
Weak Failures: Definitions, Algorithms and
Impossibility Results

Gadi Taubenfeld

The Interdisciplinary Center, P.O.Box 167, Herzliya 46150, Israel
tgadi@idc.ac.il

Abstract. The notion of weak failures, which should be viewed as fractions of
traditional failures, is introduced and studied. It is known that there is no consen-
sus algorithm using registers that can tolerate even a single crash failure. Is there
a consensus algorithm using registers that can tolerate a “fraction” of a crash fail-
ure, i.e., a weak failure? It is known that there is no k-set consensus algorithm
for n > k processes using registers that can tolerate k crash failures. How many
weak failures can a k-set consensus algorithm which uses registers tolerate? An-
swers to these questions follow from our general possibility and impossibility
results regarding the ability to tolerate weak failures.

Keywords: Weak failures, shared memory, consensus, k-set consensus, contention.

1 Introduction

Fractions were studied by Egyptians mathematicians around 1600 B.C. However, frac-
tions, as we use them today, didn’t exist in Europe until the 17th century. It seems
natural that we consider fractions also in the context of fault tolerance. Below we de-
fine, motivate and explore the new notion of weak failures. Weak failures should be
viewed as fractions of traditional failures.

Tolerating traditional failures is always defined with respect to all possible execu-
tions of a given system. A system is said to tolerate t failures w.r.t. some property φ, if
in all possible executions of the system in which at most t processes fails, φ is satisfied.
When tolerating weak failures, also called fractional failures, it is only required that in
some executions, and not necessarily in all executions, φ is satisfied. There are several
ways for identifying the subset of executions in which φ should be satisfied. Below, we
provide two possible definitions of weak failures.

1.1 Defining weak failures

A process is participating in an algorithm if it has executed at least one statement of
that algorithm. The point contention of an algorithm at a given time is the maximal
number of (correct and faulty) processes simultaneously participating in the algorithm.
The point contention is bounded by the total number of processes.

1. An m-failure of type 1 is a failure of a process that (1) after it has failed the process
executes no more steps, and (2) the failure may occur only while the point con-
tention is at most m. That is, such weak failures are assumed not to occur once a
certain predefined threshold on the level of point contention is reached.

2. An m-failure type 2 is a failure of a process that (1) after it has failed the process
executes no more steps, and (2) the failure may occur only while the point con-
tention is at least m. That is, such weak failures are assumed to happen once a
certain predefined threshold on the level of point contention is reached.

When designing an algorithm for n processes, n-failures of type 1 and 1-failures of
type 2 are the traditional crash failures. Thus, m-failures of type 1 where m < n, and
m-failures of type 2 where m > 1, can be referred to as weak crash failures. Other
types of weak failures, weak Byzantine failures, for example, can be defined similarly
(but are not studied in this paper).

Considering weak failures of type 1, at first sight, it seems counterintuitive to tol-
erate failures in low contention environments, as the probability that a process crashes
seems more likely to increase as system load increases. Below we provide motivating
examples why weak failures, regardless of their type, are interesting.

We emphasize that nothing is preventing a process from failing. However, in the
case of algorithms that tolerate weak failures of type 1 (resp. of type 2), when a process
fails after (resp. before) the predefined threshold is reached, no correctness guarantees
are given. It would be nice to be able to give guarantees for all the cases; unfortunately,
this is not always possible.

1.2 Motivation

As already mentioned, weak failures should be viewed as fractions of traditional fail-
ures. This will enable us to design algorithms that can tolerate several traditional fail-
ures plus several additional weak failures. More precisely, assume that a problem can
be solved in the presence of t traditional failures, but cannot be solved in the presence
of t + 1 such failures. Yet, the problem might be solvable in the presence of t failures
plus t′ > 0 weak failures (of some type).

Adding the ability to tolerate weak failures to algorithms that are already designed
to circumvent various impossibility results, such as the Paxos algorithm [13] and in-
dulgent algorithms in general [10, 11], would make such algorithms even more robust
against possible failures. An indulgent algorithm never violates its safety property, and
eventually satisfies its liveness property when the synchrony assumptions it relies on are
satisfied. An indulgent algorithm which in addition (to being indulgent) tolerates weak
failures may, in many cases, satisfy its liveness property even before the synchrony
assumptions it relies on are satisfied.

When facing a failure related impossibility result, such as the impossibility of con-
sensus in the presence of a single faulty process [9], one is often tempted to use a solu-
tion which guarantees no resiliency at all. We point out that there is a middle ground:
tolerating weak failures (of some type) enables to tolerate failures some of the time.
Also, traditional t-resilient algorithms tolerate failures only some of the time (i.e., as
long as the number of failures is at most t). Afterall, something is better than nothing.

The first type of weak failures is in particular useful in systems in which contention
is usually low. The second type of weak failures may correspond to a situation where,
when there is high contention, processes are slowed down and as a result give up and
abort.

