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Abstract—A fast pattern matching scheme termed Matching by Tone Mapping (MTM) is introduced which allows matching
under non-linear tone mappings. We show that, when tone mapping is approximated by a piecewise constant/linear function,
a fast computational scheme is possible requiring computational time similar to the fast implementation of Normalized Cross
Correlation (NCC). In fact, the MTM measure can be viewed as a generalization of the NCC for non-linear mappings and actually
reduces to NCC when mappings are restricted to be linear. We empirically show that the MTM is highly discriminative and robust
to noise with comparable performance capability to that of the well performing Mutual Information, but on par with NCC in terms
of computation time.
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1 INTRODUCTION

T EMPLATE or pattern matching is a basic and
fundamental image operation. In its simple form

a given pattern is sought in an image, typically by
scanning the image and evaluating a similarity mea-
sure between the pattern and every image window.
Fast and reliable pattern matching is a basic building
block in a vast range of applications, such as: image
denoising, image re-targeting and summarization, im-
age editing, super-resolution, object tracking, object
recognition, and more (e.g. [6], [28], [18], [3]).

In most cases, however, the input image is acquired
in an uncontrolled environment, thus, the sought
pattern may vary in tone-levels due to changes in
illumination conditions, camera photometric parame-
ters, viewing positions, different modalities, etc. [20].
Commonly, these changes can be modeled locally by
a non-linear tone mapping - a functional mapping
between the gray-levels of the sought pattern and
those of the image pattern. In this paper we deal with
pattern matching where gray-levels may be subject to
some unknown, possibly non-linear, tone mapping.

When dealing with matching under tone-mapping,
three classes of approaches have been considered:
the first class attempts to determine local signatures
within the pattern and image that are invariant to
tone mapping. Examples of this approach include
Gradient Signatures [15], Histogram of Gradients [11],
SIFT [21] and others (see [22] for comparative study).
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These signatures are often encoded to be invariant
to geometric transformations as well as photomet-
ric variations. However, the data contraction imple-
mented by these methods inherently involve loss of
information and, thus, weaken their discrimination
power. Consequently, these techniques often require
an additional verification phase. Another approach to
matching under tone-mapping, involves transforma-
tion of the pattern and image into a canonical configu-
ration. Examples of this approach include Histogram
Equalization and the well known Normalized Cross-
Correlation (NCC) [5]. These approaches are limited
in that there is no known canonical configuration
for non-linear mappings. Finally, brute force methods
attempt to perform template matching by searching
the entire transformation parameter space, resulting
in highly time consuming methods. Many distance
measures for pattern matching have been suggested
in the literature and the interested reader is referred to
[10], [5] for excellent reviews. The approach suggested
in this paper involves a search in the tone-mapping
parameter space, however this search is performed
very efficiently in closed form.

By far, the most common distance measure used for
template matching is the Euclidean distance. Assume
the pattern p and the candidate window w are both
vectors in Rm, (e.g. by raster scanning the pixels).
The Euclidean distance between p and w is denoted:
dE(p,q) = ∥p − w∥2. Searching for the minimal dE
value in the image can be applied very fast using
efficient convolution schemes [13]. Nevertheless, al-
though very common, the Euclidean distance assumes
no tone mapping has been applied thus it is inade-
quate when the image undergoes tone deformations.

To overcome tone mapping effects in images, the
normalized cross correlation (NCC) distance is often
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used [5]. Consider the pattern p and the candidate
window w as random variables with samples pi and
wi, i = 1..m, respectively. The NCC is then defined as:

ρ(p,w) = E

[(
p− E[p]√

var(p)

)(
w − E[w]√

var(w)

)]
where for any vectors x ∈ Rm, E[x] and var(x)
denote the empirical mean and variance. Due to the
substraction of the mean and normalization by the
s.t.d. in both p and w, the NCC distance is invariant
to linear tone mappings. The NCC distance can be
applied very efficiently requiring little more than a
single convolution on the input image [19]. However,
such a distance will fail to detect patterns in cases
where non-linear tone mappings have been applied1.

In many cases, the tone mapping is non-linear
but still maintains monotonicity, namely, the order
of tone-levels is preserved under the mapping. This
scenario is common between images acquired using
different cameras whose internal photometric param-
eters differ (tone correction, sensor spectral sensi-
tivity, white balancing, etc). Image features that are
based on ordinal values rather than the tone-levels
themselves can account for monotonic mappings [32],
[1]. Examples of such features, include Local Binary
Pattern (LBP) [23], and Binary Robust Independent El-
ementary Features (BRIEF) [8]. Such representations
are invariant to monotonic tone mapping and thus
can be used to detect patterns in such cases. These
approaches are fast to apply but are very sensitive
to noise. Furthermore, these measures fail under non-
monotonic mappings.

Finally, when non-linear mapping is considered,
Mutual Information (MI) is commonly used, initially
proposed for image registration [30]. MI measures the
statistical dependency between two variables. Clearly,
the statistical dependency is strong when gray-levels
of one image result from a functional mapping of the
gray-levels of the other image. Thus, MI can account
for non-linear mappings (both monotonic and non-
monotonic). In the context of pattern matching, MI
measures the loss of entropy in the pattern p given a
candidate window w:

MI(p,w) = H(w)−H(w|p) = H(w)+H(p)−H(w,p)

where H is the differential entropy.
Although MI is an effective similarity measure that

can account for non-linear mappings, it is hindered
by computational issues. First, it is computationally
expensive as it requires the construction of the joint
distribution (pattern vs. window) for each window
to be matched. Although fast methods for evaluating
histograms on running windows have been suggested
[24], [31], fast methods for calculating local joint his-
tograms are yet a challenge. Additionally, entropy as

1. NCC often performs well even under monotonic non-linear
mappings as these can be assumed to be locally linear.

well as MI is very sensitive to the size of histogram
bins used to estimate the joint density, especially
when sparse samples are given (small pattern size).
Using kernel density estimation methods [29] rather
than discrete histograms is, again, computationally
expensive when dealing with joint probability, not to
mention its sensitivity to the kernel width.

In this paper we propose a very fast pattern match-
ing scheme termed Matching by Tone Mapping (MTM)
which is invariant to non-linear tone mappings. The
derivation of MTM is motivated by two comple-
mentary perspectives. One perspective considers the
MTM as a regression problem where a non-linear tone
mapping is sought to optimally fit the pattern to the
candidate window. Thus, from its definition the MTM
is invariant to non-linear tone mappings. The second
perspective expresses MTM as a statistical measure
which is shown to coincide with the correlation ratio
[14]. The correlation ratio is a statistical measure that
compares the dispersion of a given random variable
with the dispersion of its conditional distribution. The
correlation ratio was proposed by Roche et. al. [25],
[26] as a distortion measure for multi-modal image
registration. In this paper we show how this measure
can be adapted to pattern matching, and suggest a
very fast computational scheme requiring computa-
tional time similar to the fast implementation of NCC.
Additionally, the regression perspective allows us to
extend and modify the MTM beyond the correlation
ratio to be more robust and appropriate for cases of
small patches.

