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Abstract

We present a computational� group�theoretic approach to steerable functions� The approach

is group�theoretic in that the treatment involves continuous transformation groups for which

elementary Lie group theory may be applied� The approach is computational in that the

theory is constructive and leads directly to a procedural implementation� For functions that

are steerable with n basis functions under a k�parameter group� the procedure is e�cient in

that at most nk�� iterations of the procedure are needed to compute all the basis functions�

Furthermore� the procedure is guaranteed to return the minimum number of basis functions�

If the function is not steerable� a numerical implementation of the procedure could be used to

compute basis functions that approximately steer the function over a range of transformation

parameters� Examples of both applications are described�
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� Introduction

Steerable functions have been widely used in image processing �Freeman and Adelson �����

Simoncelli et� al� ����� Simoncelli and Farid ����� Perona ������ computer vision �Granlund and Knutsson

Fleet ���	� Weng ���
�� and recently� even in computer graphics �Gotsman ����� Nimero� et� al� ������

Simply put� a function is steerable under some transformation when all transformed versions

of the function can be expressed as a linear combination of a 
xed� 
nite set of basis functions�

The weights of the linear combination depend solely on the transform parameters�

The importance of steerable functions stems from the property of superposition of linear

systems� Hence� any linear operation applied to a transformed version of a steerable function

can be expressed as a linear combination of the operation applied separately to the basis

functions� The main advantage of this property is that the linear operations can be applied to

the basis function once and o��line� In image processing� steerable functions have been used

as 
lter kernels� Because convolution is a linear operation� the 
lter output of a transformed

version of the 
lter kernel can be obtained by linearly combining the 
lter outputs of its

associated basis 
lters�

Freeman and Adelson presented functions steerable with respect to rotation using deriva�

tives of a Gaussian as the basis set �Freeman and Adelson ������ An extension of this tech�

nique to translation and scaling was shown by Simoncelli et al��Simoncelli et� al� ������ In�

deed� steerable 
lters are the most popular application of steerable functions� thus� the

examples in this paper will pertain mainly to steerable 
lters�

Many of the commonly encountered families of transformations on images form contin�

uous groups� Examples of these continuous groups include� image translation� rotation and
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scaling� For these families of transformations� Lie group�theoretic tools have been used to

analyze the property of steerability and to categorize the classes of functions which are steer�

able under di�erent transformation groups� In spite of this� given an arbitrary function� there

are several ways of computing a set of basis functions to steer this function� For example�

Perona �Perona ����� suggests sampling the space of transform parameters by constructing

replicas of the common kernel� each of which is transformed according to a particular choice

of parameters� The n�largest principal components of this set are then used to steer the

given 
lter� Alternatively� Simoncelli and Farid �Simoncelli and Farid ������ Michaelis and

Sommer �Michaelis and Sommer ����� and Hel�Or and Teo �Hel�Or and Teo ����b� 
rst ap�

proximate the function to be steered by a set of functions known to be steerable� and then

steers the approximated function by analytically steering the set of steerable functions�

In this paper� we present a computational� group�theoretic approach to steerable func�

tions� The approach is computational in that the theory is constructive and leads directly

to a procedural implementation that computes a set of basis functions that steer an arbi�

trary function� This approach does not require the identi
cation of the steerable function

space in advance� and it is computationally feasible even for multi�parameter transformation

groups� If the function is steerable with n basis functions under a k�parameter group� then

the procedure is guaranteed to terminate in at most nk � � iterations�

� Background on Lie Groups

Lie groups are often encountered as families of transformations acting on a function �Cohen ������

In this paper� we consider� primarily� the families of transformation groups acting on real�






Group Generator

gtx��� f � f�x� �� y� Ltx � � �
�x

gsx��� f � f�e��x� y� Lsx � �x �
�x

gr��� f � f�x cos � � y sin �� Lr � x �
�y
� y �

�x
� � �

��

x sin � � y cos ��

gs��� f � f�e��x� e��y� Ls � �x �
�x
� y �

�y
� �r �

�r

Table �� Several examples of one parameter groups and their generators� The transformation
groups are �from top down� x�translation� x�scaling� rotation� and uniform scaling� In the
rotation and uniform scaling examples� �r� �� are the polar coordinates of the image�

valued� two�dimensional functions� We assume that these functions are non�zero only within

a bounded region and denote them by f�x� y� � R� �� R� We describe each family of

transformations by operators fg�� �g where � � ���� � � � � �k� � Rk are parameters of the

transformation� For example� consider the family of one�dimensional translations of a func�

tion in the x�direction�

�f�x� y� � gtx��� f�x� y� � f�x� �� y�

where � denotes the amount of translation� In words� the operator gtx��� acts on the original

function f�x� y� to yield a new translated function �f�x� y� � f�x� �� y��

A family of transformations fg�� �g parameterized by � over some prede
ned range is a

Lie group if� ��� it satis
es the group conditions of closure under composition� associativity�

inverse and the existence of an identity� and ��� the maps for inverse and composition are

smooth�

Lie groups are rich in structure and many properties of the group can be discerned by

studying the properties of in
nitesimal actions of the group� The in
nitesimal actions of a

k�parameter group are a set of di�erential operators fLi j i � � � � � kg� called the generators

of the group� corresponding to derivatives of the transformation at the identity with respect
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to each parameter �i in turn� i�e��

d �f

d�i

�����
���

� Li
�f where Li �

�
�x

��i

�

�x
�

�y

��i

�

�y

������
���

The k generators provide a basis for the k�dimensional tangent space G � f��L� � � � � �

�kLkj� � Rkg� There is a correspondence between a k�parameter Lie group and its k�

dimensional tangent space in the form of the exponential map�

g�� � f�x� y� � e��L� � � � e�kLk f�x� y�� ���

The notation e�iLi represents the series expansion e�iLi � I � �iLi �
�
��
� �i L

�
i � � � �� which

is an in
nite sum of di�erential operators �Cohen ������ The exponential map generates a

group similar to the original group up to a change of parameterization� Examples of common

one�parameter groups and their generators are given in Table �� The generators of multi�

parameter groups can be written in terms of the generators of one�parameter groups� More

details can be found in �Hel�Or and Teo ����a��

� Generator Chains

In this section� we describe our approach to steerable functions in the context of one�

parameter transformation groups� the treatment of multi�parameter transformation groups

is deferred to the next section� We begin by formalizing the notion of a steerable function

with the following de
nition�
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De�nition � �Steerability� � A function f�x� y� � R� �� R is steerable under a Lie

transformation group G if any transformation g�� � � G applied to f can be written as a

linear combination of a �xed� �nite set of basis functions f�i�x� y�g�

g�� � f�x� y� �
nX
i��

�i�� � �i�x� y� � �
T �� ���x� y�

where �T � ���� � � � � �n� and ��x� y� � ���� � � � � �n�
T �

The functions �i are known as the steering functions of f associated with the basis f�ig and

depend solely on the transformation parameters� Without loss of generality� we assume that

n is the minimum number of basis functions required and these basis functions are linearly

independent�

The choice of basis functions required to steer a given function is not unique� any �non�

singular� linear transformation of the set of basis functions could also be used� Furthermore�

if n is the minimum number of basis functions required to steer a function f � then any

steerable basis of f will require only n basis functions as well� If a particular steerable basis

contains m � n basis functions� then m � n of them are necessarily linearly dependent on

the rest�

Theorem � �minimality of basis functions� � Let � � ���� � � � � �n�
T be the minimum

set of independent basis functions required to steer a function f under a Lie transformation

group G� Then� any other steerable basis � � ���� � � � � �m�
T of f with respect to G has

exactly n linearly independent functions�

Proof ��
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Assume that m is the minimum number of linearly independent functions in � to steer

f � Therefore� it is possible to 
nd m transformed replicas of f that are linearly independent