Finally, the new failure model establishes a link between contention and failures,
which enables us to better understand various known impossibility results, like the im-
possibility result for consensus [9] and its generalizations [4, 12, 18].

1.3 Contributions

We have identified new types of weak failures, where failures are assumed to occur only
before (type 1) or after (type 2) a specific predefined threshold on the level of contention
is reached. All our technical results are for weak failures of type 1 only. From the rest
of the paper, whenever we use the term weak failures, we mean weak failures of type 1,
and whenever we use the term crash m-failures, we mean m-failures of type 1.

To illustrate the utility of the new definitions, we derive possibility and impossibil-
ity results for solving the well-known problems of consensus and k-set consensus in
the presence of weak failures. The k-set consensus problem is to design an algorithm
for n processes, where each process starts with an input value from some domain and
must choose some participating process’ input as its output. All n processes together
may choose no more than k distinct output values. The 1-set consensus problem is the
familiar consensus problem.

It is known that, in asynchronous systems, there is no consensus algorithm for n
processes using registers that can tolerate even a single crash n-failure [9, 14]. We show
that, in asynchronous systems, there is a consensus algorithm for n processes, using
registers, that can tolerate a single crash (n − 1)-failure, for every n > 1. The above
bound is tight. We show that there is no consensus algorithm for n processes, using
registers, that can tolerate two crash (n− 1)-failures, for every n > 2.

It is known that, in asynchronous systems, there is no k-set consensus algorithm
for n > k processes using registers that can tolerate k crash n-failures [4, 12, 18]. We
show that, in asynchronous systems, for every ` ≥ 1, k ≥ 1 and n ≥ 2` + k − 2,
there is a k-set consensus algorithm for n processes, using registers, that can tolerate
` + k − 2 crash (n − `)-failures. We show that there is no k-set consensus algorithm
that can tolerate `+ k crash (n− `)-failures.

Solving consensus with a single crash (n − 1)-failure using only registers is a de-
ceptive problem. Once you are told that it is solvable, at first glance, it may seem simple
to solve. The only way to understand its tricky nature is by trying to solve it. For that
reason, we suggest the readers to try to solve the problem themselves.

2 Computational model

Our model of computation consists of an asynchronous collection of n deterministic
processes that communicate via atomic read/write registers. The processes have unique
identifiers. Asynchrony means that there is no assumption on the relative speeds of the
processes.

A register can be atomic or non-atomic. With an atomic register, it is assumed that
operations on the register occur in some definite order. That is, reading or writing an
atomic register is an indivisible action. We will consider only atomic registers. In the
sequel, by registers, we mean atomic registers.

A process executes its algorithm correctly until it possibly crashes. After it has
crashed, it executes no more steps. A process that crashes is said to be faulty; otherwise,
it is correct. In an asynchronous system, there is no way to distinguish between a faulty
and a very slow process.

In a model where participation is required, every correct process must eventually
become active and execute its code. Another situation is one in which participation is
not required, as is usually assumed when solving the mutual exclusion or k-exclusion
problems. All the known impossibility results for consensus and k-set consensus hold
even when participating is required (and hence, of course, also when participating is
not required). Unless explicitly stated otherwise (i.e., when we use a known solution
for k-exclusion) we will assume that participation is required.

3 Possibility of consensus with a single crash (n–1)-failure

The consensus problem is defined as follows: There are n processes where each process
i ∈ {1, ..., n} has an input value ini. The requirements of the consensus problem are
that there exists a decision value v such that: (1) [Agreement & termination] each non-
faulty process eventually decides on v, and (2) [Validity] v ∈ {in1, ..., inn}.

A fundamental result in distributed computing is that it is impossible to solve con-
sensus with a single crash failure (i.e., a single crash n-failure) [9, 14]. We consider the
strongest failure type which is strictly weaker than the traditional crash failure, namely
(n − 1)-failure, and show that it is possible to solve consensus with a single crash
(n− 1)-failure.

Theorem 1. There is a consensus algorithm for n processes, using registers, that can
tolerate a single crash (n− 1)-failure, for every n ≥ 1.

The above bound on the number of crash (n − 1)-failures is tight. In Section 5, it is
shown that there does not exist a consensus algorithm for n processes, using registers,
that can tolerate two crash (n− 1)-failures, for any n > 2.

Final remark before presenting the algorithm. Assume that you know how to solve
consensus for two processes with a single crash 1-failure. A common approach for
solving consensus for many processes in the presence of a single fault is as follows:
Choose the two processes with the smallest identifiers, have them run the two-process
solution, and write the result into a register. The remaining processes keep reading the
register until the result appears there. We notice that such a solution for many processes
guarantees to tolerate only a single crash 1-failure, but not a single crash 2-failure.