The MTM measure can be viewed as a general-
ization of the NCC for non-linear mappings. In fact,
MTM reduces to NCC when mappings are restricted
to be linear. We empirically show that the MTM is
highly discriminative and robust to noise with com-
parable performance capability to that of the well per-
forming Mutual Information. Thus, the MTM allows
a pattern matching scheme on par with NCC in terms
of computation time but with performance capability
comparable to that of the Mutual Information scheme.

2 MATCHING BY TONE MAPPING

In the proposed pattern matching scheme, we wish
to evaluate the minimum distance between a pattern
and a candidate window under all possible tone
mappings. Since tone mapping is not necessarily a bi-
jective mapping, two alternatives may be considered:
i) tone mapping applied to the pattern, transforming
it to be as similar as possible to the candidate window,
and ii) tone mapping applied to the window, trans-
forming it to be as similar as possible to the pattern.
For each case we find the minimum normed distance
over all possible tone mappings.

Let p ∈ Rm be a pattern and w ∈ Rm a can-
didate window to be compared against. Denote by
M : R → R a tone mapping function. Thus, M(p)
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represents the tone mapping applied independently to
each entry in p. For the case of tone mapping applied
to the pattern, the MTM distance is defined as follows:

D(p,w) = min
M

{
∥ M(p)−w ∥2

m var(w)

}
(1)

Similarly, if the mapping is applied to the window
rather than the pattern, we define:

D(w,p) = min
M

{
∥ M(w)− p ∥2

m var(p)

}
(2)

The numerator in both cases is simply the norm
distance after compensating for the tone mapping.
The denominator is a normalization factor enforcing
the distance to be scale invariant. Thus D(p,w) =
D(p, αw) for any scalar α. Additionally, it penalizes
incorrect matching of p to smooth windows when the
constant mapping M(p) = c can be used. Due to
the tone mapping compensation, the MTM measure
reflects the inherent structural similarity between the
pattern p and the window w.

Searching for the pattern in the entire input image
requires calculating the optimal tone mapping for
each possible window in the image. Although seem-
ingly a computationally expensive process, we show
in the following sections that in fact this distance can
be calculated very efficiently requiring an order of a
single convolution with the input image!

2.1 The Slice Transform (SLT)
The Slice Transform (SLT) was first introduced in [17]
in the context of Image Denoising. In this paper we
exploit the SLT to represent a mapping function using
a linear sum of basis functions. We first introduce
a simplified version of the transform: the Piecewise
Constant (PWC) case. Consider an image segment
represented as a column vector x = [x1, · · · , xm]T

with values in the half open interval [a, b). The interval
is divided into k bins with boundary values q1 · · · qk+1

such that:

a = q1 < q2 < . . . < qk+1 = b

Any value v ∈ [a, b) is naturally associated with a
single bin π(v) ∈ {1 · · · k}:

π(v) = i if v ∈ [qi, qi+1)

Given the bins defined by {qi}, the vector x can be
decomposed into a collection of binary slices: Slice
xi = [xi1, · · · , xim] is an indicator function over the
vector x representing the entries of x associated with
the i-th bin.

xij =

{
1 if π(xj) = i
0 otherwise (3)

The vector x can then be approximated as a linear
combination of slice images:

x ≈
k∑

i=1

αix
i (4)
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Fig. 1. Top: the SLT matrix for a 5-pixel vector having
3 gray values. Bottom: a piecewise constant mapping
and its representation using the SLT matrix.

where the weights {αi}ki=1 are the values assigned
to each bin (e.g αi = qi or αi = (qi + qi+1)/2). The
approximation is in fact a quantization of the values
of x into the bins represented by {αi}. The greater the
number of bins the better the approximation of the
original image. In particular, if x values are discrete
and ∀j xj ∈ {qi}k+1

i=1 then x =
∑k

i=1 αix
i.

Collecting the slices xi in columns, we define the SLT
matrix of x:

S(x) = [x1,x2, · · · ,xk] (5)

Then Equation 4 can be rewritten in matrix form:

x ≈ S(x)α (6)

where we define α = [α1, α2, · · · , αk]
T . Note, that

since the slices are mutually disjoint, the columns of
S(x) are mutually orthogonal, satisfying:

xi · xj = |xi| δi,j (7)

where ′·′ is the vectorial inner product, |x| denotes the
cardinality of x and δi,j is the Kronecker’s delta. The
SLT matrix enables the representation of any piece-
wise constant mapping of x; Substituting the vector
α in Equation 6 with a different vector β, we obtain

y = S(x)β (8)

Image y is a piecewise constant tone mapping of x
s.t. all pixels of x with values in the j-th bin are
mapped to βj . Thus, the columns of S(x) form an
orthogonal basis spanning the space of all images that
can be produced by applying a piecewise constant
tone mapping on x. Figure 1 illustrates an SLT matrix
(top) and a piecewise mapping of a 5-pixel signal
with 3 gray-level values (bottom). Figure 2 shows an
example of linearly combining image slices to form
the original (quantized) image (top row) and to form
a tone mapped version (bottom row).

In the context of this paper, we use the SLT for
tone mapping approximation. A mapping applied to
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Fig. 2. Linear Combination of image slices. The SLT transform was applied to an image using 5 bins defined
by α = [0, 51, 102, 153, 204, 256]. Using these α values as weights in the linear combination (top) reconstructs the
original image. Using weights other than α (bottom) produces a tone mapped version of the original image. Slice
images are shown inverted (1=black, 0=white).

pattern p is approximated by a piecewise constant
mapping:

M(p) ≈ S(p)β

Consequently, the distance measures as defined in
Equations 1-2 can be rewritten using the SLT:

D(p,w) = min
β

∥ S(p)β −w ∥2

m var(w)
(9)

and similarly

D(w,p) = min
β

∥ S(w)β − p ∥2

m var(p)
(10)

where S(p) and S(w) are the SLT matrices as defined
in Equation 5. In the following sections we show
that solving for D for each image window can be
applied very efficiently. In fact, computing D over the
entire image requires on the order of a single image
convolution.

