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Abstract. Understanding the effect of different progress conditions on the com-
putability of distributed systems is an important and exciting research direction.
For a system with n processes, we define exponentially many new progress con-
ditions and explore their properties and strength. We cover all the known, sym-
metric and asymmetric, progress conditions and many new interesting conditions.
Together with our technical results, the new definitions provide a deeper under-
standing of synchronization and concurrency.
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1 Introduction

We define exponentially many new progress conditions and explore their properties
and relative strength. Our results regarding the computational structure of the new and
known, symmetric and asymmetric, progress conditions provide a deeper understand-
ing of synchronization and concurrency. Most of the known progress conditions can be
classified as either cooperation-based conditions or contention-based conditions. Coop-
eration arises when several processes need to coordinate their actions in order to achieve
a common goal. Contention arises when several processes compete for exclusive use of
shared resources, such as communication bandwidth, data items or files.

Fault-freedom, the weakest cooperation-based condition, guarantees that every pro-
cess will complete its pending operations provided that all the processes participate
and there are no failures. Obstruction-freedom, the weakest contention-based condi-
tion, guarantees that a process will be able to complete its pending operations in a finite
number of its own steps, if all the other processes “hold still” (i.e., do not take any steps)
long enough [11]. Wait-freedom, the strongest both contention-based and cooperation-
based progress condition, guarantees that every process will always be able to complete
its pending operations in a finite number of its own steps, regardless of the behavior
of the other processes [10]. While a consensus object can be implemented using only
atomic registers under either fault-freedom or obstruction-freedom, it can not be imple-
mented using registers under wait-freedom.

We start by proving two general impossibility results for symmetric progress con-
ditions, which have many interesting implications. For example, we show that objects
that satisfy cooperation-based progress conditions can be implemented from objects



that satisfy the corresponding contention-based conditions, but not vice versa. We es-
tablish a formal connection between symmetric and asymmetric progress conditions,
which enables us to apply the general impossibility results for proving new results also
for asymmetric progress conditions. For the special case where only atomic registers are
used, we give a complete characterization under which symmetric progress conditions
consensus is solvable, and prove impossibility results for the asymmetric case. Finally,
we prove a general universality result.

1.1 Exponentially many symmetric progress conditions

From now on we assume that the number of processes is n and n ≥ 2. A process is
active when it has pending operations, otherwise it is passive. For a set of processes P ,
let |P | denotes the size of P . For a given point in a computation, active.P is the number
of active processes in P . We use S to denote a non-empty set such that S ⊆ {1, ..., n}.

Definition. For any non-empty set S, the progress condition S-freedom guar-
antees that for every set of processes P , if at some point in a computation
active.P = |P | and |P | ∈ S, then every process in P will be able to eventu-
ally complete its pending operations, provided that (1) all the processes not in
P do not take steps for long enough; and (2) none of the processes in P fails
(which means that each of the processes in P will continue to take steps until
it becomes passive).

Let A be an algorithm for n processes that satisfies S-freedom for some set S. Further-
more, assume that for some number k, k ∈ S and k − 1 6∈ S. Assume that for a set of
processes P at some point in a computation of A, active.P = |P | = k, and that all the
processes not in P do not take any more steps. Since not all the processes in P become
passive at the same time eventually some process in P will become passive and once
this happens active.P = k − 1. It is important to notice, that although at this point
active.P = k−1 6∈ S, the definition of S-freedom guarantees that (because in the near
past all k processes were active) eventually every process in P will become passive.

It is possible to weaken the requirement that “every process in P will be able to
eventually complete its pending operations”, and only require that “some process in P
will be able to eventually complete its pending operations”. For one-shot objects (also
called tasks), like consensus, most of our results apply also in this case.

Since the number of non-empty subsets of {1, ..., n} is 2n − 1, there are 2n − 1
different progress conditions. They relate to known progress conditions as follows:
The condition {n}-freedom is the same as fault-freedom; {1}-freedom is the same as
obstruction-freedom; {1, ..., n}-freedom is the same as wait-freedom; {1, n}-freedom
is the progress condition which implies both obstruction-freedom and fault-freedom.
For 1 ≤ k ≤ n, {1, ..., k}-freedom is the same as k-obstruction-freedom. We call these
n conditions, contention-based progress conditions, since {1, ..., k}-freedom guaran-
tees progress under contention of at most k processes. For 0 ≤ t ≤ n−1, {n−t, ..., n}-
freedom is the same as t-resiliency. We call these n conditions, cooperation-based
progress conditions, since {n− t, ..., n}-freedom captures the ability to tolerate t faults.



Clearly, an object that satisfies T -freedom satisfies also S-freedom, for any S ⊂ T .
For any given set S, we say that S-freedom is a symmetric progress conditions in the
sense that a given process is not favored with respect to the others.

1.2 Asymmetric progress conditions

The notion of asymmetric progress conditions was coined and investigated in [13]. It is
motivated by the observation that some processes may be more important than others
and hence should get stronger progress guarantees. Thus, an asymmetric progress con-
dition specifics the progress guarantees for each process separately. One such progress
condition which is defined in [13], called (n, x)-liveness, satisfies wait-freedom for x
processes and satisfies obstruction-freedom for the remaining n− x processes.

In the literature, saying that an object is wait-free is the same as saying that each one
of the processes is wait-free w.r.t. that object. Although using the term wait-freedom in
two different ways may be confusing, it simplifies the discussion. Following this “tra-
dition”, we will say that an object is S-free iff each process is S-free w.r.t. that object.
Clearly, a process that is T -free is also S-free, for any S ⊂ T . Asymmetric progress
conditions can be practically motivated by modern multicore architectures where pro-
cesses in different cores might be provided with different progress guarantees.

1.3 Our contributions

A consensus object o supports one operation: o.propose(v) satisfying: (1) Agreement:
In any run, the o.propose() operation returns the same value, called the consensus
value, to every process that invokes it. (2) Validity: In any run, if the consensus value
is v, then some process invoked o.propose(v). When v ∈ {0, 1} the object is called a
binary consensus object. By a consensus object we mean a binary consensus object; and
by n-consensus we mean a multi-valued consensus object where v ∈ {0, 1, ..., n − 1}.
The term register means an atomic read/write register. A simple (but not obvious) ob-
servation is that, for two positive integers m and n, and a set S ⊆ {1, ..., min(m,n)},
it is not always possible to implement an S-free consensus object for n processes using
S-free consensus objects for m processes and registers. Our results are:

New Definitions. We define exponentially many progress conditions and investigate
their properties and relative strength. Together with the technical results, the new no-
tions provide a deeper understanding of synchronization and concurrency.