3.1 The algorithm

The code of the algorithm appears in Figure 1. In the algorithm, each process can be
in one of four states, 0,1,2 or 3, as recorded in its state register. A process participates
in three rounds (lines 2–15). At each round round ∈ {1, 2, 3}, the process first checks
whether all the other n − 1 processes have already written the round number round
into their state registers (lines 4–6). In case of a positive answer, the process sets the
decision register to the maximum input value among the input values of the other n− 1

A CONSENSUS ALGORITHM WHICH CAN TOLERATE A SINGLE CRASH (n− 1)-FAILURE:
Program for process i ∈ {1, ..., n} with a non-negative input ini.

Shared: state[1..n]: array of registers, ranges over {0, 1, 2, 3}, initially all entries are 0
input[1..n]: arrays of registers, initial values immaterial // input values
decision: register, initially ⊥ // final decision value

Local: counter,max, round, j: local variables, initial values immaterial

1 input[i] := ini;
2 for round = 1 to 3 do
3 counter := 0; max := 0; // state[i] = round− 1
4 for j = 1 to n do // Am I last in this round?
5 if state[j] ≥ round then counter := counter + 1; // notice: state[i] = round− 1
6 if max < input[j] then max := input[j] fi fi od;
7 if counter = n− 1 then // I’m last

decision := max; decide(max) fi; // decide & terminate
8 state[i] := round; // counter < n− 1, increment state
9 repeat // wait until n− 1 processes arrive
10 counter := 0;
11 for j = 1 to n do
12 if state[j] ≥ round then counter := counter + 1 fi od // i counts also itself
13 until (counter ≥ n− 1 or decision 6= ⊥)
14 if decision 6= ⊥ then decide(decision) fi // decide & terminate
15 od;

// 3 rounds have been completed
16 if counter = n− 1 then counter := 0; max := 0; // if counter 6= n, revisit round 2
17 for j = 1 to n do // is some process missing from round 2?
18 if state[j] ≥ 2 then counter := counter + 1;
19 if max < input[j] then max := input[j] fi fi od;
20 if counter = n− 1 then decision := max; decide(max) fi fi; //decide&terminate

// at this point it must be that counter = n
21 for j = 1 to n do // wait until all n processes arrive to round 3
22 await (state[j] = 3 or decision 6= ⊥); // or wait for a decision to be made
23 if decision 6= ⊥ then decide(decision) fi; // decide & terminate
24 if max < input[j] then max := input[j] fi od;
25 decision := max; decide(max). // all have arrived; decide & terminate

Fig. 1. A consensus algorithm which can tolerate a single crash (n− 1)-failure.

processes, decides on that maximum value and terminates (line 7). Otherwise, it writes
the value of round into its state register (line 8) and waits until either a decision is made
or at least n− 1 processes, including itself, have written the round number round into
their single-writer state registers, whatever comes first (lines 9–13). In the former case,
it adopts the decision value (line 14), in the latter case it completes the current round
and moves on.

After completing three rounds, the process checks if there exists a process, say
process j, that has not written the value 2 into its state register (lines 16–19). In case
of a positive answer, it concludes that process j will never be able to reach round three,
and thus, j will never set its state register to 3. This is so because j will notice that n−1
other processes have already set their state registers to 3, and will decide (line 7) before
incrementing its state register (line 8). Thus, the process sets the decision register to
the maximum input value among all the processes, excluding process j, decides on that
maximum value and terminates (line 20).

Otherwise, if all the n processes have written the value 2 into their state registers, the
process concludes that all the n processes are still active and are guaranteed not to fail.
It waits until either a decision is made or until all the processes complete round three,
whatever comes first (lines 21–24). In the former case, it adopts the decision value (line
23), in the latter case it decides on maximum input value among the input values of all
the n processes and terminates (line 25).

3.2 Correctness proof

We say that process i is in round r if its local variable round equals to r.

Lemma 1. For every i ∈ {1, ..., n}, when process i sets state[i] to 2 (in line 8), either
the point contention is already n or for some j 6= i, state[j] will always be 0.

Proof. If the point contention is not n when i sets state[i] to 2 (in line 8), it follows
that (1) by definition, some process, say j, hasn’t taken any steps yet, and (2) except for
process j, all the other n−1 processes have already incremented their state registers. If
j is a correct process, it will eventually reach line 7 at which point its counter register
will become equal to n−1. Thus, j will decide and terminate without ever incrementing
its state register. ut

Lemma 2. If at some point in time, for every i ∈ {1, ..., n} state[i] ≥ 2, then all the
n processes are active, no process has failed before that point, and no process will fail
after that point.