2.2 MTM Distance Measure using SLT
The SLT scheme allows a closed form solution for
the minimizations defined in Equations 1 and 2. To
introduce the matching process, we first consider the
pattern-to-window case where a pattern p is to be
matched against a candidate window w. Thus, the
distance measure used is that given in Equation 9.
To simplify notation, we henceforth denote the SLT
matrix S(p) as S. The solution for β that minimizes
Equation 9 is given by:

β̂ = argmin
β

∥Sβ −w∥2 = S† w

where S† = (STS)−1ST is the Moore-Penrose pseudo-
inverse. Substituting into Equation 9 we obtain:

D(p,w) =
∥ Sβ̂ −w∥2

m var(w)
=

∥S(STS)−1STw −w∥2

m var(w)

Due to the orthogonality of S, we have that G = STS
is a diagonal matrix with the histogram of p along its

diagonal: G(i, i) = |pi| where pi is the pattern slice
associated with the i-th bin as defined in Equation 3.
Expanding the numerator it is easy to verify that:

∥S(STS)−1STw −w∥2 = ∥w∥2 − ∥G−1/2STw∥2

Exploiting the diagonality of G and using S =[
p1,p2, · · · ,pk

]
, the above expression can be re-

written using a sum of inner-products:

∥w∥2 − ∥G−1/2STw∥2 = ∥w∥2 −
∑
j

1

|pj |
(pj ·w)2

As a result, the overall MTM distance D(p,w) reads:

D(p,w) =
1

m var(w)

∥w∥2 −
∑
j

1

|pj |
(pj ·w)2


(11)

In a similar manner, when matching is applied by
mapping w towards p (window-to-pattern), we use
Equation 10 and exchange the role of w and p to
obtain a symmetric expression:

D(w,p) =
1

m var(p)

∥p∥2 −∑
j

1

|wj |
(wj · p)2


(12)

2.3 Calculating MTM Distance Over an Image

Equations 11 and 12 provide a method for computing
the structural difference between p and w using two
complementary distances. For pattern matching, this
computation must be performed on each candidate
window of a given input image. Naively applying the
above expressions to each image window is highly
time consuming and impractical. In the following we
show that, in fact, computing D(p,w) or D(w,p) over
an entire image can be calculated very efficiently. We
first describe the pattern-to-window mapping case,
and then detail the window-to-pattern case.
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P2W - Mapping pattern to window
Let F be a 2D image with n pixels in which pattern
p is sought. Denote by wr the r-th window of F.
Consider the pattern-to-window (P2W) scheme where
the distance given in Equation 11 is used. For each
window wr ∈ F two terms must be calculated,
namely the numerator d1 and the denominator d2:

d1(r) = ∥wr∥2−
∑
j

1

|pj |
(pj ·wr)

2 , d2(r) = m var(wr)

Since computing the inner-product over all windows
can be performed using image convolution, the terms
above can be calculated efficiently. We use var(wr) =
E
[
w2

r

]
−E2 [wr] to efficiently calculate the denomina-

tor. Algorithm 1 gives the pseudo-code for calculating
the P2W MTM distance between pattern p and each
window in F (code can be found in [16]). In the
pseudo-code ’∗’ denotes image convolution, ⊙ and
⊘ denote elementwise multiplication and division,
respectively. Upper-case letters denote arrays of size
similar to the image F , and lower-case letters denote
scalar variables. Vectors and filter kernels are denoted
by bold lower-case letters. 1 is an m-vector of 1’s (box
filter). Since correlations rather than convolutions are
required, flipped kernels are used when needed.
Prior to the loop, two convolutions with a box filter
are calculated, each of which can be applied efficiently
(with a separable 1D box filter) requiring a total of
4 additions per pixel. Within the loop there are k
convolutions with the pattern slices {pj}kj=1. Since
each slice pj is sparse, convolving it with an image
requires only |pj | additions per pixel using a sparse
convolution scheme [33]. Additionally, since all pat-
tern slices are mutually disjoint the total number of
additions per pixel sum to m. All other operations
sum to O(k) operations per pixel, thus, the algorithm
requires a total of O(mn + kn) operations which is
comparable in complexity to a single convolution!
Memory requirement is also economized: distance

Algorithm 1 MTM - Pattern-to-Window
{Input: pattern p, image F .}
{Output: image D of MTM distances.}
W1 := 1 ∗ F {window’s sum}
W2 := 1 ∗ (F ⊙ F ) {window’s sum of squares}
D2 :=W2−(W1⊙W1)/m {calc d2 (denominator)}
Generate {pj}, for j = 1..k
D1 := 0 {will accumulate the numerator}
for j := 1 to k do
n = 1 · pj , {calc |pj |}
T := flip(pj) ∗F {convolve image with slice j}
T := (T ⊙ T )/n
D1 := D1 + T

end for
D := (W2 −D1)⊘D2

return D

value for each image window is accumulated in place,
requiring memory on the order of image size.

W2P - Mapping window to pattern
Consider now the window-to-pattern (W2P) scheme
using the distance given in Equation 12. For each
window wr ∈ F , the expressions to be calculated are:

d1(r) = ∥p∥2−
∑
j

1

|wj
r|
(wj

r ·p)2 and d2 = m var(p)

d2 and the first term of d1 are constant for all windows
and are calculated only once. The second term in
d1 differs for each window. Algorithm 2 gives the
pseudo-code for calculating the W2P distance over
the entire image. In this algorithm F j denotes the j-
th image slice, i.e. F j(x, y) = 1 iff π(F (x, y)) = j.
Since each F j is a sparse image, convolution can be
applied efficiently in this case as well. Note that {F j}
are mutually disjoint, thus the operations required for
the k sparse convolutions sum to O(mn) operations.
As in the P2W case, the entire algorithm requires
O(mn + kn) operations, which is on the order of
a single image convolution. Memory requirement is
also economical and is on the order of the image size.

3 STATISTICAL PROPERTIES

In this section we give statistical justification for
the proposed distance. Throughout this section we
discuss the pattern-to-window case where D(p,w)
distance is used. All observations and claims are ap-
plicable symmetrically in the window-to-pattern case
(using D(w,p)).

Recall that D(p,w) is composed of two terms:

D(p,w) =
d1
d2

=
∥w∥2 −

∑
j

1
|pj | (p

j ·w)2

m · var(w)

Theorem 1 states that D(p,w) measures the ratio
between the conditional variance of (w|p) and the
variance of w.

Algorithm 2 MTM - Window-to-Pattern
{Input: pattern p, image F .}
{Output: image D of MTM distances.}
p1 := 1 · p {pattern’s sum}
p2 := 1 · (p⊙ p) {pattern’s sum of squares}
d2 := p2 − p21/m {computed2 (denominator)}
Generate {F j}, for j = 1..k
D1 := 0 {will accumulate the numerator}
for j := 1 to k do
N := 1 ∗ F j {calc |wj

r| ∈ F}
T := flip(p) ∗ F j {convolve image slice with p}
T := (T ⊙ T )⊘N
D1 := D1 + T

end for
D := (p2 −D1)/d2
return D
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Fig. 3. Conditional expectation E[var(w|pj)].

Theorem 1.