General impossibility results. Let S be a subset of {1, ..., n}, where n ≥ 2. |S| is
the number of elements in S, and max .S and min.S are the largest and the smallest
elements in S, respectively. The width of S, denoted width.S , is defined as follows:
width.S = 1 + max .S −min.S . We prove the following two impossibility results,

– For any set |S| ≥ 2, it is not possible to implement an S-free consensus object
for n processes using any number of wait-free consensus objects for width.S − 1
processes and registers.



– For any two sets S and T , and integer k, if |T | ≥ 2, k ∈ T , k 6∈ S and k ≤ width.T
then it is not possible to implement a T -free consensus object for n processes using
any number of S-free consensus objects for n processes and registers.

It follows from the results that: (1) for any 2 ≤ k ≤ n, it is not possible to implement a
{1, k}-free consensus object for k processes using any number of wait-free consensus
objects for n − 1 processes and registers; and (2) For any n > 2, it is not possible to
implement a wait-free consensus object for two processes using any number of {1, n}-
free consensus objects for n processes and registers.

Cooperation vs. contention. It follows from the above impossibility results that ob-
jects which satisfy cooperation-based progress conditions can not be used to imple-
ment objects which satisfy contention-based progress conditions. However, objects that
satisfy cooperation-based conditions can be implemented from objects that satisfy the
corresponding contention-based conditions. More formally,

– It is not possible to implement {1, 2}-free consensus object for n processes using
{2, ..., n}-free consensus objects for n processes and registers. However, for 2 ≤
k ≤ n, it is possible to implement an {n − k + 1, ..., n}-free consensus object for
n processes using {1, ..., k}-free consensus objects for n processes and registers.

This result is rather surprising, given the fact that while cooperation-based conditions
imply fault-freedom, contention-based conditions do not imply the fault-freedom.

Asymmetric progress conditions. We establish a connection between symmetric and
asymmetric conditions, which enables us to apply the general impossibility results for
proving new results also for asymmetric conditions. For example, we show that:

– For any two integers k1 and k2 such that 1 ≤ k1 < k2 ≤ n, it is not possible to
implement a consensus object for n processes that satisfies {k1, k2}-freedom for
n − k2 + 1 processes and satisfies {k1}-freedom for all the other processes, using
any number of wait-free consensus objects for k2 − k1 processes and registers.

Atomic registers. When only registers are used, we have a complete characterization
under which symmetric conditions consensus is solvable, and prove impossibility re-
sults for the asymmetric case. For the symmetric case, we show that:

– For any set S, it is possible to implement an S-free consensus object for n processes
using registers if and only if |S| = 1.

The results generalize the famous FLP result for the case of one faulty process [6, 18].

Universality. We generalize results regarding the universality of consensus from [10].
An object o is S-universal for n processes if any object which has sequential specifica-
tion has an S-free linearizable implementation using registers and objects of type o for
n processes. We prove that,

– For any positive integer n, and any non-empty set S ⊆ {1, ..., n}, an S-free con-
sensus object for n processes is S-universal for n processes.



The result implies that an object o is S-universal for n processes if and only if an S-
free consensus object for n processes can be implemented from objects of type o and
registers. The wait-free hierarchy [10], is an infinite hierarchy of objects, such that the
objects at level i are exactly those objects which are {1, ..., i}-universal for i processes,
but are not {1, ..., i + 1}-universal for i + 1 processes. We will explain, how to define
other interesting hierarchies.

1.4 Related work

The consensus problem was formally defined in [20]. The impossibility result that there
is no consensus algorithm that can tolerate even a single crash failure in an asyn-
chronous model was first proved for the message-passing model in [6], and later has
been extended for the shared memory model in which only atomic registers are sup-
ported, in [18]. A recent survey which covers many related impossibility results can be
found in [4]. The power of shared objects has been studied extensively in environments
where processes may fail benignly, and where every operation is wait-free. In [10], Her-
lihy classified objects by their consensus numbers and defined the wait-free hierarchy.
Additional results regarding the wait-free hierarchy can be found in [14, 16].

Objects that can be used, together with registers, to build wait-free implementa-
tions of any other object are called universal objects. Previous work provided methods,
called universal constructions, to transform sequential specifications of arbitrary shared
objects into wait-free concurrent implementations that use universal objects [10, 21].
In [21] it is proved that sticky bits are universal, and independently, in [10] it is proved
that wait-free consensus objects are universal. A bounded space version of the universal
construction from [10] appears in [15]. Linearizability is defined in [12].

Two extensively studied conditions are wait-freedom [10] and obstruction-freedom
[11]. It is shown in [11] that obstruction-free consensus is solvable using registers. Var-
ious contention management techniques have been proposed to improve obstruction-
freedom under contention [7, 22]. Other works investigated boosting obstruction-freedom
by making timing assumption [1, 5] and using failure detectors [8]. Wait-free consen-
sus algorithms that use registers in the absence of contention and revert to using strong
synchronization operations when contention occurs, are presented in [2, 17, 19].

The notion of asymmetric progress conditions was coined in [13], where the (n, x)-
liveness condition which guarantees wait-freedom for x processes and obstruction-
freedom for the remaining n − x processes, was defined. The following results are
proven in [13]: (1) It is not possible to implement an (n, 1)-live consensus object using
wait-free consensus objects for n − 1 processes and registers; (2) For 1 ≤ x < n − 1,
an (n, x)-live consensus object is strictly weaker than an (n, x + 1)-live consensus
object, thereby establishing a hierarchy for (n, x)-liveness; (3) It is not possible to im-
plement a consensus object for n processes which guarantees both fault-freedom and
obstruction-freedom for one process and only obstruction-freedom for the remaining
n−1 processes, using wait-free consensus objects for n−1 processes and registers; (4)
It is possible to implement a consensus object for n ≥ x processes that satisfies a con-
dition called asymmetric group-based progress condition using (x, x)-live consensus
objects and registers.



The notion of k-obstruction-freedom is presented in [24], as part of a transformation
that is used to fuse objects which avoid locking and locks together in order to create new
types of shared objects. In [25], a new classification for evaluating the strength of shared
objects is proposed. The classification is based on finding, for each object of type o, the
largest k for which it is possible to solve consensus for any number processes, using any
number of objects of type o and registers, assuming that the required progress condition
is k-obstruction-freedom. The main technical result in [25] is that the new classification
is equivalent to Herlihy’s traditional classification.

Although progress conditions and adversaries are two seemingly different notions,
they are actually closely related. In [3], a precise way is presented to characterize ad-
versaries by introducing the notion of disagreement power: the biggest integer k for
which the adversary can prevent processes from agreeing on k values when using reg-
isters only; and it is shown how to compute the disagreement power of an adversary.
Our formalism for expressing progress conditions is not expressive enough to express
all the adversaries considered in [3], and vice versa. In the last section, we generalize
our formalism to express both.

