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Abstract

This paper presents a general formulation enabling
construction of all functions that are steerable under
any transformation group. The method is based on a
Lie-group theoretic approach.

1 Introduction

A function is called steerable under some transfor-
mation if all transformed versions of this function can
be expressed as linear combinations of a fixed, finite
set of basis functions. Steerable functions have been
used widely in image processing [7, 15, 13] and com-
puter vision [8, 5].

The importance of steerable functions stems from
the property of superposition of linear systems. Hence,
any linear operation applied to a transformed version
of a steerable function can be expressed as a linear
combination of the operation applied separately to the
basis functions. The main advantage of this property
is that the linear operations can be applied to the ba-
sis function once and off-line. In image processing,
steerable functions have been used as filter kernels.
Because convolution is a linear operation, the filter
output of a transformed version of the filter kernel is
obtained by linearly combining the filter outputs of its
associated basis filters.

Freeman and Adelson presented functions steerable
with respect to rotation using derivatives of a Gaus-
sian as the basis set. An extension of this technique
to translation and scaling was shown by Simoncelli et
al. [15]. Approaching the problem from a numerical
point of view, Perona [13] proposed a method for syn-
thesizing these basis functions using the singular value
decomposition. Although these studies deal with a
large variety of transformations, they do not present a
general method for constructing all the functions that
are steerable under any given transformation. In this
paper, we propose a general formulation that can be
used to determine all the functions steerable under any
group of transformations. The formulation is based on
the theory of Lie transformation groups. It is con-
structive for any one-parameter or multi-parameter
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Abelian group. Functions steerable under various sub-
groups of the affine group have also been tabulated.

Several others have also used Lie group theory in a
similar context. Amari originally proposed the use of
the theory for invariant feature detection via feature
normalization [2]. Our work applies and extends his
idea to the design of steerable functions. Lenz also
recognized the usefulness of Lie group theory and ap-
plied it to several computer vision applications includ-
ing pattern detection [11]. Recently, Michaelis and
Sommer [12] suggested a method for deriving steerable
filters using a Lie-group theoretic approach. While
their method is closely related to the one presented in
this paper, they deal only with orthogonal basis func-
tions that were constructed using a generalization of
the Fourier decomposition. This restriction limits the
transformation groups to which their approach can be
applied.

2 Background on Lie Groups

Lie groups are often encountered as families of
transformations acting on a function [3]. In this pa-
per, we consider, primarily, the families of transfor-
mation groups acting on real-valued, two-dimensional
functions. We assume that these functions are non-
zero only within a bounded region and denote them
by f(z,y) : R?> — R. We describe each fam-
ily of transformations by operators {g(7)} where
T = (11,---,7) € RF are parameters of the trans-
formation. For example, consider the family of
one-dimensional translations of a function in the z-
direction:

A

f(i.ﬂ'” :gtm(T) f(l',y) :f(l’—’l',y)

where 7 denotes the amount of translation. In words,
the operator ¢ (7) acts on the original function

N

f(z,y) to yield a new translated function f(Z,§) =
f(ﬂ? -7, y)

A family of transformations {g(7)} parameterized
by 11, ..., T over some predefined range is a Lie group
if: (1) it satisfies the group conditions of closure under
composition, associativity, inverse and the existence of



| Group | Operator | Generator | Equivariant Function Space
z-translation 9t (1) f = flz+7,y) L, = Z {¢p(y)zPe®®} for 0 < p < m.
x-scaling 9s. (7) = fleTzx,y) L,, = x% {¢p(y)z*(lnz)P} for 0 < p < m.
Rotation gr(1) f = f(zcosT +ysinT, | L, = —a:a% +yZ =2 | {¢p(r)87e*} for 0 <p <m.

—zsinT + ycosT)

g9s(1) [ = f(eT@,eTy)

Uniform scaling

S R A——;
LS _zaz +y3y _rar

{p(0)r*(Inr)P} for 0 < p < m.

Table 1: Several examples of one parameter groups, their generators, and associated equivariant function
spaces. In the rotation and uniform scaling examples, (r,6) are the polar coordinates of the image.

an identity, and (2) the maps for inverse and compo-
sition are smooth.

