Fully Anonymous
Consensus and Set Agreement Algorithms*

Michel Raynal'-? and Gadi Taubenfeld?

1 Univ Rennes IRISA, France
2 Department of Computing, Polytechnic University, Hong Kong
3 The Interdisciplinary Center, Herzliya, Israel

Abstract. Process anonymity has been studied for a long time. Memory
anonymity is more recent. In an anonymous memory system, there is no a pri-
ori agreement among the processes on the names of the shared registers they
access. As an example, a shared register named A by a process p and a shared
register named B by another process ¢ may correspond to the very same register
X, while the same name C' may correspond to different shared registers for the
processes p and q. This article focuses on solving the consensus and set agree-
ment problems in the fully anonymous model, namely a model in which both the
processes and the registers are anonymous. It is shown that consensus, and its
weak version called set agreement, can be solved despite full anonymity, in the
presence of any number of process crashes. As far as we know, this is the first
time where non-trivial concurrency-related problems are solved in such a strong
anonymity context. A noteworthy property of the proposed algorithms lies in their
conceptual simplicity.

Keywords: Anonymity, Anonymous shared memory, Anonymous processes, Asyn-
chrony, Atomic read/write register, Atomic read/modify/write register, Concur-
rency, Consensus, Crash failure, Process crash, Set agreement, Obstruction-freedom,
Wait-freedom.

1 Introduction: Computing Model

1.1 On the process side

Process anonymity. The notion of process anonymity has been studied for a long time
from an algorithmic and computability point of view, both in message-passing systems
(e.g., [4, 8,32]) and shared memory systems (e.g., [6,9, 13]). Process anonymity means
that processes have no identity, have the same code and the same initialization of their
local variables (otherwise they could be distinguished). Hence, in a process anonymous
system, it is impossible to distinguish a process from another process.

Process model. The system is composed of a finite set of n > 2 asynchronous, anony-
mous sequential processes denoted p1, .., p,,. Each process p; knows n, the number of
processes, and m, the number of registers. The subscript ¢ in p; is only a notational

* A few of the results were mentioned in a brief announcement published in SSS’19 [25].

2 Michel Raynal and Gadi Taubenfeld

convenience, which is not known by the processes. Sequential means that a process
executes one step (instruction) at a time. Asynchronous means that each process pro-
ceeds in its own speed, which may vary with time and always remains unknown to the
other processes. On the failure side, any number of processes may crash (a crash is a
premature stop of a process).

1.2 On the memory side

Memory anonymity. The notion of memory anonymity has been recently introduced
in [30]. Let us consider a shared memory R made up of m atomic registers. Such a
memory can be seen as an array with m entries, namely R[1..m]. In a non-anonymous
memory system, for each index z, the name R[x] denotes the same register whatever
the process that accesses the address R[x]. Hence in a non-anonymous memory, there
is an a priori agreement on the names of the shared registers. This facilitates the im-
plementation of the coordination rules the processes have to follow to progress without
violating the safety properties associated with the application they solve [17,23,29].

The situation is different in an anonymous memory, where there is no a priori agree-
ment on the name of each register. Moreover, all the registers of an anonymous memory
are assumed to be initialized to the same value (otherwise, their initial values could pro-
vide information allowing processes to distinguish them). In [24], the interested reader
may find an introductory survey on models where (1) only processes are anonymous,
and (2) only the memory is anonymous. This paper which considers agreement prob-
lems, and [26] which considers the mutual problem, are the first to introduce the notion
of fully anonymous shared memory systems, where both processes and memory are
anonymous.

Anonymous shared memory. The shared memory is made up of m > 1 atomic anony-
mous registers denoted R[1...m]. Hence, all the registers are anonymous. As already
indicated, due to its anonymity, R[z] does not necessarily indicate the same object for
different processes. More precisely, a memory-anonymous system is such that:

— For each process p; an adversary defined a permutation f;() over the set {1,2,---,m},
such that when p; uses the address R[x], it actually accesses R|[f;(x)],

— No process knows the permutations, and

— All the registers are initialized to the same default value denoted L.

identifiers for an |local identifiers|local identifiers
external observer | for process p; | for process p;

R[1] Ri[2] R;[3]
R[2| Ri[3] R;[1]
R[3] Rifl] R;[2]

[permutation [f:(): [2,3,1][f;0: [3,1,2]]

Table 1. Illustration of an anonymous memory model

An example of anonymous memory is presented in Table 1. To make apparent the
fact that R[] can have a different meaning for different processes, we write R;[z] when
p; invokes R[z].

