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Abstract. Time synchronization of video sequences in a multi-camera
system is necessary for successfully analyzing the acquired visual infor-
mation. Even if synchronization is established, its quality may deterio-
rate over time due to a variety of reasons, most notably frame dropping.
Consequently, synchronization must be actively maintained. This paper
presents a method for online synchronization that relies only on the video
sequences. We introduce a novel definition of low level temporal signals
computed from epipolar lines. The spatial matching of two such tem-
poral signals is given by the fundamental matrix. Thus, no pixel corre-
spondence is required, bypassing the problem of correspondence changes
in the presence of motion. The synchronization is determined from reg-
istration of the temporal signals. We consider general video data with
substantial movement in the scene, for which high level information may
be hard to extract from each individual camera (e.g., computing trajec-
tories in crowded scenes). Furthermore, a trivial correspondence between
the sequences is not assumed to exist. The method is online and can be
used to resynchronize video sequences every few seconds, with only a
small delay. Experiments on indoor and outdoor sequences demonstrate
the effectiveness of the method.

1 Introduction

Applications of multiple camera systems range from video surveillance of large
areas such as airports or shopping centers, to videography and filmmaking. As
more and more of these applications utilize the information obtained in the
overlapping fields of view of the cameras, precise camera synchronization and its
constant maintenance are indispensable. Given enough video time, however, syn-
chronization will be violated because of technical imperfections that cause frame
dropping or incorrect timing between sequences. The tendency to use mostly in-
expensive components makes such violations a certainty in many video systems.
Manual synchronization is out of the question, as it is labor-intensive and cannot
be performed constantly; thus, it cannot handle arbitrary frame-dropping. Pre-
cise time synchronization via satellite, as in GPS systems, may be too expensive
or limited in indoor environments. Using distributed protocols for clock syn-
chronization methods depends on the properties of the communication network
and is sensitive to communication failures. Obvious alternative sources of time
information are the video streams themselves, which often provide sufficient and
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reliable information for automatic synchronization. In this work we address the
problem of computing and maintaining the temporal synchronization between a
pair of video streams with the same frame rate, relying only on the video data.

Previous work

Synchronization can be achieved using visual information by correlating spatio-
temporal features or events viewed by two or more cameras. Several synchro-
nization methods considered moving cameras viewing a static scene [10,12] or
a scene with relatively little motion [8,6]. Our method considers static cameras
acquiring a moving scene. Previous attempts to synchronize such sequences can
be classified by the choice of features used for matching. The most straight-
forward approach is finding both spatial and temporal correspondence between
point features at frames taken in all possible time shifts between the two video
streams. Such approaches are vulnerable to correspondence ambiguities and re-
quire a large search space. A method for reducing the complexity of the search
was suggested in [1]. Higher level features that contain temporal information
also assist to reduce the matching ambiguity and the search complexity. Mo-
tion trajectories of features [9,14,12,26,11] or objects [13, 3] could be used to
this end. The computation of the trajectories and its quality strongly depend
on the scene and can often be hard to compute as in the video considered in
this paper. Since the motion of the objects may be 3D, matching the observed
2D trajectories in each sequence is ill posed. Several directions were considered
for overcoming this problem, for instance, assuming a homography between two
trajectories [2], or using a three-or-more camera system and 3D tensors [13, 6].
Another direction assumed an affine projection and used a linear combination
approach in order to avoid exact point correspondence [14, 11]. Highly discrim-
inative action recognition features were also proposed for synchronization [4].
Naturally, such high-level features are limited to scenes for which these actions
appear and can be detected.

In an effort to avoid complex computations such as tracking and action recog-
nition, an approach based on brightness variation over the entire image was sug-
gested in [2]. However, this method requires spatial alignment of the sequences,
and a homography transformation between the views must also be assumed.
Another approach suggested using statistics over low level space-time interest
points in each of the sequences [15]. This concept steers clear of computing
point-to-point, trajectory, or action correspondence. However, since the statis-
tics are computed over the entire image, the approach is strongly sensitive to the
overlapping regions of the two views, relative viewing angle, and the complexity
of the motion appearing in the scene. The limitations of these two approaches
motivate the solution suggested in this paper.