Lie groups are rich in structure and many prop-
erties of the group can be discerned by studying the
properties of infinitesimal actions of the group. The
infinitesimal actions of a k-parameter group are a set
of differential operators {L; | ¢ = 1...k}, called the
generators of the group, corresponding to derivatives
of the transformation at the identity with respect to
each parameter 7; in turn; i.e.,

oxr 0O

af 9 9.
ot; Oz

:Lif where L; = <
dTi

oy 0
+5_Ti5_y>

T=0

The k generators provide a basis for the k-dimensional
tangent space G = {r L; + -+ 1, Ly|T € R*}. There
is a correspondence between a k-parameter Lie group
and its k-dimensional tangent space in the form of the
exponential map:!
— ,mila Tr Lk

9(7) fla,y) =™ - e™ f(z,y). (1)
The notation e™Li represents the series expansion
e’li = I+ 1,L; + §77L? + -+, which is an infinite
sum of differential operators [3]. The exponential map
generates a group similar to the original group up to
a change of parameterization. Examples of common

one-parameter groups and their generators are given
in Table 1.

3 Equivariant Basis Functions

In this section, we identify the functions that are
steerable under different transformation groups. Be-
fore describing these functions, we formalize the no-
tion of steerability with a definition.

ITo be precise, this is only true for group elements that their
Taylor expansions converge, and for elements within the con-
nected component containing the identity. In this paper, we
consider only transformation groups with one connected com-
ponent for which convergence holds.

Definition 1 (Steerability) : A function f(z,y) :
R? — R is steerable under a k-parameter Lie trans-
formation group G if any transformation g(7) € G of
f can be written as a linear combination of a fized,
finite set of basis functions {¢;(z,y)}:

9(7) f(z,y) = Zai("') ¢i(z,y) = ol (1)2(z,y)

The functions «; are known as the steering functions
of f associated with the basis {¢;} and depend solely
on the transform parameters. Without loss of general-
ity, we assume that n is the minimum number of basis
functions required and these basis functions are lin-
early independent. Clearly, the set of basis functions
required to steer a given function is not unique; any
(non-singular) linear transformation of the set of basis
functions could also be used.

If a function f is steerable with a set of basis func-
tions @, then each of the basis functions ¢; are them-
selves steerable with the same basis functions. This
is true since each basis function can be rewritten as a
linear combination of transformed replicas of f (cho-
sen to be linearly independent). Thus, transforming a
basis function is equivalent to linearly combining the
set of transformed replicas of f, which are themselves
steerable.

Since steerability of the given function f implies
steerability of its basis functions ¢; as well, it is more
natural to express steerability in terms of a function
space, i.e. in terms of the space spanned by the basis
functions {¢;}.

Definition 2 (Equivariant Function Space) :
An n-dim. function space F =span{oi,...,on} is
equivariant under a k-parameter Lie transforma-
tion group G if every ¢; is steerable with respect to
the basis {¢1,...,Pn}, i.e., there is a matriz function
A(T), called the interpolation matrix , such that:

g(T)®(x,y) = A(T)®(x,y) for all g(7) € G



This equation is called the interpolation equation.

From the definition it follows that an equivariant
function space is a function space that is closed under
the associated transformation group. More generally,
any function f € F, such that f = Y c;¢; = cT'® is
steerable by steering the basis of F:

g(m)f =cTA(T)®.

As a result, any function f is steerable under a k-
parameter transformation group if and only if it be-
longs to some function space that is also equivariant
under the same transformation group.

For example, consider the function space Fy =
span{cosf,sinf#} under the one-parameter group of
rotations: g¢,.(7)f(0) = f(6 — 7). It is easy to verify
the following two identities:

cos(f — 1) cos T cosf +sinTsin 6,

sin(f —7) = —sinTcosf + cosTsinf.

Thus, rotated versions of any basis function in Fy can
always be expressed as linear combinations of the basis
functions. Hence, any f € Fp is steerable under the
rotation group.

4 Construction of Equivariant Func-
tion Space

In the previous section, equivariant function spaces
were defined to be closed under the associated trans-
formation group. Because we are dealing with Lie
transformation groups, the closure of a function space
under g(7) can be reformulated, more simply, in terms
of the group generators {Ly,...,L;}. This approach
is based on the seminal work of S. Amari [1, 2] who
originally proposed it in the context of invariant fea-
ture detection in pattern recognition.

