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Abstract. This paper introduces two benign failure models for shared
memory in distributed systems, crash-omission and crash-eventual. These
models are of intermediate power between the crash model and omission
models of [JCT92]. (They exhibit more faulty behaviors than crash and
fewer than omission.) Unlike the crash model, crash-omission is shown
to have universal, gracefully-degrading constructions. That is, for any
integer k, any shared object may be constructed from shared registers
and consensus objects, so that: (1) if no more than k of the components
suffer crash-omission failures, the constructed object exhibits no failures,
and (2) if more than k of the components suffer crash-omission failures,
the constructed object exhibits crash-omission failures.

Simple constructions also demonstrate that registers and consensus
objects in the (apparently) less benign crash-eventual model can be used
to construct corresponding objects in the crash-omission model.

These results are cited as evidence that the crash-omission failure
model may be an appropriate choice to consider in the formulation of a
more extensive theory of fault-tolerant shared objects.

1 Benign failure models for shared memory

Shared memory is widely considered a useful programming abstraction for con-
current systems, masking the details of inter-procedural or inter-processor com-
munication, while supporting natural proof-theoretic techniques [Owi75, OG76].
Many experimental and commercial processors provide direct support for this
abstraction: indeed, Gordon Bell has predicted that “... the mainline, general-
purpose computer is almost certain to be the shared memory multiprocessor
after 1995” [Bel92]. Increasing attention is being paid to implementing shared
memory systems either in hardware or in software [Bel92, CG89, LH89, TKB92].

This paper investigates fault-tolerance in shared memory systems, with an
emphasis on benign, or constrained, fault models. Benign fault models are easier
to program than are more malicious models. Just as shared memory is itself
an abstraction of much more complex, timing-dependent implementations, be-
nign fault models hide complex implementation details, and provide a simple
programming abstraction.

Together with David Greenberg, we introduced the problem of tolerating
failures in shared memory objects—previous work had considered the possibil-
ity of process failures, but assumed the shared memory was reliable [AGMT92].



Jayanti, et al independently posed this problem, and focused particular attention
on whether fault models support modular, gracefully degrading constructions,
in which failures of the abstract object are as benign as the failures of the com-
ponents. They show that their crash model does not support such constructions,
while their omission fault model does.

This paper further explores benign failure models that support gracefully
degrading constructions. An appropriate model, serving as a contract between
implementor and programmer, can greatly facilitate the development of fault-
tolerant shared memory systems. This contract is ultimately a compromise be-
tween ease of implementation and ease of programming—motivating a search for
“the most benign, implementable failure model”.

We define two failure models that are more benign than omission faults, and
stress the most benign, crash-omission faults. In this model, a shared memory
object suffers a failure of type crash-omission if operations concurrent with the
crash may respond with a special “?” value, and all operations after the crash
always respond with ⊥. Operations concurrent with the crash may respond nor-
mally to some requests because those requests may not access (or be through
accessing) the crashed parts of the object. Our argument in favor of this choice
of model will use the same framework, and several of the same techniques and
constructions as are used by Jayanti, et al in support of the omission model.
The principal contribution of this paper lies in the definition of (an inherently)
more benign failure model, and observations that it nevertheless has the same
positive attributes as the omission model.

1.1 Faulty objects

Two recent papers explore the possibility that shared objects might fail [AGMT92,
JCT92]. The first explored the possibility that faulty shared objects might re-
turn arbitrary values, developed a compositional theory for combining algorith-
mic constructions in a modular way, and presented several lower bounds and
constructions of fault-tolerant objects from faulty components, including a uni-
versality result. This showed that any reliable shared object can be constructed
from potentially-faulty registers and consensus objects, or from read-modify-
write objects, provided the number of faulty components was bounded.

The second, independent paper explored a wider range of fault models, in-
cluding some “non-responsive” models that are particularly malicious, making
the programming task essentially impossible.

Among the responsive fault models, which are guaranteed to return some re-
sponse to an operation, is the same arbitrary fault model developed in [AGMT92],
and two others of particular interest to this paper, the omission and crash mod-
els. A compositional theory is developed that depends upon constructions that
degrade gracefully. That is, if the failure bound on the number of components
that may fail is exceeded, the composite object may suffer failures, but only of
the same type as the components. Such gracefully degrading constructions may
be used as modules in larger constructions.
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The possibility of building gracefully degrading constructions within a failure
model is essential, if that model is to be useful in the modular design or verifica-
tion of systems. Without this property, fault-tolerance violates any attempt to
build interfaces or abstraction layers, and the correctness of the system in the
face of failures must be considered monolithically. As a general concept applica-
ble to a variety of failure models, graceful degradation is a vital contribution to
the theory of fault-tolerant systems.