Proposed approach

We present a method for obtaining online time synchronization of a pair of video
sequences acquired by two static cameras, possibly in a wide-baseline setup. The
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fundamental matrix between each pair of sequences, which provides epipolar
line-to-line correspondence, is assumed to be known. (For example, it can be
computed directly from static corresponding features of the videos when there
is no motion in the scene.) This is the only spatial correspondence required by
our method. We consider sequences of general 3D scenes which contain a large
number of moving objects, focusing on sequences for which features or object
trajectories may be hard to compute due to occlusions and substantial movement
(see Fig. 2). Furthermore, trivial correspondence (e.g., homography) between the
sequences is not assumed. The temporal misalignment is considered to be only
a translation, i.e., the sequences have the same frame rate. Therefore, we do
not detect sub-frame time shifts, as we are correcting synchronization errors as
frame-drops.

Our method is based on matching temporal signals defined on epipolar lines
of each of the sequences. Hence, the spatial matching is given by the funda-
mental matrix. The temporal matching is performed using a probabilistic op-
timization framework; independent simultaneous motion occurring on different
epipolar lines improve our synchronization. Failure to find such a matching (de-
spite the observed motion in the scene) indicates that the epipolar geometry is
incorrect. The temporal signal is defined as an integration of the information
along an epipolar line, during a sufficient interval of time (at least 2 seconds). A
simple background subtraction algorithm is used as an input to the integration.
Integrating the information along epipolar lines rather than considering signals
at the pixel level not only avoids the search for correspondence but allows the
handling of general moving scenes. In a general scene, the correspondence be-
tween pixels at different time steps changes due to 3D motion of objects in space.
Therefore, the synchronization cannot rely on corresponding pixels.

The main contribution of this paper is the use of low level temporal events
along corresponding epipolar lines for video synchronization. Our method does
not require high level computation such as tracking, which may be hard to com-
pute in crowded scenes as the ones considered in our experiments. Furthermore,
we bypass the need to compute point-to-point correspondences between pixels
[5]. Finally, our method can be used in an online framework, because it detects
the synchronization errors (e.g., frame drops) in a matter of seconds, as they
occur in the video.

2 Method

Given a pair of color (or gray-level) sequences and a fundamental matrix, we
achieve synchronization by time registration of the temporal signals from the
two sequences. We first present our novel definition of temporal signals of a
sequence, followed by a probabilistic approach for registering two of them. The
summary of the algorithm flow is presented in Algorithms 1 and 2. The set of
epipolar lines in the two images together with their correspondence are computed
from the given fundamental matrix.
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2.1 A temporal signal

To define the temporal signals, we make unconventional use of epipolar geometry
of a pair of images. Given the fundamental matrix F' for a pair of images, a set
of epipolar lines £ = {¢,} and £ = {¢,} and their correspondence, £, < £,
are computed [5]. The correspondence of a given point p € /¢, is constrained
to lie on the epipolar line é; = Fp in its synchronized frame (the points and
the lines are given in homogeneous coordinates). Traditionally, this property is
used for constraining the correspondence search in stereo or motion algorithms.
Pixel correspondence is not guaranteed to remain the same over time due to
3D motion. However, two corresponding epipolar lines in both sequences will
continue to correspond. (The only possible exception is a major occlusion on
one of the views.) Using this observation, we define the signals on the entire
epipolar line, avoiding not only the problem caused by the change of pixels
correspondence over time but also the general challenge of computing spatial
correspondence between frames.