Theorem 1 (Interpolation Equation) :

The function space F = span{¢i,---,dn} is equiv-
ariant under the transformation group G if and only
if F is closed under the action of each generator L; of
G. That is, g(T)® = A(T)® if and only if there is a
set of n x n matrices {Bi,..., B} such that:

L;®=B;® foral i=1,....k

In particular, the interpolation matriz can be written
as follows:

A eTlBl

A(r) = e™ B .. such that g(T)® = A(T)®

Proof 1 : Let <i>(a:,y,7') = g(7)®(z,y), the trans-
formed basis functions. The sufficient direction of
this theorem can be verified by solving the differential

equation, L;® = filf: ‘T:O = B;®, for ®. Conversely, if
& = emBr...enB ®, taking derivatives with respect

to 7; (about T = 0) on both sides of the equation yields
the system of equations L; ® = B; ®. O

Theorem 1 provides a recipe for verifying whether
a space spanned by a set of functions {¢;} is equiv-
ariant, and if it is, derives the interpolation matrix
A(7). Unfortunately, the construction of all possi-
ble n-dimensional equivariant function spaces is not
as methodical in general. For one-parameter groups,
however, the construction is straightforward and will
be treated extensively in the next section.

The following are corollaries that can be used to
construct more complicated equivariant spaces from
existing ones. Their validity can easily be verified.

Corollary 1 : If ® is a vector of n equivariant func-
tions, then P®, where P is a non-singular n X n ma-
triz, is also a vector of equivariant functions. Hence,
two vectors of functions ®1,®s share the same equiv-
ariant function space if and only if they can be related
by a non-singular n xn matriz P such that 1, = P®,.

Corollary 2 : If ®; and P, are vectors of equiv-
ariant functions with respect to the same transforma-
tion group, then the space spanned by their direct sum
&, ® Oy (i.e. the concatenation of the two vectors) is
also equivariant.

Corollary 3 : If &1 and ®5 are vectors of equivari-
ant functions with respect to the same transformation
group, then the space spanned by the Kronecker prod-
uct of the two vectors of functions ®; ® ®o (i.e. the
pairwise products of functions from ®; and ®») is also
equivariant.

5 Equivariant Function Spaces for
One-Parameter Groups

In the previous section, the conditions that are re-
quired for a function space to be equivariant under
a transformation group were stated. In this section,
we attend to the construction of all possible equivari-
ant spaces with respect to any one-parameter transfor-
mation group. First, we provide examples of several
equivariant function spaces. After that, we show that
any one-parameter group can be re-parameterized to
appear as a group of translations in the new param-
eterization. Finally, we propose a canonical decom-
position of all the function spaces equivariant under



the translation group (and correspondingly under any
one-parameter group that has been appropriately re-
parameterized).

5.1 The Translation Group

Consider the group of one-dimensional translations
in the z-direction: f(&,9) = g¢, (1) f(z,y) = f(z +
7,y) whose generator Ly, = 2. An n-dimensional
function space ® is equivariant with respect to g¢,(7)
if Li,® = 2 & = B for a given n x n matrix B. The
general solution to this differential equation is

®(z,y) = "7 @(0) (2)

where ®(0) is the value of ® at = 0. Actually,
the product of ®(z,y) with any function solely in y
leaves it equivariant; thus, without loss of generality,
we refer to ®(z,y) only as ®(z). Since ®(0) can be
arbitrary chosen, any element in the column space of
eB? is a possible solution. We will denote this by
®(z) € R(eP?) where R refers to the column space of
the matrix eB%. Regardless of the choice of ®(0), the
interpolation equation is the same, i.e. d =eBTo.

In the following examples, we present different
choices for the matrix B and derive the corresponding
function spaces. We show that the commonly used
steerable functions are the result of particular choices
of the matrix B.