In [JCT92], the crash model is shown to be unsuitable as a general failure
model. Objects in this model suffer a terminal, atomic crash event, after which
all operations return the special symbol “⊥”. Though quite benign, and hence
seemingly useful as a programming abstraction, the model is so benign that
gracefully degrading implementations are impossible to design. The omission
model, on the other hand, does support gracefully degrading implementations—
even universal constructions, which can be used in fault-tolerant implementa-
tions of any shared object. In the omission model, operations on a faulty object
may return a special return value, “?”, signaling that the operation may not
have taken place, and hiding any return value.

These results illustrate a trade-off in designing gracefully-degrading imple-
mentations: the more benign the fault model, the easier it is to find constructions
that work correctly as long as the failure bound on the number of primitive ob-
jects is not exceeded, but the harder it is to make sure that the construction is
gracefully degrading—that it exhibits the same type of benign failure when the
failure bound on the number of primitive objects is exceeded.

Because of its powerful modular properties, the omission fault model is ar-
gued to be a superior model for the development of an algorithmic theory for
shared memory under benign failures. Arbitrary failures are shown in both pa-
pers to support universal, gracefully degrading implementations, but are more
malicious. In this paper, we argue that a still more benign model may be more ap-
propriate in this context. We introduce an inherently more benign model, crash-
omission faults, and show that it enjoys essentially the same positive properties
as the omission and arbitrary models.

1.2 Four benign failure models

This section provides brief descriptions of the four failure models discussed in the
paper—the crash and omission models defined in [JCT92], and the new crash-
omission and crash-eventual models. All are defined in detail in the Appendix.
They may be ordered from most to least benign: crash, crash-omission, crash-
eventual and omission. (For example, a crash-omission failure is also a crash-
eventual and omission failure, but may not be a crash failure.)

The crash faults were discussed in the previous section: operations on objects
of this fault type behave correctly until the object suffers a terminal, atomic
crash event. Thereafter, all operations return “⊥”. As pointed out in [JCT92],
this model is too benign—there are essentially no interesting objects that can
be constructed which will fail in this way, even if the components fail in the
correspondingly benign way. In brief, the problem is that the crash event in
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this model has very strong semantics. For example, if a read operation returns
a good value, the reader may conclude that the corresponding write operation
completes successfully, even if it has not yet returned. Such inferences are at the
heart of the impossibility results in [JCT92].

The omission fault model avoids the strong semantics of the crash event in
an extreme way. In this model, operations on faulty objects may return a special
value, “?”, which indicates only that the operation has terminated—and that it
either effected the state of the object as intended, or completely failed to effect
it.

The first new model defined in this paper, the crash-omission model, attempts
to overcome the problems of the crash model, without introducing as much
uncertainty as the omission model. In this model, as in the crash model, faulty
objects again suffer a terminal, atomic crash event. However, operations that
are concurrent with the crash event may suffer omission failures, returning “?”.
Subsequent operations return “⊥”.

It is easily shown that such simple objects as read/write registers suffering
only crash-omission failures, cannot be built from registers that suffer omission
failures. (See Theorem 1, below.) Hence, the crash-omission model is truly more
benign than omission failures. On the other hand, essentially the same construc-
tions used for the omission case in [JCT92] can be used to show corresponding
gracefully degrading compositional results for the crash-omission model.

The crash-eventual model is slightly less benign. In this model, faulty objects
eventually suffer terminal crash events, but any operation prior to or concurrent
with the crash may suffer an omission fault and return “?”. Hence, in this model,
multiple operations by a single process may suffer omission failures, returning
“?”, before the terminal crash event occurs, and all subsequent operations return
crash. This contrasts with the crash-omission model, in which at most one
operation by a single process will suffer an omission failure, returning “?”. Every
operation thereafter returns crash.

If an operation on a crash-eventual object returns “?”, the calling process
knows the object will eventually crash. If the object supports idempotent oper-
ations, the calling process can make repeated calls until the crash event occurs.
Hence, for such objects, this fault model can be used to simulate the crash-
omission model.