�otherwise m is not minimal��

�
BBBBBBBB�

g�� ��f

���

g��m�f

�
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�
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���������
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where �T �� � is composed of the steering functions associated with � and � � � � � �m are

particular choices of steering parameters� Since the m transformed replicas are linearly

independent� B is a non�singular matrix� These m transformed replicas of f can also be

constructed using the n basis functions of ��

�
BBBBBBBB�

g�� ��f

���

g��m�f

�
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�
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�T �� ��

���

�T ��m�

	








�
�

�
� A� � B� �

Since B is invertible it is possible to express � as a linear combination of ��

� � B��A��

Now� if � includes m � n functions� it is obvious from the above equation that m � n of

them are linearly dependent� This contradicts the minimality assumption of m� On the

other hand� if m � n� then n is not minimal� Thus� it must be true that m � n and all the

n functions in � are linearly independent� �
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In the following� we describe a method of constructing a basis for a given steerable

function f under a transformation G� From Theorem �� this basis can be related to any

other steerable basis of f via a linear transformation�

Associated with each one�parameter transformation group G is its generator L� As shown

in Section �� the generator L is a di�erential operator corresponding to an in
nitesimal

transformation about the identity� Applying L to a function f results in a new function Lf �

likewise� applying L a second time to the previous result yields another function which we

denote by L�f � L�Lf�� Alternatively� we could also regard L� �or Lj� j � 	� as a new

di�erential operator that is applied to f � The set of all such di�erential operators is collected

into a sequence in the following de
nition�

De�nition � �Generator Chain� � A generator chain C�L� is an ordered sequence of

di�erential operators corresponding to repeated applications of the given generator L� i�e��

C�L� � �I� L� L�� L�� � � ��

where I corresponds to zero applications of the generator�

The result of applying C�L� to a function f is de
ned to be the ordered sequence of

functions�

C�L� f � �f� Lf� L�f� L�f� � � ���

�



Using the exponential map given in Equation �� the series formed by summing all the func�

tions in the sequence is exactly the same as transforming f by an element g��� � G�

g��� f � exp��L� f �
�X
i��

� i

i�

�
Lif



� ���

Thus� the set of functions C�L� f provides a basis with which f can be steered� From

Theorem � it follows that this basis is redundant if n functions are required to steer f � only

n of the functions in C�L� f are linearly independent� It turns out that these n functions

are necessarily the �rst n functions of the chain� The minimality of the generator chain is

formalized in the following theorem�

Theorem � �Minimality of Generator Chain� � Let f be a steerable function under a

one�parameter Lie transformation group G such that transformations of f by any element

g � G can be written as a linear combination of �no less than	 n basis functions� Let L

denotes the generator of G� The application of the generator chain C�L� to f results in an

ordered sequence of functions such that the elements i � n of the sequence� corresponding to

L�i���f � are linearly dependent on the �rst n elements� Furthermore� the �rst n functions of

the sequence are linearly independent�

Proof � � Let the �m � ��th function in the sequence be the 
rst linearly dependent

function� That is� Lmf can be written as a linear combination of the 
rst m linearly inde�

pendent functions� As a result� all subsequent functions in the sequence Ljf where j � m

are necessarily linearly dependent on the 
rst m functions as well� This can be proven by
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�� Compute the basis functions needed to steer f under a one�parameter group� ��
next f � f � basis set � fg�
while �next f not linearly dependent on basis set� f

basis set � basis set � fnext fg
next f � L next f�

g
return� basis set ��

Figure �� Procedure for computing the basis functions to steer an arbitrary function f under a
one�parameter group�

induction where j � m� � is the base case� Let Lmf �
Pm��

i�� aiL
if � Then�

Lm��f � L�Lmf� � L�
Pm��

i�� aiL
if�

�
Pm��

i�� aiL
i��f

� am��L
mf �

Pm��
i�� aiL

i��f

But� since Lm is linearly dependent on the 
rst m functions� Lm��f can also be expressed

as a linear combination of these functions� The proof of the inductive case is similar� As a