Example 1 : Consider the simplest case where B is
a 1 x 1 matrix, i.e. B = [A] where A is a scalar value
(which may be complex). From Equation 2, the space
of equivariant functions is: ®(z) = ae*®, where a is
some scalar value (the value at ®(0)), while the inter-
polation equation is & = e™ ®. This result is straight-
forward since ® = ae*@+7) = ATgerT = AT P,

When A is purely imaginary, the functions are complex
exponentials. In phase-based motion estimation, the
parameter 7 is regarded as the difference in phase [6].

Example 2 : Now, let B = diag(A1,A2) where
diag(zy, - -, z,) stands for a diagonal matrix with the
values z1,---,x, along its diagonal. In this case, the
solution to Equation 2 implies that

B(x) € R(eP") = R K eAOIm egx )]

and the interpolation equation is

AT
B B _ € 0
b=cB o= < 0 oer ) o,

Simoncelli et. al. [15] proposed a criterion for shiftabil-
ity in position that decomposes the filter into a set of
complex exponentials (using Fourier decomposition).
In this example, it would correspond to B being a di-
agonal matrix with unique and purely imaginary \’s.

Example 3 : Let
0 1 0 1 %:ﬁ
B=|0 0 1 where eP” =1{ 0 T
0 0 O 0 1

O =8

In this case, the equivariant functions are ®(z) €
R(eP®). This example produces the moment filters
which are used in many applications involving invari-
ant feature detection [10] and motion estimation [17].

5.2 The Rotation Group

Another commonly encountered one-parameter
transformation group is the group of rotations in the
plane:

gr(7) f(z,y) = f(xcosT+ysinT, —xsinT + y cos T)

where 7 represents the angle of rotation. The genera-
tor of the rotation group is: L, = y- —:ca%. It is easy
to see that if we represent the function f(z,y) in po-
lar coordinates (r,6), then rotation becomes similar
to translation: ¢,.(7)f(r,0) = f(r,0 + 7). In these
coordinates, the generator is L, = =;. Therefore,
as before, an n-dimensional vector function ®(r,0)
is equivariant with respect to g,.(7) if it satisfies the
equation L,® = % = B® where B is an n X n
matrix. The general solution to the above equation
is simply ®(f) = eP?®(0) where ®(0) is the value
of ®(f) at § = 0. Since ®(0) is arbitrarily chosen,
®(6) € R(eP?).

Example 4 : In this example, we show that a vector
of functions is equivariant with respect to rotation and
derive its interpolation matrix. Let ®(x,y) be a 2D-
vector containing the spatial derivatives of a Gaussian
G = exp(—(z% + y?)/2) = exp(—r?/2) in the z- and
y- directions:

o
| -z [ —rcos(8)
q)(x’y)_<%)G_<—y>G_<—rsin(9) G
Applying the generator L, = % to @, we obtain
_ rsin(f) (0
Lr®= < —r cos(8) )G_ < 1

Thus, the elements of ®(x,y) span an equivariant
function space whose interpolation function is

b= (50 2 )

-1
0 ><I>—B'I).

This is an example of the steerable filters suggested
by Freeman and Adelson [7].



5.3 Canonical Coordinates of One-
Parameter Transformation Groups

The construction of a set of equivariant function
spaces depends on the existence of a solution to the
system of partial differential equations L® = B®. It
was shown that for translations and planar rotations,
solutions exist for any given matrix B. In this section,
we show that solutions exist for any one-parameter
transformation group. The simplest way to show this
is via a re-parameterization of the current coordinates
into some canonical coordinates where solutions are
known to exist. For any one-parameter transforma-
tion group g(7), there exists a change of coordinates
such that the group resembles a translation in the
new parameterization [3]. Hence, given a function
f(z,y), one can determine a change of coordinates

fn(z,y),&(x,y)) such that
g(m) f(n,§) = f(n+7,6).

Segman et.al. [14] used this re-parameterization to
construct invariant kernels for pattern recognition.
Ferraro and Caelli [4] used this method in a similar
context and suggested its relevance to biological vi-
sion.

Since the group operation is the same as one-
dimensional translation, the equivariant condition
with respect to the canonical coordinates is also the

same: 0

Therefore, its equivariant spaces also resemble the
equivariant spaces for translation (up to a change of
coordinates).

