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Face Recognition:
The Problem of Compensating
for Changes in lllumination Direction

Yael Adini, Yael Moses, and Shimon Ullman

Abstract—A face recognition system must recognize a face from a novel image despite the variations between images of the same
face. A common approach to overcoming image variations because of changes in the illumination conditions is to use image
representations that are relatively insensitive to these variations. Examples of such representations are edge maps, image intensity
derivatives, and images convolved with 2D Gabor-like filters. Here we present an empirical study that evaluates the sensitivity of
these representations to changes in illumination, as well as viewpoint and facial expression. Our findings indicated that none of the
representations considered is sufficient by itself to overcome image variations because of a change in the direction of illumination.
Similar results were obtained for changes due to viewpoint and expression. Image representations that emphasized the horizontal
features were found to be less sensitive to changes in the direction of illumination. However, systems based only on such
representations failed to recognize up to 20 percent of the faces in our database. Humans performed considerably better under the
same conditions. We discuss possible reasons for this superioriority and alternative methods for overcoming illumination effects in

recognition.

Index Terms—~Face recognition, compensating for illumination, edge representation, 2D Gabor-like filter, image comparison.

1 INTRODUCTION

F ACE recognition is a difficult problem because of the
generally similar shape of faces combined with the nu-
merous variations between images of the same face. The
image of a face changes with facial expression, age, view-
point, illumination conditions, noise, etc. The task of a face
recognition system is to recognize a face in a manner that is
as independent as possible of these image variations. Psy-
chophysical experiments show that the human visual sys-
tem can identify faces from novel images despite consider-
able variations between images of the same face that are
due to changes in illumination [28] and viewpoint [31], [11],
[2], [28]. The question, then, is how a recognition system
can identify a face despite these variations. Here we focus
mainly on variations that are due to changes in illumina-
tion. We present an empirical study that evaluates com-
monly used approaches to overcoming image variations
because of these changes. We also evaluate how these ap-
proaches affect variations between images of the same face
because of changes in viewpoint and expression.

Three main approaches for dealing with image varia-
tions that are due to illumination changes have been used
in the past. These approaches are used by general object
recognition systems as well as by systems that are specific
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to faces. The first application uses the gray-level informa-
tion to extract the three-dimensional shape of the object,
namely, a shape from shading approach (e.g., [21]). This is
an ill-posed problem and, therefore, all proposed solutions
assume either the object shape and reflectance properties or
the illumination conditions. These assumptions are too
strict for general object recognition, and therefore were not
shown to be sufficient for the face recognition task.

The second approach, which will be studied here, is
based on representations of the image and the stored model
that are relatively insensitive to changes in illumination. For
example, the edge map of the image [12], [26], [20], [7], [40],
[14] is often considered as the basic image representation
model for general object recognition and, in particular, for
face recognition [22], [47], [17], [3]. Other examples of im-
age representations will be considered below later.

The third approach to handle image variations that are
due to illumination differences is by using as a model sev-
eral images of the same object (face) taken under different
illumination conditions. Here, the images can be used ei-
ther as independent models or combined into a model-
based recognition system [15], [19], [41]. Such approaches
will be discussed in Section 4.

Ideally, an image representation used for recognition
system should be invariant to illumination changes. It has
been shown theoretically that, for the general case, a func-
tion invariant to illumination does not exist [29].1 The ob-
jects considered by Moses and Ullman were unconstrained
3D objects, consisting of n independent patches in space.
For recognition systems that are limited to certain classes of

1. Similar results regarding variations that are due to changes of view-
point were shown by [5], [8], [29].
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objects, this limitation does not necessarily apply. Indeed,
edge maps can serve as relatively robust representations of
illumination changes for some classes of objects, such as
telephones, tables, etc. However, for other objects, such as
faces, part of the edges do not remain stable.” It remains an
open question whether edge maps and other possible rep-
resentations provide an illumination-insensitive represen-
tation for face recognition.

In the past, no qualitative or quantitative study was per-
formed that addressed the effect of the imaging conditions,
such as viewpoint and illumination, on the variations be-
tween images of the same objects. Such a systematic study
is important to gain a better understanding of the actual
problem that recognition systems must solve. The question
addressed in this paper is whether several widely used im-
age representations (such as edge maps) that are often con-
sidered to be insensitive to illumination changes, are suffi-
cient for recognizing faces under different illumination. To
answer this question, an empirical study was performed
that evaluated the sensitivity of several commonly used
image representations to changes in viewing conditions
(e.g., viewpoint and illumination) when a face recognition
task is considered. Here we used a special database of faces,
in which each of the imaging conditions (illumination,
viewpoint, and expression) was separately controlled. The
distances between the pairs of images (or image represen-
tations) of different individuals (taken under the same con-
ditions) were computed and compared with the distances
between the pairs of images of the same face that varied
because of a change in the viewing condition (illumination,
viewpoint, and expression). The database was constructed
so that the performance of recognition methods could be
evaluated with respect to a single imaging parameter (e.g.,
illumination). We used for each imaging parameter only a
single change in direction, i.e., a horizontal change of illu-
mination or viewing direction. Our database can be used to
study the limitations of compensating approaches to recog-
nition. However, for demonstrating good performance of a
recognition system, it is necessary to evaluate it with im-
ages that contain more complex variations, such as different
changes in illumination and viewpoint directions, and ad-
ditional transformations, changes of scale, and change of
background. Furthermore, since natural variations between
images are due to more than a single parameter, a recogni-
tion system should also be evaluated with images that vary
because of a combination of imaging parameters.