result� Equation � implies that transformations of f can be written as a linear combination

of the 
rst m functions in C�L� f � Because f is steerable with n basis functions� it follows

from Theorem � that m must equal n� �

This theorem suggests the following procedure to compute a set of basis functions to

steer an arbitrary function f � The generator L is applied to f repeatedly and each time� the

linear dependence of the new function upon the previously computed functions is checked� If

it is linearly dependent� then the set of all functions computed prior to this one is su�cient

to steer f � It the function f is steerable with n basis functions� then the procedure will

terminate after n � � iterations� Figure � describes the procedure in pseudo�code� The
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procedure is applied to the following two examples�

Example � � Let f�x� y� � ��x e��x
��y�� and G be the group of rotations in the plane�

The generator of G is L � x �
�y
� y �

�x
� and

L�f � ��x e��x
��y�� � f � L�f � �y e��x

��y���

and L�f � �x e��x
��y�� � �f � Therefore� f is steerable under G with two basis functions�

i�e�� the derivative of a Gaussian in any direction can be expressed as a linear combination

of two functions�

Example � � Let f�x� � �cos x � ��� and G be the group of x�translation� gr��� f�x� �

f�x� ��� The generator of G is L � � �
�x
� and

L�f � �cos x� ����

L�f � ��cos x � �� sinx � sin �x� � sinx�

L�f � �� cos �x� � cosx�

L�f � �� sin �x� � sinx�

L	f � � cos �x� � cos x�

and L
f � �� sin �x � � sinx � ��L�f � �L�f � Therefore� f is steerable under G with the


ve basis functions� fL�f� � � � � L	fg� The particular choice of basis functions is not unique�

in this example� the function f is also steerable with the following 
ve basis functions�

f�� sinx� cos x� sin �x� cos �xg�

��



� Generator Trees

In this section� we consider multi�parameter transformation groups� Let the set of di�erential

operators� fL�� � � � � Lkg� be the k generators of the k�parameter transformation group G� In

the context of multi�parameter transformation groups� the generator chain is no longer a

chain since more than one generator may be applied� instead� we have a tree of di�erential

operators� Nodes in the tree correspond to all possible compositions of the generators�

De�nition � �Generator Tree� � A generator tree T �L�� � � � � Lk� is a k�ary tree of dif�

ferential operators corresponding to repeated applications of the generators L�� � � � � Lk� Each

node of the tree has k children� which correspond to applying each of the Lk di�erent genera�

tors� Level l of the tree contains kl nodes� each of which represents the di�erent permutations

of applying L�� � � � � Lk repeatedly for a total of l times�

For example�

T �L�� � � � � Lk� �
�

���

A
AAU
�
��R

�
���

�
���

A
AAU
�
��R

�
���

�
���

A
AAU
�
��R

�
���

I

L� � � � LkL�

� � �L�L� L�L� LkL�

� � �L�LkL� LkLkL�

Similar to generator chains� applying T �L�� � � � � Lk� to a function f results in a k�ary tree

where each node corresponds to the function obtained by applying the generators to f �

Furthermore� using the exponential map given in Equation �� transforming f by an ele�

ment g���� � � � � �k� � G can be calculated by a linear combination of functions in the tree

��



T �L�� � � � � Lk� f �

g���� � � � � �k� f � e��L� � � � e�kLk f �

�
kY

i��

�X
l��

� li
l�
Ll
i

�
f �
�

Thus� the set of functions obtained by applying T �L�� � � � � Lk� to a function f provides a

basis with which to steer f � Similar to the case with generator chains� this basis is redundant

if only n functions are required to steer f � It turns out that the n functions needed to steer f

necessarily form a subtree of T �L�� � � � � Lk� f with the same root� This property generalizes

the minimality property of generator chains associated with one�parameter groups�

Theorem � �Minimality of Generator Tree�� Let f be a steerable function under a k�

parameter Lie transformation group G such that transformations of f by any element g � G

can be written as a linear combination of �no less than	 n basis functions� Let L�� � � � � Lk

denote the generators of G� The application of the generator tree T �L�� � � � � Lk� to f results

in a k�ary tree of functions such that there exists a subtree T ��L�� � � � � Lk� f �with the same

root	 satisfying the following two conditions� �
	 all functions within the subtree are linearly

independent of one another� and ��	 all functions in the original tree but not in the subtree

are linearly dependent on functions within the subtree�

Proof � � Let T ��L�� � � � � Lk� f be a subtree of T �L�� � � � � Lk� f �with the same root�

such that� ��� all the functions within the subtree are linearly independent� and ��� all the

functions that are immediate children of the subtree �as part of the original tree� are linearly

dependent on the functions within the subtree� Then� all the descendents of the immediate

children are also linearly dependent on the functions within the subtree� This can be proven

�




in a way similar to that for generator chains in Theorem �� The induction� in this case� is

on subtrees� Also� from Theorem � it follows that the total number of linearly independent

functions in the original tree is necessarily n since f is steerable� As a result of the former

property� the size of the subtree must be n as well� �

Unlike the situation with generator chains� this minimal subtree is not unique� That is�

there may be two subtrees of the same size �and with the same root as the original tree�

that could be used to steer f � However� since f is steerable� the functions in these two trees

necessarily span the same space�

This theorem also suggests a procedure for computing the basis functions needed to steer

an arbitrary function f � Each of the generators fL�� � � � � Lkg is applied to f repeatedly�

Each new function is then checked to determine if it is linearly dependent on all the previ�

ously computed functions� If it is linearly dependent� then one need not further apply any

generators to this function� If the function f is steerable with n basis functions under a

k�parameter group� then the procedure will terminate after testing at most nk�� functions�

The proof of this claim is given in Appendix A� The procedure is applied to the following

two examples�

Example � � Let f�x� � x� and G be the group of one�dimensional scaling and transla�

tions� g���� ��� f�x� � f�e���x � ���� The generators of G are L�� � �x �
�x

and L�� � � �
�x
�

It can be seen that�

f � x� � L��f � ��x � L�
��
f � �

are the 
rst three functions that span the entire generator tree T �L�� � L���� Thus� any other

node in the generator tree is linearly dependent on these functions�

��



Example � � Let f�x� y� � sin x sin y and G be the group of translation along the x and

y dimensions� g���� ��� f�x� � f�x � ��� y � ���� The generators of G are L�� � � �
�x

and

L�� � � �
�y
�

T �L�� � L��� f �
�
���

�
��R

�
��R

sinx sin y

� cos x sin y � sin x cos y

cos x cos y

�

Since translation in the x and y dimensions are commutative� their generators commute as

well� i�e�� L��L�� � L��L�� � Thus� the left child of the node with � sinx cos y is automatically

pruned since it will be the same as the right child of the node with cos x cos y� Therefore� f

is steerable under G with four basis functions�

� Simulations

In this section� we present two applications of the theory described in the previous section�

The 
rst application is an implementation of the procedure described in Section � for steering

polynomials� The second application is a numerical implementation of the same procedure

for approximately steering any sampled function�

��� Steering Polynomials

The procedure described in Section � was implemented in MATLAB to automatically de�

termine the basis functions needed to steer an arbitrary two�dimensional polynomial under

any subgroup of the two�dimensional a�ne transformation� In �Hel�Or and Teo ����b�� the

authors show that such polynomials can be steered� with a 
nite number of basis functions�

��



under any subgroup of the a�ne group� Thus� the procedure is guaranteed to terminate

after a 
nite number of iterations�

In the procedure� the linear independence of a polynomial with respect to the current

basis set needs to be determined� This is done by representing each polynomial in terms of

the basis of monomials f�� x� y� x�� xy� y�� � � �g� Speci
cally� let the matrix B be an m � n

matrix of coe�cients andm be the n�� vector of monomials such that Bm yields an m��

vector corresponding to the m basis polynomials� Similarly� expressing the new polynomial

in the monomial basis results in a � � n vector b of coe�cients� Since the monomials are

linearly independent� the new polynomial is linearly dependent on the basis set if and only

if b is in the row space of B� The generators for each one�parameter subgroup �e�g� x�

translation� y�translation� etc�� are implemented as operations on the coe�cients of the

polynomial representation� This is possible since applying any generator to a polynomial

always results in another polynomial�

The cubic polynomial x� � 
x�y � 
xy� � y� �mpoly�� is used in the following examples�

The basis functions needed to steer the function under di�erent multi�parameter groups are

computed�

�� In this example� basis functions to steer the polynomial under the group of uniform

scaling and rotation are computed� The generators are Ls � �x �
�x
� y �

�y
and Lr �

x �
�y
� y �

�x
respectively�

poly� mat � steer poly��mypoly�� �lscale�� �lrot��

x� � 
x�y � 
xy� � y��

��




x� � 
x�y � 
xy� � 
y��


x� � ��x�y � ��xy� � 
y��

���x� � 
�x�y � 
�xy� � ��y��

�� In this example� basis functions to steer the polynomial under the group of translations

in the x and y directions and rotation are computed� The generators are Lx � � �
�x
�

Ly � � �
�y
� and Lr � x �

�y
� y �

�x
respectively�

poly� mat � steer poly��mypoly�� �ltransx�� �ltransy�� �lrot��

���x� � 
�x�y � 
�xy� � ��y��


x� � ��x�y � ��xy� � 
y��


x� � 
x�y � 
xy� � 
y��

x� � 
x�y � 
xy� � y��

�
x� � �xy � 
y��

��x� � �y��

�x� �y�

�x� �y�

��xy�

���

Clearly� the basis comprising of all the monomials in x� y up to powers of three� a total

��



of ten� is su�cient to steer the cubic polynomial� However� as can be seen in the examples

above� fewer than ten are actually needed in some situations� The procedure selectively

retains only those necessary by removing those that are linearly dependent �with respect to

the generators of the group��

��� Numerical Simulations

A numerical version of the suggested procedure was also implemented� The program auto�

matically computes a set of basis functions that can be used to steer a given two�dimensional

function� The derivatives in the generators were approximated using numerical derivatives�

The linear dependence of a function on the current set of basis functions is veri
ed by pro�

jecting the function onto an orthogonalized version of the basis set and measuring the relative

magnitude of the residual� The set of orthogonal basis functions can be e�ciently computed

by using the Gram�Schmidt technique iteratively�

Since the procedure is not guaranteed to terminate for arbitrary functions as an in
nite

number of basis functions might be required� the check for linear dependence was replaced

by a numerical condition that the residual between the function and its projection is below

some threshold� I�e� if �k is the kth basis function that was generated and orthogonalized�

then the residual of the �k � ��th basis function is� res��k��� � k�I � �k�
T
k ��k��k

�� where

�k is a matrix having the k basis functions in a column order� �k � ���� ��� � � � � �k�� The

maximum depth of the generator tree was also used as a termination criteria since higher�

order numerical derivatives are less accurate� As a result� the steering of the given function

with the basis set is only accurate to within some range of transform parameters as we shall

��



Figure �� Basis functions that steer ���x�	x�� exp
��x��y���� the third derivative of a Gaussian�

under rotation� The leftmost image is the third derivative of a Gaussian that was used as input to

the procedure�

see�

Figure � shows the four basis functions that could be used to steer �under rotation� the

function ���x��x�� exp���x��y���� which is the third derivative of a Gaussian� The leftmost

image is the function that was used as input to the procedure� i�e�� the function to be steered�

The spatial extent of each image ranges from �� to � units both horizontally and vertically�

Figure 
 shows images of four orthogonal basis functions that could also be used to steer

the function� These basis functions were computed by the Gram�Schmidt component of the

procedure�

Unlike the third derivative of a Gaussian� the function sin�x� exp���x� � y��� cannot be

perfectly steered under rotation� Figure � shows images of the four basis functions returned

by the procedure� The maximum tree�depth was set at � and the maximum relative squared

error of the residual � i�e� res���	k�k�� was ��� The relative squared error of using these

basis functions to steer the function under any rotation was always less than 	����

Figure � shows the 
rst � basis functions out of �� that were computed to steer the

function ��x���� exp���x��y��� under any x� y translation and rotation� Again� the steering

is only approximate since the function cannot be steered with a 
nite number of basis

functions� The maximum tree�depth of the procedure was set at 
 and the maximum relative

��



Figure 
� Orthogonal basis functions that steer ���x� 	x�� exp
��x� � y���� the third derivative

of a Gaussian� under rotation� The leftmost image is the third derivative of a Gaussian that was

used as input to the procedure�

Figure �� Basis functions that steer sin�x� exp
��x� � y��� under rotation� The leftmost image is

the function that was used as input to the procedure�

squared error of the residual was �	�� Figure � left plots the relative squared errors of

steering the function using this basis for a range of translations� The approximation is

very good about the origin �zero translation� and worsens when the translations are large�

Figure � right plots the relative squared errors of steering a translated version of the function

over all rotation angles� The errors in steering the untranslated function are negligible since

the second derivative of a Gaussian can be perfectly steered with three basis functions under

orientation�

� Discussion

The proposed method for computing basis functions to steer a given function essentially

computes the Taylor expansion of the function with respect to the transform parameters� The

expansion is evaluated at the origin of the transform parameters� Several simpli
cations arise

�	



Figure �� The �rst four basis functions that steer �
x���� exp
��x��y��� under x� y� translation

and rotation� The leftmost image is the function that was used as input to the procedure�
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Figure �� Graph �a�� Relative squared errors of the steered approximations to the actual functions

over a range of x�translations� The graph describing the errors with respect to the y�translations is

virtually identical� Graph �b�� Relative squared errors of the steered approximations to the actual

functions over the entire range of rotation angles� The actual function has been translated by ���

units in both the x and y dimensions� i�e�� �
�x � ����� � �� exp
���x � ����� � �y � �������� The

percentage errors for an untranslated function are negligible�

because the transform is a Lie transformation group� The principal one being that the Taylor

expansion can be written solely in terms of the 
rst order derivatives� namely� the generators�

Equation � of Section 
 and Equation 
 of Section � describe the Taylor expansion in terms

of the generator�s� for one�parameter and multi�parameter groups respectively� Since higher

order derivatives can be determined from these generators� properties involving the higher

order derivatives can be proven� These properties are precisely those that were used to show

the minimality of generator chains and generator trees� Furthermore� these higher order

��



derivatives can also be computed by repeated applications of the generators�

As a result of this close connection with Taylor expansions� the errors incurred in ap�

proximately steering a function increases with the deviation of the transform parameters

from the origin� This happens when the function to be steered cannot be steered by a 
�

nite number of basis functions� It can be veri
ed from the numerical implementation of

the procedure in Section �� However� for some applications� where only a limited range of

steering is requiredmay� the above approximation may be acceptable� For example� Man�

matha �Manmatha ����� uses a similar approach to estimate the a�ne transformation of

points� lines and image intensities� However� if the function needs to be steered over a larger

range of parameters� then either more basis functions could be computed by increasing the

maximum tree�depth or by applying the Taylor expansion about another location other than

the origin� The basis functions computed by this method� in fact� minimize the approxima�

tion error about the particular transform parameter �i�e� when we need the best accuracy at

the identity transfomation�� Instead� if the criterion is to minimize the average error over a

range of transform parameters� then fewer basis functions are required� In �Teo and Hel�Or��

the authors propose an e�cient method of computing the basis functions that minimize this

approximation error�

In summary� we have presented a computational� group�theoretic approach to computing

the basis functions of steerable functions� If the function is steerable with n basis functions

under a k�parameter group� the procedure is e�cient in that at most nk � � iterations of

the procedure are needed to compute all the basis functions� Furthermore� the procedure is

guaranteed to return the minimum number of basis functions� If the function is not steerable�

a numerical implementation of the procedure could be used to compute basis functions that

