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Abstract. The Choice Coordination Problem with k alternatives (k-
CCP) was introduced by Rabin in 1982 [Rab82]. The goal is to design a
wait-free protocol for n asynchronous processes which causes all correct
processes to agree on one out of k possible alternatives. The agreement
on a single choice is complicated by the fact that there is no a priori
agreement on names for the alternatives. Furthermore processes must
state their choice and do all communication via registers associated with
the alternatives. We exactly characterize when the k-CCP can be solved
deterministiclly, prove upper and lower space bounds for deterministic
solutions, and provide a randomized protocol which is significantly better
than the deterministic lower bound.

1 Introduction

1.1 The Choice Coordination Problem

A central issue in distributed computing is how to coordinate the actions of
asynchronous processes. Coordination becomes even more difficult if as many
as n − 1 of the n processes can fail. The Choice Coordination Problem (CCP)
[Rab82] highlights many of the difficulties inherent in such wait-free situations.
Solutions to the CCP thus lend insight into how to coordinate asynchronous
actions.

In the k-CCP, n asynchronous processes must choose between k alternatives.
Each process has its own naming convention for the alternatives. A solution
to the k-CCP is a protocol which guarantees that all correct processes termi-
nate having chosen the same alternative. A slightly more concrete version of
the k-CCP associates a shared register with each alternative. All inter-process
communication must be accomplished by writing in these registers. However, the
registers do not have global names; the first register examined and the subse-
quent order in which registers are scanned may be different for each process. A
special symbol must be written in exactly one register and all correct processes
must terminate pointing to this register. The efficiency of the protocol is defined
by the number of different symbols which may be written in the registers.

It seemed intuitively obvious that adding more alternatives and hence more
registers would just make the coordination more difficult. One of our results



is that, surprisingly, having more alternatives can lead to requiring fewer sym-
bols. Besides giving protocols which take advantage of additional registers we
exactly characterize the values of k and n for which the k-CCP can be solved
by n deterministic processes, prove lower bounds on the number of symbols re-
quired by deterministic protocols, and provide randomized protocols which are
significantly better than the deterministic lower bounds.

1.2 Computational Model

Our model of computation consists of a fully asynchronous collection of n pro-
cesses. It is assumed that each process has an identifier but the identifiers need
not be unique. Processes may fail only by crashing; that is, they fail only by
never entering the protocol or by leaving the protocol at some point and there-
after permanently refraining from writing the shared registers. We require that
all protocols be wait-free. That is, they can tolerate up to n− 1 process failures.

All inter-process communications are via finite sized shared registers which
are initially in a known state. Access to the shared registers is via atomic “read-
modify-write” instructions which, in a single indivisible step, read the value in
a register and then write a new value that can depend on the value just read.
In the k-CCP each of the k alternatives has an associated register shared by
all processes. The registers do not have global names; a single register may be
considered the fifth register by one process and the eighth by another. Even the
order of the names may be different. Thus one process may scan four alternatives
in order 3, 2, 1, 4 while another scans 2, 4, 1, 3.

The lack of global names for the registers makes it is convenient to think of
each process as being assigned an initial register and an ordering of the registers
which determines how it scans the registers. An interesting special case is when
all the orderings coincide. If all processes are assigned the same ordering (though
potentially different initial registers) we say that the alternatives are arranged as
a unidirectional ring. If all processes are assigned either one particular ordering
or its inverse then the alternatives are said to be arranged as a bidirectional
ring. Although in the bidirectional ring case the protocol can use the fact that
all processes use a single ordering or its inverse there is no a priori agreement
on which is the ordering and which the inverse.