The following image representations were considered:
the original gray-level image, the edge map of the image,
the image filtered with 2D Gabor-like filters, and the first
and second derivatives of the gray-level image. Each of
these image representations was constructed with several
different parameter settings of the operators in question.
We next briefly discuss the image representations under
investigation.

1.1 Edge Map

Intensity edges coincide, generally, with gray-level transi-
tions. Gray-level transitions can be due to discontinuities in

2. It can be shown theoretically that edges on a smooth surface are not
stable with changes in the direction of illumination [27].

the surface color (albedo) or orientation. Such edges are
expected to be insensitive to illumination changes. Other
edges in the image may be related to illumination changes,
including shadows and specularities. The advantage of us-
ing an edge representation is that it is a relatively compact
representation (compared with the full gray-level image)
and it is often insensitive to illumination changes for a vari-
ety of objects. Such edge representations were used by sev-
eral face recognition systems [22], [47], [17], [3].

1.2 The Image Filtered with 2D Gabor-Like Functions

Physiological and psychophysical evidence indicates that at
the early stages of human visual processing the images are
processed by local, multiple, and parallel channels that are
sensitive to both spatial frequency and orientation. Psycho-
physical evidence for the existence of such channels comes
mainly from studies that use

1) summation at the threshold [6], [18],
2) selective adaptation [1], and
3) masking paradigms [39].

Physiological studies found cells in V1 (simple cells) that
are selectively tuned to orientation as well as to spatial fre-
guency and phase. It was suggested that the response pro-
file of a simple cell could be approximated by 2D Gabor-
like filters [9], [10], [13], [25], [33], [34] or a set of mth or-
dered spatial derivatives of a Gaussian [23]. Inspired by
these findings, several artificial face recognition systems
filter the gray-level image by a set of 2D Gabor-like func-
tions before attempting to recognize the faces in the image
[3], [4], [24]. Note that convolving the image with 2D Ga-
bor-like functions is often similar to enhancing edge con-
tours, as well as valleys and ridge contours from the image.

1.3 Derivatives of the Gray-Level

Derivatives of the gray-level distribution were used by sev-
eral face recognition systems [3], [15] to reduce the effects of
changes in illumination conditions on face images. The de-
rivatives used include directional and nondirectional first
and second order derivatives. It can be shown analytically
that, under certain conditions, changes in the ambient light
will indeed affect the gray-level image but not its deriva-
tives. However, this is not the case in the natural conditions
where the direction of the light source is also changed.

1.4 Log Transformations

In addition to the above representations, a nonlinear trans-
formation often used in computer vision is the logarithmic
transformation of the image intensities [35]. There is also
physiological evidence that the response of cells in the retina
is nonlinear in the intensity of the incoming image, which can
be approximated as a log function of the intensity [46].

This paper is organized as follows: Section 2 describes
the study performed, Section 3 presents its results, and Sec-
tion 4 summarizes and discusses the study and its implica-
tions to the design of recognition systems that can deal with
image variations because of changes in illumination. We
have also considered the results established here relative to
the performance of the human visual system in compen-
sating for changes between images of the same face that are
due to changes in illumination, viewpoint, and expression.
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Fig. 1. One image of each of the 25 faces: frontal view with left illumination.

2 METHODS

Five images of each of 25 faces, taken from a well-
controlled database of faces, were considered (see also Ap-
pendix A.1). All faces were of males without distinctive
features such as glasses, beards, or mustaches (see Fig. 1).
All images were taken by the same camera under tightly
controlled conditions of illumination and viewpoint. Nor-
malized frontal views for all faces were obtained by fixing
the location of the face symmetry axis, the external corners
of the eyes, and the bottom of the nose, before the pictures
were taken (see Fig. 2). The following five images of each
face were considered:

1) frontal view, left illumination and neutral expression;
2) frontal view, right illumination and neutral expres-
sion;

Fig. 2. Each face was normalized before taking the picture so that the
face’s symmetry axis, the external corners of the eyes, and the bottom
of the nose were located on the reference lines as shown.

3) 34° rotation of the face around the vertical axis, left
illumination and neutral expression;

4) frontal view, left illumination and a smile;

5) frontal view, left illumination, with closed eyes and
open mouth (see Fig. 3).

