its id, each of the other processes in P , must have seen in all the levels
smaller then k that turn is equal to its id.

Since the processes in P have noticed together that V [k] = 0, by definition,
it must be the case that before any of the processes in P − {p} could execute
the assignment at line 9, p has already set V [1], ..., V [k − 1] to its id. This
implies that by the time each process in P − {p} executes the statement in
line 9, the following two conditions hold: (1) turn is different from its id, and
(2) the values of the registers V [1], ..., V [k − 1] are all different from its id.
Thus, by the time each process in P − {p} executes the if statement in line
10 it finds out that turn is different from its id, possibly writes 0 into V [k]
(line 11), and waits & returns (line 12), without a need to write 0 to any of
the registers V [1], ..., V [k − 1]. Process p, may continue to level k + 1 or itself
notices that turn 6= p and sets some or all of the registers V [1], ..., V [k − 1]
to 0, but it is the only process, among the processes in P , that may set any
shared register other than V [k]. ut

Lemma 3 (safety) At most one leader is elected.

Proof For proving the lemma, an accounting system of credits is used. Initially,
the number of credits is 2n − 1. New credits can not be created during the
execution of the algorithm. The credit system ensures that a process acquires



Waiting in Concurrent Algorithms 11

exactly 2k−1 credits before it can reach level k. Being elected is equivalent
to reaching level log n + 1. Thus, the credit system ensures that a process
must acquire 2logn+1−1 = n credits before it can be elected. Once a process is
elected, it may not release any of its credits. Thus, it is not possible for two
processes to get elected.

Without loss of generality it is assumed that n, the number of processes,
is a power of 2. Initially, each process holds 1 credit, and each register V [k]
where 1 ≤ k ≤ log n holds 2k−1 credits. Thus, the total number of credits
is n +

∑logn
k=1 2k−1 = 2n − 1. As a results of an operation taken by a process

credits may be transferred from a register to a process and vice versa, and
between processes. We list below 4 rules which capture all possible operations
by processes and their effect:

1. No transfer of credits: No credits are transferred when a process (1)
checks the value of a register, (2) writes into turn, or (3) executes a return
statement.

2. Transferring credits between a register and a process: When a
process writes its id into register V [k], changing V [k]’s value from 0 to its
id, 2k−1 credits are transferred from V [k] to that process. When a process
writes 0 into register V [k] which does not already holding 0, 2k−1 credits
are transferred to V [k] from that process.
Remark: This is the only rule for transferring credits between a register and
a process. Initially, V [k] holds 2k−1 credits, so the first time V [k]’s value
changes, it has enough credits to transfer. Before any subsequent transfer
from V [k] to a process, its value has to be set back to 0, and each time this
happens V [k] gets back 2k−1 credits. So, V [k] always has enough credits
to transfer to a process that changes V [k]’s value from 0 to its id (line 9).
A process at level k may changes V [k]’s value back to 0 at most once (line
11). Under the assumption, which we justify later, that the credit system
ensures that a process acquires exactly 2k−1 credits before it can reach level
k, and that these 2k−1 credits are not used for something else, a process
always has enough credits to transfer to V [k] if it changes V [k]’s value to
0.

3. Transferring credits between processes when moving to an upper
level: Let P be a maximal2 set of processes that have noticed together that
V [k] = 0. By Lemma 2, at most one process from P can continue to level
k + 1. Assume process p ∈ P continues to level k + 1. We consider two
cases:
– At level k, when executing line 9, process p changes V [k]’s value from

0 to its id. By rule 2, 2k−1 credits are transferred from V [k] to p. Thus,
p has 2k credits available, 2k−1 credits from reaching level k, plus 2k−1

credits from V [k], giving p the total of 2k credits it needs for level k+1.
– At level k, when executing line 9, process p does not change V [k]’s value

from 0 to its id. This implies that there must be another process q ∈ P

2 A set of processes P is maximal with respect to property φ, if (1) P satisfies φ, and (2)
there is no set Q, such that P ⊂ Q and Q satisfies φ.



12 Gadi Taubenfeld

that, before p has executed line 9, was the last process to change V [k]’s
value back to 0. By rule 2, 2k−1 credits are transferred from V [k] to q.
Thus, q has 2k credits available, 2k−1 credits from reaching level k, plus
2k−1 credits from V [k]. In this case, immediately after p executes line
9, 2k−1 credits are transferred from q to p, leaving q with 2k−1 credits
and giving p the total of 2k credits (2k−1 credits from reaching level k,
plus 2k−1 credits from q) it needs for level k + 1.