A background subtraction algorithm is used for defining the temporal sig-
nal of each sequence. The base of the motion signal is the Euclidean distance
between the data frame and the selected background frame for each pixel. For
each epipolar line, a motion indicator is taken to be the sum of these distances
of the line’s pixels. The temporal signal of an epipolar line, the line signal, is
defined to be the set of motion indicators on an epipolar line as a function of
time. Formally, let I(p,t) and B(p,t) be the intensity values of a pixel p € ¢,., in
some video frame and corresponding background frame!, respectively. The line
signal of that epipolar line, S,-(t), is defined to be the distance between the two
vectors:

Sr(t) = Zpee, [l1(t,p) — B¢, p)ll- (1)

The collection of line signals for all the epipolar lines in a video, is the
temporal signal of the video sequence. The temporal signals of two considered
sequences are represented by matrices S and S’ (Fig. 1), where each row r of
this matrix consists of a line signal, S,. That is, S, is the motion indicator of
an epipolar line ¢/r at a time step t. Only a few dozen epipolar lines from each
frame, a few pixels apart, are considered.

2.2 Signal Registration

In this section we present the time registration of a given pair of temporal sig-
nals of the video sequences. For robust results, and in order to combine informa-
tion from different line signals, the matching is determined using a probabilistic
framework, utilizing a maximum a posteriori estimation. The time shift is de-
tected by finding a maximum likelihood value for the two signals, with different
time shifts applied to the second signal. A sliding window in a predefined range
is used to determine At.

LB, (p,t) is a function of ¢, because in the general case an adaptive background sub-
traction can be used.
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Fig. 1. (a),(b) are examples of temporal signals S and S’ of two sequences, containing
130 epipolar lines for a time period of 8 seconds (200 frames). Each pixel in the signal
is the motion indicator of an epipolar line at a time point. (c) is the matching result for
those signals with a high-confidence peak at the correct time shift of At = —1 frames.

Let S and S8’ be a pair of line signals, extracted from corresponding epipolar
lines in two video sequences. At this stage, assume a single consistent time shift
between the two sequences and no frame drops in any of them. We begin with
considering the probability distribution of a time shift At of &’ to match S.
Applying Bayes’ law we obtain:

P(S,S' |At)P(AY)

PSS = =S Py 2)

The denominator term, P(S,S’), is an a priori joint probability distribution
of S and &’. A uniform distribution of this probability is assumed, hence it is
taken to be a normalization constant factor. In general, prior knowledge about
the time and space distribution of objects in the scene, or the overlapping regions
of the two sequences can be used for computing this prior. Extracting such
knowledge is out of the scope of this paper. The term P(At) is another prior, in
this case on the probability distribution of At. Use of this prior is discussed in
the experimental part.

For estimating the likelihood term, P(S,S’ |At), we apply a simple stochastic
model on the temporal signals. A commonly used assumption of additive white
Gaussian noise is applied to the two line signals:

S(t) = S'(t + At) + N(u, 0?), (3)

where At is the correct time shift between the two signals, and p is the difference
between the averages of both. For simplicity, in the rest of the paper we omit the
value p: from here on, each line signal S participates in the computation after
its average was subtracted. Using this model assumption, the likelihood of two
line signals, given At, is obtained by:

30
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/ Ly (S0 = :;"(5 + At))’
= o
L(S,S', At) Py e . (4)

In reality, the relation between the signals is more complicated than this
simple presentation. Differences in the cameras’ photometric parameters and
the foreshortening effects caused by perspective projection may result in some
gain effect between these signals. Another simplification is a hidden assumption
of independence between the motion indicators in a single line signal. Adjacent
indicators are expected to be correlated to some degree, because the objects
captured in the video have finite speed, relatively to the sampling frame rate.
Despite these simplifications, the results are satisfying, as demonstrated in our
experiments.