��



approximately steer the function over a range of parameters�

References

�Cohen ����� A� Cohen� An introduction to the Lie theory of one�parameter groups� with

applications to the solution of di�erential equations� D� C� Heath � Co�� Boston� New

York� �����

�Freeman and Adelson ����� W� Freeman and E� Adelson The design and use of steerable


lters� IEEE Trans� Pattern Analysis and Machine Intelligence� �
������� �	�� �����

�Fleet ���	� D� Fleet� Computation of component image velocity from local phase informa�

tion� International Journal of Computer Vision� ������� �	�� ���	�

�Granlund and Knutsson ����� G� Granlund and H� Knutsson� Signal processing for com�

puter vision� Kluwer Academic Publishers� Boston� �����

�Gotsman ����� G� Gotsman� Constant�time 
ltering by singular value decomposition� Com�

puter Graphics Forum� �
������
 ��
� �����

�Hel�Or and Teo ����a� Y� Hel�Or and P� Teo� Canonical decomposition of steerable func�

tions� In Proc� Conf� on Computer Vision and Pattern Recognition� pages �	� ���� San

Francisco� CA� �����

�Hel�Or and Teo ����b� Y� Hel�Or and P� Teo� A common framework for steerability� mo�

tion estimation and invariant feature detection� Technical Report STAN�CS�TN�������

Stanford University� �����

�




�Manmatha ����� R� Manmatha� A framework for recovering a�ne transforms using points�

lines or image brightnesses� In Proc� IEEE Conf� Computer Vision and Pattern Recog�

nition� pages ��� ���� Seattle� WA� �����

�Michaelis and Sommer ����� M� Michaelis and G� Sommer� A Lie group�approach to steer�

able 
lters� Pattern Recognition Letters� ����������� ����� November� �����

�Nimero� et� al� ����� J� Nimero� and E� Simoncelli and J� Dorsey� E�cient re�rendering of

naturally illuminated environments� In �th Eurographics Workshop on Rendering� �����

�Perona ����� Deformable kernels for early vision� IEEE Trans� Pattern Analysis and Ma�

chine Intelligence� ��������� ���� �����

�Simoncelli and Farid ����� E� Simoncelli and H� Farid� Steerable wedge 
lters� In Proc� Int�

Conf� on Computer Vision� pages ��� ���� Boston� MA� �����

�Simoncelli et� al� ����� E� Simoncelli and W� Freeman and E� Adelson and D� Heeger�

Shiftable multiscale transforms� IEEE Trans� Information Theory� 
�������� �	�� �����

�Teo and Hel�Or� P� Teo and Y� Hel�Or� Design of multi�parameter steerable functions using

cascade basis reduction� IEEE Trans� Pattern Analysis and Machine Intelligence� to be

published�

� Weng ���
� J� Weng� Image matching using the windowed Fourier phase� Int� J� Computer

Vision� ���
����� �
�� ���
�

��



Appendix�

A Number of Iterations

Claim � �

The procedure suggested in Section � tests the linear dependence of a function on the

basis set at most nk � � times for a function that is steerable with n basis functions under

a k�parameter group�

Before proving this claim� we proof the following useful lemma�

Lemma � � A k�ary tree with n nodes �internal nodes as well as leaves� has exactly n�k �

�� � � immediate children�

Proof of Lemma �� A k�ary tree with one node has k immediate children� Each addition

of a new node increases the number of immediate children by k � �� Thus� adding n � �

nodes results in a total number of �n� ���k � �� � k � n�k � �� � � immediate children in

the tree�

Proof of Claim � � The number of times the linear dependence test is invoked is equal to

the sum of the number of basis functions required and the number of immediate children in

the resultant k�ary generator tree� Therefore� the total number of times the test is applied

is n� n�k � �� � � � nk � �� �
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