By Lemma 2, each process in P (including q) that does not continue to the
level k+ 1 can only execute V [k] := 0 (line 11), transferring (by Rule 2) to
V [k] the 2k−1 credits it has by getting this far, if it succeeds in changing
V [k]’s value back to 0.

4. Transferring credits between processes without moving to an up-
per level: Let P be a maximal set of processes that have noticed together
that V [k] = 0, and assume that no process in P continues to level k+1. By
Lemma 2, at most one process in P , say process p, can change any register
other than V [k]. We consider two cases:
– At level k, when executing line 9, process p changes V [k]’s value from

0 to its id. By rule 2, 2k−1 credits are transferred from V [k] to p, Thus,
p has 2k credits available, 2k−1 credits from reaching level k, plus 2k−1

credits from V [k].
– At level k, when executing line 9, process p does not change V [k]’s value

from 0 to its id. This implies that there must be another process q ∈ P
that, before p has executed line 9, was the last process to change V [k]’s
value back to 0. By rule 2, 2k−1 credits are transferred from V [k] to q,
giving q a total of 2k credits. In this case, immediately after p executes
line 9, 2k−1 credits are transferred from q to p, leaving q with 2k−1

credits, and giving p a total of 2k credits (2k−1 credits from reaching
level k, plus 2k−1 credits from q).

Setting to 0 every variable from V [1] to V [k] accounts for 2k − 1 credits

(i.e.,
∑k

i=1 2i−1 = 2k − 1), so (in both cases) p has enough credits and no
new credits should be created by p when it sets to 0 multiple registers.
By Lemma 2, each process in P−{p} (including q) can only execute V [k] :=
0 (line 11), transferring (by Rule 2) to V [k] the 2k−1 credits it has by getting
this far, if it succeeds in changing V [k]’s value back to 0.

Given the above description of the accounting system, we can now justify the
following two claims made earlier:

1. A process acquires exactly 2k−1 credits before it can reach level k.
This is proven by induction on the level k. For k = 1, the claim follows
immediately from the fact that initially each process has one credit. We
assume that the claim holds for level k and prove that it also holds for level
k+1. By Rule 3, before process p moves to level k+1, it gets additional 2k−1

credits either from V [k] or from another process. Thus, p has 2k credits
available, 2k−1 credits by the induction hypothesis (from reaching level k)
plus 2k−1 as explained above, giving p the total of 2k credits it needs for
level k + 1.



Waiting in Concurrent Algorithms 13

2. No new credits are created.
As already explained in Rule 2, V [k] always has enough credits to transfer
to a process that changes V [k]’s value from 0 to its id. Furthermore, since
the credit system ensures that a process acquires exactly 2k−1 credits before
it can reach level k, and since these 2k−1 credits are not used for something
else, a process at level k always has enough credits to transfer to V [k] if it
changes V [k]’s value to 0.
By Lemma 2, at most one process in a maximal set of processes P that
have noticed together that V [k] = 0, say process p, can change any register
other than V [k]. By Rule 4, p has 2k credits available, 2k−1 credits from
reaching level k plus 2k−1 from either V [k] or from another process. As
already explained in Rule 4, setting to 0 every variable from V [1] to V [k]

accounts for 2k − 1 credits (i.e.,
∑k

i=1 2i−1 = 2k − 1), so (in both cases) p
has enough credits and no new credits should be created by p when it sets
to 0 multiple registers.

As already mentioned, initially, the number of credits is 2n−1. No new credits
are created, and a process must acquire n credits before it can be elected. Once
a process is elected, it may not release any of its credits. Thus, it is not possible
for two processes to get elected. ut

Theorem 2 (agreement & validity) All the participating processes decide
on the same value, and this decision value is the input of a participating pro-
cess.

Proof It follows from Lemma 1 and Lemma 3, that exactly one leader is
elected. The leader will eventually write its input value into the decision reg-
ister, and all the participating will decide on that value. ut

Theorem 3 (starvation-freedom) In the absence of faults, every partici-
pating process eventually terminates.

Proof Once a leader is elected and sets the decision register to its input value,
all correct participating processes will eventually find out that decision 6= ⊥
and properly terminate. In the absence of faults, by Lemma 1, at least one
leader is eventually elected, and thus all the participating processes eventually
terminate. ut

Theorem 4 (2-waiting) The consensus algorithm satisfies strong and weak
2-waiting.