Fully Anonymous Consensus and Set Agreement Algorithms 3

Anonymous register model. We consider three types of anonymous register models.

— RW (read/write) model. In this model, all the registers can be read or written by
any process.

— RW/Snapshot (in short RW/Snap) model. In this model, all the registers can be read
or written by any process. In addition, each process can apply an atomic snapshot
operation to obtain the values of all the registers in one atomic step. Thus, for ex-
ample, assuming that processes communicate through a memory anonymous array
R[1..m], the operation R.snapshot() obtains the values of all the m entries of the
array R in one instantaneous step. !

— RMW (read/modify/write) model. In this model, each register can be read, writ-
ten or accessed by an operation that atomically reads the register and (accord-
ing to the value read) possibly modifies it. More precisely, this operation denoted
compare&swap(R|[z], old, new) has three input parameters, a register R[x] and
two values old and new, and returns a Boolean value. It has the following effect:
if R[z] = old the value new is assigned to R[z], and the value true is returned
(the compare&swap() operation is then successful). If R[z] # old, R[x] is not
modified, and the value false is returned.

In these models, atomic [19] means that the operations on the registers appear as if
they have been executed sequentially, each operation appearing between its start event
and its end event, and for any € {1,...m}, each read operation of a register R[z]
returns the value v, where v is the last value written in R[z] by a write or a success-
ful compare&swap(R[z], —, —) operation (we also say that the execution is lineariz-
able [18]). We notice that the RMW model is at least as strong as the RW model.

1.3 Motivation and content of the paper

Motivation. This article addresses consensus and set agreement in fully anonymous sys-
tems, and has two primary motivations. The first is related to the basics of computing,
namely, computability and complexity lower/upper bounds. Increasing our knowledge
of what can (or cannot) be done in the context of full anonymity (i.e., when both the
processes and the memory are anonymous), and providing associated necessary and
sufficient conditions, helps us determine the weakest system assumptions under which
fundamental problems, such as consensus and set agreement can be solved.

The second motivation is application-oriented. It appears that the concept of an
anonymous memory allows epigenetic cell modification to be modeled from a com-
puting point of view [27]. In [27] the authors model histone modifiers (which are a
specific type of proteins) as two different types of writer processors and two different
types of eraser processors that communicate by accessing an anonymous shared mem-
ory array which corresponds to a stretch of DNA, and for such a setting formally define
the epigenetic consensus problem. Hence, anonymous shared memories could be use-
ful in biologically inspired distributed systems [21,22]. If this is the case, mastering

! For a model where the registers are non-anonymous, it is known that the computational power
of the RW model and the RW/Snap model are the same despite asynchrony and any number of
process crashes [1, 3]. For fully anonymous systems, this question is open.

4 Michel Raynal and Gadi Taubenfeld

agreement problems in such an adversarial context could reveal to be important from
an application point of view.

Consensus. Consensus is the most important agreement problem of fault-tolerant dis-
tributed computing. Let us consider that any number of processes may crash. A crash
is a premature halting (hence, until it possibly crashes, a process behaves correctly, i.e.,
reliably executes its code). The consensus problem consists in building a one-shot op-
eration, denoted propose(), which takes an input parameter (called proposed value) and
returns a result (called decided value). One-shot means that a process can invoke the
operation at most once. The meaning of this operation is defined as follows:

— Validity: A decided value is a proposed value.
— Agreement: No two processes decide different values.
— Liveness (Wait-freedom): If a process does not crash, it decides a value.

Algorithms solving consensus in different types of non-anonymous shared memory sys-
tems are described in several textbooks (e.g.,[17,23,29]). In this paper, we consider the
multi-valued version of consensus (i.e., the domain of proposed values is not restricted
to be binary). While consensus can be solved from registers in a non-anonymous RMW
memory [14], it cannot be solved in a non-anonymous RW memory [12, 20]. It is, how-
ever, possible to solve a weaker version of consensus in non-anonymous RW system,
when the progress condition is weakened as follows [15]:

— Liveness (Obstruction-freedom): If a process does not crash, and executes alone
during a long enough period, it decides. L.e., if a process runs alone starting from
some point in the execution then it eventually decides.