The distances between all pairs of images of different
faces taken under the same conditions (similar to each pair
of images in Fig. 1) were measured and compared to the
distances between the pairs of images of the same face that
can vary because of

b [ d o

Fig. 3. An example of five images of the same face. (a) Frontal view
with left illumination. (b) Frontal view with right illumination. (c) 34°
away from the frontal view on the horizontal axis with left illumination.
(d) A smile expression taken from frontal view with left illumination.
(e) A drastic expression taken from the frontal view left illumination.
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1) light source position: left vs. right, (Fig. 3a vs. Fig. 3b),

2) viewpoint: frontal vs. 34° to the left view, (Fig. 3a vs.
Fig. 3c), and

3) expression: neutral vs. smile or neutral vs. drastic ex-
pression (Fig. 3a vs. Fig. 3d or Fig. 3e).

As previously mentioned, we considered a variety of image
representations and distance measures that had been used
for image comparison, in particular, edge maps, derivatives
of the gray-level, the images filtered with 2D Gabor-like
functions, and a representations that combined a Log func-
tion of the intensity with these representations. We consid-
ered different parameters of the operators that produced
each of these representations (see Appendix A3). For exam-
ple, for the 2D Gabor-like filters, the effects of the orienta-
tion, scale, and symmetry of the filters were studied, and,
for the derivatives of the gray-level, the effects of the ori-
entation, symmetry, and scale were studied. All together,
107 operators were considered. The distance between the
pairs of images was computed using five simple distance
measures between gray-level images that are often used to
measure distances between general 2D distributions (see
Section A.2). These measures indicate that the objective
distance between the images is not based on knowledge
about the image formation function.

To avoid background interference, we extracted and
considered only the face part of the image. Some psycho-
logical evidence suggests that different face parts make dis-
similar contributions to face recognition (see a review by
Shepherd et al. [38]). Therefore, we considered separately
several regions of the face: the entire face without the hair,
the eyes, and the lower part of the face (see Fig. 4).

M2 M3

Fig. 4. The three masks of the face. (M1) The entire face (without the
hair). (M2) The eyes area, and (M3) the lower part of the face.

The crucial question we were interested in answering
was, for any of these representations, whether the distances
between different images of the same individual would
tend to be smaller than the distance between different indi-
viduals. Such representations could serve a useful role in
compensating for image variations caused by changes in
the viewing condition in object recognition.

3 RESULTS

In this section, we present the results of comparing the
variation between pairs of images of different faces with the
variation between different images of the same face. The
variations between images of the same face were due to
illumination (left vs. right), viewpoint (frontal vs. 34°), and
expression (neutral vs. smile or vs. drastic expression). Al-
together, 107 operators were considered, for 25 different

faces. In total, we have compared five different distance
measures of about 100,000 pairs of images for three differ-
ent face masks.

Ideally, to use some distance measures for the purpose
of recognition, we would like the distances between images
of different faces to be larger than the distances between
images of the same face. None of the representations con-
sidered here had this property. However, some of the rep-
resentations were found to compensate better than others
for image variations. To make quantitative comparisons, we
used a relative score to evaluate the sensitivity of a given
representation to the variations between images of the same
face relative to the variations between images of different
faces. This was obtained by testing the performance of a
given representation and distance measure with respect to
our database.

For a particular representation and distance measure
that we wanted to evaluate, we classified a given face as a
missed-face if the system failed to recognize it. That is, a face
was defined as missed-face if the distance between two im-
ages of this face taken under different conditions (e.g., dif-
ferent illumination) was larger than the distance between
the image of the face and one of the images of another face
(taken under the same conditions). The percentage of
missed faces from the set of faces in our database, which we
denoted by miss-percentage, was used to evaluate a given
image representation with respect to a given imaging pa-
rameter. Zero and 100 percent miss-percentages correspond
to perfect recognition and total failure of the system, re-
spectively. The system may fail to recognize a given face
because it confuses it with one or more faces from its data-
base. Let the failure-rate be the average percentage of faces
that the system confuses for each missed face. If the failure-
rate is high, then it is unlikely that the system would misi-
dentify a face merely because of similar arbitrary pairs of
faces in the database.

3.1 lllumination Direction

We begin by analyzing the variations between the images
that are due to a change in the illumination direction, that
is, when images of the same face vary only because of the
illumination direction, left vs. right. We will first consider a
recognition system that is based on computing the distance
between unprocessed gray-level images. We found that
such a system will fail to recognize all the faces in the data-
base—the miss-percentage is 100 percent. Furthermore,
such a system will confuse each face with all the other faces
in the database—the failure-rate is 100 percent. We have
concluded that when comparing unprocessed images, the
changes induced by illumination are larger than the differ-
ences between individuals.

