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ABSTRACT 
 
We present a novel weighted approach for shrinkage functions 
learning in image denoising. The proposed approach optimizes the 
shape of the shrinkage functions and maximizes denoising 
performance by emphasizing the contribution of sparse 
overcomplete representation components. In contrast to previous 
work, we apply the weights in the overcomplete domain and 
formulate the restored image as a weighted combination of the 
post-shrinkage overcomplete representations. We further utilize 
this formulation in an offline Least Squares learning stage of the 
shrinkage functions, thus adapting their shape to the weighting 
process. The denoised image is reconstructed with the learned 
weighted shrinkage functions.  Computer simulations demonstrate 
superior shrinkage-based denoising performance. 
 

Index Terms— denoising, shrinkage, weight, sparsity. 
 

1. INTRODUCTION 
 
Image denoising in the overcomplete domain has driven substantial 
research efforts since the pioneering work of Coifman and Donoho 
[1]. Most of the research has been focused in developing new 
overcomplete representations and optimizing the shrinkage 
mapping functions (MFs). Commonly, the conventional techniques 
design the MFs using a "descriptive" approach based on the 
statistical prior of the transform domain. In this paper we consider 
the utilization of local sparsity information, available in the 
overcomplete domain, for the performance enhancement of a 
“discriminative” shrinkage restoration approach [2]. In the 
discriminative approach, the MFs are learned from example 
images, targeting the denoising performance directly, rather than a 
descriptive approach which focuses on determining the statistical 
prior. A weighted approach for image denoising in overcomplete 
domains was proposed in [3], where a per-transform and per-pixel 
sparsity based weight function was utilized in conjunction with a 
hard-thresholding scheme. The derivation of the weight function 
was performed regardless of the shrinkage function, thus not 
utilizing the weight information during the shaping process of the 
shrinkage functions. 
In this paper we propose to utilize a weighted approach in two 
stages as follows a) the weight function is applied during the 
discriminative learning process of the shrinkage functions, thus 
adapting the shrinkage functions to the weighted reconstruction 
stage b) The weights are applied in the overcomplete domain  
    

during the denoising process. This strategy enables the design of 
reduced complexity restoration schemes that are based on 
convolutions with basis kernels. 
 

2. PROBLEM FORMULATION 
 
We assume the following image degradation model  
 
 . y x n  (1) 

where 1Nx is a clean image (column stacked) contaminated 

with additive white Gaussian noise   1~ 0, NN I n and 

1Ny is the noisy image. Shrinkage-based denoising is based 

on sparse decompositions with linear transforms, where low 
magnitude coefficients have low SNR. As shown in [1], a scalar 
thresholding (i.e. shrinkage) function applied to every component 
of the decomposition improves the SNR performance of the post-
shrinkage reconstructed signal. In the classical translation invariant 
Wavelet shrinkage approach, a set of K fully decimated transforms 
are applied to the noisy image. Each one of the transforms is a 
different shifted version of the un-shifted “mother” transform. In 
our approach, the overcomplete representation constitutes of K 
sub-bands generated by filtering the image with the respective 
basis kernels of each sub-band. It can be easily proved [2] that 
when the Wavelet transform consists of windowed basis functions 
(e.g. DCT) the two approaches are equivalent. 
Given is an overcomplete linear transform with K sub-bands 

 1 2, , , .
TT T T NK N

KB B B B      

where each matrix N N
iB  is the (block-circulant) convolution 

matrix of the respective basis kernel. In the rest of this paper we 
will utilize an un-decimated L L windowed DCT (UDCT) as an 
overcomplete transform example. For this case, the representation 

redundancy factor is 2K L since the transform is defined to 
include all possible DCT window shifts. The matrices iB are 

derived from the basis kernels of the DCT sub-bands.  
The overcomplete decomposition of the noisy image is given by
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The shrinkage operation is performed by a scalar MF  
kk B y

(operating element-wise) per sub-band, and the reconstructed 
image is given by 
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The last equation is a straightforward Least Squares (LS) solution 
of the linear set of equations: 

   , 1, 2,.., .
kk k BB k K  x y  (4) 

using pseudo-inverse. In the discriminative approach [2] the 
denoising stage (3) is preceded by the MFs learning stage. The 
MFs are approximated by a piece-wise linear model and jointly 
estimated using set of example images whose clean and noisy 
counterparts are given offline. The piece-wise linear approximation 
is performed with the Slice Transform (see Appendix A) 

     .
k k kk B B kS  qy y p  (5) 

The vector kp controls the shape of the k-th MF and it is the design 

parameter per sub-band.  
The Slice Transform (SLT) approximation gives rise to a simple 
LS formulation of the MFs learning process 

     2
ˆ ˆ, arg min , .e e e e 

p
p x y x y p x  (6) 

Where ex and ey are the clean and noisy example images, 

respectively, and 1 2, , ,
TT T T

K   p p p p  . 