The maximal value of P(At |S,S’) and the maximal value of
P(S,S’ |At)P(At) will be obtained for the same value of the desired time shift
At:

1 - Zt
e
oV 2T

As defined above, each row in S and S’ represents a line signal for an
epipolar line ¢, € £. We consider those signals to be independent, due to the
spatial distance between the selected epipolar lines. Therefore, computing the
likelihood can be extended to sequence signals S and S’ by taking the product
of the likelihoods of all the line signals.

Up to this point, this method assumed a single consistent time shift between
S and §’. In order to incorporate it into an online framework, the algorithm must
work on a finite time interval at each iteration. Thus, the synchronization at a
given time step, tg, is determined only from a k interval of the sequence signal,
taken from tg — k up to ¢y . Furthermore, the sought for At is bounded by some
finite range —c < At < ¢. (In our experiments, k corresponds to roughly 4 to 8
seconds and c¢ corresponds to 1 to 3 seconds). Inserting all of the above into
the equations Eq. 2 and Eq. 5, we obtain:

"N —
arg mAaixP(At |S,S8") = arg mA%XP(At)

argmax P(At |S,S’) = arg max P(At) H P(At |S,,S)) (6)
At At
LreL(t)

t 2
- (Sr,t - /r,t+At)
D D D

2
o
=arg max P(At)e reL(t) t=to—k

—e<At<c

where £ C £ is the subset of epipolar lines participating in the computation
(defined in 2.3), and S, and S are signals of corresponding epipolar lines £,..
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The time shift At that yields maximal likelihood according to Eq. 6 is the
correct time shift for the two given video sequences (Fig. 1(c). The actual value
of the likelihood is used as a confidence level of the resulting At. This value is
taken after a normalization step, which ensures that the probability distribution
of At in the range —c < At < ¢ sums up to 1. The higher the probability is, the
more robust the answer is. In the online synchronization framework, only the
high-confidence results will be taken into account.

2.3 Epipolar line filtering

Registration of only a subset of the line signals is sufficient for synchronization.
Moreover, line signals that contain negligible motion information may insert
noise into the registration process, and are therefore removed from the compu-
tation. We next define the subset of epipolar lines £ C £, that participate in
the computation for a given time step ¢. The signals are removed on the basis of
both sequences considered. We test for motion information only at a single time
step. We do so by computing the temporal gradient along an epipolar line, taking
into consideration some noise estimation of such a gradient. The noise at each
image pixel is assumed to be additive white Gaussian noise with some variance
o2,. Hence, we determine significant motion on the epipolar line 7 only if the
residual information on the time gradient along the epipolar line goes beyond
the estimated noise threshold. In case of no real motion, this time gradient yields
only noise. Formally, the motion probability at a given time ¢, for an epipolar
line ¢, is given by:

oy, Ut - I0-1p)

2
Protion fr,t = — =¢6 2Jm . 7
bl t) = — ")

The subset £ consists only of epipolar lines with motion probability over
some threshold. This simple filtering process compensates for the background
subtraction algorithms, which are not ideal, and eliminates any wrongly detected
residual motion caused by them.

Algorithm 1 Temporal signal update

The algorithm is triggered for every new frame acquired.
Input: two new frames from the video sequences

1. Perform background subtraction
2. For each epipolar line £,: calculate the motion indicators (Eq. 1).
3. Update the matrices S and §'.
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Algorithm 2 Synchronization iteration
The algorithm is triggered every 0.8 seconds.
Input: two temporal signals S and S'.

. Extract the data corresponding to the time interval k from S and S'.

. Compute £ by filtering ¢, € L for the current time step (Sec. 2.3).

. For each ¢, € L subtract its average fir.

Compute the likelihood for each —c < At < ¢ using Eq. 6.

Apply the prior for P(At).

. Normalize the distribution of resulting probability such that it sums up to 1.
. Find the maximal value of the probability.