Proof. Assume that for every i ∈ {1, ..., n}, state[i] ≥ 2. It follows from this assump-
tion and Lemma 1 that, for every i ∈ {1, ..., n}, when process i has set state[i] to 2
(in line 8), the point contention was already n. Thus, process i will never fail since it is
assumed that no process fails once the point contention is n. ut

Lemma 3. For every process i ∈ {1, ..., n},

1. if process i writes into the decision register in line 7, then no other process writes
into the decision register in line 7;

2. if process i writes into the decision register in line 7, then no other process writes
into the decision register in line 25;

3. if process i writes into the decision register in line 20, then no other process writes
into the decision register in line 25.

Proof. Suppose process i writes into decision in line 7 in round r ∈ {1, 2, 3}. This
means that all the other n− 1 processes have already written r into their state registers,
and hence have not written into decision in line 7 in round r or in previous rounds. After
i writes into decision, it immediately terminates. Thus, i will never write a value r′ ≥ r
into its state register. Thus, for every other process, after executing the for loop in lines
4–6, the value of counter will be at most n − 2, and the test in line 7 will fail. Also,
since state[i] will never equal 3, no process will ever reach line 25.

Suppose process i writes into decision in line 20. This means that there exists a
process, say process j, that has not written the value 2 into its state register, at the time
when process i checked state[j] in line 18. Although process j may still set state[j]
to 2 at a later time, it will never be able to set state[j] to 3 at a later time, because, in
round 3, the counter of j will reach n− 1 when j will execute the for-loop in lines 4–6,
and if continues it will terminate at line 7. For that reason when some other process
executes line 22 “await (state[j] = 3 or decision 6= ⊥)”, the waiting may terminate
only because decision 6= ⊥. Thus, no process will ever reach and execute line 25. ut

Lemma 4. For every two processes i and j,

1. if i writes the value v into the decision register in line 7, and j writes the value v′

into the decision register in line 20, then v = v′.
2. if i writes the value v into the decision register in line 20, and j writes the value v′

into the decision register also in line 20, then v = v′.
3. if i writes the value v into the decision register in line 25, and j writes the value v′

into the decision register also in line 25, then v = v′.

Proof.

1. Assume that i writes the value v into the decision register in line 7, and j writes
the value v′ into the decision register in line 20. When i terminates, the value of its
state register is either 0,1 or 2. In the first two cases (0 and 1), the value of max that
j computes in line 19, does not depend on the input value of i, and hence v = v′.
Consider the case that when i terminates (line 7), the value of its state register is 2.
Thus, when i terminates, the values of all the other n− 1 state registers must be 3.
When j starts executing the for-loop in line 17, the value of the state registers of
n − 1 processes must be 3. Thus, i and j set their max registers (in lines 6 and 19,
respectively) to the same value since they both choose the maximum input value
from the set of n−1 input values which does not include the input value of process
i. Thus, v = v′.

2. Assume that i writes the value v into the decision register in line 20, and j writes
the value v′ into the decision register also in line 20. When i started executed the
for-loop in line 17, the value of the state register of exactly one process, say process
k, was less than 2. Similarly, when j started executed the for-loop in line 17, the

value of the state register of exactly one process, say process k′, was less than 2.
Since the value of a state register never decreases, it follows that k = k′. Thus, i
and j set their max registers (in line 19) to the same value, since they choose the
maximum input value from the same n− 1 input values. Thus, v = v′.

3. Assume that i writes the value v into the decision register in line 25, and j writes
the value v′ into the decision register in line 25. Both i and j set their max registers
(line 24) to the same value, since they choose the maximum input value from the
set of all n input values. Thus, v = v′. ut

Theorem 2 (agreement & validity). All the participating processes decide on the
same value, and this decision value is the input of a participating process.

Proof. It follows from Lemma 3 and Lemma 4, that whenever two processes write into
the decision register, they write the same value. Also, whenever a process writes into the
decision register, this written value is the input of a participating process. Each correct
process decides only on a value written into the decision register. ut

Theorem 3 (termination). In the presence of at most a single crash (n − 1)-failure,
every correct process eventually terminates.

Proof. There are exactly two places in the algorithm where a process may need to
wait for some other process to take a step: (1) in the repeat-until loop in lines 9–13,
and (2) in the await statement in line 22. In both places, whenever a process needs to
wait, it continuously examines the value of the decision register, and if it finds out that
decision 6= ⊥ it decides on the value written in decision and terminates. Thus, we
can conclude that: if some process terminates then every correct process will eventually
terminate.

So, let us assume, by contradiction, that no correct process ever terminates. There
are at least n − 1 correct processes. At least n − 1 correct process will execute the for
loop in lines 1–15 with round = 1. They all will eventually execute the assignment in
line 8, setting their state registers to 1. Thus, each correct process with round = 1, will
eventually exit the repeat loop in lines 9–14, and will move to round two. By a similar
argument, each correct process will eventually complete rounds two and three (i.e., will
complete the for loop in lines 2–15).