D(p,w) =
E [var(w|p)]

var(w)

where E[·] is taken over all sample values pi of p.

Proof 1 Let pj be the j-th slice of p. All pattern slices
are mutually exclusive, thus

∑
j p

j = 1. Consequently,
d1 can be rewritten as:

d1 =
∑
j

pj · (w ⊙w)−
∑
j

(pj ·w)2

|pj |

=
∑
j

|pj |p
j · (w ⊙w)

|pj |
−
∑
j

|pj |
(
pj ·w
|pj |

)2

=
∑
j

|pj |

(
pj · (w ⊙w)

|pj |
−
(
pj ·w
|pj |

)2
)

Considering p and w as random variables with m
samples pi and wi, i = 1..m, respectively we have:

pj ·w
|pj |

= E[w|pj ]

and

d1 =
∑
j

|pj |
(
E
[
w ⊙w | pj

]
− E2

[
w | pj

])
=

∑
j

|pj | var
(
w | pj

)
= mE [var (w | p)] (13)

where the expectation in the last equation is taken
over all {pj}. From Equation 13 it follows that

D(p,w) =
d1
d2

=
E [var (w | p)]

var (w)

The interpretation of this Theorem is given in Fig-
ure 3 where a scatter diagram of a specific pair p
and w is shown. The horizontal axis indicates pattern
values and the vertical axis indicates corresponding
window values. Each pair of values is represented as
a point in the scatter diagram. The empirical mean
E[w|pj ] for the jth bin is drawn as a full circle, and
the conditional variance var(w|pj) is illustrated as a
double headed arrow. Note, that in terms of MTM
matching, E[w|pj ] is the estimated tone map value
for the tones in p associated with the jth bin. The ex-
pectation value of var(w|pj) over all bins pj , j = 1..k

is E[var(w | p)]. Intuitively, this evaluates the spread
of the data around the estimated tone mapping. Thus,
Theorem 1 implies that when seeking a good match
for p over the entire image, a candidate window w
is sought whose values are tight around the tone
mapped pattern and concurrently is of high vari-
ance (thus penalizing uniform and smooth windows).
Note, however, that rather than minimizing D(p,w)
one can equivalently maximize:

D̃(p,w) = 1−D(p,w) =
var(w)− E[var(w|p)]

var(w)
(14)

which is the normalized reduction in the variance of w
when p is given. This relation bears a strong similarity
to the mutual-information measure. In both cases the
goal is to maximize the reduction in the uncertainty
of w given p. However, while the MI scheme uses
entropy as the uncertainty measure, the MTM uses
variance as the uncertainty measure. Using variance
rather than entropy enables the MTM scheme to be
applied very fast on large images. Additionally, while
the MI measure is very sensitive to the size of the
bins (or the width of the kernel, if kernel estimation
is used), the performance of the variance based MTM
measure is not much affected by varying the number
of bins. Further discussion on MTM vs MI can be
found in Section 5.

As stated above, the empirical mean E[w|pj ] for
the jth bin (full circle in Figure 3) is the estimated
tone-mapping for the values in pj . The collection{
E[w|pj ]

}
for all j = 1..k, forms the estimated op-

timal tone mapping that maps p to w (solid curve in
Figure 3). The variance of the collection {E[w|pj ]} is
closely related to the MTM distance D(p,w). We state
this relation in the following theorem:

Theorem 2.

D̃(p,w) = 1−D(p,w) =
var(E[w|p])

var(w)

Proof 2.
The theorem is derived directly from the law of total
variance [27] which states:

var(w) = E[var(w|p)] + var(E[w|p])

Therefore,

D̃(p,w) =
var(w)− E[var(w|p)]

var(w)
=

var(E[w|p])
var(w)

Note that the term D̃(p,w) is the Correlation Ratio
statistical measure [14]. Roche et. al. suggested to use
this measure for multi-modal image registration [25].

Theorem 2 implies that the mean of the conditional
variance and the variance of the conditional mean are
interchangeable, in the sense that, minimization over
the first is the maximization over the latter:

argmin
w

E[var(w|p)]
var(w)

= argmax
w

var(E[w|p])
var(w)
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Both measures are in the range [0, 1]. When the opti-
mal tone mapping is uniform, i.e. ∃c, s.t.E(w|pj) = c
for j=1..k, then var(E[w|p])=0, E[var(w|p)]=var(w)
and D̃(p,w) = 0 while D(p,w) = 1. Thus, although
the w values are well predictable from p, the MTM
distance is still large since the predictability is only
due to the low dispersion of w. This property is
imperative for pattern matching, since the w values
located in smooth image regions (such as sky or non-
textured surfaces) are predictable from p, but this
is not the desired matching solution. Note, that this
is also the reason that the mutual information was
preferred over the conditional entropy in [30].

Additionally, it can be shown using the law of total
variance [27] that

argmax
w

var(E[w|p])
var(w)

= argmax
w

var(E[w|p])
E[var(w|p)]

which yields that MTM is related to the Fisher Linear
Discriminant [12], in which the goal is to maximize
inter-class variance (numerator) while minimizing
intra-class variance (denominator), where, in our case,
each bin takes the role of a class.

Finally, we show that the MTM scheme is a gener-
alization of the NCC distance measure. In particular,
when tone mappings are restricted to be linear func-
tions, the NCC and MTM distances coincide [25]:

Theorem 3. Assume tone mappings are restricted to be
linear, i.e. M(p) = ap+b, where a, b are scalar parameters.
Denoting by ρ(p,w), the normalized cross correlation
distance as defined in Equation 1, we have:

D̃(p,w) = ρ2(p,w)

Proof 3. Considering the original definition of MTM
(Equation 1) under the restriction to linear mappings:
M(p) = ap+ b, we seek parameters a, b satisfying:

min
a,b

∥ap+ b−w∥2

It has been shown (e.g. [27] Ch. 7) that minimizing
the above term gives:

a =
cov(p,w)

var(p)
= ρ(p,w)

√
var(w)

var(p)

b = E[w]− aE[p] = E[w]− ρ(p,w)E[p]

√
var(w)

var(p)

where ρ(p,w) = cov(p,w)√
var(p)var(w)

. Substituting a and b

into Equation 1 we obtain [27]:

D̃(p,w) = 1−D(p,w) = ρ2(p,w)

4 PIECEWISE LINEAR MTM
The benefits of using the piecewise constant (PWC)
approximation for tone mappings as suggested in Sec-
tion 2.1 are simplicity and computational efficiency.