2 Preliminaries

Our model of computation consists of an asynchronous collection of n processes that
communicate via shared objects. An event corresponds to an atomic step performed by a
process. For example, the events which correspond to accessing registers are classified
into two types: read events which may not change the state of the register, and write
events which update the state of a register but does not return a value. We use the
notation ep to denote an instance of an arbitrary event at a process p.

A run is a pair (f, R) where f is a function which assigns initial states (values) to
the objects and R is a finite or infinite sequence of events. An implementation of an
object from a set of other objects, consists of a non-empty set C of runs, a set N of
processes, and a set of shared objects O. For any event ep at a process p in any run in
C, the object accessed in ep must be in O. Let x = (f, R) and x′ = (f ′, R′) be runs.
Run x′ is a prefix of x (and x is an extension of x′), denoted x′ ≤ x, if R′ is a prefix of
R and f = f ′. When x′ ≤ x, (x−x′) denotes the suffix of R obtained by removing R′

from R. Let R;T be the sequence obtained by concatenating the finite sequence R and
the sequence T . Then x; T is an abbreviation for (f, R;T ).

Process p is enabled at run x if there exists an event ep such that x; ep is a run.
For simplicity, we write xp to denote either x; ep when p is enabled in x, or x when p
is not enabled in x. Register r is a local register of p if only p can access r. For any
sequence R, let Rp be the subsequence of R containing all events in R which involve
p. Runs (f, R) and (f ′, R′) are indistinguishable for a set of processes P , denoted by
(f, R)[P ](f ′, R′), iff for all p ∈ P , Rp = R′p and f(r) = f ′(r) for every local register
r of p. When P = {p} we write [p] instead of [P ]. It is assumed that the processes are
deterministic, that is, if x; ep and x; e′p are runs then ep = e′p.

The runs of an asynchronous implementation of an object must satisfy several prop-
erties. For example, if a write event which involves p is enabled at run x, then the same



event is enabled at any finite run that is indistinguishable to p from x. In the following
proofs, we will implicitly make use of few such straightforward properties.

3 Impossibility results

We use S and T to denote non-empty sets which are subsets of {1, ..., n}; |S| is the
number of elements in S, and max .S and min.S are the largest and the smallest el-
ements in S, respectively. The width of S, denoted width.S , is defined as follows:
width.S = 1 + max .S −min.S . Thus, the width of the set {1, ..., n} is n. We notice
that it is always the case that width.S ≥ |S|.
Theorem 1. For any set |S| ≥ 2, it is not possible to implement an S-free consensus
object for n processes using any number of wait-free consensus objects for width.S −1
processes and registers.

It follows immediately from Theorem 1 that for any 2 ≤ k ≤ n, it is not possible to
implement a {1, k}-free consensus object for n processes using any number of wait-free
consensus objects for k − 1 processes and registers.

We point out that it follows from a result in [25] that, when 1 ∈ |S|, it is possible
to implement an S-free consensus object for n processes using wait-free consensus
objects for width.S (which in this case equals max .S ) processes and registers. Next we
consider the relative strength of different condition for the same number of processes.

Theorem 2. For any two sets S and T , and integer k, if |T | ≥ 2, k ∈ T , k 6∈ S
and k ≤ width.T then it is not possible to implement a T -free consensus object for n
processes using any number of S-free consensus objects for n processes and registers.

It follows from Theorem 2 that: For any n > 2, it is not possible to implement a wait-
free consensus object for two processes using any number of {1, n}-free consensus
objects for n processes and registers. Next we prove the theorems.

3.1 A detailed proof

The proofs of Theorem 1 and Theorem 2 use the following notions, abbreviations, and
lemmas. Let N be the set of all n processes, and let P ⊆ N . A finite run x is (P, v)-
valent if in all extensions of x, by processes in P only, where a decision is made,
the decision value is v (v ∈ {0, 1}). A run is P -univalent if it is either (P, 0)-valent
or (P, 1)-valent, otherwise it is P -bivalent. We say that two P -univalent runs are P -
compatible if they have the same valency, that is, either both runs are (P, 0)-valent or
both are (P, 1)-valent. Finally, we say that process p ∈ P is a P -decider at run x if for
every extension y of x by steps of processes from P only (i.e. x[N − P ]y), the run yp
is P -univalent. Recall that we assume that S ⊆ {1, ..., n}.

Lemma 1. Let |S| ≥ 2, and let P be a set of processes such that |P | = max .S . Then,
for every p ∈ P , there is at least one subset of P , denoted p.SP , of size min.S which
does not include p.



Proof. From the fact that |S| ≥ 2, it follows that min.S < max .S . Thus, min.S ≤
|P − {p}|, and hence any subset of P − {p} of size min.S will do. ut
Lemma 2. For a set S and non-empty sets of processes P and Q such that |P | ∈ S,
|Q| ∈ S and Q ⊆ P , in any S-free consensus object, if two P -univalent runs are
indistinguishable for Q and the state of all the objects that (processes in) Q can access
are the same at these runs, then these runs must be P -compatible.

Proof. Let w and y be P -univalent runs such that w[Q]y, and the state of all the objects
(local and shared) that processes in Q can access are the same at w and y. (See Figure 1.)
Let w be (P, v)-valent, for v ∈ {0, 1}. Then by the definition of S-freedom, there is
an extension x of w by events of Q only in which some process p ∈ Q decide v (i.e.,
p writes v to its output register). Clearly z = y; (x − w) is also a run of the algorithm
such that z[Q]x. Since p writes v to its output register in z, z is (P, v)-valent. Hence,
since y ≤ z, y must also be (P, v)-valent. ut

w

x

events by 
Q only

y

z

x - w

w[Q]y

x[Q]z

|Q|∈ S (P,v)-valent

(P,v)-valent
p decides 
on v

Fig. 1. Illustration of runs in the proof of Lemma 2.

Lemma 3. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . Then,
every S-free consensus object has a P -bivalent empty run.

Proof. We show that a P -bivalent empty run must exist. Assume to the contrary that
every empty run is P -univalent. The empty run with all 0 inputs must be (P, 0)-valent,
and similarly the empty run with all 1 inputs must be (P, 1)-valent. Let Q ⊂ P be a
set of processes such that |Q| = min.S . By Lemma 2, all the empty runs with all 0
inputs, except for the input of one process in P − Q, are (P, 0)-valent, and similarly
all the empty runs with all 1 inputs, except for the input of one process in P − Q, are
(P, 1)-valent. By repeatedly applying this argument i ≤ max .S/2 times (each time
choosing a new Q ⊂ P of size min.S for which the inputs do not change), we get that,
all the empty runs with all but i 0 inputs for i processes in P are (P, 0)-valent, and
similarly all the empty runs with all but i 1 inputs for i processes in P are (P, 1)-valent.
Thus, when i is max .S/2, we get that there are two empty runs x0 and x1 that for some
p ∈ P , differ at the input value of p, and agree on the input values of all the processes in
P −{p}, such that x0 is (P, 0)-valent and x1 is (P, 1)-valent. However, this contradicts
Lemma 2, when applied to x0 and x1 and a set Q ⊆ P −{p} of size min.S . Hence, an
empty P -bivalent run exists. ut



Lemma 4. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . Let
y be a run of an S-free consensus object, and let p ∈ P and q ∈ P be two different
processes such that (1) y 6= yp and y 6= yq, (2) the runs yp and yqp are P -univalent
and not P -compatible. Then, in their two next events from y, p and q are accessing the
same object, and this object is not a register.