We now consider the variations between processed im-
ages that are due to a change in the illumination direction
compared to variations between different individuals taken
under the same illumination. In particular, we studied the
effects of the 107 different representations of the image
variations. Fig. 5 shows the histogram of the miss-percent
and failure-rate of all the operators and the parameters con-
sidered. This histogram is for the entire face mask with the
best distance measure. The miss-percent and the failure-rate
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Miss—percent histogram for all operators

Failure-rate histogram for all operators
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Fig. 5. (a) Histogram of the miss percent of all 107 operators. (b) Histogram of the failure rate of all 107 operators. Both histograms are for local

affine-GL distance.
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Fig. 6. (a) The effect of the Gabor symmetry (sine vs. cosine) and orientation (90° vs. 0° relative to the vertical axis) for different Gabor scales.
The distance measure used is local affine GL. (b) The effect of the orientation for the Gabor cosine for different Gabor scale. The distance meas-

ure used is local affine GL.

vary between 20 percent and 100 percent. The miss-percent
for most of the operators considered was above 50 percent.
We next consider which of the operator parameters re-
duces the miss-percent. We will consider the orientation,
the scale,3 and the symmetry (e.g., cosine vs. sine) of the
operator. The operator orientation strongly affects the miss-
percent. This effect depends on the scale of the operator.
For the larger scales, the miss-percent of a 2D Gabor-like
filter which is sensitive to horizontal features, is reduced to
20 percent compared to over 60 percent for the other orien-
tations (0°, 45°, and 135° from the vertical axis, Fig. 6b). This
effect may be due to the horizontal orientation of facial
features (e.g., mouth and eyes). A similar orientation effect
was also found when the image was convolved with direc-
tional derivatives of a Gaussian. We studied 10 different

3. The standard deviations (o) and the wave-length (1) were chosen such
that o = A/2; the size of the mask was chosen to be 2A. Therefore, A1
uniquely determined the scale of the operator. The units of A were taken in
pixels, where the size of the face in the image was about 170 x 170 pixels.

operator scales between o = 2 to 20, which corresponds to
A =4 to 40 (about 40 to four cycles per image). The scale of
the operators was found to have a strong effect on the miss-
percent. Fig. 6 illustrates this with respect to the 2D Gabor-
like operator. The scales that gave the lowest miss-percent
(20 percent) were from A = 12 to 24. The miss-percent in-
creased for larger scales, but despite the substantial
smoothing of the faces in these representations (see Fig. 6a)
it was still relatively low (36 percent), which will be dis-
cussed later. A similar effect was found for the scale of the
Gaussian that was used to smooth the image before com-
puting the directional derivatives, the Laplacian, and the
edge detector. The symmetry of the 2D Gabor-like operator
(i.e., sine or cosine) had almost no effect on the miss-percent
(see Fig. 6a). The failure-rate of the operators with the low-
est miss-percent was above 40 percent. In fact, even for the
best operators, the system will fail to recognize 20 percent
of the faces in our database. This failure does not arise from
an accidental similarity between a single pair of faces, but
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a

Fig. 7. Each row consists of an original face image. (Column (a)) and the image convolved with three different Gabor operators. Column (b) Hori-
zontal Cosine Gabor with 1 = 8, ¢, = 4. Column (c) Horizontal Cosine Gabor with A = 16, o = 8. Column (d) Horizontal Cosine Gabor with 1 = 32,
o = 16. The upper and the middle rows are of the same face taken under left and right illumination direction, respectively. The lower row is of a

different face taken under the same condition as the middle row.

from a large number of confusable faces. Fig. 7 shows three
out of the 107 representations considered. The representa-
tion that compensates the best to changes in illumination in
our database is shown in Fig. 7c.

We applied and compared five different distance meas-
ures to each of the image pairs. The different operator pa-
rameters affected the miss-percent by all the five distance
measures in a similar manner (see Fig. 8a for the even-
symmetry 2D Gabor-like filter (cosine) which is sensitive to
horizontal features). However, for most of the operator pa-
rameters, the best distance measure was the local Affine-GL
which measures a pointwise distance after an affine nor-
malization of the gray-level images (see Appendix A.2).
Interestingly, the simplest distance measure, the pointwise
distance, was similar, in general, and, occasionally, even
better, than the best distance measure. For each of the op-
erators and distance measures, three different face masks
were considered (see Fig. 4). The inner features mask was
found to be the best face mask for discriminating between
different faces, whereas the lower features of the face were
found to be the worst (see Fig. 8b).

In our analysis of the 2D Gabor-like representation, we
considered the odd and even-symmetric filters separately.
A 2D Gabor representation of an image consists of a 2D
wavelet transform that generates a complete set of multi-
scale and multi-orientation. To study an image representa-
tion that more resembles the full 2D Gabor representation,
we regarded each pixel in our representation as a vector of
values. Each value corresponds to the results obtained by
filtering the image with a 2D Gabor-like filter with a single
scale and orientation. The distance between two corre-
sponding pixels was considered to be the distance between
the two corresponding vectors (using L,-norm). The re-
sults did not improve with respect to the single scale or

orientation that was considered throughout this paper.