This approximation allows flexible functional relation-
ships between the pattern and the sought window.
In some cases, however, this flexibility introduces
a weakness as it generates over-fitting solutions for
SLT bins having very few samples. Such scenarios
occur mainly when small sized patterns are sought.
Increasing the bin sizes does not solve this problem
as it also increases the mapping representation er-
ror. To allow larger bin sizes without degrading the
modeling precision we extend the SLT transform to
implement a higher order regression model, namely,
a Piecewise Linear (PWL) approximation. This model
approximates the tone mapping as a piecewise linear
function and enables aggregating more samples into
each bin without compromising representation accu-
racy. Similar to the PWC-SLT, the PWL-SLT slices a
given image into k slices, but rather than being binary
slices, the slices now contain real values.

Recall the SLT definition described in Section 2.1,
we denote bin boundaries as a sequence q1, · · · , qk+1

where q1 < q2 < · · · < qk+1. A value x in the half
open interval [q1, qk+1) is associated with a bin π(x)

π(x) = j if x ∈ [qj , qj+1)

We define r(x) to be the relative position of x in its bin:

r(x) =
x− qπ(x)

qπ(x)+1 − qπ(x)

Note, that r(x) ∈ [0, 1], where r(x) = 0 if x = qπ(x),
and r(x) → 1 when x → qπ(x)+1. For every x ∈
[q1, qk+1) the following relation holds:

x = (1− r(x)) · qπ(x) + r(x) · qπ(x)+1 (15)

Defining a k + 1 dimensional vector α as a vector
composed of the bin boundaries:

α = [q1, q2, · · · , qk+1]

Equation 15 can be rewritten in vectorial form:

x = Q(x)α (16)

where Q(x) is a row vector:

Q(x) = [0, · · · , 0, 1− r(x), r(x), 0, · · · , 0]

s.t. the values 1−r(x) and r(x) are located in the π(x)
and π(x) + 1 entries, respectively. We now define a
matrix extension of Equation 16. Let x ∈ Rm be a real
valued vector whose elements satisfy xi ∈ [q1, qk+1).
The piecewise linear slice transform (PWL-SLT) of x is
defined as:

x = Q(x)α (17)

where Q(x) is an m× (k + 1) SLT matrix:

[Q(x)](i, j) =

 1− r(xi) if π(xi) = j
r(xi) if π(xi) = j − 1
0 otherwise

(18)

Note that, in contrast with the PWC case, multiplying
Q(x) with the vector α does not quantize x but
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reproduces x exactly (Equation 17), regardless of the
number of bins. Substituting the boundary vector in
the expression Q(x)α with a different vector β we
obtain a piecewise linear tone mapping of x:

y = Q(x)β (19)

This mapping implies that values in the interval
[αi, αi+1) are linearly mapped to the interval [βi, βi+1).
Note, that in contrast with the PWC-SLT matrix S(x),
the columns of matrix Q(x) are not orthogonal. Thus
we use a variant of the original image slice defined in
Section 2.1:

We define x̃j = [x̃j1, · · · , x̃jm] as a real valued vector
associated with the jth bin:

x̃ji =

{
r(xi) if π(xi) = j
0 otherwise (20)

The matrix Q(x) can then be represented as a collec-
tion of column vectors (slices):

Q(x) = [x̄1, x̄2, · · · , x̄k+1]

where we define

x̄j = xj − x̃j + x̃j−1 (21)

where x̃j is defined above (Equation 20), and xj is the
originally defined slice vector (Equation 3). The end
cases are set to be: xk+1 = x̃k+1 = x̃0 = 0.

The PWL-SLT is used to compute the piecewise lin-
ear MTM (MTM-PWL) efficiently on the entire image.
In this case, the minimum normed distance between a
pattern and candidate window (Equations 1 and 2) is
evaluated under all possible piecewise linear tone map-
pings. Since tone mapping is not necessarily bijective,
two alternatives must again be considered: Pattern-to-
Window (P2W) and Window-to-Pattern (W2P).

4.1 P2W by Piecewise Linear Mapping
The MTM distance is given by the minimization

of Equation 1 where M(p) = Q(p)β. The optimal
mapping is then given by:

β̂ = argmin
β

∥Qβ −w∥2 = (QTQ)−1QTw

For simplicity we denote Q(p) by Q. Substituting back
into Equation 1, the MTM distance reads:

D(p,w) =
∥ Qβ̂ −w∥2

m · var(w)
=

∥Q
(
QTQ

)−1
QTw −w∥2

m · var(w)
(22)

Expanding the numerator, we obtain:

d1=∥Q
(
QTQ

)−1
QTw−w∥2=∥w∥2−(wTQG−1QTw)

(23)
where G = QTQ. Unlike the PWC case, the matrix G
in this case is not diagonal, thus calculating the right
hand term in Equation 23 is more challenging than
the PWC case. Fortunately, G is a tridiagonal matrix,
a property we exploit to expedite calculations. Note,

Algorithm 3 MTM-PWL: Pattern-to-Window

{Input: pattern p, image F . Output: image D of
distances}
{Calculate PWL Pattern Slices}
Generate {pj}kj=1

Generate {p̃j}kj=1

p0 = pk+1 = p̃0 = p̃k+1 = 0
p̄j = pj − p̃j + p̃j−1, for j = 1..k + 1

{Calculate matrix G - Appendix A}
φj
p = p̄j · p̄j , for j = 1..k + 1

ψj
p = p̄j · p̄j+1, for j = 1..k

Calculate ωj
p, for j = 1..k {Eq. 26 Appendix A}

{Calculate all window projections}
T̃ 0 = 0;
T j = flip(pj) ∗ F , for j = 1..k + 1

{calculate pj ·w, ∀w ∈ F}
T̃ j = flip(p̃j) ∗ F , for j = 1..k + 1

{calculate p̃j ·w, ∀w ∈ F}

{TDMA - Forward pass}
for j := 1 to k + 1 do
[ρj ] = T j − T̃ j + T̃ j−1 {Compute [QTw]j}
Calculate [σj ] {Eq. 27 Appendix A}

end for

{TDMA - Backward pass}
for j := k + 1 to 1 do

Calculate [β̂j ] {Eq. 28 Appendix A}
end for

{Calculate distances for all windows}
D1 =

∑
j [β̂j ]⊙ [ρj ] {calc d1 (numerator)}

W1 := 1 ∗ F {window sum}
W2 := 1 ∗ (F ⊙ F ) {window sum of squares}
D2 :=W2−(W1⊙W1)/m {calc d2 (denominator)}
D := (W2 −D1)⊘D2

return D

that in the P2W case, G is a function of p and may be
calculated only once for all candidate windows.