A process reaches the for loop in lines 21–24, only if its local counter register equals
n, which implies that for every i ∈ {1, ..., n} state[i] ≥ 2. Thus, by Lemma 2, if some
process executes the for loop in lines 21–24 all the n processes are active and will never
fail. Since, by contradiction, no process terminates, all the n processes must eventually
get stuck in the await statement on line 22. However, this is not possible since the value
of the state register of each process which reaches line 22 must be 3. Thus, all the
waiting processes in line 22, will be able to proceed beyond the await statement and
terminate. A contradiction. ut

Remark: It is tempting to simplify the algorithm by deleting the shared register deci-
sion, and removing all the read and write accesses to it. In such an algorithm a process
decides only on the maximum value it has computed. Such a simplification would make
the algorithm incorrect, as a process in round 2 may get stuck forever in the repeat-until

loop in lines 9 13. This will happen if some process decides in round 1 (and terminates)
while another process fails in round 1.

4 Possibility of k-set consensus with l+k–2 crash (n–l)-failures

The k-set consensus problem is to design an algorithm for n processes, where each
process starts with an input value from some domain and must choose some participat-
ing process’ input as its output. All n processes together may choose no more than k
distinct output values. The 1-set consensus problem is the familiar consensus problem.

Another fundamental result in distributed computing is that for 1 ≤ k ≤ n− 1, it is
impossible to solve k-set consensus in the presence of k crash failures (i.e., k crash n-
failures) for n processes [4, 12, 18]. We show that it is possible to solve k-set consensus
in the presence of `+k−2 crash (n− `)-failures. In particular, it is possible to solve k-
set consensus in the presence of k crash (n−2)-failures. The possibility result presented
below does not imply the result stated in Theorem 1.

Theorem 4. For every ` ≥ 1, k ≥ 1 and n ≥ 2` + k − 2, there is a k-set consensus
algorithm for n processes, using registers, that can tolerate ` + k − 2 crash (n − `)-
failures.

The following algorithm solves k-set consensus and tolerates ` + k − 2 crash (n −
`)-failures. In Section 5, we show that there is no k-set consensus algorithm that can
tolerate ` + k crash (n − `)-failures. The question whether it is possible to solve k-set
consensus in the presence of ` + k − 1 crash (n − `)-failures, is an interesting open
problem.

4.1 The algorithm

In the implementation below we use a shared object called atomic snapshot which can
be wait-free implemented from registers [1, 3]. A snapshot object consists of a set of
m > 1 components, each capable of storing value. Processes can perform two differ-
ent types of operations: UPDATE any individual component or instantaneously (atom-
ically) SCAN the entire collection to obtain the values of all the components. So, for
an atomic snapshot object S, S.update(i, v) writes v to the ith component, and S.scan
returns a snapshot of all m components.

A single-writer atomic snapshot object is a restricted version in which there are the
same number of processes as components and only process i ∈ {1, ..., n} can UPDATE
the ith component. LetA[1..n] be an array of n registers and S be a single-writer atomic
snapshot object. Then, the assignment A := S.scan atomically sets A[i] to the value of
the ith component of S, for each i ∈ {1, ..., n}. It is often easier to design fault-tolerant
algorithms for asynchronous systems and prove them correct if one can think of the
shared memory as a snapshot object, rather than as a collection of individual registers.

The algorithm also makes use of a single one-shot mutual exclusion object and a
single one-shot (k − 1)-exclusion object. The k-exclusion problem, which is a natural
generalization of the mutual exclusion problem, is to design an algorithm which guar-
antees that up to k processes and no more are permitted to be in their critical sections

A k-SET CONSENSUS ALGORITHM WHICH CAN TOLERATE `+k−2 CRASH (n−`)-FAILURES:
Program for process i ∈ {1, ..., n} with a non-negative input ini.

Constants: `, k: positive integers
Shared: Flag: single-writer atomic snapshot object, ranges over {0, 1}, initially all entries are 0

decision: register, initially ⊥ // final decision value
EX[1]: one-shot mutual exclusion object // used for election
EX[2]: one-shot (k − 1)-exclusion object

Local: lf lag[1..n]: array of variables, ranges over {0, 1}, initial values immaterial
counter, group, j: variables, initial values immaterial

1 Flag.update(i, 1); // announce participation
2 repeat // wait until at least n− `− k + 2 processes participate
3 lf lag := Flag.scan; counter := 0;
4 for j = 1 to n do if lf lag[j] = 1 then counter := counter + 1 fi od // counting
5 until counter ≥ n− `− k + 2;
6 if counter ≤ n− ` then group := 2 else group := 1 fi
7 participate in EX[group] and in parallel continuously check if decision 6= ⊥
8 if at any point decision 6= ⊥ then decide(decision) fi; // decide & terminate
9 if you enter the critical section of EX[group]
10 then decision := ini; decide(ini) fi. // decide & terminate

Fig. 2. A k-set consensus algorithm which can tolerate `+ k − 2 crash (n− `)-failures.

simultaneously. A solution is required to withstand the slow-down or even the crash
(fail by stopping) of up to k − 1 of processes. For k = 1, the 1-exclusion problem
is exactly the mutual exclusion problem. The simpler one-shot version assumes that a
process may try to access its critical section at most once. It is well known that, for
any k ≥ 1, k-exclusion can be solved using registers only, even when it is assumed
that participation is not required [2, 16]. We assume that the reader is familiar with the
definition of the k-exclusion problem. A formal definition of the k-exclusion problem
is given in the Appendix.