Set agreement. Set agreement captures a weaker form of consensus in which the agree-
ment property is weakened as follows:

— At most n — 1 different values are decided upon.

That is, in any given run, the size of the set of the decision values is at most n — 1.
In particular, in runs in which the n processes propose n different values, instead of
forcing the processes to agree on a single value, set agreement forces them to elimi-
nate one of the proposed values. The set agreement problem as defined above is also
called the (n — 1)-set agreement problem [10]. While much weaker than consensus, as
consensus, set agreement cannot be solved in crash-prone non-anonymous RW mem-
ory systems [7,16,28] (and consequently cannot be solved in a crash-prone anony-
mous memory systems either), but, as consensus, it can be solved when considering the
weaker obstruction-freedom progress condition.

Content of the paper. Table 2 describes the technical content of the paper. As an ex-
ample, the first line associated with set agreement, states that Section 2 presents a set
agreement algorithm for an anonymous RW system for any number of n > 1 processes
and m > 3 registers.

The paper leaves open the interesting question of whether there exists a fully anony-
mous obstruction-free consensus algorithm for n > 3 processes using RW registers.

Fully Anonymous Consensus and Set Agreement Algorithms

5

Problem |[Section| Crashes | Register Progress # of processes|# of registers
possible?| model condition n m
Set agreement| 2 Yes RW |Obstruction-freedom n>1 m >3
Consensus 3 Yes RW |Obstruction-freedom n=2 m >3
Consensus 4 Yes |RW/Snap|Obstruction-freedom n>1 m>2n—1
Consensus 5 Yes RMW Wait-freedom n>1 m>1

Table 2. Structure of the article

2 Fully Anonymous Obstruction-free Set Agreement
Using RW Registers

Considering any number 7 > 1 of processes, this section presents an obstruction-free
set agreement algorithm for a crash-prone anonymous n-process system, where com-
munication is through m > 3 anonymous RW registers.

2.1 A fully anonymous RW set agreement algorithm

The algorithm is described in Fig. 1. Each anonymous RW register can store the prefer-
ence of a process. Each participating process p; scans the m registers trying to write its
preference (mypref;) into each one of the m registers.

Before each write, the process scans the shared array (line 3), and operates as fol-
lows:

— If its preference appears in all the m registers (line 8), it decides on its preference
and terminates.

— Otherwise, if some preference appears in more than half of the registers (line 4),
the process adopts this preference as its new preference (line 5).

Afterward, the process finds some arbitrary entry in the shared array that does not con-
tain its preference (line 6) and writes it into that entry (line 7). Once the process finishes
writing it repeats the above steps.

2.2 Proof of the algorithm

Lemma 1 (Set agreement and Termination under Obstruction-freedom). Any par-
ticipating process that runs alone for a sufficiently long time, eventually decides. More-
over, the processes that decide, decide on at most n — 1 different values.

Proof. Clearly, in all the runs in which less than n processes decide, they decide on at
most n—1 different values. So, we have to prove that in runs in which all the n processes
participate and decide, the n processes decide on at most n — 1 different values.

Let p be an arbitrary run in which all the n processes participate and decide. Each
one of the n processes, before deciding (line 9), must first read all the m registers
(line 3), find out that its preference appears in all the m registers (line 8), decide on its

6 Michel Raynal and Gadi Taubenfeld

ALGORITHM 1: CODE OF AN ANONYMOUS PROCESS p;

Constants:

n, m: positive integers /l'# of processes and # of shared registers
Anonymous RW registers:

R[1..m]: array of m > 3 registers, initially all L /I L cannot be proposed

Local variables:
myview,[1..m]: array of m variables
mypref;: integer; j: ranges over {0, ..., m}

operation propose(in;) is /lin; value proposed by p;
1 myprefi < in;

2 repeat

3 for j = 1 to m do myview,[j] < R;i[j] od //read the shared array
4 if 3 value # L which appears in more than half of the entries of myview,[1..m]

5 then mypref; < value fi //update preference
6 j < an arbitrary index k € {1, ..., m} such that myview,[k] # mypref; /l search

or 0 if no such index exists

7 if 7 # 0 then R;[j] < mypref; fi /lwrite
8 untilVj € {1,...,m} : myview,[j] = mypref; /lmy mypref; is everywhere
9 return(mypref;). /l decide

Fig. 1. Fully anonymous obst.-free set agr. algorithm for n > 2 proc. and m > 3 RW registers

preference and terminate. We call this last reads of the m registers by a specific process
a successful collect (SC) of that process. We emphasize that from the moment a process
starts its successful collect until it decides, it does not write.