In summary, for most image representations considered,
the miss-percentages were above 50 percent. The representa-
tions for which the miss-percentages were below 50 percent
were the ones that were sensitive to horizontal features, such
as 2D Gabor-like filters, or Gaussian derivatives in the verti-
cal direction. The lowest miss-percentage was 20 percent.
Therefore, with the best operator, distance measure, and face
mask that we considered, a simple recognition system wiill
fail to recognize five out of 25 faces in our database, when the
only change between a target image and the image in the
database was the illumination direction. The high failure rate
(about 40 percent) indicates that the failure in recognizing 20
percent of the faces in our database is significant and not the
result of a small number of problematic cases.

3.2 Viewpoint

The variations between the original gray-level images of the
same face that were due to a change of 34° of viewpoint
direction were always larger than the variations between
the images of different faces (miss-percent = 100 percent). A
recognition system that is based on simple gray-level com-
parisons will therefore fail to recognize all the faces in our
database that are due to a viewpoint change of 34°. The rep-
resentations considered here were not expected to compen-
sate well for image variations because of viewpoint. This
was indeed true for viewpoint variations of 34° on the hori-
zontal axis: the miss-percent of all the representations con-
sidered was above 50 percent.

3.3 Expression

When considering only the variation that was due to a
smile in the original images, a simple gray-level compari-
son was found to be sufficient to recognize all the faces in
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Effect of distance measure (CG-90)

Effect of face masks (CG-90)
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Fig. 8. (a) The effect of the five different distance measures on the miss-percent for the different operator scale for horizontal Cosine Gabor (90°).
(b) The effect of different face masks (see Fig. 4) on the miss-percent as a function of the operator scale. The data is for the horizontal Cosine

Gabor and local affine-GL distance measure.

our database (miss-percent of zero percent). This was true
when the entire face mask was considered. However, for the
other face masks (the eyes or the lower part) the miss-
percentage increased to 30 percent and 60 percent, respec-
tively. Interestingly, the recognition of the faces was impaired
when several alternative image representations were consid-
ered. For example, for the image representation computed by
convolving the image with the odd symmetry (sine) 2D Ga-
bor-like function that is sensitive to horizontal features, the
miss-percentage increased to 34 percent for the entire face.
When variations that were due to a drastic expression were
considered, the results were different. For the original im-
ages, the miss-percentage was 60 percent for the full face
mask and above 80 percent for the eyes. As in the case of the
smile, other image representations often increased the miss-
percentage. This result demonstrates that, when a given rep-
resentation is sufficient to overcome a single image variation,
it may still be affected by other processing stages that control
other imaging parameters such as illumination.

4 SUMMARY AND DISCUSSION

The study examined several popular image representations,
computed by local operators, and often considered rela-
tively insensitive to illumination changes applied to face
images. These include images filtered with 2D Gabor-like
functions, directional and nondirectional derivatives of
Gaussian filters, and edge maps. The main question we
addressed was to what an extent these types of image rep-
resentations are sufficient by themselves to overcome image
variations. To approach this problem, we constructed a
database of faces in which the face identity, illumination,
viewpoint, and expression were controlled separately. We
considered the natural variations in the illumination, view-
point, and expression that we face in our daily lives. The
actual distances between pairs of images of a given face (or
image representations) of different faces were computed
and compared with the variation between pairs of images
that vary because of a change of illumination, viewpoint, or

expression.

All the image representations under study were insuffi-
cient by themselves to overcome variations because of
changes in illumination direction. The same result was ob-
tained when variations between images of the same face
that were due to viewpoint and expression were consid-
ered. Image representations that are sensitive to horizontal
features reduced the distance between images that were
due to illumination and viewpoint compared to the dis-
tance between images of different faces. This may be due to
the horizontal direction of many facial features such as
eyes, mouth, and eyebrows. The edges of these horizontal
features are relatively insensitive to changes in illumination
direction since they are due to changes in color (albedo).
Furthermore, the changes in the direction of the light source
and in viewpoint that were considered were both along the
horizontal axis. Such changes are therefore expected to af-
fect less horizontal features than vertical ones. In addition
to the operator orientation, the scale of the operator also
affects the relative distances between images of the same
face relative to the distances between images of different
faces. This result is supported by psychophysical evidence
indicating that faces are better recognized in images with
low rather than high spatial frequencies [16], [30]. How-
ever, images that resulted from convolutions with 2D Ga-
bor-like filters with very large scales that became hardly
recognizable as faces were still found to be informative for
discriminating between faces in our experiments.4

As can be expected, when more limited variations be-
tween images of the same face are considered, the recogni-
tion increases (that is, the miss-percent decreases). It was
therefore interesting to study the range of imaging pa-

4. Note that, for such scales, the external features of the face (such as the
outline and background) affect the image within the face mask considered.
This is because the face mask was considered after convolving the image
with the appropriate operator, which is the more natural situation for natu-
ral visual systems. However, we also considered filtering the face images
after extracting first the face mask. The results were that the miss-percent
was above 50 percent for the best masks. This may be due to artifacts of the
masks themselves (i.e., edge effects around the mask).
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rameters for which the representations considered here will
become sufficient for recognizing the faces in our database.
As a preliminary study, we examined smaller variations
between light source location, left vs. center (instead of left
vs. right). The results were that for the best representations
found (that were also the best in the original experiment),
the miss-percent was reduced to eight percent. The failure-
rate was also small, about eight percent, indicating that the
misidentified faces were closer to only one or two other
faces in our database. The same result was obtained when
smaller variations that were due to viewpoint were consid-
ered, 17° on horizontal axis instead of 34°. Despite the im-
proved performance, we cannot conclude that the repre-
sentations studied are sufficient by themselves to compen-
sate for illumination and viewpoint change even within
these more restricted ranges. To reach such a conclusion,
further studies will be required, including varying the illu-
mination and viewpoint in directions other than the hori-
zontal, and testing the combined effect of simultaneously
changing the illumination and the viewpoint.