2 Results

2.1 Basic definitions

Following [LT87, Lyn88], we consider a shared object to be an automaton with
a distinct interface to the calling processes. Following [Her91], an implementa-
tion of an object Y from a list of one or more (shared) objects of type X is a
composition of automata from X, together with “front-end” automata running
code local to each process, so that the processes only observe behavior from the
composition that they could also observe from Y . The implementation is wait-
free if each call to the implementation by any process is guaranteed to return,
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despite the behavior of any of the other processes. (Details are left to the full
paper.)

Following [JCT92], such an implementation is gracefully degrading for a given
failure type F , if the operations on Y are either correct or suffer failures of type
F , despite failures of type F for any of the operations on the component objects.
The following definitions are used through out the paper:

– Object type Y has a (gracefully degrading) f-reliable wait-free implementation
from object type X for faults of type F , if there exists a (gracefully degrading)
wait-free implementation of a Y object from objects of type X, when at most
f of them suffer faults of type F .

– Object type Y has a (gracefully degrading) reliable wait-free implementation
from object type X for faults of type F , if for every positive integer f , Y
has a (gracefully degrading) f-reliable wait-free implementation from object
type X for faults of type F .

Finally, a self-implementation is an implementation where the base objects and
the derived object are of the same type.

We focus on the crash-omission fault model in the next two subsections.
While corresponding results can be proven directly for the crash-eventual model,
in Section 2.4 we show that for many interesting objects, including registers
and n-consensus, there is no real difference between these two models.

2.2 Basic results

Theorem 1. Given any collection of objects, all of which may experience omis-
sion failures, it is not possible to implement a safe-register object of failure
type crash-omission.

Proof. The key idea is to use omission faults to prevent the reader from knowing
whether a write has occurred. Formally, assume to the contrary that there exists
such an implementation, and let reg be the implemented register object. Consider
first a run Q, in which process q performs a single read operation, which must
return the initial value of the register. Now consider a run PQ, in which p first
writes a (non-initial) value into reg, and then process q reads the value of reg,
but that all of the operations by p on the component objects suffer omission
failures, which fail to change the states of those objects. Then process q will
observe the same events in PQ as in Q, and will return the initial value. But
this cannot happen in a run in which reg suffers a crash-omission failure—none
of the possible return values for P , normal, “?” or “⊥”, are correct. The first
violates the write-read semantics, and the others imply the crash occurred during
operation P , and Q should return “⊥”. ut

Theorem 1, can be shown to hold also for other objects such as test-and-set
and compare-and-swap. In general the result holds for any object where it is
possible to determine the order in which two operations should be serialized,
based on the return values of the operations. (Such objects are called order-
sensitive in [JCT92].)
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This result should be contrasted with the following:

Theorem2. Object type safe-register has a reliable gracefully degrading wait-
free self-implementation for crash-omission.

Proof. A single-reader/single-writer safe register can be constructed from 2f +1
similar registers, at most f of which fail by crash-omission. The construction is
the obvious one: the writer writes all 2f +1 registers, and the reader reads them.
If a process observes failures in more than f registers it returns “⊥”. Otherwise,
if the reader sees a majority value (f + 1 with the same value), it returns that
value, otherwise it returns any value. ut

Theorem3. n-consensus has a reliable gracefully degrading, wait-free self-
implementation for crash-omission.

Proof. The proof uses a construction from the proof of Theorem 5.2 of [JCT92],
which establishes a similar result for omission faults. The construction uses 2f+1
n-consensus objects. Details are omitted from this abstract. ut

In addition to showing that a result corresponding to Theorem 3 holds for
omission failures, Jayanti, et al prove that a similar result does not hold for crash
faults. That is, n-consensus has no reliable gracefully degrading, wait-free self-
implementation for crash (Theorem 7.2 [JCT92]). Together, the results of this
section demonstrate that crash-omission is distinct from crash and omission.

2.3 Universality results

Herlihy introduced the notion of universal collections of shared objects: object
types powerful enough so that they can be used to construct wait-free implemen-
tations of any shared object. Both [AGMT92] and [JCT92] explore the relation-
ship between fault models and this result. In particular, Jayanti, et al observe
that any universal collection of objects can be used not only in wait-free imple-
mentations of arbitrary objects, but also in implementations that are reliable and
gracefully degrading for omission faults. In this section, we prove corresponding
results for crash-omission faults.