Given the above definitions we now can formally define a solution to the
k-CCP. A protocol is a solution to the general k-CCP if, for all possible order-
ings and initial registers assigned to the asynchronous processes, eventually the
special symbol, e, is written in exactly one register and all correct processes ter-
minate with a pointer to the register containing the e. A protocol is a solution to
the unidirectional (bidirectional) k-CCP if the protocol solves the k-CCP when
all processes are assigned the same ordering (or its inverse). Protocols requiring
the least number of values in the shared registers are considered optimal. Other
papers [BBD89] also measure internal memory size of the processes but we will
not address this measure here.
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1.3 Related Work

There are only two published papers about the k-CCP problem. Rabin’s paper
which introduced the problem [Rab82], and a paper by Bar-Noy, Ben-or and
Dolev [BBD89]. Rabin is mainly interested in the case of k = 2 and t = n−1. (k
is the number of alternatives and t is the possible number of faulty processes.) He
shows a deterministic protocol using m = n+2 symbols (for each register) and a
lower bound of m ≥ (n/8)1/3 for deterministic protocols. The upper bound can
be modified to hold for any k. Also, as mentioned in [BBD89], the lower bound
can be immediately extended to any t, obtaining m = Ω(t1/3). Rabin contrasts
these deterministic results with a randomized protocol which, for m symbols,
terminates correctly with probability 1− 1/2m/2.

Bar-noy, Ben-or and Dolev extend Rabin’s analysis to arbitrary t, exam-
ine the local storage requirements, and study a semi-synchronous model. They
present deterministic and randomized protocols which both use O(t2) symbols.
The randomized solution, which is for identical processes, terminates with prob-
ability 1 and is always correctly. The deterministic solution requires O(2n log t)
bits of internal memory. Another deterministic solution which requires only
O(log n) bits of internal memory but O(t2 log n) symbols is given. For k = 3
they showed that n/2 + 3 symbols is sufficient for a deterministic wait-free so-
lution, and that for every prime k only n/(k − 1) + 3 symbols are needed under
the assumption that the registers are arranged as a unidirectional ring.

The k-CCP is related to the classic consensus problem[Fis83]. When all pro-
cesses use the same set of names for the alternatives and the first register ex-
amined by a process in the k-CCP corresponds to the process’ input in the
consensus problem then a solution to the k-CCP is similar to a solution to con-
sensus. However, in the consensus problem there is the additional requirement
that the chosen alternative be the input of some process.

Impossibility results about the well-studied consensus problem therefore lend
insight into the k-CCP. For example, Fischer, Lynch, and Paterson show that no
consensus protocol can tolerate even a single crash failure in an asynchronous
message-passing model [FLP85]. A similar result also holds for a shared memory
model which supports only atomic read and write operations [LA87]. This last
result can be used to show that: the k-CCP is not solvable in the presence of
even a single crash failure if only atomic read and write operations are assumed.
The Loui and Abu-Amara impossibility proof does not use the requirement that
the chosen alternative be the input of some process but instead uses the weaker
requirement that there are two runs in which different alternatives are chosen.
Since it is easy to ensure that the k-CCP meets this weaker condition the im-
possibility for k-CCP follows.

1.4 Summary of Results

As mentioned, most of existing results examine only two alternatives (i.e., k = 2),
and assume unique identifiers for deterministic protocols. We solve the problem
for any number of alternatives, and also study the case where processes do not
have unique identifiers. The two main questions that we try to answer are:
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1. Assuming that there is no limitation on the size of each register, under what
circumstances is the k-CCP solvable?

2. How many symbols for each of the k registers are necessary and sufficient to
solve the k-CCP, as a function of k and n?

The answers to both these questions give a measure of the communication-
space complexity of the problem and also provide a way of assessing the cost of
achieving reliability. We give a brief overview of our results below.
Solvability Conditions for the k-CCP: Assuming that there is no lim-
itation on the size of each register, we show that the k-CCP is solvable by a
deterministic protocol if and only if the maximal number of processes having
the same identifier is smaller than the least prime divisor of k. In proving this
result, no assumption is made about the arrangement of the registers.
Deterministic Solutions – Upper Bound: When the registers are arranged
on a ring we give a protocol which makes use of additional alternatives’ registers
to reduce the number of symbols required. For n processes and k alternatives
(i.e., registers) our protocols use O(n η(k)/k + η(k)) symbols, where η(k) is the
number of prime factors of k counting duplicates as separate. Furthermore, we
give a simple protocol which for k > n2 uses at most 6 symbols.
Deterministic Solutions – Lower Bound: When the registers are arranged
in a ring we show that all correct protocols must use at least 3

√
n/k3 symbols.