Example 5 : In Section 5.2, polar coordinates were
used for the group of rotations in the plane. It is
easy to show that polar coordinates are the canoni-
cal coordinates for this group. Recall the change of
coordinates from Cartesian to polar:

= VETP =

Rotating a function f(z,y) in Cartesian coordinates
is the same as translating the function in polar coor-
dinates: g,(7) f(n,€) = f(n+ 7,£) where 7 € [0,27).

Example 6 Consider next the one-parameter
group of scaling in the z direction, i.e. g5, (7) f(z,y) =
f(eTz,y) where e” ensures that the scaling constant
is always positive. The canonical coordinates of this
transformation group are obtained by the coordinate
changes: n =In(z) and ¢ =y. In this case,

95, (1) f(0,€) = f(In(e"z),&) = f(In(z) +In(e”), &)
= fn+7,8)

n = arctan(y/z) =0 ;

which is a translation in the new coordinate system.
Suppose now that

1,2
217

1
where 7= 1| 0 n
0 1

O =3

In this case, equivariant functions are ®(n) € R(eB")
as in Example 3 of Section 5.1 but with function space
in n coordinates. After a change of coordinates, the
function space in z coordinates is

1 Inz Z£(lnz)?
d(z) ER 0 1 Inz
0 0 1

5.4 Canonical Decomposition of One-
Parameter Equivariant Spaces

For any one-parameter transformation group, the
n-vector of equivariant functions ® depends on the
apriori choice of the n x n matrix B. However, the
same function space, span(®) = span{¢i,---,d,},
may be generated by different B matrices. The follow-
ing theorem provides an equivalence condition among
the various B matrices that generate the same equiv-
ariant function space.

Theorem 2 : Let @1, P, be two n-vectors of equivari-
ant functions (with respect to the same one-parameter
group) and By, Bs are such that: L ® = B;®; and
L ‘I>2 = BZ‘I)Q, then

3, =P &, iff B, = PB,P .

for any non-singular n X n matriz P.

Proof 2 : If ®; = P &5, then substituting into L ®,
we get

LY, = L(PY,) = PBy®, = (PB,P })Pd,

and since P ®, = &, it must follow that PB,P~! =
By. The proof in the opposite direction follows the
same argument. |

In words, two vectors of functions, ®; and @,
which are equivariant with respect to the same group,
span the same function space if and only if their cor-
responding matrices By, By are similar. Hence, it suf-
fices to examine all matrices B that are unique up to a
similarity transformation. The Jordan decomposition
is useful to this end since any two matrices that are
similar share the same Jordan form [16].

With the Jordan decomposition, any n X n matrix
B can be rewritten as PJP~! such that P is a non-
singular n x n matrix and .J is a block-diagonal matrix
of the form

J =P7'BP = diag(J1, Jo, -, J,) .



Each block J; is a upper bidiagonal matrix with a
single eigenvalue \; and one eigenvector:

The matrix J is called the Jordan form of B and J;
are its Jordan blocks. A special case of the Jordan de-
composition occurs when the matrix B is normal, i.e.
BBH = BH B where B is the complex conjugate of
the transpose of B. In this case, the Jordan decom-
position yields a diagonal matrix J; hence, each J; is
simply a 1 x 1 matrix containing the eigenvalue A;.

Let &5, ®; be vectors of equivariant functions with
respect to the translation group having corresponding
matrices B, J such that J is the Jordan form of B, i.e.
B = PJP~!. From Theorem 2, then ®5 = P &;. In
other words, the function spaces spanned by ®p and
®; are identical. Furthermore,

®;(x) = e’* ®;(0) = diag(e”®,---,e’**) & (0)
Since e”? is block diagonal, the function space spanned
by ®; can be decoupled into a direct sum of function
spaces spanned by each Jordan block:

®;(x) € R(e’®) = R(e*) @ R(e?®) @ --- @ R(e’").