Let us denote by p; and p; the last two processes which start their SC in the run p.
Clearly, by definition, during these two last SCs, each one of the other processes has
either decided and terminated or has already started it SC, and hence does not write
during p; and p; SCs. We show that p; and p; must decide on the same value which
implies, as required, that the n processes decide on at most n — 1 different values in p.

From now on we focus only on the processes p; and p;. Assume w.l.0.g. that p; has
started its (last and only) SC before process p; has started its (last and only) SC. Let ¢g
and t; denote: the last time p; enters the repeat loop just before reading the m registers
(between lines 2-3), and the last time at which p; exits the repeat loop (between lines
8-9), respectively. At the time interval [to, 1], p; never writes, and it completes an SC.
That is, p; reads the array once, and finds out that its preference (i.e., mypref;) appears
in all the m registers. Let v be the value that p; reads in its last SC. There are two
possible cases.

1. At time ty, the values of all the m registers equal v. After time ty, and before
executing line 3, process p; might write at most once into one of the m registers
possibly overwriting the v value. Thus, when executing line 4, p; will find that v
appears in at least m — 1 of the entries of myview [1..m]. Since m > 3, this means
that p; will find that v appears in more than half of the entries of myview[1..m].

Fully Anonymous Consensus and Set Agreement Algorithms 7

Thus, p; will set its preference to v (line 5). From that point on, since p; does not
write anymore, the only possible decision value for p; is v.

2. At time ty, not all the values of the m registers equal v. Since in the time interval
[to, t1], p; has found that the value of each one of the m registers equals v, it must
be that process p; has written the value v into all the registers with values other
than v. Thus, p; when writing v p;’s preference must be v. Since p; does not write
anymore, the only possible decision value for p; is v.

As both p; and p; decide on the same value v in p, it follows that the n processes
together decide on at most n — 1 different values in p.

Let us now show that, under obstruction-freedom (that is, if it runs alone for a suf-
ficiently long time), each process eventually decides (and terminates). When a process,
say process p;, runs alone from some point on in a computation, p; will read the shared
array (line 3) and set its preference to some value v. From that point on, in each iteration
of the repeat loop, p; will set one more entry of the shared array to v. Thus, after at most
m iterations the values of all the m entries will equal v, and p; will be able to exit the
repeat loop, decide v and terminate. a

Lemma 2 (Validity). The decision value is the input of a participating process.

Proof. At each point, the current preference of a process is either its initial input or a
value (different from _L), it has read from a register. Since a process may only write its
preference into a register, the result follows. a

Theorem 1. Algorithm 1 solves obstruction-free set agreement in a fully anonymous
system made up of n > 2 processes and m > 3 RW registers.

Proof. The proof that the algorithm satisfies the Validity, Agreement, and Obstruction-
freedom properties (which define set agreement) follows directly from Lemma 1 and
Lemma 2. a

3 Fully Anonymous Obstruction-free Consensus
Using RW Registers

As the reader can easily check, instantiating Algorithm 1 with n = 2 provides us with
2-process obstruction-free consensus built using m > 3 RW registers.

Corollary 1. Algorithm 1 solves consensus in a fully anonymous system made up of
two processes and m > 3 anonymous RWregisters. (In the case of binary consensus,
the registers are 3-valued registers.)

It is interesting to note that while it is possible to solve binary consensus for two pro-
cesses in a fully anonymous system using only 3-valued registers. It is not possible to
do so using only 2-valued registers (i.e., bits). It was recently proved in [31] that there is
no obstruction-free consensus algorithm for two non-anonymous processes using only
anonymous bits. Thus, as was shown in [31], anonymous bits are strictly weaker than
anonymous (and hence also non-anonymous) multi-valued registers.

8 Michel Raynal and Gadi Taubenfeld

Let us consider a modified version of Algorithm 1, which assumes n > 3, in which
the requirement m > 3 is strengthened to m > 2n — 1. It is tempting to think that the
resulting algorithm solves obstruction-free consensus for n > 3 processes.