When no assumption is made about the arrangement of the registers, we tighten
the bound to m ≥ 3

√
n/4k.

Randomized Solutions: We present a randomized protocol that solves the k-
CCP, and terminates with probability greater than 1−2−(m−log k−2 log log k−3)/2,
where m is the number of symbols used by a protocol. Thus, if k ≤ 2100 a
probability of success greater than 1− 2−100 can be achieved for any number of
processes using registers which are just 9 bits wide. In this protocol the processes
are identical (i.e., have the same identifier) and no assumption is made about
the arrangement of the registers.

2 Solvability Conditions for the k-CCP

A first question concerning the k-CCP is: Under what circumstances is the k-
CCP solvable deterministically? In this section we show that the k-CCP is solv-
able if and only if the maximum number of processes having the same identifier
is smaller than the least prime divisor of k. It is assumed that there is no limi-
tation on the size of each register. In later sections the relation of register size
to number of processes for which the k-CCP is solvable will be investigated.

More precisely, assume each process has an identifier but that the identifiers
need not be unique. Let N be the maximum number of processes with the same
identifier. Notice that when the processes are identical N = n, and when they
have unique identifiers N = 1. Now recall that k is the number of registers and
define `(k) to be the least divisor of k which is greater than 1. The theorem
below, gives a complete characterization for the solvable cases. (Notice that no
assumption is made about the arrangement of the registers.)
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Theorem 1. For any k, n, and N , there exists a deterministic protocol for n
processes which solves the k-CCP if and only if N < `(k).

Proof. We first assume that N ≥ `(k), and prove that no solution exists. Pick a
cyclic ordering of the k registers and divide it into `(k) segments each containing
exactly k/`(k) registers. Pick `(k) processes with the same identifier and assign
one to the first register in each of the `(k) segments. Now, schedule these and only
these processes in a round robin fashion; each process, in turn, moves to the next
register in the ordering and executes one read-modify-write operation. Because
the processes are placed symmetrically, each operation of the first scheduled
process is always followed by the same operation, on a different register, by each
other process. Thus the original symmetry is restored after each round of the
round robin. Therefore, if one process writes e into some register then at the end
of the round each of these processes will write e in a different register.

Next, we assume that N < `(k), and show how to solve the k-CCP on a
general graph. For simplicity we will start by assuming that n = N , that is all
processes have the same identifier. The general case of several different identifiers
each associated with at most N processes is discussed at the end of the proof.
The protocol for all processes having the same identifier is given in Figure 1.

In the protocol the constructs lock and unlock mark the beginning and end
of atomic, exclusive access to the shared register at which pointer p is pointing.
Each process can lock only one register at a time. The fact that the read-modify-
write operation is wait-free and atomic is reflected by the assumption that a
process does not fail between executing lock and the next unlock, and that any
non-faulty process that reaches a lock instruction eventually executes it.

The goal of Procedure A is to break the symmetry of the processes. The
full protocol logically divides the registers into n tracks and uses Procedure A
repeatedly on different tracks in order to give each process a unique value. The
unique values can then be used in a last track to identify a unique decision
register.

In this abstract we only state without proof the main lemmas required by
the proof of the theorem.

Lemma 1. All processes scheduled k times in during a call to Procedure A ter-
minate. Not all processes using Procedure A on the same track halt with the same
value of c.