Proof In every run there are at most two (strong or weak) enabling events. The
first is the event after which the leader becomes enabled. (This can happen at
most once since being enabled is a stable property.) The second event is when
the leader sets the decision register to its input value (line 14), after which
all the other processes immediately become enabled. In fact, in this particular
algorithm in every run in which some process terminates, there are exactly two
enabling events. Consider for example a run where process p runs alone until



14 Gadi Taubenfeld

it is elected and terminates. The first enabling event is when the local variable
level of p equals dlog ne and p reads in Line 10 that turn = p. Before that
read event all the processes are disabled, and after that read event p becomes
(strongly) enabled (and all the other processes are still disabled). Once process
p executes line 14, all the processes become enabled even though they haven’t
started yet. Hence, the consensus algorithm satisfies 2-waiting.

We point out that a process does not necessarily become weakly enabled
after taking its first step. To see that, recall that being weakly enabled is a
stable property. Assume that process p wakes up, runs alone, is elected but is
suspended before setting decision to its input (in Line 14). At that point all
the other processes, regardless of the number of steps they have taken so far,
are disabled. Once process p executes line 14 all the other processes become
enabled (also those that haven’t taken any steps yet). ut

This completes the proof of Theorem 1.

4.3 An impossibility result

In [21], it has been proven that, even in the absence of faults, any election
algorithm for n processes must use at least dlog ne + 1 registers. This lower
bound holds also for consensus. Thus, Theorem 1 provides an almost tight
space upper bound. It is known that there are no wait-free consensus or elec-
tion algorithms, using registers [9,12,18,19]. Below we slightly generalize these
known impossibility results for wait-free consensus and election.

Theorem 5 There are no weak 0-waiting starvation-free consensus or election
algorithms for n ≥ 2 processes, using registers.

Proof The result follows from Observation 2 and the known impossibility re-
sults that there are no wait-free consensus and election algorithms for two (or
more) processes, using registers [9,12,18,19]. ut

5 Adaptive renaming

5.1 The problem

The renaming problem allows processes, with distinct initial names from a
large name space, to get distinct new names from a small output name space.
In the non-adaptive version of the problem, the size of the new name space
is a function of n, the total number of processes. Adaptive renaming is more
demanding: the size of the new name space must be a function of the actual
number of the participating processes.

An adaptive f(m)-renaming algorithm allows m participating processes
with initially distinct names from a large name space to acquire distinct new
names from the set {1, ..., f(m)}. A one-shot renaming algorithm allows each



Waiting in Concurrent Algorithms 15

process to acquire a distinct new name just once. A long-lived renaming algo-
rithm allows processes to repeatedly acquire distinct names. We focus below
on solving one-shot adaptive renaming.

5.2 The algorithm

It is known that there is a wait-free adaptive (2m − 1)-renaming algorithm
using registers, where m is the number of participating processes [6]. Below
we extend this result to cover cases where waiting is possible.

Theorem 6 For any 1 ≤ k < n, there is a strong (k + 1)-waiting starvation-
free adaptive (max {m, 2m− k − 1})-renaming algorithm, where 1 ≤ m ≤ n is
the number of participating processes, using registers.

Proof For 1 ≤ i ≤ k, let Ei be the implementation of a strong 2-waiting
election object from registers, from the proof of Theorem 1. Each process, say
p, scans the k election objects, E1, ..., Ek, in order, starting with E1. At each
step, process p tries to get elected, and either moves to the next election object
if the returned value is 0 (i.e, not elected), or stops when the returned value
is 1 (i.e, elected). If process p stops on one of the k election objects, then it is
assigned the name that equals to the index of the election object on which it
is elected. (I.e., if it stopped on Ei then it is assigned name is i.). Otherwise, if
all its operations on the election objects have returned 1 (which means that k
other processes already got the names 1 through k), process p participates in a
wait-free adaptive (2m−1)-renaming algorithm which uses registers only. Let v
be the value assigned to p by the optimal renaming algorithm, then process p is
assigned the final new name k+v. Clearly, only m−k processes will participate
in the adaptive wait-free renaming, and thus v ∈ {1, ..., 2(m − k) − 1}. This
proves that the name name space is as stated in the Lemma. Next we prove
that the algorithm satisfies k + 1-waiting. There are two possible cases:

1. A process, say p, acquires a new name i ≤ k. This means that p got elected
in Ek. So, at some point there was a strong enabling step which made
p strongly enabled after which it got elected at Ek. Before that strong
enabling step, there where at most k− 1 other strong enabling steps which
strongly enabled k−1 other processes to get elected in objects E1, ..., Ek−1,
a total of k strongly enabling events.