The (incorrect) supporting argument may go like this. Assume some process p is
the first to decide on the value v, after reading that the values of all the m > 2n — 1
registers equal v. Each of the remaining n — 1 processes, before reading the array (line
3), may write at most once into one of the m registers possibly overwriting the v value.
Thus, at most n — 1 of the values might be overwritten (leaving a majority of v values),
before the processes will execute line 3 and find that v appears in more than half of the
entries of myview;[1..m]. Each process that finds that v appears in more than half of
the entries will set its preference to v (line 5) and must later decide on v.

However, this argument is wrong, and as we prove below the resulting algorithm
does not even solve obstruction-free consensus for three processes using five registers.

Theorem 2. Let A(n,m) be Algorithm 1, in which n is the number of processes and
m is the number of anonymous RW registers. Then, for any n > 3 and any m > 1,
A(n, m) does not solve obstruction-free consensus in a fully anonymous system.

Proof. The proof is by contradiction. Assume n = 3 and m > 1 registers. Clearly,
a result for n = 3 implies the result for n > 3. Let us call the processes pg, p1, and
p2. Assume that pg, p1, po start with inputs 0,1,0, respectively. Furthermore, we prove
the result even under the assumption that, in Algorithm 1, R[1..m] is an array of non-
anonymous registers. So, below we assume that the registers are non-anonymous.

We first build an infinite run, p, which involves pg and p; only, in which the values
of each one of the m registers changes from 0 to 1 and vice versa infinitely many
times. To this end, we use the function dist(a1,a2) = (a2 — a1) mod m, defined for
ay,as € {1,...,m}. If we think of the m numbers 1, ..., m as being arranged clockwise
in a circle, then dist(a1, az) is the distance one must travel clockwise around the circle
starting from a; before reaching a,. In the special case that a; = as, the distance is 0.
Thus, 0 < dist(a1,a2) < m — 1, and a; + dist(a1, az) = az mod m.

For j € {1,...,m} and v € {0, 1}, we define the function next(j, v) to be the value
k such that (1) R[k] # v, and (2) for every ¢ € {1,...,m} where R[{] # v, d(k,j) <
d(¢, 7). If we think of the m registers R[1], ..., R[m] as being arranged clockwise in
a circle, then next(j,v) is the closest register to R[j] whose value is different than v,
where the distance is measured as the number of steps one must travel clockwise around
the circle starting from R[j] before reaching R[k]. In the special case that R[j] # v,
next(j,v) = j.

The run p, which involves processes py and p1, is constructed as follows:
v—=0
repeat forever

for j = 1tomdo
Lo < next(4,0); £1 + next(j,1)
p,, writes v into R[{,], scans the array and does not change its preference
P1—p writes 1 — v into R[¢1_,], scans the array and does not change its preference
ve1—w
end do
end repeat.

Fully Anonymous Consensus and Set Agreement Algorithms 9

We notice that until all the m registers are written once, in each iteration of the for loop
the two processes write into the same register, and thereafter in each iteration they write
into different registers. None of the two processes ever needs to change its preference,
and each process writes infinitely many times into each one of the registers. Thus, the
above procedure produces the required run p.

Since the algorithm is only obstruction-free, the existence of such an infinite run
is not yet a problem. To produce the counterexample, consider the run p. Now let’s
interleave read operations of the third process ps into the run p, such that whenever po
reads a register it will see the value 0. Thus, at some point, according to the algorithm,
p2 must decide O (without ever writing). At that point, let p; continue to run alone and,
it will decide on 1. A contradiction. O

We point out that (1) this counterexample will not work if the scan of py (reading the
m registers) is done in one atomic step (that is using a snapshot operation), and (2) the
counterexample applies for the case where the registers are non-anonymous (and hence
also for the case where they are anonymous).

It is known that obstruction-free consensus can be solved for n anonymous pro-
cesses using O(n) non-anonymous RW registers [9, 13]. It is also known that (sym-
metric) obstruction-free consensus can be solved for n non-anonymous processes using
O(n) anonymous RW registers [30]. We leave open the question of whether there exists
a fully anonymous obstruction-free consensus algorithm for n > 3 processes using RW
registers.