An execution of Procedure A partitions the processes into groups depending on
their final value of c. Although no process can know any other process’ group
number each can determine from the final configuration how many processes are
in each possible group. The number of processes in group i ≥ 0 (i.e., the number
of processes where c = i) is simply the number of shared registers containing
the value i minus the number of registers containing i + 1. Let f(i) be the total
number of processes in groups greater than i and λ(i) be the number of processes
in group i (let f(−1) = n).
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shared C: ring of k registers range over n-tuples of integers;;
local S: array [1..k] of n-tuples of integers;
local i: integer {1...k}; % pointer into S

local c: integer {0...k}; % counter

local t: integer {1...n}; % track

local r: integer {1...n}; % minimum rank

local p: pointer which initially points to some arbitrary register of C;
t := 1; r := 1;
Repeat

Execute Procedure A on track t returning c and S
if f(c) = 0 then t = t + 1 else t := t + f(c);
r := r + f(c);

Until λ(c) = 1
Write r on track n of any one register containing ⊥ if any exists;
Write 0 on track n of all registers containing ⊥ if any exists;
Write e on the register containing the maximum value in track n
end-protocol

% Using only track t of S divide processes into at least two groups

% Input: S,p,t, Output: S,p,c
Procedure A

c := 0;
% Write in tth track of as many registers as possible

For i from 1 to k do
lock

if p↑= ⊥ then {c:=c+1 ; p↑:= c}; % change track t of p↑ only

S[i] := p↑;
unlock
move p to the next register;

end-for
end-procedure

Fig. 1. Solution to the k-CCP when all processes have the same id.

Procedure A breaks some of the initial symmetry, producing at least two non-
empty groups. The full protocol applies Procedure A recursively to each group
of processes until each process is in a group of its own at which point it can be
assigned a unique identifier.

If each instantiation of Procedure A used the same registers then they might
interfere badly. It is not possible to agree a priori on a partition of the registers
in order to avoid interference. Instead each register is logically divided into n
tracks; ie. the values in the registers can be thought of as n-tuples of track values.
The full protocol arranges that all processes participating in a given instantiation
of Procedure A use the unique track reserved for this instantiation. Since each
instantiation uses its own track Lemma 1 will hold for all instantiations.
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Lemma 2. Each correct process eventually exits the main loop of the protocol
in Figure 1 with a unique value of r.

The proof of Theorem 1 follows easily from Lemma 2. The termination of the
entire protocol is clear since the main loop terminates. The correctness follows
from the fact that each process exits the main loop with a unique value of r
(1 ≤ r ≤ n). In track n each process then writes its value at most once and at
least one process writes its value. Thus there must be a unique maximum value
in track n when it no longer contains any non-bottom symbols. Hence the value
e is written exactly one.

We started the proof by assuming that n = N , that is all processes have
the same identifier. When there are several identifier values, each assigned to
fewer than `(k) processes then separate tracks must be assigned a priori for
each potential identifier value.

An immediate consequence of Theorem 1 is that for any k and n, there exists
a solution to the k-CCP, when the n processes have unique identifiers; and when
k is even there is a solution only if the processes have unique identifiers.

A quick calculation shows that the protocol of Figure 1 requires a total of
(n + 2)(k + 1)n−1 symbols. There are several ways of saving symbols. Perhaps
the easiest is to have processes not increment their counter above k/2 + 1 since
this value must be unique. However the best solutions still use (k/c)n sym-
bols for some constant c. When the registers are constrained to be visited as
a unidirectional or bidirectional ring the number of symbols can be reduced to
d(#id · N )/(`(k)− 1)e+ 3, where #id is the number of different identifiers.

3 Upper Bounds

In this section we examine the k-CCP when each process has its own unique
identifier and the alternatives are arranged as a unidirectional ring. We present
a protocol which, for a fixed n, reduces the number of symbols required as k
increases. No more than O((n log k)/k+log k) symbols are ever used by the pro-
tocol. When k has few factors then even fewer symbols are needed. In addition,
when k > n2 at most 6 symbols are used.