Proof. We first consider the following three possible cases, and show that each one of
them leads to a contradiction. (See Figure 2.) We will assume that in the last event in
yp process p is accessing some object, say o, and in the last event in yq process q is
accessing some object, say o′. Recall, that by Lemma 1, for every process p ∈ P , there
is at least one subset of P , denoted p.SP , of size min.S which does not include p.

y

yqpypq

yqyp

(a)

ypq [N] yqp

accessing
object o

accessing
object o'

o = o'

y

yqp

yqyp

(b)

yp [q.SP] yqp

o = o'

write

y

yqpypq

yqyp

(c)

ypq [p.SP] yqp

read

write read

Fig. 2. Illustration of runs in the proof of Lemma 4.

Case 1: o 6= o′. (See Figure 2(a).) Since the two next events from y of p and q
are independent, ypq[p.SP ]yqp and the values of all objects are the same in both ypq
and yqp. (Actually, ypq[N ]yqp where N is the set of all the n processes.) Since ypq
is an extension of yp and yp is P -univalent, it follows that also ypq is P -univalent. By
Lemma 2, ypq and yqp are P -compatible; and thus, since ypq is an extension of yp, it
must be that yp and yqp are also P -compatible. A contradiction.

Case 2: o = o′ and in yp the last event is a write event by p to o. (See Figure 2(b).)
Since p writes to o in its next operation from y, the value of o must be the same in
yp and yqp. (Here we use the fact that the write by p overwrites the possible changes
of o made by q.) Hence, yp[q.SP ]yqp and the values of all the objects, which are not
local to q, are the same in yp and yqp. By Lemma 2, yp and yqp are P -compatible. A
contradiction.

Case 3: In yp the last event is a read event by p. (See Figure 2(c).) Thus, ypq[p.SP ]yqp,
and the values of all the objects, which are not local to p, are the same in both ypq and
yqp. By Lemma 2, ypq and yqp are P -compatible. Since ypq is an extension of yp, it
must be that yp and yqp are also P -compatible. A contradiction.

Thus, it must be the case that o = o′ and o is not a register. ut



Lemma 5. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . For
every S-free consensus object there is a P -bivalent run x and process p ∈ P such that
p is a P -decider at x.

Proof. Let Cons be an arbitrary S-free consensus object. We assume w.l.o.g. that the
processes in P are named p0, ..., p|P |−1. By P we denote the set of all processes ex-
cluding the processes in P . By Lemma 3, Cons has an empty P -bivalent run x0. We
begin with x0 and pursue the following round-robin P -bivalence-preserving scheduling
discipline:

1 x := x0; Q := ∅; i := 0 /* initialization */
2 repeat
3 if x has a P -bivalent extension ypi where x[P ]y /* involves pi */
4 then x := ypi /* P-bivalent extension of x */
5 else Q := pi /* no such P-bivalent extension */
6 i := i + 1(mod |P |) /* round-robin */
7 until |Q| = 1.

Since Cons satisfies S-freedom and |P | ∈ S, by definition the above procedure must
terminate, and it will terminate with some P -bivalent finite run x, and a singleton set
Q = {p} for some process p, such that p is a P -decider at x. ut
Lemma 6. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . Every
S-free consensus object has a P -bivalent run y and two processes p ∈ P and q ∈ P
such that: (1) p is a P -decider at y; (2) the runs yp and yqp are P -univalent and not
P -compatible; and (3) in their two next events from y, p and q are accessing the same
object, and this object is not a register.

Proof. Let Cons be an arbitrary S-free consensus. By Lemma 5, there is a process
p ∈ P and a P -bivalent run x of Cons such that p is a P -decider at x.

Let v = 1 − v. Suppose that the run xp is (P, v)-valent. Since x is P -bivalent,
there is a (shortest) extension z of x, by event of processes in P only, which is (P, v)-
valent. (See Figure 3(a).) Let z′ be the longest prefix of z such that x[p]z′. There are two
possible cases: either (1) z′ is P -univalent, in which case z′ = z, or (2) z′ is P -bivalent,
in which case z′p = z. In both these cases, from the assumption that z is (P, v)-valent,
it follows that z′p is (P, v)-valent. (See Figure 3(b).)

Consider the extensions of x which are also prefixes of z′. Since x[p]z′ and z′ − x
involves only events by processes in P − {p}, it follows that for every y such that
x ≤ y ≤ z′, y 6= yp. Since xp and z′p are not P -compatible, there must exist different
runs y and yq such that (1) x ≤ y < yq ≤ z′, and p 6= q; (2) yp and yqp are P -univalent
but not P -compatible, and (3) by Lemma 4, in their two next events from y, p and q are
accessing the same object, and this object is not a register. (See Figure 3(c).) ut
Lemma 7. Let |S| ≥ 2 and let P be a set of processes such that |P | = max .S . Every
S-free consensus object has a P -bivalent run y, a set Q ⊆ P of size width.S , and two
processes p ∈ Q and q ∈ Q such that: (1) p is a P -decider at y; (2) the runs yp and
yqp are P -univalent and not P -compatible; and (3) in their next events from y, all the
width.S processes in Q, are accessing the same object, and this object is not a register.
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Fig. 3. Illustration of runs in the proof of Lemma 6.

Proof. The proof is by induction on the number of processes k, where 2 ≤ k ≤
width.S . The base of the induction follows directly from Lemma 6. We assume that
the theorem holds for k < width.S processes and prove for k + 1.

Induction hypothesis: Every S-free consensus object for n processes has a P -
bivalent run x and two processes p ∈ P and q ∈ P such that: (1) p is a
P -decider at x; (2) the runs xp and xqp are P -univalent and not P -compatible;
and (3) in their next events from x, k < width.S processes, including p and
q, are accessing the same object, and this object is not a register. We denote
by Q the set of these k processes, and assume that p and q are in Q. Since
|Q| < width.S , |P | − |Q| ≥ min.S .

Induction step. Let x be the run mentioned in the induction hypothesis, and let R be a
set of processes such that R ⊆ P −Q and |R| = min.S . To prove that the claim hold
for k + 1 processes, we will show that there is a P -bivalent extension y of x by steps
of processes from R only such (1) p is a P -decider at y; (2) the runs yp and yqp are
P -univalent and not P -compatible; and (3) there is a process r ∈ R, such that in their
next events from y, the k+1 processes in Q ∪ {r} are accessing the same object, say o,
and this object is not a register.