4 Fully Anonymous Obstruction-free Consensus
Using RW/Snapshot Registers

For any number n > 1 of processes, we present an obstruction-free consensus algorithm
for a crash-prone anonymous n-process system, where communication is through m >
2n — 1 anonymous RW registers which support snapshot operations.

4.1 A fully anonymous consensus algorithm

The algorithm is described in Fig. 2. It is similar to that from Fig. 1, where the scan
of the array (line 3) is replaced with a snapshot operation. The anonymous memory is
made up of m > 2n — 1 registers. Each anonymous register can store the preference
of a process. Each participating process p; takes a snapshot of the m registers trying to
write its preference (mypref;) into each one of the m registers. Before each write, the
process takes a snapshot of the shared array (line 4), and operates as follows:

— If its preference appears in all the m registers (line 8), it decides on its preference
and terminates.

— Otherwise, if some preference appears in more than half of the registers (line 4),
the process adopts this preference as its new preference (line 5).

Afterward, the process finds some arbitrary entry in the shared array that does not con-
tain its preference (line 6) and writes it into that entry (line 7). Once the process finishes
writing it repeats the above steps.

10 Michel Raynal and Gadi Taubenfeld

ALGORITHM 2: CODE OF AN ANONYMOUS PROCESS p;

Constants:

n, m: positive integers /I # of processes and # of shared registers
Anonymous RW/Snapshot registers:

R[1..m]: array of m > 2n — 1 registers, initially all L /I L cannot be proposed
Local variables:

myview,[1..m]: array of m variables

mypref;: integer; j: ranges over {0, ..., m}

operation propose(in;) is /lin; value proposed by p;

1 mypref; < in;

2 repeat

3 ’ myview,[1..m] + R.snapshot() ‘ //atomic snapshot of the memory

4 if 3 value # L which appears in more than half of the entries of myview,[1..m]

5 then mypref; + value fi //update preference

6 j < an arbitrary index k € {1, ..., m} such that myview,[k] # mypref; /l search
or 0 if no such index exists

7 if j # 0 then R;[j] < mypref; fi /lwrite

8 untilVj € {1,...,m} : myview,[j] = mypref; //my mypref, is everywhere

9 return(mypref;). // decide

Fig. 2. Fully anony. obst.-free consensus for n > 2 proc. and m > 2n — 1 RW/Snapshot reg.

4.2 Proof of the algorithm

Lemma 3 (Consensus and Termination under Obstruction-freedom). Any partici-
pating process that runs alone for a sufficiently long time, eventually decides. Moreover,
the processes that decide, decide on the same value and terminate.

Proof. Let process p; be the first process to decide, and denote the value that p; decides
on by v. This means that, before deciding, after taking a snapshot of the anonymous
memory, process p; has found that, at a certain moment in time, the value of each one
of the m registers equals v. Each one of the other n — 1 processes might write into one
of the registers overwriting the v value. Since m > 2n— 1, all the other processes, when
executing line 7, will find that v appears in more than half of the entries of R[1..m] (i.e.,
v appears in at least m — n + 1 entries), and each one of them will change its preference
to v (line 5). From that point on, the only possible decision value is v.

Let us now show that each process eventually decides (and terminates) under the
obstruction-freedom assumption. When a process, say process p;, runs alone from some
point on in a computation, p; will take a snapshot of the shared array (line 3) and set
its preference to v (if it is not v already). From that point on, in each iteration of the
repeat loop, process p; will set one additional entry of the shared array to v. Thus, after
at most m > 2n — 1 iterations the values of all the m entries will equal v, and process
p; will be able to exit the repeat loop, decide v and terminate. a

Lemma 4 (Validity). The decision value is the input of a participating process.

Fully Anonymous Consensus and Set Agreement Algorithms 11

Proof. At each point, the current preference of a process is either its initial input or a
value (different from _L), it has read from a register. Since a process may only write its
preference into a register, the result follows. a

Theorem 3. Algorithm 2 solves obstruction-free consensus in a fully anonymous sys-
tem made up of n > 2 processes and m > 2n — 1 RW/Snapshot registers.