We write k’s prime factorization as k =
∏

ρei
i (where ∀i, ρi is prime and

∀i 6= j, ρi 6= ρj .) Let η(k) =
∑

i ei; thus η(k) is the number of prime factors of k,
counting duplicates as separate. Note that if k is a power of 2 then η(k) = log2 k,
and that log2 k is the maximum possible value of η(k).

Theorem 2. The k-CCP can be solved by n processes having unique identifiers
on a unidirectional ring using m symbols if

1. m ≥ dn/(k − 1)e+ 3η(k) + d2n/(k − 2)e(η(k)− 1), or
2. k > n2 and m ≥ 6.

In this abstract we give only a sketch of the proof of Part 1 of Theorem 2. The
complete protocol on which the proof is based is given in Figure 2. The efficiency
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of the protocol could be increased in several ways which would, however, made
the proof less transparent. For example, it is not necesary to check if i ≤ η(k) in
the guard of the main while loop and a process can often skip ahead to a later
phase once it has determined that it has fallen behind.

Let S be the sequence s0, ..., sk−1. The ith rotation (0 ≤ i < k) of S is
the sequence Ri(S) = si, ..., sk, s1, ..., si−1. A lexicographically maximal rotation
(abbv. lmr) of S is any rotation Rj(S) such that for all 0 ≤ i < k, Rj(S) ≥ Ri(S)
according to the standard lexicographic order.

Lemma3. If a sequence of length k has L lmrs then L divides k and each symbol
occurs a multiple of L times.

Recall that `(k) is the least divisor of k which is greater than 1 (when k is prime
`(k) = k). It follows from Lemma 3 that in a sequence of length k where some
symbol occurs fewer than `(k) times, there is a unique lmr. Furthermore, in a
sequence of length k where some symbol occurs a number of times relatively
prime to k, there is a unique lmr.

Ideas Behind the Protocol

We are now ready for an intuitive description of the protocol. Initially the k
registers all contain the same known initial symbol and thus there are k lmrs. The
protocol proceeds in phases; each phase reduces the number of lmrs. Lemma 3
shows that the number of lmrs is always a divisor of k, thus the number of lmrs
must actually decrease in each phase by a multiple of prime factors of k. Even
if each phase divides the number of lmrs by only a single prime factor of k then
after η(k) phases the number of lmrs would have to be reduced to one. Once a
single lmr is achieved the processes choose the register at the start of the single
lmr.

A different set of symbols is used in each phase. This allows processes which
have been delayed to quickly determine the correct phase. In particular it pre-
vents processes last scheduled in an earlier phase from interfering with a later
phase. The protocol is nonetheless efficient because there are not many phases
and relatively few symbols are used in each phase.

During each phase the processes must use these limited number of symbols
to reduce the number of lmrs. In order to ensure that only a single lmr remains
would require ensuring that some symbol occurs fewer than `(k) times. Fortu-
nately we need only to reduce the number of lmrs in each phase. In the first
phase we only need to guarantee that some symbol occurs less than k times.
Consequently, the first phase uses only dn/(k − 1)e+ 2 symbols.

It might seem that as the number of lmrs decreases, more symbols will be
needed to further reduce the number of lmrs. For example, if every symbol must
occur less often than the number of lmrs and the number of lmrs is 2 then n
symbols are necessary. The protocol avoids this growth of number of symbols by
taking advantage of symbol placement around the ring of registers.
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shared C: ring of k registers range over pairs of integers, initially all = (1,−1);
local S: array [1..k] of pairs of integers;
local i, j, val, pos, lmrs, bl, index: integer;
local p: pointer which initially points on some arbitary register of C;
boolean writeactive: flag specifying whether active symbol needs to be written;
constant marker = ∞; mfill = −1; afill = 0; e = (∞,∞);

i := 1; val := didp/(k − 1)e; lmrs := k; writeactive := true;
while (lmrs 6= 1) and (i ≤ η(k)) do

% Ensure that an active symbol is written in this phase

lock if writeactive and (p↑= (i, mfill)) then p↑:= (i, val) unlock;