N O U W

3 Experiments

We conducted a number of experiments to test the effectiveness of our method.
The input for each is a pair of video sequences taken with the same frame rate.
In addition, a fundamental matrix (computed manually) and a rough synchro-
nization (up to an error of 50 frames) are assumed to be given. The method
was implemented in Matlab. The corresponding epipolar lines of each pair of
sequences were computed using a standard rectification method. A naive back-
ground subtraction was used where the background consists of an empty frame,
subtracted from all the other frames in the video stream.

Three sequences were taken, as shown in Fig. 2. In Set I an indoor scenario
was acquired, in which a dense crowd — around 30 people — walk about. The
cameras were placed at an elevation of approximately 6 meters. The cameras’
fields of view have a relatively large overlap. The videos were recorded at 25 fps,
with a frame size of 640 x 480. Set 2 is similar to Set 1 but the cameras’ fields
of view only partially overlap. This set represents a difficult case in the sense
of viewing angles, since there is a big difference in the view points of the two
cameras. Total runtime of both video sequences is 5000 frames (3.33 minutes).
Set 3 is of a relatively dark outdoor scene with only few people walking around.
This case represents another difficult scenario, with a small amount of motion in
dark conditions. A pair of cameras were located at an elevation of about 6 meters:
the videos were recorded at 15 fps, with frame size of 640 x 512 pixels. In the
indoor video sequences a flicker effect is evident, caused by fluorescent lighting
in the scene. In order to avoid distractions to the synchronization algorithm, the
flicker was removed by temporal low-pass filtering of the video. The framework
triggers the synchronization computation every 0.8 seconds of the video.

3.1 Basic results

The presented tests were performed on the three sets. The interval size was taken
to be k = 140, no prior on P(At) was used (i.e., uniform distribution is assumed
on P(At)). The value of o for Set 1 and Set 2 was set to 1300, and for Set 3
to 600. (Setting the values of ¢ is discussed bellow.) The results consist of a set
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Set 1 Set 2 Set 3

Fig. 2. Example of two frames from each video pairs. The two rows show frames from
the first and second view of each pair, respectively; the images contain an exemplary
subset of the used epipolar lines, each set of lines for each video pair.

of time shifts between two video streams with a probability (confidence) value
for each shift. Each of the time-shifts for Set 1, Set 2, and Set 3 are represented
by a single dot in Fig. 3(a), Fig. 3(b), and Fig. 4(a), respectively. The x-axis is
the computed time shift and the y-axis is the confidence in the computed result.
Ideally, we would like the dots to align along the correct time shift, and to have
high confidence. The correct time shift, computed by hand, is At = —1 frames
for all sets.

To evaluate the percentage of correct results, it is necessary to set a threshold
on the confidence value. The threshold 0.7 is considered in the analysis of the
three data sets. A result is considered to be correct if it is in the range of £1
frames from the correct synchronization.

Using this threshold on Set 1, approximately 50% of the obtained results
have high levels of confidence, and 95% pecent of them are correct. That is, the
system yields, on average, a high-confidence result each 1.6 seconds.

The percentage of the correct high-confidence results obtained for Set 2 is
100%. However, only 12% of the obtained results had high confidence(> 0.7).
It is mostly due to the relatively small overlapping field of view of the two
cameras, resulting in a small number of epipolar lines that can participate in
the registration. As the working area is small, the algorithm analyses long time
periods without motion, which yield low-confidence results.
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Fig. 3. Each of the 250 computed time-shifts for (a) Set I and (b) Set 2, one for each
0.8 seconds, are represented by a single dot. Each dot in the graph represents the
computed time shift for a single time step. Low confidence results are marked in blue,
correct and incorrect high confidence results are marked by green and red, respectively.
The z-axis is the computed time shift and the y-axis is the confidence in the computed
result.

For Set 3, the percentage of correct results is 100% with only 13% of the
results having high confidence. In addition, the low confidence results consist of
a relatively large amount of errors. This is due to the small number of moving
objects in the scene and objects moving along the direction of epipolar lines.
Note that a movement along an epipolar line is not expected to produce good
synchronization, since it induces ambiguities, as discussed in Sec. 4. The effect
of a non-uniform prior on P(At) when incorporated into this set is discussed in
Sec. 3.3.