Let v = 1 − v. Suppose that the run xp is (P, v)-valent and the run xqp is (P, v)-
valent. Since x is P -bivalent and |R| ∈ S, there is a (shortest) extension z of x by steps
of processes in R only which is P -univalent. (See Figure 4(a).) We first prove that in
at least one of the events in (z − x) some process in R is accessing o. Assume to the
contrary that none of the events in (z−x) involves accessing o (and recall that N is the
set of all the processes). In such a case, since in their two next events from x, p and q
are accessing o, we get that:

1. xp; (z − x)[N ]zp and the state of all the objects in xp; (z − x) and zp are the
same. Since xp; (z − x) is an extension of xp by steps of processes in P only, it
follows from the fact that xp is (P, v)-valent, that also xp; (z − x) is (P, v)-valent.
Since z is P -univalent, also zp is P -univalent. By Lemma 2, xp; (z−x) and zp are
P -compatible, and hence zp is (P, v)-valent. (See Figure 4(b).)
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2. xqp; (z − x)[N ]zqp and the state of all the objects in xqp; (z − x) and zqp are the
same. Since xqp; (z − x) is an extension of xqp by steps of processes in P only, it
follows from the fact that xqp is (P, v)-valent, that also xp; (z−x) is (P, v)-valent.
Since z is P -univalent, also zqp is P -univalent. By Lemma 2, xqp; (z−x) and zqp
are P -compatible, and hence zqp is (P, v)-valent. (See Figure 4(c).)

Thus, zp and zqp are not P -compatible. But this is not possible given that zp and zqp
are extensions of the P -univalent run z. A contradiction. Hence, at least one of the
events in (z − x) access o.

Let process r ∈ R, be the first process to access o in (z − x), and let y ≥ x be the
longest prefix of z such none of the events in (y− x) access o. (See Figure 5(a).) Since
yr ≤ z, y is P -bivalent. Furthermore, in its next events from y, process r is accessing
o, and also in their next events from y, the k processes in Q are accessing o. Since in
their two next events from x, p and q are accessing o and in (y − x) no process in R is
accessing o, we get that:

1. xp; (y−x)[N ]yp and the state of all the objects in xp; (y−x) and yp are the same.
Since xp; (y − x) is an extension of xp by steps of processes in P only, it follows
from the fact that xp is (P, v)-valent, that also xp; (y − x) is (P, v)-valent. Since p
is a P -decider at x, clearly yp is P -univalent. By Lemma 2, xp; (y− x) and yp are
P -compatible, and hence yp is (P, v)-valent. (See Figure 5(b).)

2. xqp; (y − x)[N ]yqp and the state of all the objects in xqp; (y − x) and yqp are the
same. Since xqp; (y − x) is an extension of xqp by steps of processes in P only, it
follows from the fact that xqp is (P, v)-valent, that also xp; (y−x) is (P, v)-valent.
Since p is a P -decider at x, clearly yqp is P -univalent. By Lemma 2, xqp; (y − x)
and yqp are P -compatible, and hence yqp is (P, v)-valent. (See Figure 5(b).)



Thus, as required, yp and yqp are P -univalent but not P -compatible. Finally, since p is
a P -decider at x, and y is an extension of x by event of processes in R ⊂ P only, p is
also a P -decider at y. ut
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Fig. 5. Additional illustration of runs in the proof of Lemma 7.

Proof of Theorem 1. It follows from Lemma 7 that every implementation of an S-free
consensus object for n processes, must use an object, say o, which at least width.S
processes must be able to access at the same run, and o is not a register. Thus, it is not
possible to implement an S-free consensus object for n processes using any number of
wait-free consensus objects for width.S − 1 processes and registers. ut
Proof of Theorem 2. Assume to the contrary that there is such an implementation of a
T -free consensus object for n processes from S-free consensus objects for n processes
and registers. Let P be a set of processes such that |P | = max .T . It follows from
Lemma 7 that such an implementation has a P -bivalent run y, a set Q ⊆ P of size
width.T , and two processes p ∈ Q and q ∈ Q such that: (1) p is a P -decider at y; (2)
the runs yp and yqp are P -univalent and not P -compatible; and (3) in their next events
from y, all the width.S processes in Q, are accessing the same object, say o, and this
object is not a register. Thus, it must be the case that o is an S-free consensus object.

Assume that at the end of y, just before the width.T processes access o, n − k
processes fail and the remaining k active processes, including p and q, are about to
access o. Since there are only k active processes and k ∈ T , the implementation of a
T -free consensus object must guarantee that these k processes will eventually properly
terminate. However, since k 6∈ S, the S-free consensus object o does not guarantee that
any of the remaining k active processes will ever get a response from o. Assume none
of the k processes ever gets a response for o. Although the k processes may continue to
take steps, because yp and yqp are P -univalent and not P -compatible, the final decision
value (of the T -free consensus object) depends on getting a response from o. Without a
response from o, it is not possible to determine whether the prefix of the current run is
yp or yqp. Thus, the k processes will never be able to terminate. A contradiction. ut



4 Cooperation vs. contention

It follows from the impossibility results that objects which satisfy cooperation-based
progress conditions can not implement objects which satisfy contention-based progress
conditions. More formally,

Theorem 3. It is not possible to implement {1, 2}-free consensus object for n processes
using {2, ..., n}-free consensus objects for n processes and registers.

Proof. Let T be the set {1, 2}, and k = 1. Then, (1) |T | ≥ 2, (2) k ∈ T , (3) k 6∈
{2, ..., n}, and (4) k ≤ width.T . Thus, the result follows from Theorem 2. ut
Next we show that objects that satisfy cooperation-based conditions can be imple-
mented from objects that satisfy the corresponding contention-based conditions.

Theorem 4. For 2 ≤ k ≤ n, it is possible to implement an {n − k + 1, ..., n}-free
consensus object for n processes using {1, ..., k}-free consensus objects for n processes
and registers.

To prove theorem 4, we first generalize a known result for wait-freedom, namely, that
multi-valued consensus can be implemented from binary consensus ([23], page 329).

Lemma 8. For any k ≥ 2, n ≥ 2 and S ⊆ {1, ..., n}, an S-free k-consensus object for
n processes can be implemented from S-free binary consensus objects for n processes
and atomic bits.