2. A process, say p, acquires a new name i > k. This means that p acquired
a name while participating in a wait-free adaptive (2m − 1)-renaming al-
gorithm. So, at some point there was a strong enabling step which made
p strongly enabled after which it acquired a name. Before that strongly
enabling step, there where at most k other strong enabling steps which
strongly enabled k other processes to get elected in objects E1, ..., Ek, a
total of k + 1 strongly enabling events.

We notice that after the k’th enabling step, the step which made the process
that got elected in Ek enabled, the next enabling step simultaneously made
all the remaining processes enabled. ut



16 Gadi Taubenfeld

The result stated in Theorem 6 holds, with almost the same proof, if we
replace the word strong with weak in the statement of the theorem.

5.3 A name-space lower bound

A wait-free adaptive (2m− 1)-renaming algorithm using registers, where m is
the number of participating processes is called an optimal adaptive renaming
algorithm w.r.t. registers, because it matches the known lower bound on the
name space. This known lower bound can be easily derived from the known
impossibility result for set-consensus [4,14,20]. Below we slightly generalize
this lower bound result.

Theorem 7 There is no weak 0-waiting starvation-free adaptive max{1, 2m−
2}-renaming algorithm, where m is the number of participating processes, using
registers.

Proof The result follows from Observation 2 and the known impossibility result
that there is no wait-free adaptive m-renaming algorithm for two processes,
using registers [4,14,20]. ut

6 Mutual exclusion

The mutual exclusion problem is to design an algorithm (i.e., a lock) that
guarantees mutually exclusive access to a critical section among n competing
processes [7]. It is assumed that each process is executing a sequence of in-
structions in an infinite loop. The instructions are divided into four continuous
sections: the remainder, entry, critical and exit. The entry section consists of
two parts: the doorway which is wait-free, and the waiting part which includes
one or more loops. A waiting process is a process that has finished its doorway
code and reached the waiting part, and a beginning process is a process that
is about to start executing its entry section. Like in the case of the doorway,
the exit section is also required to be wait-free. It is assumed that processes
do not fail, and that a process always leaves its critical section.

6.1 Definitions

The mutual exclusion problem is to write the code for the entry and the exit
sections in such a way that the following two basic requirements are satisfied.

Livelock-freedom: If a process is trying to enter its critical section, then
some process, not necessarily the same one, eventually enters its critical sec-
tion.

Mutual exclusion: No two processes are in their critical sections at the same
time.



Waiting in Concurrent Algorithms 17

Satisfaction of the above two properties is the minimum required for a mutual
exclusion algorithm. For an algorithm to be fair, satisfaction of an additional
condition is required.

First-in-first-out (FIFO): A beginning process cannot execute its critical
section before a waiting process completes executing its critical section.

Linear-waiting is a requirement which is slightly weaker than FIFO. Linear-
waiting means that no (beginning or not) process can execute its critical sec-
tion twice while some other process is kept waiting.

6.2 Three observations

We prove below three observation regarding the level of waiting needed when
solving the mutual exclusion problem.

Theorem 8 (1) There is no strong (n−2)-waiting livelock-free mutual exclu-
sion algorithm; (2) There are strong (n − 1)-waiting FIFO mutual exclusion
algorithms using strong synchronization primitives; (3) There are strong n-
waiting FIFO mutual exclusion algorithms using registers.

Proof (1) Let A be an arbitrary mutual exclusion algorithm. Assume that n
processes are trying to enter their critical sections of A simultaneously, and
they have all passed their doorways. In such a scenario, each strong enabling
step enables exactly one process to enter its critical section, complete its oper-
ation and release the lock. The last process enters its critical section, after at
least strong n−1 enabling steps have been executed. Thus, at best, A satisfies
strong (n − 1)-waiting, but it does not satisfy (n − 2)-waiting. (2) Ander-
son’s queue-based algorithm [1], which uses registers and fetch-and-increment
object, is an example of a strong (n− 1)-waiting FIFO mutual exclusion algo-
rithm. (3) The FIFO mutual exclusion algorithm from [17] use only registers
and satisfies strong n-waiting. ut

In the context of mutual exclusion, a process is weakly enabled if and only
if it is strongly enabled. Thus, the result stated in Theorem 8 holds, if we
replace the word strong with weak in the statement of the theorem.