We next discuss the extension of the methodology pre-
sented here to more complex recognition systems. We will
then present possible alternative approaches to handle im-
age variations that are due to illumination changes. Finally,
we will compare the sensitivity of the representation con-
sidered here to the sensitivity of the human visual system
to changes between images of the same face.

4.1 Evaluating Recognition Systems

When developing recognition systems, it is important to
analyze how well they actually cope with variations that
are due to a given imaging parameter. A well-controlled
database can be used to examine the system’s performance.
Often, when one of the representations that was considered
here was used within a working recognition system, its
evaluation was determined by demonstrating the perform-
ance of the entire system on a relatively small database of
faces. These databases are not guaranteed to have varia-
tions between images that are due to each of the different
imaging parameters. It then becomes impossible to evaluate
a single component of such a system, e.g., the component
that deals with variation because of illumination changes.
Here we specifically examined incomplete recognition sys-
tems, however, considered the possible contribution of the
early image representations schemes. The effects of illumi-
nation, viewpoint, and facial expression were studied sepa-
rately. The study showed that commonly used methods for
dealing with image variations that are due to illumination
change are insufficient by themselves to handle relatively
modest variations. In the next section, we therefore con-
sider alternative approach to this problem.

4.2 Alternative Approaches

One possible direction for future improvement is a search
for better performing representations and distance func-
tions of the general type we have considered. However, it is
also worth considering alternative approaches. We wiill
briefly consider such approaches.

4.2.1 Independent Image Comparisons
In this approach, a face model consists of a large set of im-

ages of the same face. The recognition process consists of
computing and comparing the distances between an input
image and all the images comprising the model. One prob-
lem with this approach is that the number of images that
the model must contain may be very large. Furthermore,
when other imaging parameters, such as viewpoint and
expression, are considered as well, the number of images
for a given model becomes the product of the sample size
for each of the spaces. Such schemes also have limited gen-
eralization capacity beyond the parameter values that were
sampled and stored.

4.2.2 The Model-Based Approaches

Here the variations between different images of the same
object are handled by using information specific to the ob-
ject in question, such as its 3D shape and reflectance prop-
erties. The information can be stored in an explicit 3D
model or, alternatively, by a number of corresponding 2D
images. Such an approach is usually used to compensate
for variations that are due to viewpoint changes [32], [42].
However, it can be extended to handle image variations
that are due to illumination as well [15], [19], [27].

4.2.3 The Class-Based Approaches

Here the variations between different images of the same
object are handled by using information related to a general
class of objects, such as 3D shape, and the reflectance of
faces in general. An example of class-based processing is
extracting special facial features in a manner that is inde-
pendent of the illumination direction. This can be per-
formed by choosing, for example, only the edges that are
expected to be stable in a face image from the edge map of a
face. Another example is to use a special property of the
class in question, such as bilateral symmetry. It has been
shown [27], [36], [43] that, for bilaterally symmetric objects,
certain invariance can be extracted based on a single object
image. It may also be possible to incorporate knowledge
about the general shape of faces to a shape-from-shading
computation. In this case, the 3D shape of the object may be
extracted independently of the viewpoint and illumination
direction, and used for subsequent recognition.

4.3 Comparisons with the Human Visual System

Our study suggests that early image filtering and edge de-
tection are insufficient by themselves to overcome image
variations that are due to changes in the viewing condi-
tions. It is interesting in this regard to compare the sensi-
tivity of face identification in novel images using the meth-
ods considered here with that of the human visual system.
We tested the performance of human subjects in a face
identification task using the same database of faces under
similar conditions [28]. Recognition was tested for both up-
right and inverted images. In the upright face condition,
subjects were trained to recognize upright face images of
several individuals and were then tested on new upright
images of the same individuals. In the inverted condition,
both the training and the test face images were inverted.
Recognition is known to be difficult for inverted faces;
however, in this study, the focus was on generalization to
new viewing conditions after obtaining high recognition
rates on the training set. The results showed that the identi-