Proof. The proof that the algorithm satisfies the Validity, Agreement, and Obstruction-
freedom properties (which define set agreement) follows directly from Lemma 3 and
Lemma 4. a

Remark. Algorithm 1 and Algorithm 2 are actually two instances of an agreement-
oriented generic algorithm suited for the crash-prone fully asynchronous model, which
ensures termination under the obstruction-freedom assumption. The genericity dimen-
sion resides in line 3, which states the way a process reads the content of the anonymous
memory, namely an asynchronous scan (Algorithm 1) or a snapshot (Algorithm 2).
When m > 2n — 1 (condition for Algorithm 2), the atomicity of the snapshot operation
is powerful enough to go from set-agreement (Algorithm 1) to consensus (Algorithm 2).

5 Fully Anonymous Wait-free Consensus using RMW Registers

When considering a fully anonymous system of size m = 1, consensus can be easily
solved with the compare& swap() operation: the first process that writes its value in the
single register R[1] (initialized to L) imposes it as the decided value (actually, when
m = 1 the memory is not really anonymous). When using anonymous objects, the fact
that a given problem can be solved using only one object (i.e., m = 1) does not imply
that the problem can also be solved using any finite number of m > 1 objects [5]. For a
fully anonymous system, we prove the following simple result,

ALGORITHM 3: CODE OF AN ANONYMOUS PROCESS p;

Constants:

n, m: positive integers /I # of processes and # of shared registers
Anonymous RMW registers:

R[1..m]: array of m RMW registers, initially all L /I L cannot be proposed
operation propose(in;) is /lin; value proposed by p;
1 foreachj € {1,...,m} do compare&swap(R;[j], L,in;) od /ltry to write
2 return(max(R;[1], ..., Ri[m])) // decide the max value in R[l..m].

Fig. 3. Consensus for n > 2 anonymous processes and m > 1 anonymous RMW registers

12 Michel Raynal and Gadi Taubenfeld

Theorem 4. There is a fully anonymous wait-free consensus algorithm for n processes
using m RMW registers, foranyn > 1 and m > 1.

Proof. The simple algorithm described in Fig. 3 presents a simple consensus algorithm
for any size m > 1 of the anonymous RMW memory. This algorithm assumes that
the set of values that can be proposed is totally ordered. Each process tries to write
the value it proposes into each anonymous register. Assuming that at least one process
that does not crash invokes propose(), there is a finite time after which, whatever the
concurrency/failure pattern, each anonymous register contains a proposed value. Then,
using the same deterministic rule the processes decide the same value (let us notice that
there is an a priori statically defined agreement on the deterministic rule used to select
the decided value). O

6 Conclusion

This article has several contributions. The first is the introduction, together with [26], of
the notion of fully anonymous shared memory systems, namely systems where the pro-
cesses are anonymous, and there is no global agreement on the names of the shared reg-
isters (any register can have different names for distinct processes). The article has then
addressed the design of agreement algorithms (consensus and set agreement) in specific
contexts where the anonymous registers are read/write (RW) registers, RW/snapshot
registers, or read/modify/write (RMW) registers. We leave open the interesting ques-
tion of whether there exists a fully anonymous obstruction-free consensus algorithm
for three or more processes using RW registers.

Last but not least, let us notice that, despite the strong adversary context (full
anonymity and failures), the proposed algorithms are relatively simple to understand?.
However, some of their proofs are subtle.

Acknowledgments

M. Raynal was partially supported by the French ANR project DESCARTES (16-CE40-
0023-03) devoted to layered and modular structures in distributed computing.

References

1. AfekY., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic snapshots of shared
memory. Journal of the ACM, 40(4):873-890 (1993)

2. Aigner M. and Ziegler G., Proofs from THE BOOK (4th edition). Springer, 274 pages, ISBN
978-3-642-00856-6 (2010)

3. Anderson J.H., Multi-writer composite registers. Distributed Computing, 7(4):175-195
(1994)

4. Angluin D., Local and global properties in networks of processes. Proc. 12th Symposium on
Theory of Computing (STOC’80), ACM Press, pp. 8§2-93, (1980)

% Let us remind that simplicity is a first class property [2, 11]. A stated by J. Perlis (the recipient
of the first Turing Award) “Simplicity does not precede complexity, but follows it”.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Fully Anonymous Consensus and Set Agreement Algorithms 13

. Aghazadeh Z., Imbs D., Raynal M., Taubenfeld G., and Woelfel Ph., Optimal memory-

anonymous symmetric deadlock-free mutual exclusion. Proc. 38th ACM Symposium on Prin-
ciples of Distributed Computing (PODC’19), ACM Press, 10 pages (2019)

. Attiya H., Gorbach A., and Moran S., Computing in totally anonymous asynchronous shared-

memory systems. Information and Computation, 173(2):162-183 (2002)

. Borowsky E. and Gafni E., Generalized FLP impossibility results for ¢-resilient asyn-

chronous computations. Proc. 25th ACM Symposium on Theory of Computing (STOC’93),
ACM Press, pp. 91-100 (1993)

. Bonnet F. and Raynal M., Anonymous asynchronous systems: the case of failure detectors.