7 Fairness

Fairness requirements guarantee that a process will not bypass another process
“too many times”. The problem of implementing a k-fair data structure is to
write the code of each operation in such a way that the following requirement
is satisfied,

k-fairness: No beginning process can complete k + 1 operations while
some other process which has already passed the doorway of some op-
eration has not completed the operation yet.



18 Gadi Taubenfeld

The term first-in-first-out (FIFO) is used for 0-fairness. For every k ≥ 1, k-
fairness does not imply livelock-freedom. We address the following question:
When is it possible to transform a non-blocking data structure into the cor-
responding fair data structure? We show that, when only registers are used,
such a transformation must involve waiting.

Theorem 9 For any k ≥ 0, it is not possible to automatically transform every
data structure, which has a non-blocking implementation using registers, into
the corresponding k-fair non-blocking data structure, using registers.

Proof For any k ≥ 0, a data structure that satisfies both k-fairness and non-
blocking must also satisfy wait-freedom. In [10], it is shown that there exists
an object which has a non-blocking implementation using registers, but does
not have a wait-free implementation using registers. The existence of such an
object implies that it is not possible to automatically transform every non-
blocking data structure into the corresponding wait-free data structure using
only registers. The result follows. ut

Theorem 10 It is possible to automatically transform every non-blocking data
structure, using only registers, into the corresponding strong 1-waiting data
structure which (1) satisfies 1-fairness and starvation-freedom, and (2) guar-
antees that the execution of the doorway of each operation requires a constant
number of steps.

Proof It was recently proved in [24] that, using registers, it is possible to au-
tomatically transform any non-blocking data structure into the corresponding
starvation-free data structure which satisfies the following three properties:
(1) no beginning process may complete two operations before another process
that has passed its doorway completes its operation; (2) All the processes that
have passed their doorways and are not strongly enabled, eventually become
strong enabled at the same time; (3) the execution of the doorway requires
only three steps, in which only registers are accessed. This transformation is
called the fair synchronization algorithm. Property (1) above means that the
transformed data structure satisfies 1-fairness; property (2) implies that it sat-
isfies strong 1-waiting. The result follows. ut

8 Related work

In [8], it is suggested to model contention at a shared object with the help
of stall operations. In the case of simultaneous accesses to a single memory
location, only one operation succeeds, and other pending operations must stall.
The measure of contention is the worst-case number of stalls that can be
induced by an adversary scheduler. Our study of the new progress conditions
complements the study of the complexity measure of [8].

As already mentioned, the following important progress conditions have
been proposed for data structures which avoid waiting: wait-freedom [12],
non-blocking [15], and obstruction-freedom [13]. Symmetric and asymmetric



Waiting in Concurrent Algorithms 19

progress conditions are studied in [16,23]. In [11], the authors identify an
interesting relationship that unifies six progress conditions ranging from the
deadlock-free and starvation-free conditions common to lock-based systems, to
the obstruction-free, non-blocking and wait-free conditions common to lock-
free systems.

The impossibility result that there is no consensus algorithm that can toler-
ate even a single crash failure was first proved for the asynchronous message-
passing model in [9], and later has been extended for the shared memory
model with atomic registers, in [18]. A comprehensive discussion of wait-free
synchronization is given in [12].

In [21] it is proved that, in the absence of failures, dlog ne+ 1 registers are
necessary and sufficient for election, assuming that only the elected leader is
required to ever terminate. We use the key ideas from [21], in our implementa-
tions of the 2-waiting starvation-free consensus and election algorithms. The
one-shot renaming problem was first solved for message-passing systems [2],
and later for shared memory systems [3]. In [5] a long-lived wait-free renaming
algorithm was presented. Many of the results on renaming are discussed in [6].

The mutual exclusion problem was first stated and solved for n processes
by Dijkstra in [7]. Numerous solutions for the problem have been proposed
since it was first introduced in 1965 [22]. In [24], it is shown that it is possible
to automatically transfer any non-blocking or wait-free data structure into a
similar data structure which satisfies a strong fairness requirement, without
using locks and with limited waiting.

9 Discussion and open problems

We have introduced a new set of progress conditions, called k-waiting, for
k ≥ 0. The new conditions are intended to quantitatively capture the “amount
of waiting” of processes in asynchronous concurrent algorithms. To illustrate
the utility of the new conditions, we have derived lower and upper bounds, and
impossibility results for well-known basic problems such as consensus, election,
renaming and mutual exclusion. We also presented some results regarding the
relation between waiting and fairness. Much, however, remains to be done.