First, given safe registers, we show that any wait-free implementation can be
made gracefully degrading for crash-omission failures. The safe registers can be
used to signal between processes that a fault has occurred, thus implementing
the crash event.

Theorem4. If there is a wait-free implementation of an object of type X from
a list Y of object types, then there is a wait-free implementation of X from Y
and safe-register that is gracefully degrading for crash-omission faults.

Proof. Note first that neither construction is fault-tolerant. What distinguishes
them is that crash-omission failures of components in first construction can re-
sult in arbitrary faulty behavior at the higher level. The proof shows that this
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construction can be augmented so that crash-omission failures of components
are experienced as crash-omission failures at the higher level.

The original construction is augmented with a pair of safe registers between
every pair of processes, and a boolean flag local to each process, all initialized
to 0. (For any pair of processes i and j there is a single-writer/single-reader
safe bit that i can write and j can read, and a single-writer/single-reader safe
bit that j can write and i can read.) Before performing an operation on the
compound object, each process reads it’s local “crash” bit and those written by
other processes. If any are set to 1 or if any reads return “?” or “⊥”, the process
writes 1 to all of them, and returns “⊥”.

Otherwise, the construction is run, and returns normally in the absence of
faults in the component operations. But if any of the basic components suffers
faults, returning “?” or “⊥”, the process immediately writes 1 to the crash bits,
and returns “?”.

The remainder of the proof argues that the crash event can be serialized
after every operation that returns normally, before every operation that returns
“⊥”, and within the duration of every operation that returns “?”. Intuitively,
this is the first point in the run in which every process has an “incoming” crash
bit that has either crashed or is set to 1. ut

It is interesting to note that the same result holds if all the components in Y
(but not the safe registers) suffer the more malicious omission faults. Hence, the
inability to implement crash-omission safe registers (Theorem 1) characterizes
the differences between the models.

The following definitions are needed to state the universality theorem.

– A list X of object types is n-universal if every n-process object has a wait-
free implementation from X. (The wait-free implementation is not required
to be gracefully degrading or reliable.)

– A list X of object types is n-GD-universal for fault type F if every n-process
object has a wait-free implementation from X that is Gracefully Degrading
for F .

– A list X of object types is n-RGD-universal for fault type F if every n-process
object has a Reliable wait-free implementation from X that is Gracefully
Degrading for F .

(These implementations may contain any number of objects of each type in X.)
We can now state the following result:

Theorem 5.

– Any list X of object types that is n-universal and includes (or implements)
safe-registers that may only fail by crash-omission, is also n-RGD-universal
for crash-omission faults.

– Any list X of object types that is n-GD-universal for crash-omission, is also
n-RGD-universal for crash-omission faults.

The proof of this theorem requires some additional results. First, Herlihy’s
universal construction [Her91], together with constructions of atomic registers
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from safe registers [Pet83, Lam86, BP87, PB87, Blo87, SAG87, LTV89, Tro89],
implies the following:

Proposition 6. {n-consensus, safe-register} is n-universal.

Next, we need results for composing fault-tolerant and fault-intolerant con-
structions, observed for a malicious failure type in [AGMT92], and for general
failure classes in [JCT92].

Proposition 7.

– If X has a reliable gracefully-degrading wait-free construction from Y , and
Y has a gracefully-degrading wait-free construction from Z, then X has a
reliable gracefully-degrading wait-free construction from Z.

– If X has a gracefully-degrading wait-free construction from Y , and Y has
a reliable gracefully-degrading wait-free construction from Z, then X has a
reliable gracefully-degrading wait-free construction from Z.

Proof of Theorem 5: Both parts of the theorem depend on the availability of
safe-registers that fail by crash-omission. Using these and Theorem 4, the
objects in X can be used to implement n-consensus objects, in wait-free im-
plementations that are gracefully degrading for crash-omission faults. Now The-
orems 2, 3, and (the first part of) Proposition 7 are used to make these imple-
mentations reliable, as well: n-consensus and safe-register have wait-free
implementations from X that are reliable and gracefully degrading for crash-
omission.

From Proposition 6 and Theorem 4, any object Y has a wait-free implemen-
tation from {n-consensus, safe-register} that is gracefully degrading for
crash-omission faults. Applying (the second part of) Proposition 7, the theorem
follows. ut
Corollary 8. Every object has a wait-free implementation from n-consensus
and safe-register that is reliable and gracefully degrading for crash-omission
faults.