In this paper we augment this approach by utilizing sparsity 
information, extracted from the overcomplete domain and 

represented by the weight vector  1 2, , ,
T

Nw w ww  .  

We are therefore interested in solving the following problems: 
1. Learning the MFs given the example images and the respective 

weights, namely deriving  wyxp ,,ˆ ee . 

2. Estimating the clean image given the noisy image, the respective 

weights and the learned MFs, namely deriving  ˆ , ,x y w p . 

3. Defining effectively the weight function. 
 

3. WEIGHTED RESTORATION IN OVER-
COMPLETE DOMAINS 

 
By applying the shrinkage operation to the noisy image and 
weighting all sub-bands of the noisy and estimated images, it is 
expected that the following linear set of equations hold: 

   , 1, 2,.., .
kk k BWB W k K  x y  (7) 

where  
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and we assume a unique weight value per image location (pixel), 
as explained in section 3.2. The reconstructed image is given by 
the pseudo-inverse 
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where 
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In the case where B is a tight frame and an L L block based 

transform (such as the L L UDCT), the matrix W can be shown 

to be 
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where  diag W H   w w  and H is the (block-circulant) 

convolution matrix of the kernel
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 The proof of this derivation is beyond the scope of this paper. 

 
3.1. Weighted Learning of the Shrinkage Functions 
 
Considering the weighted restoration scheme in the overcomplete 
domain (8), our goal is to estimate the shrinkage MF of every sub-
band in a process that would take into account the weighting 
operation. By utilizing the SLT approximation (5) we obtain the 
following weighted reconstruction for the noisy example image 
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where 

   .,,, 21 KBW HHHL y  
and 

 2 .
i i

T
i i BH B W S y q  

The MFs estimation process is performed offline utilizing example 
images. We formulate the learning process as a LS estimation 
problem 

   2
ˆ ˆarg min , , .e e 

p
p x y w p x  (10) 

Substituting (9) into (10) results in the closed form solution
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3.2. The Weight Function 
 
The weight we use is a function of the Sparsity Concentration 
Index (SCI) [4] of a vector 1M a given by:  

        1
max 1 1 0,1 .i

i
SCI M a M    a a  (12) 

Note, that   1SCI a if a has a single non-zero element and

  0SCI a if all the elements are equal. The weight function is 

given by
 



        .SCI

s
w SCI a a a  (13) 

where we have found that powers in the range  1,2s provide 

good performance. The choice of the SCI metric is motivated by 
the following example: assume that B is a L L UDCT transform 
and we are interested in denoising a certain pixel in a noisy image. 
The pixel of interest is contained in ܮଶ possible overlapping DCT 
windows. Some of these provide a highly sparse representation, 
since they contain a relatively simple structure, whereas others 
may be less sparse. By strengthening the weights of the sparser 
windows, we enhance the reliability of the denoising.  
The computation of the weights is performed as follows: weight 
value for a pixel location, i, is computed from the DCT coefficients 
of a window centered at location i. Since there are N different 
shifted windows, there are N different weight values (one per 
window location). Given an overcomplete representation

, 1..
kB kB k K z z of an image z , the i-th element of the weight 

vector w is given by 

        1 2
, , , , 1.. .

K

T

i SCI B B Bw z i z i z i i N    z   (14) 

where  
kBz j is the j-th element of the vector .

kBz   

 
3.3. The proposed Restoration Algorithm 
 
The restoration algorithm includes two stages, summarized in 
Table I. During the first stage the MFs are estimated from the set 
of example images. The corresponding weights are computed from 
the clean image, thus, extracting the most accurate sparsity 
information. The estimated MFs are represented by the parameter 
vector p


. In the second stage, a noisy image is denoised utilizing 

the learned MFs and the weights. Since the clean image is not 
available at this stage, the weights are calculated from the post-
shrinkage overcomplete representation of the noisy image. Weights 
calculation in this approach was verified to be more accurate, due 
to the reduction of noisy components, compared to calculation 
from the pre-shrinkage overcomplete representation.  