% Loop A: Ensure completion of active phase by writing fill symbols

for j from 1 to k do
move p to the next register;
lock if p↑= (i, mfill) then p↑:= (i, afill) unlock ;
S[j] := p↑ end-for

% If S holds only phase i symbols then

% found an active configuration and must write a marker symbol

if ∀j, S[j] < (i + 1,−1) then
index := index in S of the beginning of an lmr;
move p forward index times;
lock if p↑< (i + 1,−1) then p↑:= (i + 1, marker) unlock;

% Loop B: Ensure completion of marker phase by writing fill symbols

for j from 1 to k do
move p to the next register;
lock if p↑< (i + 1,−1) then p↑:= (i + 1, mfill) unlock;
S[j] := p↑ end-for

% S holds a copy of C, possibly the phase i + 1 marker configuration

% Prepare to write active symbol in next phase if necessary

i := i + 1; writeactive := false;
if ∀j, S[j] = (i, marker) or S[j] = (i, mfill) then

lmrs := the number lmrs of S;
if lmrs = 1 then pos := 0;
else { bl := k/lmrs; pos := 1 + idp mod (lmrs− 1);

val := didp/((lmrs− 1)(bl − 1))e; writeactive := true} ;
index := index in S of the beginning of an lmr;
move p forward index + pos times;

end-while
lock p↑:= e unlock.

This protocol has several non-optimal features which were included in order to simplify
the proof.

Fig. 2. Solution to the k-CCP — program for process p (with identifier idp).
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A sequence containing L lmrs can be divided into L equal blocks of b = k/L
registers such that the cyclic sequence beginning at the start of each block is an
lmr. Instead of a phase ensuring that some symbol occurs fewer than L times it
ensures that not all blocks are the same. Since all blocks will not be the same,
not all blocks can still begin lmrs and the number of lmrs is reduced.

One detail omitted in the previous paragraph is that we need to guarantee
that lmrs begin only at registers which are the beginning of lmrs of the previous
phase. Thus we add a special marking subphase at the beginning of each phase.
The marking subphase marks, with the largest symbol possible for the phase,
some of the registers at the beginnings of lmrs in the previous phase; thus only
these marked registers can be at the start of lmrs in the new phase.

It is also possible to show that at most logk/nk symbols are needed, when
k > n. In this case, in each phase the number of lmrs must decrease by a factor
of n/k and thus the number of phases is at most logk/n k. In addition each phase
requires at most one active symbol.

Part 2 of Theorem 2 depends on a very simple protocol. The remainder of
this section contains a description of the protocol along with intuitive reasons
why it works.

The six symbols are denoted ⊥, a, fill-a, b, fill-b, and e. Initially all reg-
isters contain ⊥. Each process then writes a in its first register if the register
still contains ⊥ and writes fill-a in every other register which still contains ⊥.
Having done a Read-modify-write on each register once it now has a record of
all registers in which a will ever be written.

Since k > n2 and at most n registers contain an a (each process writes a at
most once) there must be at least one register containing a followed by n registers
containing fill-a. Process i moves to the ith register containing fill-a in such
a gap and writes b if the register still contains fill-a. Thereafter it writes fill-b
on every register still containing fill-a. Now, having performed a Read-modify-
write on each register twice the process has a record of the final contents of all
the registers before e is written.

There is a unique b which is furthest from its preceeding a (and hence an
unique lmr). Since the identity of b is determined by relative distance from its
preceeding a all processes agree on its identity despite there different names for
the registers. Thus each can write e in the register containing this special b.

4 A Lower Bound

In this section, we establish a lower bound on the number of symbols required to
solve the k-CCP. Our bound generalizes Rabin’s lower bound for k = 2 to apply
to general k. We examine both the case where it is known that the registers
are arranged as a ring and the case where nothing is known about the registers’
arrangement.
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Theorem 3. Let P be a protocol for n processes that solves the k-CCP. Let m
be the number of symbols used by P . Then,

1. m ≥ 3
√

n/k3, assuming the registers are arranged as a unidirectional ring;
2. m ≥ 3

√
n/(4k log k), when no assumption is made about the arrangement of

the registers.