Furthermore, each R(e’i®) is a solution to L; & =
J; ® and thus by itself equivariant under translation.
Finally, from the identity [16],

e}\im me}\iﬂr %xQe)\im

e)\iz xe}\il‘
e}\il‘
it follows that any equivariant function space spanned

by ®;(z) can be represented by a direct sum of the
equivariant function basis ®;, of the form:

q)Ji = ekiw(lamama e 7$ni_1)T'

where n; is the dimension of the Jordan block J;. Note
that if the matrix B is real, its eigenvalues appear
in conjugate pairs, i.e. if one of the eigenvalues A is
complex, its conjugate A is also an eigenvalue of B. In
this case, the equivariant spaces will appear in pairs:

q)Ji EBq)jl = exiz(la e 7wni_1)T€Be;\iz(lv e 7mni_1)T'

When A is zero, the equivariant space is spanned by
the first n; moments. Alternatively, when n; is one

and A is purely imaginary, the space is spanned by
the complex exponentials, which are also the Fourier
basis functions. Since any one-parameter transforma-
tion group can be put into its canonical coordinates
(where the group operation becomes a translation in
these new coordinates), the decomposition of equiv-
ariant function spaces for translation applies directly
to all other one-parameter transformation groups (af-
ter re-parameterization) as well. Table 1 is a sum-
mary of several common one-parameter groups and
their equivariant function spaces.

Example 7: The following functions span an equiv-
ariant function space under g (7):

. . . T
d = (sm3 z,cos’ x, 3 cos? xsinz, 3sin” x cos :v)

since
0 O 0 1
0 0 -1 0
Liz® = B® where B = 0 3 0 —2
-3 0 2 0

A different way to represent span(®) is with the
basis functions determined by the Jordan form of B
which is:

Jp = diag(i, —i, 3i, —3i)
and hence span(®;,) is determined by

span(R(e”7")) = span (e, e~ %% ¢ 3ir)T

The interpolation equation in this case is:
g, (T)®, =e’27®;, = diag(e'™,e ™, e37, e 3 d .

6 Equivariant Function Spaces for
Multi-Parameter Groups

With one-parameter groups (in their canonical co-
ordinates), various equivariant function spaces can be
constructed by choosing different B matrices. Solu-
tions to the system of partial differential equations
L® = B® exist for arbitrary choices of B. Un-
fortunately, there is no systematic way to construct
general n-dimensional equivariant spaces for multi-
parameter groups. Unlike one-parameter groups, arbi-
trary choices of B; for multi-parameter groups will of-
ten not yield solvable systems of differential equations.
For Abelian multi-parameter groups, i.e. groups made
up of one-parameter subgroups that commute, how-
ever, a categorization of the equivariant spaces simi-
lar to that for one-parameter groups can be carried
out. In the following, the categorization of equiv-
ariant spaces for Abelian multi-parameter groups is
presented. After that, a technique for handling non-
Abelian multi-parameter groups is suggested.



Abelian Multi-Parameter Groups When the
multi-parameter group is Abelian, there exists a re-
parameterization of the group so that the group
action is equivalent to independent translations in
the new parameterization [3, 14, 4]. Formally, for
any two-parameter Abelian group, there exists a re-
parameterization of the function f(n(z,y),&(z,y)) so
that

g(ri, ) f(0,§) = f(n+ 71,6 + 7).

Segman and Zeevi in [14] describe a constructive way
of determining this canonical re-parameterization. In
the new parameterization, the equivariant space for
the two-parameter group is simply the product of the
equivariant spaces for each one-parameter translation
group:

span(® (7, €)) = span( 7”e*" ) @ span( e’ )

for 0 < p < m and 0 < ¢ < [. Note that multi-
parameter groups acting on a two-dimensional image
with more than two parameters are necessarily not
Abelian as there are only two independent translations
in an image.

Example 8 : Consider the group of rotation and
uniform scaling made up of the two one-parameter
subgroups g.(m1) and gs(m2) from Table 1. The gen-
erators for these groups are L, = —x v T yax and

L, = xaz + ya— respectively. Recall that two one-
parameter groups are Abelian if their generators com-
mute; i.e., [L,, Lg] = L.Ls — LsL, = 0.

It is easy to verify that this equality holds in our
case. The re-parameterization that makes g, (1) and
gs(72) act as translations on the image is:

n(z,y) = arctan(y/z) =10
E(z,y) = In(\/22+y2) =In(r)

Thus, the equivariant spaces for rotation and scaling
are:
span( In(r)Pe’(" ) @ span( #%e*? )

for0<p<mand 0<¢q<I.