Recall that the columns p̄j of Q are given by Equa-
tions 20 and 21. Thus calculating QTw in Equation 23
requires 2k dot products {w ·pj}kj=1 and {w · p̃j}kj=1:

ρj = [QTw]j = w · p̄j = w · (pj − p̃j + p̃j−1)

However, since the pattern slices are mutually exclu-
sive, the k dot-products with {pj} as well as with {p̃j}
require only O(m+k) operations, for each. Calculating
the entire term wTQG−1QTw requires multiplication
of QTw with G−1. Since G−1 is a k × k matrix, this
would require an additional k2 operations. However,
since G is tridiagonal we use the Tridiagonal Matrix Al-
gorithm (TDMA) [9] as follows. Denote β̂ = G−1QTw,
thus Gβ̂ = QTw. Using TDMA, solving for β̂ can be
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Fig. 4. Pattern marked in (a) is sought in tone mapped image with added noise (b). Distance maps display
distance values between pattern and image windows for: (c) Euclidean (d) NCC (e) LBP (f) MI (g) MTM.

implemented in O(m+ k) operations using Gaussian
elimination and backward substitution (Appendix A).
Therefore, calculating the entire term wTQG−1QTw
requires O(2(m + k)) operations. Algorithm 3 gives
a pseudo-code for applying P2W pattern matching
over an entire image F using PWL approximation.
In the pseudo-code capital letters and bracketed vari-
ables (such as [ρj ]) represent images of size equal to
F . Assuming the image F is of n pixels, the entire
search requires O(2(nm + nk)) operations, which is
equivalent to two image convolutions!

4.2 W2P by Piecewise Linear Mapping

Due to symmetry in roles of p and w, they can be
interchanged in Equations 22 and 23 obtaining:

D(w,p) =
∥ Qβ̂ − p∥2

m · var(p)
=

∥p∥2 − pTQG−1QTp

m · var(p)

where Q = Q(w) and G = QTQ. The scalars ∥p∥2 and
var(p) are calculated once for all windows, however,
the term pTQG−1QTp must now be calculated explic-
itly for each window in F . In this case, we denote

ρj = [QTp]j = wj · p̄

where
w̄j = wj − w̃j + w̃j+1

We again use the tridiagonal property of G and the
TDMA algorithm to produce the MTM distance for
each window in image F with O(2(nk + nm)) opera-
tions. The algorithm for calculating D(w,p), ∀w ∈ F
is similar to Algorithm 3 with roles reversed. Thus the
slice transform is applied to the image rather than the
pattern and pattern projections are computed rather
than window projections.

5 RESULTS ON SIMULATED DATA

The suggested method was compared with four dis-
tance measures discussed in Section 1, namely, the
Euclidean distance(EUC), Local Binary Pattern (LBP),
Normalized Cross Correlation (NCC), and Mutual In-
formation (MI). In this section we show the MTM ap-
proach successfully and efficiently detects the sought
patterns, under extreme tone mappings and under
heavy noise conditions, performing on par and at
times better than the MI approach and significantly
better than the other compared methods, while main-
taining run times significantly lower than MI.

To illustrate performance, consider the image and
the selected pattern in Figure 4a. Figure 4b shows
the original image after applying non-linear tone
mapping, adding a global illumination gradient and
adding white Gaussian noise. The selected pattern
(size 10x20) was sought in the tone mapped image by
evaluating the distance between the pattern and every
window in the image using the five distance mea-
sures. Bin sizes (MI of size 20 and MTM-PWL of size
40) were chosen to provide best results. Figures 4c-g
show the resulting maps. It can be seen that the MTM
distance clearly shows a sharp peak at the correct
location overcoming both non-monotonic mapping
and noise. The Euclidean and the LBP measures both
strongly fail due to the non linearity of the mapping
and due to the noise. The NCC, fails due to the
non-linearity of the tone mapping. The MI shows
confusion in the detection locations, this is mainly
due to the relatively small pattern size which implies
very sparse data in the MI bins (even when bin size
increases to 40 gray values).

Pattern matching was applied on a large set of ran-
domly selected grayscale image-pattern pairs under
various conditions. For each input image, a pattern
of a given size was selected at a random location. To
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Fig. 5. Pattern detection performance vs. extremity of
the tone mapping for (a) monotonic mapping with noise
(b) non-monotonic mapping with noise.

avoid ”uninteresting” patterns, these locations were
selected from amongst the ”structured” regions of the
image (i.e. locations where the eigen-values of the
structured tensor [4] sum above a threshold). Given
an image and a selected pattern, a random tone map-
ping was applied to the image (with additive noise)
and the original selected pattern was then sought in
the mapped image. Distances were calculated for all
possible locations in the tone-mapped image, and the
window associated with the minimal distance was
considered the matched window. If the matched win-
dow was detected at the correct position the match
is considered a correct detection (using the top 5 or
10 minimal distance windows, did not significantly
change the results).

Sensitivity to Mapping Extremity - Figure 5 dis-
plays the detection rate as a function of the extremity
of the tone mapping applied to the image. Extremity
was measured as the RMS distances between the
original range of values ([0..255]) and the mapped
tone values. Results are shown separately for mono-
tonic mappings (Figure 5a) and for non-monotonic
mappings (Figure 5b). Each data point represents the
detection rate (in percentages) over 2000 randomly se-
lected image-pattern pairs. Images were of size 200×
200 and patterns of size 20× 20. Tone mappings were
generated by randomly selecting six new tone values
serving as the mapping values for six equally spaced
source tone values (in the range [0..255]). The tone
mapping was defined as a piecewise linear function
passing through the selected values. For monotonic
mappings the randomly selected tone values were
sorted in increasing order prior to the construction
of the tone mapping. Gaussian noise with s.t.d. of 15
gray-values was added to each mapped image before
pattern matching was performed.

We note a counter-intuitive observation: monotonic-
ity constrains the possible mappings and typically
produces deeply convex or concave functions for ex-
treme mappings. This implies loss of spatial details in
image regions which affects pattern detection. Non-
monotonic mappings on the other hand, produce
false contours but typically maintain image structure
(edges are preserved though possibly with change of
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Fig. 6. Performance comparison as a function of
pattern size. (a) For specific monotonic mapping. (b)
For specific non-monotonic mapping.

contrast). Thus, as will be seen, performance under
monotonic mappings is often degraded compared to
non-monotonic mappings.

Figure 5 shows that the Euclidean distance and the
LBP degrade very fast with mapping extremity. This
is expected for the Euclidean case, however, the LBP
shows poor performance also in monotonic mappings
under which it should perform well. This can be
explained by the additive noise to which the LBP is
very sensitive, as will be shown below. The NCC is
expected to fail in both monotonic and non-monotonic
mappings, however in the monotonic case, mapping
is smooth and can be approximated locally as linear.
Thus, NCC performs relatively well under monotonic
mappings compared to the non-monotonic mappings.

It can be seen that the MTM approach in both
PWC (unfilled markers) and PWL (solid markers)
schemes, performs very well and on par with the
MI approach. Both, MTM and MI perform better un-
der non-monotonic mappings than under monotonic
mappings due to the observation mentioned above.
The MTM and MI methods were optimized for bin
size (bin size 40 for MTM and 20 for MI).