\\CA_TRANS\SYS\LIBRARY\TRANS\PRODUCTION\TPAMI\2-INPROD\104915\104915_1.DOC

[ regularpaper97.dot | JPR | 19,968 [ 0529197 7:08 AM 8112




ADINI ET AL.: FACE RECOGNITION: THE PROBLEM OF COMPENSATING FOR CHANGES IN ILLUMINATION DIRECTION 9

fication rate for faces in upright novel images was above 97
percent correct in the range of the studied parameters. The
performance of human subjects was significantly better
than schemes based on the representations considered here.
Processes of the type considered in this study may take part
in the early processing stages in human vision, and may
contribute to the object recognition process, but they are
insufficient by themselves in overcoming the variations
between images of the same face. It appears that, to achieve
the generalization performance exhibited by the human
visual system for upright face images, additional process-
ing must take place. For inverted face images, generaliza-
tion performance of human observer is reduced to 85 per-
cent and 89 percent for new viewpoint and illumination
directions, respectively. The difference between the hu-
man’s capacity to compensate for the illumination changes
in upright and inverted face images is consistent with the
notion that compensating for illumination condition is not
achieved exclusively by early processing stages such as im-
age filtering and edge detection.

Further support for this notion is provided by brain le-
sion studies implying that high-level visual areas are in-
volved in the process of compensating for illumination
changes. In human lesion studies, Warrington and Taylor
[44] found that patients with right posterior lesions had
severe problems in identifying objects that differ in viewing
positions from a training view. They also found that, for
such patients, changes in illumination (in recognizing faces)
were as effective as changing the viewing direction in elic-
iting the right-hemisphere deficit. Weiskrantz [45] made
lesions to the middle and anterior infeotemporal lobe (AIT),
to the prestriate, and other visual areas of the monkey. With
lesions to the AIT, recognizing objects becomes very diffi-
cult even from a previously viewed image. Lesions to other
parts of inferior temporal (IT) cortex and prestriate cortex
did not affect the recognition of objects in images that were
seen before. It did, however, affect the recognition of the
same objects in novel images that varied in size or illumi-
nation. These findings suggest that the process of compen-
sating for illumination changes requires not only the pri-
mary visual cortex, but also the participation of higher level
visual areas. The results are compatible with the theory that
processes such as image filtering and edge detection as-
sumed to take place in the primary visual cortex are insuffi-
cient by themselves to compensate for viewpoint and illu-
mination changes, and higher level processes including
object and class specific processes are likely to be involved.

To conclude, overcoming image variations that are due
to illumination direction is a basic problem in face recogni-
tion. Existing approaches to this problem rely primarily on
universal representations, that is, representations that are
not specific to faces. We examined a large number of face
comparison schemes based on such representations, and we
found that they are insufficient by themselves to overcome
the variations that are due to illumination. We suggest that
processes that utilizes more domain-specific knowledge,
applicable to specific individuals or to faces in general, can
be used for this purpose. The elucidation of these compen-
sation processes will be useful for constructing better face
recognition systems, and for understanding the processes
used by the human visual system.

APPENDIX: METHODS

In this appendix, full details of the methods used in the
experiment are given.

A.1 The Database of Faces

The database was described briefly in Section 2. Here we
list more technical details regarding the images. Each image
was of the size 512 x 352 pixels, eight bits per pixel. The
image size was then decreased by half, by a subsampling.
The camera (“Pulnix” TM-560 with Canon lens V6 x16 16—
100mm F1:1.9) was attached to a robot (“Adept One”). The
camera locations were frontal, and 34 left on the horizontal
axis. The distance of the face from the camera was about
110 cm. Left and right illuminations were used by turning
on and off fixed light sources (see Fig. 3a and Fig. 3b). Sub-
jects were asked to bear a neutral expression, a smile ex-
pression, and a drastic expression, and to remain still (see
Fig. 3a, Fig. 3d, and Fig. 3e, respectively). The background
for all images was the same: a wooden screen.’

A.2 Distance Measures

We considered each image representation as a gray-level
image. The edge-map, which was originally a binary image,
was convolved with a Gaussian (see Section A.3.1) to create
a gray-level image. The following distance measures be-
tween gray-level images could therefore be used for the
original images, as well as for all image representations
considered here.

The following distance functions between gray-level im-
ages were considered:

Pointwise distance was defined as the average difference
between the gray-level values of all pairs of corre-
sponding pixels (i.e., two pixels in the same location).
That is

P0|ntW|se

2 |I1(X - |2(X|

xemask

where n is the number of pixels in the face-mask (see
Fig. 4) and I;(x) is the gray-level value of the pixel in lo-
cation x in the image I;. The face images were normalized
with respect to position and size, and, therefore, gray-
level values at corresponding locations with respect to
the face were compared.

Regional distance was defined as the average of the mini-
mum difference between the gray-level value of a pixel
and the gray-level value of each pixel in the (5 x 5)
neighborhood of the corresponding pixel. Formally,

Regional(1,, I,) :% D [1,00) = 1,()|

Xemasi

min
K ieneighb(x)
where neighb(x) is a square of 5 x 5 pixels around x.
Note that the regional distance compensates for a dis-
placement of up to three pixels of the images in the
plane.