Non-Abelian Multi-Parameter Groups For
multi-parameter groups that are not Abelian, there
are no re-parameterizations such that the group be-
haves like the group of independent translations in
the new parameterization. One way to approach the
problem is to start with the largest Abelian subgroup
of the multi-parameter group for which the equivari-
ant spaces can be constructed. The rest of the sub-
groups impose constraints on the equivariant space by
way of the differential equations: L;® = B;®. Thus,

Groups (dim.)

| Equivariant Measuring Space |

r,y-translation (2) | {zPyle®*+8Y}
0<p<m and 0<¢g<I.
x, y-scaling (2) {z%yP In(x)? In(y)?}
0<p<m and 0<¢g<I.
Rotation {(Inr)Pgae?+rAmm(r)y
Uniform-scaling (2) | 0 <p<m and 0<q¢ <.
x, y-translation {zPy?}
Rotation (3) 0<p+g<m.
z, y-translation {zPy?}
x, y-scaling (4) 0<p<m and 0<g<I.
z, y-translation {zPy?}
x,y-scaling 0<p+qg<m.
Rotation (5)

Table 2: Several examples of multi-parameter groups
and their equivariant function spaces. The numbers in
brackets denotes the number of parameters that form
this group.

the equivariant function space for the multi-parameter
group can be constructed by successively constraining
the equivariant space of the largest Abelian subgroup.

Example 9 : Consider the multi-parameter group
made up of translations in the x and y directions to-
gether with the group of rotations, i.e. g;,,g:, and
gr respectively. The largest Abelian subgroup is the
two-parameter group of translations in the z and y
directions. The equivariant space for this group is:
span(®) = span(zPy?e®®tP¥) for 0 < p < m and
0 < g < l. The group of rotations yields the additional
constraint that L,® = B, ® where L, = —:ca% + y%.
By observation, we can rule out the exponentials
e®®hY (i.e. a = B = 0) since applying L, to each term
raises the power of the monomial factor by one each
time; repeated application of the conjugate generator
will raise the power without bound. Applying L, to
the monomial zPy?, however, raises the power in one
variable and decreases the power in the other. Suc-
cessive applications will result in one of the variables
being reduced to zero. Hence, {zPy?} is an equivari-
ant space under this group where 0 < p+ ¢ < m for
some m.

Table 2 is a summary of several common multi-
parameter groups and their equivariant function
spaces calculated using similar considerations.

7 Conclusions and Discussion
Steerable functions find application in numerous
problems in image processing, computer vision and



computer graphics. As such, it is important to de-
velop the appropriate mathematical tools to analyze
them. In this paper, we introduced the mathematics
of Lie group theory in the context of steerable func-
tions and presented a canonical decomposition of these
functions under any transformation group.

The theory presented in this paper can be applied
and extended in various ways. Unfortunately, due to
page limitations, we will only briefly describe them
here. For a detailed discussion the reader is referred
to [9].

The relevance of identifying equivariant function
spaces lies in the fact that any function belonging to
that space is automatically steerable using a basis for
that space. In practice, the function to be steered may
not reside completely in an equivariant function space
in which case the function is first approximated by an
appropriate equivariant function space, and then the
approximation is steered instead. Also, often a func-
tion needs to be steered only over a restricted range
of transform parameters; hence, the function needs to
be only locally steerable. If the function is compactly
supported, this restriction implies that the function
needs to be approximated only within some small com-
pact domain.

As mentioned earlier, steerable functions are often
used as filter kernels for which the output of the trans-
formed filter kernel can always be expressed as linear
combinations of the outputs of a fixed set of basis fil-
ters. Motion estimation using linear filters, on the
other hand, could be regarded as the reverse of this
process. Given the filter outputs from two images that
differ by some transformation, the transform parame-
ters are to be estimated. It is shown in [9] that this
implies that the filters used have to be steerable.

Another application of steerable functions is in the
design of invariant feature detectors. For example, an
edge detector should be able to detect the presence
of an edge independent of the orientation of the edge
in the image. According to this paradigm, the fea-
ture to be detected is first described by several steer-
able functions; since the functions are steerable, any
transformed version of the feature can be synthesized
through linear combination. Consequently, the invari-
ant feature detector is constructed by identifying a
suitable invariant over the set of steerable functions.
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