Proof. To implement a single k-consensus object, we use dlog ke binary consensus
objects, which are numbered 0 through dlog ke − 1, and k bits which are numbered 0
through k − 1 and are initialized to 0. To propose a value v ∈ {0, ..., k − 1}, p does
the following: (1) it sets the bit number v to 1; (2) it proposes the binary encoding of v,
bit by bit, to the binary consensus objects in an increasing order starting from number
0. If at some point during the second step the bit p has proposed is not accepted as
the consensus value at the corresponding binary consensus object, p stops proposing v,
scan the bits and chooses one of the bits that are set to 1, say v′, which also matches
the values that has successfully proposed so far and continues to propose the value v′.
This procedure continues until p proposes, to all the dlog ke binary consensus objects.
The value that its binary encoding was successfully proposed to all the dlog ke binary
consensus objects is the final consensus value. ut
Proof of Theorem 4: Build a tree of degree k with dn/ke leaves, and where each node
of the tree is a {1, ..., k}-free k-consensus object. Each participating process is pro-
gressing from a leaf to the root, where at each level of the tree it accesses a k-consensus
object, competing against at most k − 1 processes in its neighbor’s subtree. As a pro-
cess advances towards the root, it plays the role of process 0 (i.e., proposes 0) when it
arrives from the left most subtree, of process k − 1 when it arrives from the right most
subtree, or of process 0 ≤ i ≤ k−1 when it arrives from the i’th subtree. The winner at
each node is the process its value is being agreed upon. Only a winner at a given node
continues to progress towards the root. The value agreed at the root is the final decision



value. Each of the processes that accesses the root writes the final decision value at a
special register called decision, and decides on that value. Each process that loses at
some node other than the root, spins on the decision register until a value is written into
it and decides on that value. ut

5 Asymmetric progress conditions

As already mentioned, the notion of asymmetric progress conditions was coined and in-
vestigated in [13]. Let APC be an Asymmetric Progress Condition; we define max.APC,
min.APC and width.APC as follows,

– max.APC is the largest 1 ≤ k ≤ n such that (at least) n − k + 1 processes are
{k}-free, or 0 if no such k exists.

– min.APC is the smallest 1 ≤ k ≤ n such that every process is {k}-free, or 0 if no
such k exists.

– width.APC equals 1+max .APC −min.APC if min.APC 6= 0, or 0 otherwise.

Thus, for the asymmetric progress condition (n, 1)-liveness (as defined in [13]), max .(n, 1)-
liveness = n, min.(n, 1)-liveness = 1 and width.(n, 1)-liveness = n.

Lemma 9. Let O be a consensus object for n processes that satisfies an asymmetric
progress condition APC such that min.APC ≥ 1. Using O and a single register it is
possible to implement a consensus object for n processes that satisfies the symmetric
progress condition (min.APC, max.APC)-freedom.

Proof. Let decision be a register which is initially set to −1. Each process tries to
reach a decision by accessing O. A process that reaches a decision writes the decision
value into decision and terminates. Each process infinitely often reads decision, and
if the value read is different from −1, it decides on that value and terminates. Since
every subset of max.APC processes includes at least one {max .APC}-free process, this
implementation clearly satisfies (min.APC, max.APC)-freedom. Another way to view
this implementation is: once O returns a value to some processes, it keeps this value in
an internal private register, and thereafter returns it immediately to every process that
accesses it. ut
Lemma 10. Let APC be a an asymmetric progress condition such that 1 ≤ min.APC <
max .APC ≤ n, and let P be a set of processes such that |P | = max .APC . Every con-
sensus object for n processes that satisfies APC has a P -bivalent run y, a set Q ⊆ P of
size width.APC , and two processes p ∈ Q and q ∈ Q such that: (1) p is a P -decider
at y; (2) the runs yp and yqp are P -univalent and not P -compatible; and (3) in their
next events from y, all the width.APC processes in Q, are accessing the same object,
and this object is not a register.

Proof. Assume to the contrary that O is a consensus object for n processes that sat-
isfies APC, and O does not have a run y with all the three properties as mentioned in
Lemma 10. By Lemma 9, using O and a single register it is possible to implement a
consensus objects O′ for n processes that satisfies the symmetric progress condition
(min.APC, max.APC)-freedom. Thus, also O′ does not have such a a run y. However,
this contradicts Lemma 7. ut



Theorem 5. For any asymmetric progress condition APC such that 1 ≤ min.APC <
max .APC ≤ n, it is not possible to implement a consensus object for n processes
that satisfies APC using any number of wait-free consensus objects for width.APC −1
processes and registers.

Proof. The proof is similar to that of Theorem 1. It follows from Lemma 10 that every
implementation of a consensus object for n processes that satisfies APC, must use an
object, say o, which at least width.APC processes must be able to access at the same
run, and o is not a register. Thus, it is not possible to implement a consensus object
for n processes that satisfies APC using any number of wait-free consensus objects for
width.APC − 1 processes and registers. ut

It is proven in [13] that it is not possible to implement an (n, 1)-live consensus
object using any number of wait-free consensus objects for n−1 processes and registers;
and that this result holds even when the requirement that one process should be wait-
free is replaced with the much weaker requirement that one process is {1, n}-free. These
important results are special cases of the following corollary of Theorem 5.

Corollary 1. For any two positive integers k1 and k2 such that 1 ≤ k1 < k2 ≤ n, it
is not possible to implement a consensus object for n processes, that satisfies {k1, k2}-
freedom for n−k2 +1 processes and satisfies {k1}-freedom for all the other processes,
using any number of wait-free consensus objects for k2 − k1 processes and registers.

Another interesting result from [13] is that: For 1 ≤ x < n − 1, an (n, x)-live
consensus object is strictly weaker than an (n, x + 1)-live consensus object, thereby
establishing a hierarchy for (n, x)-liveness. Using Lemma 10 it is possible to slightly
generalize this result.

6 Atomic registers

For the case where only registers are used, we present a complete characterization under
which symmetric progress conditions consensus is solvable, and prove impossibility
results for the asymmetric case.

Theorem 6.

– For any set S, it is possible to implement an S-free consensus object for n processes
using registers if and only if |S| = 1.

– For any asymmetric progress condition APC, it is not possible to implement a con-
sensus object for n processes that satisfies APC using registers if width.APC > 1.

Proof. It follows from Theorem 1 that it is not possible to implement an S-free con-
sensus object for n processes using registers if |S| ≥ 2, and it follows from Theorem 5
that it is not possible to implement a consensus object for n processes that satisfies APC
using registers if width.APC > 1.

Next, we show that for any integer 1 ≤ k ≤ n, it is possible to implement a {k}-free
consensus object for n processes using registers. The algorithm (i.e., implementation)



proceeds in rounds. The notion of a round is used only for the sake of describing the al-
gorithm. We do not assume a synchronous model of execution in which all the processes
are always executing the same round.

Each process has a preference for the decision value in each round; initially this
preference is the input value of the process. If no decision is made in a round then the
processes advance to the next round, and try again to reach agreement.