The code of the algorithm appears in Figure 2. The first step of each process i is to
set the ith component Flag to 1 (line 1). Then, process i repeatedly takes a snapshot of
the Flag object (line 3) and each time it takes a snapshot, it sets counter to the number
of Flag components which are set to 1 (line 4). Processes i continues to take snapshots
until counter ≥ n− `−k+2 (line 5). Since at most `+k−2 processes may fail, each
correct process must eventually notice that counter ≥ n − ` − k + 2. Next, process i
participates in either EX[1] or EX[2] depending on the current value of group (line 7).
If, at any point, process i notices that decision 6= ⊥ it decides on the value of decision
(line 8). If it enters its critical section, it sets decision to its input value and decides on
that value.

4.2 Correctness proof

We notice that the maximum value of the counter of a process is when the process exits
the repeat-loop, and at that point, this value is at least n− `−k+2. We use the notation
counter.p to denote the local counter variable of process p. As stated in Theorem 4, it
is assumed below that: ` ≥ 1, k ≥ 1 and n ≥ 2`+ k − 2.

Lemma 5. For every m ∈ {n− `− k+2, ..., n}, the maximum value of the counter of
at most m processes is at most m.

Proof. Assume to the contrary that for some m ∈ {n− `− k+2, ..., n}, the maximum
value of the counter of more than m processes is at most m. Let P denote the set of
these processes. Let p ∈ P be the last process, among the processes in P , to update
Flag in line 1. Since |P | > m, when p takes a snapshot it must notice that at leastm+1
components of Flag are already set to 1. A contradiction. ut

Lemma 6. At least ` processes do not participate in EX[2]. Thus, at least ` processes
participate in EX[1] or fail.

Proof. A process, say p, may participate in EX[2], only if on exit of the repeat-loop,
counter.p ≤ n − `. Thus, by Lemma 5, at most n − l processes participate in EX[2],
which implies that at least ` processes do not participate in EX[2]. This implies that, at
least ` processes participate in EX[1] or fail. ut

Lemma 7. If a process participates in EX[1] then this process cannot fail.

Proof. For a process, say p, to participate in EX[1], it must be that on exit of the
repeat-loop, counter.p > n − `. This implies that when p exits the repeat-loop, the
point contention is at least n − ` + 1. Since the only type of failures is crash (n − `)-
failures, p will not fail once it exits the repeat-loop and starts participating in EX[1].

ut

Lemma 8. There is at least one correct process.

Proof. Since at most `+k− 2 processes may fail, the number of correct processes is at
least n− (`+k−2). It is assumed (in the statement of Theorem 4) that n ≥ 2`+k−2.
Thus, the number of correct processes is at least (2`+ k− 2)− (`+ k− 2) = `. Since
it is assumed that ` ≥ 1, there is at least one correct process. ut

Theorem 5 (termination). In the presence of at most `+ k− 2 crash (n− `)-failures,
every correct process eventually terminates.

Proof. First we notice that no correct process will get stuck forever in the repeat-loop
(lines 2-5). Since at most ` + k − 2 processes may fail, each correct process must
eventually notice that at least n− `− k + 2 of the components of Flag are set to 1 and
will exit the repeat-loop (lines 2-5).

By Lemma 7, if a process participates in EX[1] then this process cannot fail. Thus,
if some process participates inEX[1], eventually some process will write its input value
into decision letting all the other correct processes terminate.

So, let’s assume that no process participates in EX[1]. This means that each one of
the n processes either participates in EX[2] or fails. Thus, by Lemma 8, at least one
correct process participates in EX[2]. Also, by Lemma 6, at least ` processes which
do not participate in EX[2] fail, and since at most ` + k − 2 processes may fail, we
conclude that at most k − 2 of the processes that participate in EX[2] may fail.

Since (1) EX[2] is a one-shot (k − 1)-exclusion object (that, by definition, can
tolerate k − 2 crash n-failures), (2) there exists a correct process which participates
in EX[2] (i.e., this process never fails), and (3) at most k − 2 of the processes which
participate in EX[2] fail, it follows that some correct process which participates in
EX[2], will eventually enter its critical section write its input value into decision, letting
all the other correct processes terminate. ut

Theorem 6 (k-agreement & validity). All the participating processes decide on at
most k different values, and each one of these decision values is the input of a partici-
pating process.