2.4 Converting crash-eventual faults to crash-omission faults

Recall that objects which suffer crash-eventual faults may return the omission
response “?” any number of times to calling processes, but must eventually
crash. Thus, they constitute an intermediate model between crash-omission
faults, which return at most one “?” to any single process, and omission faults,
which can suffer any number of omissions and never crash.

However, consider objects such as n-consensus, single-writer register
or safe-register, which satisfy the following idempotent, or stuttering prop-
erty: every process may invoke some operation repeatedly, without changing the
behavior observed by other processes. The operation may depend on the pro-
cess’s history. For example, a write to a single-writer register may be repeated,
so long as the value written is the same. Similarly, since only the first operation
on an n-consensus object affects it’s state, processes may repeatedly access it.
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Theorem 9. Let X be an object type satisfying the stuttering property. Then
X has a wait-free self-implementation from one instance of X, with the fol-
lowing property: if the embedded component suffers crash-eventual failures, the
constructed object suffers crash-omission failures.

Proof. Each process makes calls to the crash-eventual embedded object, passing
return values transparently, until the first omission failure. The calling process
then repeats the appropriate stuttering operation until the object crashes and
returns “⊥”. This high-level operation returns “?”, and all subsequent high-level
operations by the same process return “⊥”. (If a process observes a crash without
seeing an omission failure, it returns “⊥”.) ut

This result indicates that crash-eventual faults are not significantly different
from crash-omission, and provides further evidence that crash-omission is an
implementable failure model.

The details of this construction are also of some interest. Since there is no
bound on the number of omission faults that may precede a crash, no upper
bound can be placed on the number of embedded calls that a high-level oper-
ation may make before returning. Hence, this construction satisfies the “even-
tual” property of wait-freedom, but not more restrictive “bounded wait-free”
constraints that require an upper bound on the number of embedded operations
in a high-level operation.

3 Discussion

We close with a few further remarks on the importance of benign fault models.
Our work follows a large body of work in making a strong asynchrony assump-
tion, that processes and shared memory operations may run at arbitrarily dif-
ferent rates. This relieves the implementation from any timing constraints, and
provides a particularly simple programming model. We also adopt a common
practice of assuming processes fail by simply taking no more steps, but that any
number of them may fail—robust algorithms in this model are called wait-free,
as each process is guaranteed to make progress, despite actions of other processes
(cf. [Lam86]).

Unfortunately, if the shared memory supports only read and write operations,
too many synchronization tasks are impossible in this simple model [DDS87,
FLP85, CIL87, Her91, LA87, TM89]. Instead of introducing timing assumptions
explicitly, the programmer’s job can be made easier (possible) by abstracting
specific synchronization tasks as operations supported directly by the shared
memory. Shared abstractions (objects) that are more powerful than read/write
memory, such as semaphores or test&sets, have long been used in actual shared
memory systems. Invigorated especially by the work of [Her91], a rich theory of
such primitives is emerging. It is in this context that we investigate the additional
question of failures of these primitives, and consistent with the search for simple,
implementable models, for the most benign, implementable fault model.

This paper has focused on gracefully degrading implementations, building
objects with benign failures from components that suffer benign failures. It is
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also important to ground this work in more detailed computational models that
make explicit reference to time. For example, the construction of crash-omission
objects from crash-eventual is strongly suggestive of practical fault-tolerant im-
plementations of crash-omission objects, that would likely use waiting and ex-
plicit notification (messages) to “crash” shared objects. Similarly, the omission
model is strongly suggestive of a simple implementation in an unreliable message-
passing system that uses timeouts. An omission response of “?” would indicate
that a timeout occurred, and either the request or the reply message was lost.
An exploration of these implementation issues in an appropriate real-time model
is an important open problem.
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4 Appendix: Specifications of faulty objects

We briefly describe how atomic shared objects can be specified as I/O automata,
then precisely define the failure models used in this paper. Finally, we extend
these models to the non-atomic safe-register.

4.1 Operations

Let S be an arbitrary set of states. An operation, op, on S is a 3-tuple
(arg(op),ret(op),spec(op)), where arg(op) and ret(op) are non-empty sets of ar-
guments and return values, and spec(op) ⊆ arg(op) × S × ret(op) × S.