Distributed Computing, 26(3):141-158 (2013)

. Bouzid Z., Raynal M., and Sutra P., Anonymous obstruction-free (n, k)-set agreement with

(n — k + 1) atomic read/write registers. Distributed Computing, 31(2):99-117 (2018)
Chaudhuri S., More choices allow more faults: set consensus problems in totally asyn-
chronous systems. Information and Computation, 105(1):132-158 (1993)

Dijkstra E.W., Some beautiful arguments using mathematical induction. Algorithmica,
13(1):1-8 (1980)

Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374-382 (1985)

Guerraoui R. and Ruppert E., Anonymous and fault-tolerant shared-memory computations.
Distributed Computing, 20:165-177 (2007)

Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124-149 (1991)

Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization: double-ended
queues as an example. Proc. 23th Int’l IEEE Conference on Distributed Computing Systems
(ICDCS’03), IEEE Press, pp. 522-529 (2003)

Herlihy M.P. and Shavit N., The topological structure of asynchronous computability. Jour-
nal ACM, 46(6):858-923, 1999.

Herlihy M. and Shavit N., The art of multiprocessor programming. Morgan Kaufmann, 508
pages, ISBN 978-0-12-370591-4 (2008)

Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463-492 (1990)
Lamport L., On interprocess communication, Part I: basic formalism. Distributed Comput-
ing, 1(2):77-85 (1986)

Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, 4:163-183, JAI Press (1987)
Navlakha S. and Bar-Joseph Z., Algorithms in nature: the convergence of systems biology
and computational thinking. Molecular systems biology, 7(546):1-11 (2011)

Navlakha S. and Bar-Joseph Z., Distributed information processing in biological and com-
putational systems. Communications of the ACM, 58(1):94-102 (2015)

Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515
pages, ISBN 978-3-642-32026-2 (2013)

Raynal M. and Cao J., Anonymity in distributed read/write systems: an introductory sur-
vey. Proc. 6th Int’l Conference on Networked Systems (NETYS’18), Springer LNCS 11028,
pp. 122-140 (2018)

Raynal M. and Taubenfeld G., Brief Announcement: Fully anonymous shared memory al-
gorithms. 21st International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS°19), LNCS 11914, pp. 301-306 (2019)

Raynal M. and Taubenfeld G., Mutual exclusion in fully anonymous shared memory systems.
Information Processing Letters, Volume 158 (June 2020)

14

27.

28.

29.

30.

31.

32.

Michel Raynal and Gadi Taubenfeld

Rashid S., Taubenfeld G., and Bar-Joseph Z., Genome wide epigenetic modifications as
a shared memory consensus problem. 6th Workshop on Biological Distributed Algorithms
(BDA’18), London (2018)

Saks M. and Zaharoglou F., Wait-free k-set agreement is impossible: the topology of public
knowledge. SIAM Journal on Computing, 29(5):1449-1483 (2000)

Taubenfeld G., Synchronization algorithms and concurrent programming. Pearson Educa-
tion/Prentice Hall, 423 pages, ISBN 0-131-97259-6 (2006)

Taubenfeld G., Coordination without prior agreement. Proc. 36th ACM Symposium on Prin-
ciples of Distributed Computing (PODC’17), ACM Press, pp. 325-334 (2017)

Taubenfeld G., Set agreement power is not a precise characterization for oblivious determin-
istic anonymous objects Proc. 26th International Colloquium on Structural Information and
Communication Complexity (SIROCCO19), LNCS 11639, pp. 293-308 (2019)

Yamashita M. and Kameda T., Computing on anonymous networks: Part I -characterizing
the solvable cases. IEEE Transactions on Parallel Distributed Systems, 7(1):69-89 (1996)