5. The images were selected from a larger database, the Weizmann Face-
base, that consists of 66 images for each facg, The ful| database contains five
different camera locations :-34 , =17 ,0, 17 , and 34 on the horizontal axis;
four different illuminations: left, center, right and left + right combinations;
and three different expressions.}
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Affine-GL distance was defined as the minimum Euclidian
distance between the gray-level values of one of the im-
age and any affine transformation of the gray-level val-
ues of the other image. Formally

2 (aly(x) +b - I2(x))2 ,

xemask

Affine GL(I, | in
ine GL(1;, 1,) = ”a"'bnﬁ\/

where the a and b were computed analytically. Note
that the Affine-GL distance compensates for uniform
affine transformation of the gray-level values of one of
the images.

Local Affine-GL distance similar to the Affine-GL meas-
ure, but the minimum is computed for disjoint square
blocks in the image. The size of the squares used was 16
pixels.

LOG distance The point-wise distance was computed be-
tween the log, of the image representation.

A.3 Image Representations

The following image representations were considered: the
original image, the edge map of the image, derivatives of
the gray-level image, the image filtered with a 2D Gabor-
like function, and the Log of several of the above represen-
tations. We next describe in more detail each of the opera-
tors that produced these image representations, as well as
the parameters that were considered.

A.3.1 Edge Representation

Edges can be detected by maxima in the intensity gradient
or zero-crossing in the second derivatives calculated by
some differential operators. A number of edge detectors
have been described in the literature [7], [12], [14], [20], [26],
[37], [40]. We considered here the edge representation com-
puted by the DRF edge detector [37]. (Another representa-
tion related to edges, the Laplacian of a Gaussian, is consid-
ered later, Section A.3.2.)

Unlike other representations considered here, the edge
map is a binary representation. The distance functions we
used were applied to gray-level images (Section A.2).
Therefore, the edge maps were first convolved with a
Gaussian function and then the standard distance functions
were applied. Two scales of the Gaussian were considered
J20 =5 and 20 =11. There are, of course, alternative
methods to compute the distance between edge maps;
however, we expect other methods to give qualitatively
similar results.

A.3.2 Laplacian-of-Gaussian Filter
The Laplacian-of-Gaussian filter computes the second de-
rivative of an image that was first blurred by a Gaussian

function [26]. Formally
1 2\
VoG(r) = — | 1— — [e2°
® 72:04[ 202]

The representation was computed by convolving an im-

age with the Laplacian of a Gaussian. The scales of the
Gaussian considered were o = 2, and 4 pixels.

A.3.3 Gray-Level Derivatives
The representations of symmetrical and directional deriva-
tives of smoothed gray-level images were considered. To
compute the derivatives, the gray-level image was con-
volved with the derivative of a Gaussian.

Three filters were considered:

¢ |[sotropic derivative

where r’=x" + y2.
Five values of the Gaussian standard deviation were
considered: o = {6, 8, 12, 16, 20}.
e Horizontal derivative (in the x direction)
2
dx = —26?
Five values of the Gaussian standard deviation were
considered: o= {6, 8, 12, 16, 20}.
e Vertical derivative (in the y direction)
_y2
d, = Y e20”

y ?
Five values of the Gaussian standard deviation were
considered: o= {6, 8, 12, 16, 20}.

A.3.4 2D Gabor-Like Filters

A 2D Gabor function is a product of an elliptical Gaussian
times a complex exponential representing harmonic
modulation [10].

Formally, a 2D Gabor function is given by

f(xy) = o) otety-w o]
y e_l—n(cos(B)(x—xo)+sin(9)(y—y0))
where X, and y, are the elliptical Gaussian center and
o,/ oy is the Gaussian aspect ratio. 8 and 4 are the orienta-
tion and wave-length of the harmonic modulation func-
tion, respectively.

We considered separately even (the real part) and odd
(the imaginary part) members of the family of 2D Gabor
filters with unity aspect ratio o,/0, = 1). These 2D Gabor-
like filters have the following form

()

CosG(x,y) = cos{[zTn](x cos(6) +y Sin(e))}e 207

(o)

SinG(x,y) = sinl:(zTﬂj(x cos(8) + ySin(e)):Ie 207

The effects of several parameters of the 2D Gabor-like
filters were studied:

e Even-symmetric vs. odd-symmetric function. That is
CosG(x, y) vs. SinG(x, y)).

e The orientation of the harmonic modulation, denoted
by 6.
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0=1{0", 45", 90°, 135°}.

e The scale of the Gaussian (standard deviation), de-
noted by ois
o=1{2,4,6,8, 10, 12, 14, 16, 18, 20} pixels, and A = 20.
The size of the mask was considered to be 24. The
values of A uniquely determine the scale of the op-
erator and were used in describing the results.

e The ratio between the scale and the 2D harmonic
modulation wave-length, denoted by c/1 is
A ={4, 6, 8, 12} for a constant scale, o = 6, and a con-
stant orientation, 6= 90°.

A.3.5 Log Representation

All of the above representations were also followed by a
log function to generate additional representations.
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