Sensitivity to Noise, Pattern Size and Bin Size-
We examined the sustainability of the mentioned dis-
tances to additive noise and its performance under
various pattern sizes. Figure 6 shows the detection
rate for various pattern sizes under a specific mono-
tonic mapping (Figure 6a) and non-monotonic map-
ping (Figure 6b). All images were contaminated with
Gaussian noise with s.t.d. = 15. It can be seen that for
small patterns (under 10 × 10 pixels) detection rates
are very low in all methods. This behavior stems from
the fact that histogram bins of small sized patterns
are sparsly populated if at all. This may produce an
under-determined system or an over-fitting solution.
For this reason techniques using a low number of free
parameters are preferable and outperform other meth-
ods in small pattern scenarios (NCC for monotonic
mappings and MTM-PWL). This phenomena is also
shown below in Figure 8.

Figure 7 evaluates the sensitivity of the above
methods to additive noise. Pattern matching was
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Fig. 8. Comparison of MI and MTM as a function of bin size. For patterns of size 8×8, 16×16 and 32×32.

performed under a specific mapping with Gaussian
noise of varying variance added to each image. As
above, data points represent average results over 2000
randomly selected image-pattern pairs. Figures 7a and
7b plot the results for monotonic and non-monotonic
mappings respectively. Overall, the results resemble
the behavior shown above in Figure 6. Methods with
a small number of free parameters perform better, as
long as they model well the possible tone-mappings.
It can be seen that in both cases MTM-PWL is ad-
vantageous over MTM-PWC especially under severe
noise conditions.

Finally, we test for the sensitivity of MTM to bin
size and compare with that of MI. Figure 8 shows
detection rates for MTM-PWC, MTM-PWL and MI
over different bin sizes. Results are shown for three
different pattern sizes (8 × 8, 16 × 16 and 32 × 32).
Each data point is a result of 200 randomly selected
image-pattern pairs. For every image-pattern pair, a
random monotonic mapping was generated, within
the extremity range of 40-60, and Gaussian noise (s.t.d.
= 20) was added. These plots show the difference
in sensitivity to bin-size between the approaches. As
expected, MTM-PWL outperforms MTM-PWC accross
pattern sizes as well as MI, and is especially advanta-
geous when using large bin size on smaller patterns.
MI shows larger sensitivity to bin size with decrease
in performance for smaller bin sizes.
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Fig. 7. Performance comparison as a function of added
noise. (a) For specific monotonic mapping. (b) For
specific non-monotonic mapping.

5.1 Run Time
A significant advantage of MTM over MI is computa-
tional efficiency. Figure 9 displays run times of pattern
matching using different schemes under varying pat-
tern sizes. For MI and MTM, run times are shown for
different bin sizes as well. Run times shown are the
average over 10 runs. Run time was measured on an
Intel 1.70 GHz Pentium M. Since MI requires the com-
putation of the joint histogram for every image win-
dow pair, it is more computationally demanding than
MTM and other approaches. Furthermore, run time
for MI increases with the number of bins. On the other
hand, run time of the MTM-PWC scheme is on the
order of a single image convolution (Section 4.1) and
thus on par with the NCC and Euclidean approaches.
Run time of the MTM-PWL scheme is slightly higher
than the MTM-PWC (two image convolutions). The
size of bins in both, MTM-PWC and MTM-PWL, has
very little effect on the run time.

5.2 Results on Real Images - MTM vs. NCC and MI
In real scenarios, non-linear mappings between im-
ages commonly occur due to differences in camera
settings (e.g. gamma correction, white balancing etc.).
However, in such cases, local monotonicity is typically
maintained and NCC often performs very well. The
cases of interest in terms of this work are cases in
which NCC is challenged by strong non-monotonicity
of the tone mappings. In such cases MTM forms a nat-
ural generalization to NCC in terms of performance
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Fig. 9. Run time of various pattern matching schemes
(with different bin sizes) as function of pattern sizes.
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Fig. 10. Examples of image pairs (top-bottom) used in experiments. Pairs are (left to right): visual-IR, visual-SAR,
CT-MRI, Visual-SAR, illumination changes, 2 bands of hyperspectral image (SWIR range).

and run times. These cases of interest arise when a
scene is captured under very different illumination
conditions introducing cast shadows and highlights.
Another source of non-monotonicity is when a pair of
images are acquired using different modality cameras,
such as: visual, SAR, IR, CT, MRI. Such pairs often do
not match under global tone mapping but are locally
compatible under a non-linear tone mapping.

We compare the performance of MTM under these
cases. A collection of pairs of images of the types
described above were used. For every pair a pattern
was randomly selected in one image and sought in
the other. Note that although illumination, highlights
and shadows are often revealed only in sub regions
of the image, we did not restrict pattern selection to
those regions alone.

Examples of pairs of images from our collection
are shown in Figure 10. Figure 11 shows 2 exam-
ples displaying detection rates of pattern matching
between pairs of images for various pattern sizes.
The recorded performance is an average over 100
(randomly selected) patterns for each pattern size.
Figure 11a shows rates for a multi-modal image pair
(SAR vs. Visual - Figure 10, 2nd column from left). Fig-
ure 11b shows rates for an image pair under different
illumination (Figure 10, 3rd column from right).

Although the behaviour of MTM, NCC and MI
on real images vary greatly between images, perfor-
mance comparison over many pairs demonstrates a
consistent trend as shown in Figure 12. Bars represent
improvement of performance of MTM over NCC (left)
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Fig. 11. Performance (% correct detection) of MTM vs
NCC and MI in real images. a) For multimodal image
pair b) For image pair under different illumination.
Every point is the average over 100 examples.

and MI (right). Each bar represents the performance
of a particular image pair. Results were averaged over
different pattern sizes (ranging from 10-120 pixels
squared) where 100 patterns where randomly selected
at each size. The first 5 bars are associated with multi-
modal image pairs and the remaining 4 bars are from
image pairs differing in illumination and from multi-
spectral pairs (of proximate spectral bands). This dif-
ference can be explained in that images differing in
illumination and close-band spectral image pairs have
aligned edges. This is not the case in multi-modal
pairs where many edges are misaligned or missing.
We emphasize that regardless of performance, MTM
always significantly outperforms MI in terms of run
time requiring time similar to that of NCC.