To summarize, our method constantly and reliably maintains the time syn-
chronization between the two sequences. It is important to note that tracking
objects or features in the crowded scene of Set 1 and Set 2 from a single camera
is considered to be an extremely difficult task due to substantial movement and
a large number of occlusions. Hence, synchronization studies that rely on tra-
jectories detected by each of the cameras (e.g., [13,3]) are not adequate in this
case. Furthermore, the scene consists of a genuine 3D structure and the distance
between the cameras is non-negligible. Hence, a homography transformation of
the pair of sequences cannot be used to match pixels or trajectories (as in [2]).

3.2 Frame dropping

Frame dropping is expected in a simple commercial system when it operates over
a long period of time. The need to detect frame dropping and resynchronize is
one of the main motivations for an online synchronization algorithm. To test
the robustness of our method in the presence of frame dropping, we applied our
algorithm to Set 1 where 3 frame drops occurred during the video. That is, the
correct time shift changed from —1 to 16, then to —8 and finally, back to —1.
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Fig. 4. Each of the 60 computed time-shifts, one for each 0.8 seconds, are represented
by a single dot computed fot Set 3. (a) without prior and (b) with a prior. The axes
description and color codes interpretation are as in Fig. 3

The rest of the experiment setup was identical to the basic one. The results are
presented in Fig. 5(b), where the detected time shift is plotted as a function of
time. The result demonstrates that the correct time shift is detected, and the
reaction time to the drop is approximately 7-8 seconds. This reaction time is
due to the interval of 140 frames, which, in addition to the search range ¢ = 30,
corresponds to 8 seconds. During this time period the two registered temporal
signals contain inconsistent information with a frame drop in it. Hence, the
results are incorrect and have low confidence.

3.3 Using a prior on P(At)

In an online framework, a non-uniform probability distribution on At can be
applied, using the result of the previous synchronization iteration. It is assumed
that the time synchronization rarely changes during the video, and the changes
are of a few frames only (due to frame dropping). We tested our method using
a Gaussian distribution of P(At) with o = 2 and a mean set to the previously
detected high-confidence time shift (starting with 0) . Comparing the results
with (Fig. 4(a)) and without (Fig. 4(b)) use of the prior, shows that the prior
reduces the instability of the low-confidence results. We tested the effect of using
a prior on Set 1 (with and without frame dropping) and on Set 2. In all these
tests the results remain the same. Hence we can conclude that on the one hand
the prior can reduce errors for unstable results, and on the other hand it does
not impair other results.

3.4 Setting the parameters

In addition to the confidence threshold, there are two more parameters that have
to be set. The time interval k controls the number of frames that participate
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Fig.5. (a) A graph showing the success rate as a function of the confidence threshold
for three different values of o (see Eq. 6). The blue, red and green lines represent
o = 1600, 1300, and 1000, respectively. (b) Frame dropping example, drop reaction
time = 7 seconds. The green and the red dots represent high and low confidence,
respectively. The vertical blue lines indicate the time at which the frame drop occurred.
The black line is the correct time shift.

in the signal registration procedure. Longer intervals will lead to more robust
results, especially for areas and times with limited motion. According to our
tests, in a video pair with a lot of motion, an interval of k& = 20 frames (0.8
seconds) is sufficient for robust synchronization results. However, for limited
and sporadic motion, such an interval yields a somewhat noisy output, therefore
k = 140 frames was used in all our experiments. The downside of large intervals
is the increase in computation time and the slower reaction time in the presence
of frame drops. The reaction time to such changes can, in the worst case, be as
long as the interval time, as discussed in Sec. 3.2.