The proof relies on two key properties of the protocols. The wait-free property
ensures that any process run sufficiently long will eventually write a new symbol
until it finally writes e. The “anonymity” of the registers ensures that if all reg-
isters contain the same symbol then a process will take the same steps regardless
of its initial register and, in the general case, regardless of the order in which
the registers are visited.

Informally, the proof employs an adversary which progressively extends a run
to lead from one configuration in which all registers contain the same symbol
to another such configuration. Each configuration uses a symbol not used in the
previous configurations. Eventually a configuration is reached with two registers
containing e. The wait-free property allows the adversary to find processes which,
when added to the run, will write new symbols and the anonymity property
allows it to force these processes to write the symbol in every register.

In order to extend the run to the next configuration the adversary needs
many processes which have not yet been used in the run. Protocols using more
symbols require the adversary to go through more intermediate configurations
before reaching one containing two e’s. Thus if more symbols are used than
more processes can be allowed to participate without including enough for the
adversary to force the protocol to fail.

The details of the adversary, which is a modified version of the one used
by Rabin[Rab82], are omitted from this abstract. In order to achieve bounds
when k > 2 we needed new combinatorial lemmas which bound the cost to the
adversary of forcing processes to write in particular registers.

5 Randomized Protocol

We have seen that for large values of k, compared to n, the number of symbols
used by a deterministic protocol in the ring case can be kept relatively small.
Our lower bounds show, however, that the number of symbols must grow as a
function of n. It is natural to ask if the number of symbols can be reduced if
a small probability of non-termination is allowed. In his seminal paper Rabin
showed that randomization could reduce the number of symbols when k = 2.
In this section we show that, for any value of k, randomization can reduce the
number of symbols needed.

Our strategy for randomized protocols draws many ideas from our determin-
istic protocols. Randomization allows us to simultaneously reduce the number
of symbols required, dispense with process identifiers, and succeed regardless of
whether or not the registers are arranged in a ring. For example, if k ≤ 2100 then
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a probability of success greater than 1− 2−100 can be achieved for any number
of identical processes using registers which are just 9 bits wide.

Theorem4. For any k, n, and security parameter q, there exists a randomized
protocol for n processes using m = 2q + log min{k, n} + 2 log log min{k, n} + 3
symbols which solves the k-CCP for n processes and terminates with probability
greater than 1− 2−q.

The proof of Theorem 4 is based on the analysis of the protocol given in Figure
3. This protocol was designed to make the analysis of the worst case simple.
There are many obvious optimizations which improve its behavior on fortuitous
runs. Before analysing the protocol we give an informal description of it and an
intuitive idea of why it works.

The Protocol

The randomized protocol, like the deterministic one, works in phases. Each phase
uses some new symbols in an attempt to reduce the number of registers which
may end up containing e. If in a predetermined number of phases the number
of live registers (ones in which e may eventually be written) is reduced to one
then the protocol succeeds. The use of more symbols per phase or more phases
will increase the probability of success. Thus given a bound on allowable failure
probability we can ask what is the smallest number of symbols which can attain
this failure probability.

More specifically, in each phase each process picks a register which survived
the previous phase (we call these registers live), writes in this register a random
symbol from those symbols assigned this phase, and then attempts to write the
kill symbol in all registers containing symbols from earlier phases. Intuitively, it
has ensured that at least one register survives the phase and then tried to kill all
other registers. As in the deterministic protocol we use a lock construct to denote
the read-modify-write. Inside the lock the process may generate a random value.
The choice being made inside the lock is meant to denote that we assume that
the scheduling of the read-modify-write cannot depend on the choice of random
value.

A phase completes when all registers contain symbols from the same phase
or the kill symbol. All registers containing the maximum-value, least-frequently-
occurring symbol are considered to have survived the phase. If only one register
survives (recall that at least one must survive) then the protocol has completed
successfully and this register is chosen. Otherwise, if more phases remain the
next phase is begun. If this was the last phase then the protocol fails.