If (x, s1, y, s2) is in spec(op), this means that applying operation op with
arguments x to the object in state s1 can result in return values y, leaving the
object in state s2. An operation op is total if for every x ∈ arg(op) and every s1

∈ S, there exist y ∈ ret(op) and s2 ∈ S such that (x, s1, y, s2) is in spec(op).
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For example, a write operation write1 on a binary atomic register could be
defined with state space S = {0, 1}, arg(write1) = {0, 1}, ret(write1) = {ok},
and spec(write1) = {(0, 0, ok, 0), (0, 1, ok, 0), (1, 0, ok, 1), (1, 1, ok, 1)}. Similarly,
a read operation read2 on a binary atomic register would be defined with state
space S = {0, 1}, arg(read2) = {null}, ret(read2) = {0, 1}, and spec(read2) =
{(null , 0, 0, 0), (null , 1, 1, 1)}.

4.2 Atomic object shared by n processors, {1, . . . , n}

Input/output automata can [LT87, Lyn88] be used to capture the notion of a
shared object, on which operations can be performed concurrently by different
users of the object. (We will call these users processors.) Atomicity captures the
intuition that despite concurrency, operations should appear to perform serially.
This is captured by breaking a processor’s execution of an operation into three
steps: the request for the operation issued by the processor, a step internal to the
shared object in which the operation is performed, and a reply from the object
to the processor containing any return values.

The request and reply actions only do the bookkeeping for the pending
operations–semantics of the operation are determined completely by the internal
event, when the operation is performed on the object state. But the separation
of this internal action from the request and reply is crucial–since neither this
action, nor the state itself is directly visible to the processor, alternative imple-
mentations may substitute many internal actions, on very different states, but
must preserve the same sequences of requests and replies, which are observed by
the processors.

An atomic object shared by n processors, {1, . . . , n}, is specified via a state
space S, and a set of operations, OP i = {op1

i , ..., op
k
i }, associated with each

processor i. The operations in OP i are those which may be invoked by processor
i. We also assume two special symbols not in any ret(Opi), ? and ⊥, and also
that ⊥ /∈ S. For example, a binary atomic register with a single writer and a
single reader could be defined with state space S = {0, 1}, OP1 = {write1}, and
OP2 = {read2}.

The state space and operations are used to specify an I/O automaton, O, as
follows:

– Actions: for each i in {1, . . . , n}, each operation opj
i ∈ OPi

• input action Req(opj
i ,x), for each x ∈ arg(opj

i ),
• internal action Perform(opj

i(x)), for each x ∈ arg(opj
i ),

• output action Ret(opj
i ,y), for each y ∈ ret(opj

i ).
For each i in {1, . . . , n}, define inputi(O) to be input actions of O indexed
by i. Similarly, define internali(O) and outputi(O) to be the internal and
output actions of O indexed by i, respectively.

– Fairness classes: there are n, {F1, ..., Fn}, one for each i in {1, . . . , n}, with
Fi = internali(O) ∪ outputi(O). Thus, fairness set Fi contains the internal
and output actions indexed by i.
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– States: cartesian product of n + 1 variables: for each i in {1, . . . , n}, Statusi

in {nil} ∪ inputi(O) ∪ outputi(O), and state in S.
– Initial states:

• S0 ⊆ S

• Statusi = nil, for each i in {1, . . . , n}.
– Transition relation below:

Req(opj
i , x)

Effect:

Statusi := Req(opj
i , x)

Perform(opj
i (x))

Precondition:

Statusi = Req(opj
i , x)

state = s1

(x, s1, y, s2) ∈ spec(opj
i )

Effect:

Statusi := Ret(opj
i , y)

state := s2

Ret(opj
i , y)

Precondition:

Statusi = Ret(opj
i , y)

Effect:
Statusi := nil

4.3 A crash-omission version of the same object

This object captures the notion of a faulty version of the same object, which
suffers an instantaneous crash. Unlike the crash objects of [JCT92], this crash
introduces uncertainty into the behavior of operations that are concurrent with
the crash. Such operations may suffer omission faults. But all operations which
entirely follow the crash return crash, and have no impact on the object state
(or on other pending operations).

Add ⊥ to the state component S, and the following actions, for each i in
{1, . . . , n}, each operation opj

i ∈ OPi:

– internal action CRASH,
– internal action Perform(opj

i(crash)),
– output action Ret(opj

i ,⊥), and
– output action Ret(opj

i ,?).