IMPLEMENTING {k}-FREE CONSENSUS FOR n PROCESSES USING REGISTERS (WHERE k ∈
{1, ..., n}): program for process pi with input ini (where ini ∈ {0, 1} and
i ∈ {1, ..., n}).

shared registers
x[0..∞, 0..1] infinite array of bits, initially x[0, 0] = x[0, 1] = 1 and all other entries are 0
flag [1..∞, 1..n] infinite array of bits, initially all entries are 0
decide ranges over {⊥, 0, 1}, initially ⊥

local registers
ri integer, initially 1
vi bit, initially ini ; li,counti integers, initial values are immaterial

1 while decide =⊥ do
2 if x[ri, 0] = 0 and x[ri, 1] = 0 then x[ri, vi] := 1 fi /* preferred value */
3 flag [ri, i] := 1 /* signal participation */
4 if x[ri − 1, 1− vi] = 0 then decide := vi /* no conflict in ri − 1 */
5 else repeat /* k-barrier */
6 counti = 0 /* initialize local counter */
7 for li = 1 to n do if flag[ri, li] = 1 then counti := counti + 1 fi od
8 until (counti ≥ k) /* at least k participate */
9 if x[ri, 0] = 1 then vi := 0 else vi := 1 fi /* value for ri + 1 */
10 fi
11 ri := ri + 1
12 od
13 decide(decide)

In round r ≥ 1, process pi first checks if the bit of its preference vi and of the opposite
value 1 − vi are set. If both bits are not set, pi sets its preference bit vi by writing 1
to x[r, vi] (line 2). Then, pi sets its participation bit by writing 1 to flag [ri, i] (line 3).
Next, pi reads the bit x[r − 1, 1 − vi]. If the bit x[r − 1, 1 − vi] is not set, then every
process that reaches round r with the conflicting preference 1 − vi will find that only
x[r, vi] is set to 1, will never set x[r, 1 − vi] to 1. Consequently, process pi can safely
decide on vi, and it writes vi to decide (line 4). Otherwise, waits until it notices that
at least k processes are participating in round r (lines 5–8). After that pi updates its
preference in an attempt to agree with the other processes (line 9). Then, pi proceeds to
round r + 1 (line 11).

If exactly k processes with possibly conflicting preferences participate in round r,
then they will reach line 9, only after all of them set their flags in line 3. This implies that
once some process reaches line 9, no process is at line 2, and hence all the k processes
will reach round r + 1 with the same preference which is the value chosen in line 9.



When all processes reach a round with the same preference, a decision is reached either
in that round or the next round. ut

7 Universality

In [10], the notion of universality is introduced in the context of wait-freedom. An object
o is (wait-free) universal for n processes if any object which has sequential specification
has a wait-free linearizable implementation using registers and objects of type o in a
system with n processes. Below we generalize the notion of wait-free universality.

Definition. An object o is S-universal for n processes if any object which
has sequential specification has an S-free linearizable implementation using
registers and objects of type o for n processes.

One of the important results proved in [10], is that wait-free consensus for n processes
is universal for n processes. Next we generalize this result.

Theorem 7. For any positive integer n, and any non-empty set S ⊆ {1, ..., n}, an S-
free consensus object for n processes is S-universal for n processes.

To prove the result, we present a universal construction that implements any S-free
object o for n processes from S-free consensus objects for S processes and registers.
The construction conceptually mimics the original construction for the wait-free model
from [10]. In Subsection 7.1 below, we give such a construction which is similar to the
one for the wait-free model from [23]. A similar type of a universality result (with a
similar proof) can be proved also for asymmetric progress conditions.

Corollary 2. For any object o, any positive integer n, and any non-empty set S ⊆
{1, ..., n}, o is S-universal for n processes if and only if an S-free consensus object for
n processes can be implemented from objects of type o and registers.

The wait-free hierarchy is an infinite hierarchy of objects, introduced in [10], such that
the objects at level i of the hierarchy are exactly those objects which are {1, ..., i}-
universal for i processes, but are not {1, ..., i + 1}-universal for i + 1 processes. For
that hierarchy, by the above definition, (1) no object at level less than i together with
registers can implement any object at level i; and (2) each object at level i together with
registers can implement any object at level i or at a lower level.

The wait-free hierarchy is meaningful because it can be defined using only the
(contention-based) progress conditions {1, ..., k}-freedom, for all k. In such a case,
there is a total order, based on the stronger than relation, between all these conditions.
Similar such hierarchies, in which there is a total order between the conditions, can be
naturally defined. For example, by using the cooperation-based progress conditions, the
cooperation hierarchy can be defined as follows: For a given system of n processes, the
objects at level i of the hierarchy are exactly those objects which are {n− i + 1, ..., n}-
universal for n processes, but are not {n− i, ..., n}-universal for n processes.



7.1 A universal construction

To prove Theorem 7, we present below a universal construction that implements any
S-free object o for n processes from S-free consensus objects for n processes and reg-
isters. The basic idea behind the construction is as follows: an object o is implemented
as a linked list which is represented as an unbounded array. The entries of the array
represent a sequence of invocations applied to the object. A process invokes an oper-
ation by threading a new invocation onto the end of the list. The current state of the
objects corresponds to applying the sequence of invocations to the object. We assume
any shared object, o, is specified by two relations:

apply ⊂ INVOKE× STATE× STATE,

and reply ⊂ INVOKE× STATE× RESPONSE,

where INVOKE is the object’s domain of invocations, STATE is its domain of states
(with a designated set of start states), and RESPONSE is its domain of responses.

1. The apply relation denotes a state change based on the pending invocation and the
current state. Invocations do not block: it is required that for every invocation and
current state there is a target state.

2. The reply relation determines the calculated response, based on the pending invo-
cation and the updated state. It is required that for any pair INVOKE×STATE there
is a target state and a response.

Let o be an an arbitrary S-free object which can be specified as described above. We
present a universal construction that implements o from S-free consensus objects and
registers.

In the actual implementation there are two principal data structures:

1. For each process i there is an unbounded array, Announce[i][1..∞], each element
of which is a cell which can hold a single invocation. The Announce[i][j] entry
describes the j-th invocation (operation name and arguments) by process i on o.

2. The object is represented as an unbounded array Sequence[1..∞] of process-id’s,
where for each positive integer k, Sequence[k] is a S-free n-consensus object. In-
tuitively, if Sequence[k] = i and Sequence[1], . . . , Sequence[k − 1] contains the
value i in exactly j − 1 positions, then the k-th invocation on o is described by
Announce[i][j]. In this case, we say that Announce[i][j] has been threaded.

The universal construction of any S–free object o is described below as the code process
i executes to implement an operation on o with invocation invoke. Since, by Lemma 8,
S-free n-consensus objects can be implemented from S-free binary consensus objects
and registers, we will use in the construction below only S-free n-consensus objects.
For simplicity, we will assume that the input values for an n-consensus object are taken
from the set {1, ..., n} (instead of {0, 1, ..., n− 1}).