Proof. There are exactly one one-shot mutual exclusion object and one one-shot (k−1)-
exclusion object. In EX[1] at most one process enters its critical section, and writes its
input value into the decision register. In EX[2] at most k − 1 processes enter their
critical sections and write their input value into the decision register. Thus, at most
k different values are written into decision. Also, whenever a process writes into the
decision register, this written value is its input. Each correct process decides only on a
value written into the decision register. ut

5 Impossibility results

A natural question to ask next is, for a given k and `, what is the maximum number of
crash (n − `)-failures that can be tolerated by a k-set consensus algorithm? An initial
failure of a given process is a failure which happens before the process has taken any
steps.

Theorem 7. For every ` ≥ 0, k ≥ 1 and n > ` + k, there is no k-set consensus
algorithm for n processes, using registers, that can tolerate k crash (n − `)-failures
and ` initial failures.

Proof. Assume to the contrary that for some ` ≥ 0, k ≥ 1 and n > ` + k, there is an
algorithm that can tolerate k crash (n− `)-failures and ` initial failures. Let m = n− `.
Since we can always remove ` processes assuming that they always fail initially, it
implies that there is a k-set consensus algorithm for m processes, where m > k, using
registers, that can tolerate k crash m-failures. However, this is known to be impossible
[4, 12, 18]. ut
Since, form ≥ 1 a crashm-failure is strictly stronger (i.e, more severe) type of a failure
than initial failure, an immediate corollary of Theorem 7 is that:

Corollary 1. For every ` ≥ 0, k ≥ 1 and n > 2` + k, there is no k-set consensus
algorithm for n processes, using registers, that can tolerate `+k crash (n−`)-failures.

In the statement of Corollary 1, it is assumed that n > 2` + k, since in the context of
` + k crash (n − `)-failures, it makes sense to assume that ` + k is at most n − `. For
the special case of consensus (i.e., 1-set consensus), we get that:

Corollary 2. For every 0 ≤ ` < n/2, there is no consensus algorithm for n processes,
using registers, that can tolerate `+ 1 crash (n− `)-failures.

We have shown earlier (Theorem 1) that there is a consensus algorithm for n processes,
using registers, that can tolerate a single crash (n−1)-failure. It follows from Corollary
2 that, there is no consensus algorithm that can tolerate two crash (n− 1)-failures.

6 Related work

Extensions of the notion of fault tolerance, which are different from those considered in
this paper, were proposed in [5]. In [5], a precise way is presented to characterize adver-
saries by introducing the notion of disagreement power: the biggest integer k for which
the adversary can prevent processes from agreeing on k values when using registers
only; and it is shown how to compute the disagreement power of an adversary.

In [20], the traditional notion of fault tolerance is generalized by allowing a lim-
ited number of participating correct processes not to terminate in the presence of faults.
Every process that does terminate is required to return a correct result. Thus, the new
definition guarantees safety but may sacrifice liveness (termination), for a limited num-
ber of processes, in the presence of faults. Initial failures were investigated in [21].

The consensus problem was formally defined in [15]. The impossibility result that
there is no consensus algorithm that can tolerate even a single crash failure was first
proved for the asynchronous message-passing model in [9], and later has been extended
for the shared memory model with atomic registers in [14]. The impossibility result that,
for 1 ≤ k ≤ n − 1 there is no k-resilient k-set-consensus algorithm for n processes
using atomic registers is from [4, 12, 18].

The mutual exclusion problem was first stated and solved for n processes by Di-
jkstra in [6]. Numerous solutions for the problem have been proposed since it was
first introduced in 1965. Dozens of interesting mutual exclusion algorithms and lower
bounds are described in details in [17, 19]. The `-exclusion problem, which general-
izes the mutual exclusion problem, was first defined and solved in [8, 7]. Several papers
have proposed `-exclusion algorithms for solving the problem using atomic read/write
registers satisfying various progress properties (see for example, [2, 16]).

7 Discussion

We have provided a new perspective on the relationship between failures and con-
tention. From the computability point of view, this new perspective allows us to derive
“fine-grained” analysis of the limit in computability for consensus and set consensus.
That is, to illustrate the utility of the new definitions of weak failures, we have derived
possibility and impossibility results for the well-known basic problems of consensus
and k-set consensus. The definitions together with our technical results indicate that
there is an interesting area of fault tolerance that deserves further investigation.

Two specific interesting open problems are: (1) Is the following generalization of
Theorem 1 correct: There is a k-set consensus algorithm for n processes, using registers,
that can tolerate k crash (n − 1)-failures, for every n > k ≥ 1; (2) Is the following
generalization of Theorem 4 correct: For every ` ≥ 0, k ≥ 1 and n ≥ 2`+ k− 1, there
is a k-set consensus algorithm for n processes, using registers, that can tolerate `+k−1
crash (n− `)-failures.