As in the deterministic protocols, care must be taken to make sure that all
processes, no matter how long they are delayed, make consistent decisions. In
particular any processes deciding to go to the next phase must agree on which
registers survived the previous phase.

The simplest version of the protocol uses two symbols at each phase. By
bounding the number of phases required to, with high probability, successively

12



shared C: ring of k registers range over pairs of integers, initially (0, 0);
local S: array [1..k] of pairs of integers;
local i: integer {1...k}; % pointer into S

local phase: integer; % # of phases

local number: array[0..1] of {0...k}; % number of live registers

local live: boolean; % value of the live register

local p: pointer which initially points on some arbitary register of C;
constant H = q + log min{k, n}+ log log min{k, n}; kill = (−1,−1);
function RANDOM; % Returns 0 0r 1 at random

phase := 1; number[0] = k; live = 0;
while number[live] 6= 1 and phase ≤ H do

% Try to write new value on a live register

lock
if p↑= (phase− 1, live) then p↑:= (phase,RANDOM);
(phase, live) := p↑; % Note that both phase and live are set here.

unlock
S[1] := (phase, live); move p to the next register; i := 2;

% Look for a post-phase configuration

while (p↑6= e) and (i 6= 1) do
lock

if p↑< (phase,−1) then p↑:= kill
elseif p↑≥ (phase + 1, 0) then i := 1;
(phase, live) := p↑;

unlock
S[i] := (phase, live); move p to the next register;
if i = k then i := 1 else i := i + 1;

end-while

% Compute the number and value of the live registers

number[0] = 0; number[1] = 0;
for i = 1 to k do

if S[i] = (phase, 0) then number[0] := number[0] + 1
elseif S[i] = (phase, 1) then number[1] := number[1] + 1

end-for
if number[1] ≥ number[0] then live = 1 else live = 0;

% Move to a register which contained live when S was read

while S[i] 6= (phase, live) do
move p to the next register;
if i = k then i := 1 else i := i + 1;

end-while
phase := phase + 1;

end-while
lock if number[live] = 1 then p↑:= e unlock.

Fig. 3. Randomized Solution to the k-CCP.
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halve the number of surviving registers the upper bound on number of symbols
required for the entire protocol given in Theorem 4 is achieved.

The protocol can be fine-tuned by varying the number of symbols used by
each phase. For example, in the k = 2 case studied by Rabin, the protocol in
which processes randomly choose, at each phase, between three symbols to write
yields a probability of termination which is slightly greater then the probability
in Rabin’s protocol. If the registers are known to be arranged on a ring the ideas
from Section 3 can increase the termination probability even more.

Using a recent result of Karp[K91] it is possible improve our analysis to show
that fewer phases and thus fewer symbols achieves the same success probability.
Karp’s result on probabilistic recurrence equations shows that q + log min{k, n}
phases suffice.

6 Conclusions and Open Questions

We have examined the k-CCP under varying assumptions about the structure of
the alternatives and about the relative values of the number of alternatives and
the number of processes. Our results generalize and extend most of the previously
known results to the case where more than two alternatives are available. A
major surprise of these extensions is that when more alternatives (and hence
more registers) are added the complexity of the problem does not necessarily
increase. In fact, in certain cases more alternatives means that fewer symbols
are used for each register.

Several variants of the k-CCP remain as interesting open questions. Our
deterministic protocols are correct even if the initial states of the registers are
not known. However, the size of the registers is no longer bounded; can this
be improved? When the atomic operations are just reads and writes (rather
than read-modify-write) then the presence of even a single crash failure implies
that there is no solution to k-CCP. What is the effect of using an intermediate
strength operations such as test-and-set?1 It is not difficult to extend our wait-
free protocols to create protocols which tolerate up to t < n − 1 failures with
costs which decrease as t decreases.
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