The additional actions Ret(opj
i ,⊥) and Ret(opj

i ,?) are also added as possible
values of Statusi. The new actions indexed by i are added to the fairness set Fi.
An additional fairness set contains just CRASH.
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Req(opj
i , x)

Effect:

Statusi := Req(opj
i , x)

Perform(opj
i (x))

Precondition:

Statusi = Req(opj
i , x)

state = s1

(x, s1, y, s2) ∈ spec(opj
i )

Effect:

Statusi := Ret(opj
i , y)

state := s2

Ret(opj
i , y)

Precondition:

Statusi = Ret(opj
i , y)

Effect:
Statusi := nil

CRASH
Precondition:

state 6= ⊥
omit ⊆ {1, . . . , n}

Effect:
state := ⊥
∀k ∈ omit:

if (Statusk = Ret(opj
i , y)

or Statusk = Req(opj
i , x))

then Statusk := Ret(opj
i ,?)

Performopj
i(crash)

Precondition:

Statusi = Req(opj
i , x)

state = ⊥
Effect:

Statusi := Ret(opj
i ,⊥)

4.4 A crash-eventual version of the same object

This faulty object is superficially less benign than the crash-omission object.
Specifically, it suffers any number of omission failures before a final crash step.
Once it has crashed, however, it behaves like the crash-omission object. Hence,
where the crash-omission object suffers a single, instantaneous crash, the crash-
eventual object suffers any finite number of omission faults before finally crash-
ing.

As with the crash-omission object, ⊥ is added to the state component S.
The following actions, for each i in {1, . . . , n} and each operation opj

i ∈ OPi,
are added:

– internal action OMISSION,

– internal action CRASH,

– internal action Perform(opj
i(crash)),

– output action Ret(opj
i ,⊥), and

– output action Ret(opj
i ,?).

The additional actions Ret(opj
i ,⊥) and Ret(opj

i ,?) are also added as possible
values of Statusi. The new actions indexed by i are added to the fairness set Fi.
Two additional fairness sets contain just CRASH and OMISSION, respectively.
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Req(opj
i , x)

Effect:

Statusi := Req(opj
i , x)

Perform(opj
i (x))

Precondition:

Statusi = Req(opj
i , x)

state = s1

(x, s1, y, s2) ∈ spec(opj
i )

Effect:

Statusi := Ret(opj
i , y)

state := s2

Ret(opj
i , y)

Precondition:

Statusi = Ret(opj
i , y)

Effect:
Statusi := nil

OMISSION
Precondition:

state 6= ⊥
omit ⊆ {1, . . . , n}

Effect:
∀k ∈ omit:

if (Statusk = Ret(opj
i ,y)

or Statusk = Req(opj
i ,x))

then Statusk := Ret(opj
i ,?)

CRASH
Precondition:

state 6= ⊥
Effect:

state := ⊥
Perform(opj

i(crash))
Precondition:

Statusi = Req(opj
i , x)

state = ⊥
Effect:

Statusi := Ret(opj
i ,⊥)

4.5 Safe registers

We specify safe registers [Lam86], and define faulty safe registers. However, since
these objects are not atomic, the simple paradigm for atomic objects will not
work. Below is the specification of single-writer/single-reader safe registers, with
process 1 the writer and 2 the reader. The only thing that distinguishes this
from the atomic specifications above is the Perform(read2) action, which allows
any read operation that is concurrent with a write to return arbitrary values.
Safe registers which fail by crash-omission and crash-eventual can be defined by
transforming this automaton exactly as with the atomic case.

Req(write1,x)
Effect:

Status1 := Req(write1,x)

Perform(write1(x))
Precondition:

Status1 = Req(write1,x)
Effect:

Status1 := Ret(read1, x)
state := x

Ret(write1,x)
Precondition:

Status1 = Ret(write1,x)
Effect:

Status1 := nil

Req(read2)
Effect:

Status2 := Req(read2)

Perform(read2())
Precondition:

Status2 = Req(read2)
(state = y) or Status1 6= nil

Effect:
Status2 := Ret(read2,y)

Ret(read1, y)
Precondition:

Status2 = Ret(read2,y)
Effect:

Status2 := nil

This article was processed using the LATEX macro package with LLNCS style
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