The new progress conditions together with our technical results, indicate
that there is an interesting area of concurrent algorithms that deserve further
investigation. A few specific interesting open problems are: Are there 1-waiting
starvation-free consensus and election algorithms for n ≥ 2 processes, using
registers? Is the upper bound of Theorem 6, on the name space for k-waiting
starvation-free adaptive renaming, tight? It would also be interesting to look
at various variants of k-waiting.

To conclude, we have focused on identifying some intermediate notion of
waiting, and the basic definition of k-waiting appears to make sense as a
candidate definition. The various results presented, provide some evidence that
this is a good definition. We hope that our conceptual contributions will lead
to interesting conversations and further results regarding this unexplored area.



20 Gadi Taubenfeld

References

1. T. E. Anderson. The performance of spin lock alternatives for shared-memory multi-
processor. IEEE Trans. on Parallel and Distributed Systems, 1(1):6–16, January 1990.

2. H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, and R. Reischuk. Renaming in
an asynchronous environment. Journal of the Association for Computing Machinery,
37(3):524–548, July 1990.

3. A. Bar-Noy and D. Dolev. Shared memory versus message-passing in an asynchronous
distributed environment. In Proc. 8th ACM Symp. on Principles of Distributed Com-
puting, pages 307–318, 1989.

4. E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In Proc. 25th ACM Symp. on Theory of Computing, pages
91–100, 1993.

5. J.E. Burns and G.L. Peterson. The ambiguity of choosing. In Proc. 8th ACM Symp.
on Principles of Distributed Computing, pages 145–158, August 1989.

6. A. Castaneda, S. Rajsbaum, and M. Raynal. The renaming problem in shared memory
systems: An introduction. Computer Science Review, 5(3):229–251, 2011.

7. E. W. Dijkstra. Solution of a problem in concurrent programming control. Communi-
cations of the ACM, 8(9):569, 1965.

8. C. Dwork, M. P. Herlihy, and O. Waarts. Contention in shared memory algorithms.
Journal of the ACM, 44(6):779–805, 1997.

9. M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

10. M. Herlihy. Impossibility results for asynchronous pram. In Proc. of the 3rd Annual
ACM Symp. on Parallel Algorithms and Architectures, pages 327–336, 1991.

11. M. Herlihy and N. Shavit. On the nature of progress. In 15th International Conference
on Principles of Distributed Systems (OPODIS 2011), 2011. LNCS 7109 Springer
Verlag 2011, 313-328.

12. M. P. Herlihy. Wait-free synchronization. ACM Trans. on Programming Languages and
Systems, 13(1):124–149, January 1991.

13. M. P. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In Proc. of the 23rd International Conference on Dis-
tributed Computing Systems, page 522, 2003.

14. M. P. Herlihy and N. Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(6):858–923, July 1999.

15. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. on Programming Languages and Systems, 12(3):463–492, 1990.

16. D. Imbs, M. Raynal, and G. Taubenfeld. On asymmetric progress conditions. In Proc.
29th ACM Symp. on Principles of Distributed Computing, pages 55–64, 2010.

17. L. Lamport. A new solution of Dijkstra’s concurrent programming problem. Commu-
nications of the ACM, 17(8):453–455, August 1974.

18. M.C. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 4:163–183, 1987.

19. S. Moran and Y. Wolfstahl. Extended impossibility results for asynchronous complete
networks. Information Processing Letters, 26(3):145–151, 1987.

20. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM Journal on Computing, 29, 2000.

21. E. Styer and G. L. Peterson. Tight bounds for shared memory symmetric mutual
exclusion problems. In Proc. 8th ACM Symp. on Principles of Distributed Computing,
pages 177–191, August 1989.

22. G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson /
Prentice-Hall, 2006. ISBN 0-131-97259-6, 423 pages.

23. G. Taubenfeld. The computational structure of progress conditions. In 24th inter-
national symposium on distributed computing (DISC 2010), Sept. 2010. LNCS 6343
Springer Verlag 2010, 221–235.

24. G. Taubenfeld. Fair synchronization. In Journal of Parallel and Distributed Computing
97:1–10, November 2016. (Also in: LNCS 8205, 2013, 179–193, DISC 2013.)



Waiting in Concurrent Algorithms 21

25. G. Taubenfeld. Waiting in Concurrent Algorithms. In 4th international conference on
networked systems (NETYS 2016), Marrakech, Morocco, May 2016. LNCS 9944, 2016,
345–360.

26. G. Taubenfeld. A closer look at fault tolerance. In Theory of Computing Systems
(2017), To appear. (Also in: Proceedings of PODC 2012, 261–270.)