The other parameter is the ¢ in Eq. 3-6. This value serves as a normalization
factor in the probability calculations. In general, it depends on photometric
parameters of the used cameras, as well as on their joint epipolar geometry.
In the experiments, the value of o was set empirically. This factor affects the
numerical outcome of the confidence for each time shift, as demonstrated in
Fig. 5(a). High values of o suppress the confidence, hence flatten the probability
distribution of P(At |S,S’), causing indecisiveness and noisy output. However,
lower values of o increase the confidence of all the measurements, and as a
result, the confidence of incorrect time shifts increases as well. Thus, in order
the preserve the correct output of the framework, the final confidence threshold
must be selected in accordance to the value of o.

3.5 Verification of Calibration

The main goal of our method was to compute synchronization between a pair of
sequences, while the camera calibration (i.e., the epipolar geometry) is assumed
to be given to the system. Incorrect epipolar geometry causes motion indicators
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on corresponding epipolar lines to be uncorrelated. In particular, the confidence
of all the possible synchronization results is expected to be low. An experiment
for demonstrating this observation was conducted, simulating a scenario of a
small tilt in one of the cameras. The tilt causes calibration failure, as it breaks
the correspondence of the epipolar lines. This leads to a total synchronization
failure. Consequently, it is impossible to use our method when the system is out
of calibration. Yet, this property of our method can be used to verify calibration,
i.e., to distinguish between correct and incorrect calibration of the cameras.
Although it cannot be used in a straightforward manner for camera calibration,
because the search space for a fundamental matrix is too large, it does serve as
an essential first step towards recalibration, following calibration failure.

3.6 Additional tests

We discussed in the introduction and the method sections why we choose to
use epipolar lines signals rather than point signals. Here we challenge our choice
to use epipolar line signals rather than a similar signal defined by a motion
indicator based on the entire frame (similar to the approach taken by [15]). When
the temporal signal is defined on the entire frame, any spatial correspondence
between motion indicators is neglected. We modified our method to sum the
motion indicators on the entire frame in order to obtain the motion signal. As
expected, the obtained result cannot be used for sequence synchronization. Such
an approach fails in the presence of complex motion in the scene.

To verify that our method works properly on other video sequences used in
literature, we have performed the synchronization of a pair of short videos used
in [2]. The sequences contain a single car moving in a parking lot, and are taken
from http://www.wisdom.weizmann.ac.il/~vision/VideoAnalysis/Demos/Seq2Seq/Seq2Seq.html.
The success rate of our method on this sequence is 100% with the parameters:
confidence threshold of 0.6, o = 400 and k = 80.

4 Conclusion

We presented a novel method for synchronizing a pair of sequences using only
motion signals of corresponding epipolar lines. Our method is suitable for detect-
ing and correcting frame dropping. Its simplicity is in bypassing the computation
of spatial correspondence between features, tracked trajectories or image points,
which may be hard to compute in the scenes considered in our experiments.
The only spatial correspondence required is between epipolar lines, which are
computed directly from the given fundamental matrix of the image pairs. The
relatively low computational effort will enable our algorithm to be incorporated
into real-time systems, after a short optimization cycle. Furthermore, it can de-
tect the synchronization errors (e.g., frame drops) in a matter of seconds, as
they occur in the video. Thus, it can be used in an online framework. Finally,
the method can be used for detecting calibration failures, as a first step in re-
calibration.
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It is worth noting that our method may fail in rare cases such as an object
moving strictly along an epipolar line and no other information is available. In
this case the temporal matching is expected to yield the same probability for all
time shifts. In addition, if the object also moves across a non-overlapping regions
of the cameras, an incorrect synchronization is expected. In order to overcome
such problems, a method for detecting overlapping regions of cameras can be
utilized, e.g. [7]. Additionally, this problem can be resolved when working in
a system with more than two cameras, by using other pairs of sequences with
different sets of epipolar lines. We intend to study the extension of the proposed
approach to handle more than two sequences. This extension should be natural
due to the probabilistic properties of the algorithm.
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