In outline, the construction works as follows: process i first announces its next invo-
cation, and then threads unthreaded, announced invocations onto the end of Sequence.
It continues until it sees that its own operation has been threaded, computes a response,



and returns. To ensure that each announced invocation is eventually threaded, the cor-
rect processes first try to thread any announced, unthreaded cell of process ` into entry
Sequence[k], where ` = k (mod n) + 1. This “helping” technique guarantees that once
process ` announces an operation, at most n other operations can be threaded before the
operation of process ` is threaded.

A UNIVERSAL CONSTRUCTION:
program for process i ∈ {1, . . . , n} with invocation invoke

shared
Announce[1..n][1..∞] array of cells which range over INVOKE ∪ {⊥},

initially all cells are set to ⊥
Sequence[1..∞] array of S-free n-consensus objects

local to process i
MyNextAnnounce integer, initially 1 /* next vacant cell */
NextAnnounce[1..n] array of integers, initially 1

/* next operation */
CurrentState ∈ STATE, initially the initial state of o /* i’s view */
NextSeq integer, initially 1 /* next entry in Sequence */
Winner range over {1,. . . ,n} /* last process threaded */
` range over {1,. . . ,n} /* process to help */

/* write invoke to a vacant cell in Announce[i] */
1 Announce[i][MyNextAnnounce] := the invocation invoke
2 MyNextAnnounce := MyNextAnnounce + 1
3 while ((NextAnnounce[i] < MyNextAnnounce) do

/* continue until invoke is threaded */
/* each iteration threads one operation */

4 ` := NextSeq (mod n) + 1 /* select process to help */
5 while Announce[`][NextAnnounce[`]] = ⊥ /* valid? */
7 do
6 ` := ` + 1 /* not valid; help next process */
7 od
9 Winner := Sequence[NextSeq].propose(`) /* propose ` */

/* a new cell has been threaded by Winner */
/* update CurrentState */

10 CurrentState := apply(Announce[Winner][NextAnnounce[Winner]], CurrentState)
11 NextAnnounce[Winner] := NextAnnounce[Winner] + 1
12 NextSeq := NextSeq + 1
13 od
14 return(reply(invoke, CurrentState))

Process i keeps track of the first index of Announce[i] that is vacant in a variable denoted
MyNextAnnounce, and first writes the invocation into Announce[i][MyNextAnnounce],
and (line 2) increments MyNextAnnounce by 1. To keep track of which cells it has seen
threaded (including its own), process i keeps n counters in an array NextAnnounce[1..n],
where each NextAnnounce[j] is one plus the number of times i has read cells of j in
Sequence. Hence NextAnnounce[j] is the index of Announce[j] where i looks to find the
next operation announced by j. We notice that, having incremented MyNextAnnounce:



NextAnnounce[i] = MyNextAnnounce−1 until the current operation of process
i has been threaded.

This inequality is thus the condition (line 3) in the while loop (lines 3 – 13) in which
process i threads cells. Once process i’s invocation is threaded (and NextAnnounce[i]
= MyNextAnnounce), it exits the loop and returns the associated response value (line
14). Process i keeps an index NextSeq which points to the next entry in Sequence[1..∞]
whose element it has not yet accessed.

To thread cells, process i proposes (line 9) the id of process ` to the S-free consensus
object Sequence[NextSeq], and after a decision is made, records the consensus value for
Sequence[NextSeq] in the local variable Winner (line 9). The value in Sequence[NextSeq]
is the identity of the process whose cell has just been threaded. After choosing to help
process ` (line 4), process i checks that Announce[`][NextAnnounce[`]] contains a valid
operation invocation. As discussed above, process i gives preference (line 4) to a differ-
ent process for each cell in Sequence. Thus, all active processes will eventually agree to
give preference to any pending invocation, ensuring it will eventually be threaded.

Once process i knows the id of the process whose cell has just been threaded, as
recorded in Winner, it can update (line 10) its view of the object’s state with the winner
invocation, and increment its records of process Winner’s successfully threaded cells
(line 11) and the next unread cell in Sequence (line 12). Having successfully threaded a
cell, process i returns to the top of the while loop (line 3). Eventually, the invocation of
process i will be threaded and the condition at the while loop (line 3) will be false. At
this point, the value of the variable CurrentState is the state of the object after process
i’s invocation has been applied to the object. Based on this state, process i can return
the appropriate response. This completes the proof of Theorem 7. ut

8 Discussion

It is possible to extend the definitions of progress conditions in various ways. Below we
define two such new interesting extensions.

Definition. For any non-empty set S ⊆ {1, ..., n} and an integer 1 ≤ k ≤ n, the
progress condition (S, k)-freedom guarantees that for every set of processes P , if at
some point in a computation active.P = |P | and |P | ∈ S, then (at least) min{k, |P |}
processes in P will be able to eventually complete their pending operations, provided
that (1) all the processes not in P do not take steps for long enough; and (2) none of the
processes in P fails.

We notice that in a system of n processes, (S, n)-freedom is the same as S-freedom;
and ({1, ..., n}, 1)-freedom is the same as a known condition called non-blocking [12]
(sometimes also called lock-freedom).

Definition. Let W1, ..., Wn be sets of sets of process identifiers such P ∈ Wi only
if pi ∈ P . The progress condition (W1, ..., Wn)-freedom guarantees that for every set
of processes P and every process pi, if at some point in a computation active.P = |P |
and P ∈ Wi, then process pi will be able to eventually complete its pending operations,
provided that (1) all the processes not in P do not take steps for long enough; and (2)
none of the processes in P fails.



Each one of the adversaries considered in [3] corresponds to some (W1, ..., Wn)-
free progress condition, which has the following property: For every set P , if P ∈ Wi

and pj ∈ P then P ∈ Wj . We notice that satisfying this property, completely precludes
the ability to express the asymmetric progress conditions defined in the introduction.
That is, w.r.t. this definition, this property distinguishes between symmetric and asym-
metric progress conditions (adversaries).

Additional interesting questions are: exploring the complexity and computability
of problems like set-consensus, renaming, etc. under various new progress conditions;
exploring the relation to failure detectors, by possibly extending known results for wait-
freedom [9]; defining meaningful hierarchies; better understanding of the relations be-
tween different progress conditions; adding timing assumptions.

Known open problems, like the robustness of the wait-free hierarchy or whether
a queue object can be implemented from a set of test-and-set objects, fetch-and-add
objects, swap objects and atomic registers, for n ≥ 3, can now be studied in our more
general setting.

The study should not be limited to shared memory systems only. Consider for ex-
ample n senders that are trying to broadcast the same message to a single receiver, and
it is required that at least one of the senders succeeds to transmit, without collisions,
whenever an odd number of senders broadcast at the same time. This required progress
condition, and similar ones, that are sometimes expressed using the notion of a conflict
graph, can be easily formally expressed and studied within our general framework.
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