All our results are presented in the context of weakening the notion of crash failures
in asynchronous systems. It would be interesting to consider also other types of weak
failures such as weak omission failures or weak Byzantine failures and to consider
synchronous systems. Another interesting direction would be to extend the results to
objects other than atomic registers and to consider problems other than consensus and
set-consensus. We have assumed that the number of processes is finite and known, it
would be interesting to consider also the case of unbounded concurrency. Considering
failure detectors in the context of the new definitions is another interesting direction.

References

1. Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic snapshots of
shared memory. Journal of the ACM, 40(4):873–890, 1993.

2. Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. A bounded first-in, first-enabled
solution to the `-exclusion problem. ACM Transactions on Programming Languages and
Systems, 16(3):939–953, 1994.

3. J. H. Anderson. Composite registers. Distributed Computing, 6(3):141–154, 1993.
4. E. Borowsky and E. Gafni. Generalizecl FLP impossibility result for t-resilient asynchronous

computations. In Proc. 25th ACM Symp. on Theory of Computing, pages 91–100, 1993.
5. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmanns. The disagreement power

of an adversary. Distributed Computing, 24(3):137–147, 2011.
6. E.W. Dijkstra. Solution of a problem in concurrent programming control. Communications

of the ACM, 8(9):569, 1965.
7. M.J. Fischer, N. A.Lynch, J.E. Burns, and A. Borodin. Distributed FIFO allocation of iden-

tical resources using small shared space. ACM Trans. on Programming Languages and Sys-
tems, 11(1):90–114, January 1989.

8. M.J. Fischer, N.A. Lynch, J.E. Burns, and A. Borodin. Resource allocation with immunity
to limited process failure. In Proc. 20th IEEE Symp. on Foundations of Computer Science,
pages 234–254, October 1979.

9. M.J. Fischer, N.A. Lynch, and M.S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, 1985.

10. R. Guerraoui. Indulgent algorithms. In Proc. 19th ACM Symp. on Principles of Distributed
Computing, pages 289–298, 2000.

11. R. Guerraoui and M. Raynal. The information structure of indulgent consensus. IEEE
Transactions on Computers, 53(4):453–466, 2004.

12. M. P. Herlihy and N. Shavit. The topological structure of asynchronous computability. Jour-
nal of the ACM, 46(6):858–923, July 1999.

13. L. Lamport. The part-time parliament. ACM Trans. on Computer Systems, 16(2):133–169,
May 1998.

14. M.C. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, 4:163–183, 1987.

15. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal
of the ACM, 27(2):228–234, 1980.

16. G.L. Peterson. Observations on `-exclusion. In 28th annual allerton conference on commu-
nication, control and computing, pages 568–577, October 1990.

17. M. Raynal. Algorithms for mutual exclusion. The MIT Press, 1986. Translation of: Algo-
rithmique du parallélisme, 1984.

18. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public
knowledge. SIAM Journal on Computing, 29, 2000.

19. G. Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pearson /
Prentice-Hall, 2006. ISBN 0-131-97259-6, 423 pages.

20. G. Taubenfeld. A closer look at fault tolerance. In Proc. 31st ACM Symp. on Principles of
Distributed Computing, pages 261–270, 2012.

21. G. Taubenfeld, S. Katz, and S. Moran. Initial failures in distributed computations. Interna-
tional Journal of Parallel Programming, 18(4):255–276, 1989.

A A formal definition of the k-exclusion problem

The k-exclusion problem, which is a natural generalization of the mutual exclusion
problem is to design a protocol which guarantees that up to k processes and no more
may simultaneously access identical copies of the same non-sharable resource when
there are several competing processes. That is, k processes are permitted to be in their
critical section simultaneously. A solution is required to withstand the slow-down or
even the crash (fail by stopping) of up to k− 1 of processes. For k = 1, the 1-exclusion
problem is the exactly mutual exclusion problem.

To illustrate the k-exclusion problem, consider the case of buying a ticket for a bus
ride. Here a resource is a seat on the bus, and the parameter k is the number of available
seats. In the k-exclusion problem, a passenger needs only to make sure that there is
some free seat on the bus, but not to reserve a particular seat.

More formally, it is assumed that each process is executing a sequence of instruc-
tions in an infinite loop. The instructions are divided into four continuous sections of
code: the remainder, entry, critical section and exit. The k-exclusion problem is to write
the code for the entry code and the exit code in such a way that the following basic
requirements are satisfied.

– k-exclusion: No more than k processes are at their critical section at the same time.
– k-deadlock-freedom: If strictly fewer than k processes fail (are delayed forever)

then if a process is trying to enter its critical section, then some process, not neces-
sarily the same one, eventually enters its critical section.

The k-deadlock-freedom requirement may still allow “starvation” of individual pro-
cesses. It is possible to consider stronger progress requirements which do not allow
starvation.