6 ADDITIONAL APPLICATIONS

MTM as a similarity measure can be exploited in
numerous applications. The advantage of MTM ex-
tends naturally from pattern matching to Multi-modal
image registration. Image registration requires a reg-
istration method [?] which converges to the correct
transformation parameters between the registered im-
ages and, independently of the registration method,
requires a similarity measure to evaluate quality of
registration per any transformation parameter that
is tested. Irrespective of the methods, we show that
MTM is a good similarity measure for image regis-
tration, namely provides a deep local minima around
the correct registration parameters. MTM is shown to
provide this with performance on par with MI and
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Fig. 12. Histogram of improvement of performance of
MTM over NCC (left) and MI (right) for different images.
Each bar represents the improvement averaged over
100 examples per each pattern size (10-120 pixels2).
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in contrast with poor performance using NCC. To
demonstrate this, we evaluated the distance between
an image and its modality counterpart under dif-
ferent translation parameters. Figure 13(left) displays
distance maps between pairs of images of different
modalities (first four pairs in Figure 10). Distance
maps for NCC, MI and MTM are shown (left to right).
In each map, the center of the map corresponds to
the correct translation (∆x = 0,∆y = 0) and distance
values for other translation parameters (sampled in
steps of whole pixels) are represented at the corre-
sponding locations. As can be seen, the minimum
distances in the MI and MTM maps correspond to
the correct translation with a deep and global minima.
The results show that MTM and MI are comparable
in their accuracy of alignment whereas NCC largely
fails. Similar performance is observed for other multi-
modal image pairs.

Similar results are obtained when rotation and scale
transformations are assumed rather than translation,
as shown in Figure 13(right). Rotation parameters (x-
axis of map) range from −90◦ to +90◦. Scale param-
eters (y-axis of map) range from 0.8 to 1.2. As above,
the center of the map corresponds to the correct
transformation parameters (∆θ = 0, s = 1).

Note that, evaluating the correct transformation
parameters in a multi-modal alignment using MTM,
can be implemented very efficiently: image slices
need be computed only once for the reference image
of the pair, while for the transformed image, only
resampling and pointwise multiplication with the
image slices is required. In contrast, searching for
the transformation parameters using MI requires
computing the joint histogram of the image pair for
each candidate parameter - a time consuming process.

We briefly mention that MTM has also been exploited
to detect shadows in video surveillance sequences
[7]. Shadows were distinguished from pedestrians in
foreground regions of the video. Shadow removal
is difficult in such cases since shadows are non
uniform, noisy and tend to have wide penumbras
[2]. However, exploiting the assumption that shadow
regions are a (not necessarily linear) tone mapping
of the background, MTM can be used to evaluate
the structural similarity between foreground and
corresponding pixels in background image. Small
MTM distances relate to shadowed pixels and high
values indicate differently structured content, namely,
foreground objects (pedestrians). For details see [7].

7 DISCUSSION AND CONCLUSIONS
The MTM and MI approaches are similar in spirit.
While MI maximizes the entropy reduction in w
given p, MTM maximizes the variance reduction in
w given p. Both entropy and variance are measures
of uncertainty. While variance is a quantitative mea-
sure preferring a compact distribution of samples, the

NCC MI MTMNCC MTMMI

Horizontal + Vertical Translation Rotation + Scaling

Fig. 13. Distance maps between multi-modal image
pairs for horizontal and vertical translations and for
rotation and scale. Image pairs are from Figure 10.

entropy is a qualitative measure disregarding bin rear-
rangements. The use of variance rather than entropy is
critical when a small number of samples are available.
Nevertheless, although MTM demonstrates superior
performance with respect to run time and stability
under sparse samples, it relies on functional depen-
dency between p and w. When this assumption is
violated, e.g. in multi-modal images (between which
functional mapping does not necessarily exist), MI
often outperforms MTM, although at the expense of
longer run time. The following table summarizes the
comparison between the MI and the MTM schemes.

MI MTM
Maximize entropy reduction variance reduction

Speed slow fast
Bin size sensitive insensitive
Measure qualitative quantitative

In this paper, a fast pattern matching scheme called
Matching by Tone Mapping (MTM) was introduced. The
distance measure used is expressed as a minimiza-
tion problem over all possible tone mappings. Thus,
by definition, the MTM is invariant to non-linear
tone mappings (both monotonic and non-monotonic).
Furthermore, MTM is shown to be a generalization
of the NCC for non-linear mappings and actually
reduces to NCC when mappings are restricted to be
linear [27]. An efficient computation of the MTM is
proposed requiring computation time similar to the
fast implementation of NCC. Considering MTM in
terms of a regression scheme, we extend it to higher
order regression which allows greater robustness to
noise and sparse data.
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APPENDIX A
We solve for β̂ in the system Gβ̂ = QTw where Q =
Q(p) is the SLT-PWL matrix of p and G = QTQ is
a symmetric tridiagonal matrix, with main diagonal
entries:

φj
p = p̄j ·p̄j=

∑
i∈gj

p

(1−r(pi))2+
∑

i∈gj−1
p

(r(pi))
2, j = 1··k+1

and the off diagonal entries:

ψj
p = p̄j · p̄j+1 =

∑
i∈gj

p

(1− r(pi))r(pi), j = 1 · ·k

Defining ρj = w · p̄j we have:



φ1
p ψ1

p 0
ψ1
p φ2

p ψ2
p

ψ2
p φ3

p

. . .
. . . . . . ψk

p

0 ψk
p φk+1

p


︸ ︷︷ ︸

G(p)=QTQ

·


β̂1
β̂2
β̂3
...

β̂k+1


︸ ︷︷ ︸

β̂

=


ρ1
ρ2
ρ3
...

ρk+1


︸ ︷︷ ︸
Q(p)Tw

(24)

Since G is tridiagonal, this linear system can be solved
with a linear number of operations using a simplified
version of the Gaussian elimination method [9]. The
process involves a forward sweep that eliminates the
ψi
p’s below the main diagonal, followed by a back-

ward substitution that produces the solution.
In the first step the above system is modified to a

new set of equations using Gaussian elimination:

1 ω1
p 0

0 1 ω2
p

0 1
. . .

. . . . . . ωk
p

0 1

 ·


β̂1
β̂2
β̂3
...

β̂k+1

 =


σ1
σ2
σ3
...

σk+1

 (25)

where the new coefficients are calculated as follows:

ωi
p =


ψ1
p

φ1
p

for i = 1

ψi
p

φi
p − ωi−1

p ψi−1
p

for i = 2, 3, . . . , k

(26)
and

σi =



ρi

φ1
p

for i = 1

ρi − σi−1ψ
i−1
p

φi
p − ωi−1

p ψi−1
p

for i = 2, 3, . . . , k + 1

(27)
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The solution is then obtained using backward substi-
tution:

β̂k+1 = σk+1

β̂i = σi − ωi
p β̂i+1, for i = k, k − 1, · · · , 1(28)

Note, that during the elimination step the coeffi-
cients {ωi} are calculated only once for all candidate
windows, while {σi} and β̂ must be calculated for
each window. Since QTw is calculated using O(m)
operations (Section 4) and calculating β̂ requires an
additional O(k) operations the entire process requires
O(m+ k) operations.