  
4. PERFORMANCE EVALUATION 

 
We performed computer simulations of the proposed approach and 
compared it with the un-weighted approach [2]. The tested images 
were taken from the collection of [5] and every denoising result 
was averaged over 10 noise realizations. A 9x9 UDCT was chosen 
as the overcomplete representation transform. The shrinkage MFs 
were learned with a natural image that was verified to provide 
good denoising results. Table II summarizes PSNR results which 
verify a consistent advantage of the weighed approach over the un-
weighted approach. Fig. 1 presents PSNR improvement over the 
un-weighted results as a function of the noise level: it can be seen 
that the weighted approach provides an advantage that increases 
with the noise level. Fig. 2 presents examples of several learned 
MFs: it can be seen that the weighting impacts mostly the boosting 
portion of mid-amplitude transform coefficients. Fig. 3 compares 
the visual quality of denoising the image Peppers (best viewed in 
the electronic version of this paper), with noise level 25  . It 
can be seen that the weighted approach results in smoother edges, 
compared to the un-weighted approach.  

 

Learning Stage (offline) 

Input: example images ., ee yx  
Output: learned MFs of all sub-bands represented by ˆ.p  

1. Compute the overcomplete representations  

, .
k k

e e e e
B k B kB B x x y y  

2. Compute the weights   , 1..e
iw i Nx : 
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3. Estimate the MFs according to:  

  2

arg min , , .e e 
p

p x y w p x
 

 

Restoration Stage (online) 
Input: noisy image y and MFs represented by ˆ.p  

Output: denoised image .x̂  

1. Compute the overcomplete representation
kB kBy y  

2. Apply the shrinkage functions and obtain  
k kB k B y y   

3. Compute the weights vector   , 1..iw i Ny :  

        1 2
, , , .

K

T
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4. Reconstruct the image according to  
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Table I: The Proposed Restoration Algorithm 

 

 
Fig. 1: Weighted (W) vs. un-weighted (UW) results: (a) PSNR of 
image House (b) PSNR improvement of House (c) averaged PSNR 
over all tested images in the collection of [5] (d) averaged PSNR 
improvement over all tested images in the collection of [5] 
 



 
 

Fig. 2: Weighted (solid) vs. un-weighted (dashed) learned MFs: (a) 
sub-band #17 (b) sub-band #25 (c) sub-band #47 (d) sub-band #65 

 

 
 

Fig. 3: Denoising of Peppers: (a) weighted (b) un-weighted 
 

5. CONCLUSIONS 
 
We have introduced the application of sparsity-induced weights to 
learn an optimal set of MFs for weighted shrinkage image 
denoising. We formulated the denoised image as a weighted 
combination of the post-shrinkage transform coefficients. Using 
this formulation, we expressed the MFs learning process as a LS 
estimation problem from example images. Computer simulations 
demonstrated superior shrinkage-based denoising performance. 
The improvement in PSNR was further shown to increase with the 
noise level. 
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APPENDIX A: THE SLICE TRANSFORM  

 
Let    bax , be a real value. The interval  ba, is divided 

into M bins whose boundaries form a vector  TMqqq ,,, 10 q

such that bqqqa M  10 . The value x is associated 

with a single bin    Mx 1 and a corresponding residue

 r x , where   1,j jx j if x q q     

and            1 1 0,1x x xr x x q q q       . The value x

can be expressed as a linear combination of  xq and   1xq   

      1)(1)(  xx qxrqxrx  . 

Assume now that x is N-dimensional vector whose elements satisfy

 baxi , .The SLT of x  is given by  S qx x q where the 

matrix    1 MNxS xq
 is defined as follows 

 
 

   
   

,

,

1 , 1 .

0,

i i

i ii j

r x if x j

S r x f x j

otherwise





      



q x  

According to [2], substituting the boundary vector q with a 

different vector p in the form of    , S q p qx x p performs a 

piecewise linear mapping of the values in x such that the values

 1,j jx q q  are mapped linearly to the interval 1, .j jp p
The substitution property is the key principle behind the 
approximation of the shrinkage MFs. 
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(a) (b)

Image  Barb. Boat Fgrpt. House Lena Pepp. 

σ=10 UW 34.19 33.49 32.27 35.53 35.37 33.84 

W 34.20 33.52 32.27 35.76 35.44 34.05 

σ=15 UW 31.95 31.55 29.94 33.52 33.47 31.73 
W 31.97    31.64 29.98    33.87    33.64   32.00 

σ =20 UW  30.36 30.19 28.36 32.11 32.10 30.20 

W 30.41 30.29 28.42 32.51 32.29 30.50 
σ =25 UW  29.09 29.11 27.15 30.95 31.02 29.04 

W 29.19 29.22 27.22 31.43 31.19 29.41 

 
Table II: Denoising PSNR (dB) results: weighted (W) 

vs. un-weighted (UW) 
 


