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Pose Estimation by Fusing Noisy Data of Di�erent

Dimensions

Yacov Hel�Or and Michael Werman

Abstract� A method for fusing and integrating di�erent
�D and �D measurements for pose estimation is proposed�
The �D measured data is viewed as �D data with in�nite
uncertainty in particular directions� The method is imple�
mented using Kalman �ltering� it is robust and easily par�
allizable�
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In model�based pose determination the position of a known
object is determined from di�erent types of surface measure�
ments �for reviews see ���� ���� ���	
 Usually feature points such
as maximum curvature� segment endpoints and corners are mea�
sured
 The aim of this paper is to determine the correct rigid
transformation �translation and orientation	 of the model points
to the measured points where the measured data is not exact

This problem is known as absolute orientation in photograme�
try �for a review see ���	 and is classi�ed into two major cate�
gories according to the type of measurements


�
 �D to �D correspondence
 both model and measurements
supply information about the �D location of features �mea�
surements from range data� stereo� etc
	


�
 �D to �D correspondence
 the model is �D while the avail�
able measurements supply projected �D information
 The
projection can be perspective or orthographic


Methods to compute the absolute orientation have been pre�
sented� most of which use least�square techniques in either
closed �e
g
 ���� ���� ���� ���� ���	 or iterative form �e
g
 �����
���� ���� ���� ����	
 However� each method can be applied to only
one of the categories described above

In this paper we suggest a uniform framework to compute the

absolute orientation� where the measured data can be a mix�
ture of �D and �D information
 Unifying the di�erent types
of measurements is done by associating an uncertainty matrix
with each measured feature
 Uncertainty depends both on the
measurement noise and on the type of measurement
 A �D
measurement is a projection �perspective or orthographic	 onto
a �D plane and we regard it as a measurement in �D with in�
�nite uncertainty in the direction of the projection
 Therefore�
the dimensionality of the measurements is encoded in the co�
variance matrix
 This representation uni�es the two categories
of the absolute orientation problem into a single problem that
varies only in the uncertainty values associated with the mea�
surements
 With this paradigm we obtain a uniform mathe�
matical formulation of the problem and can fuse di�erent kinds
of measurements to obtain a better solution
 The algorithm
we describe has additional advantages of supplying a certainty
measure of the estimate� enabling an e�cient matching strategy
and allows simple parallelization


A model M of a �D object is represented by a set of points


M � fuig �
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where ui is a � dimensional object�centered vector associated
with the ith point

A measurement of a �D object is represented by M � which�

similar to the model representation� is a collection


M � � f��u�j��j	g �

�u�j � is a noise�contaminated measure of the real location�vector

u�j associated with the jth measured point and is represented in
a viewer�centered frame of reference

�j � is the covariance matrix depicting the uncertainty in the
sensed vector �u�j
 We do not constrain the dimensionality of the
measured data but allow it to be �D �stereo� range �nder etc
	�
or �D �orthographic or perspective projection	


A matching between the model M and the measurement M �

is a collection of pairs of the form

matching � fuk� ��u�k��k	g �

which represents the correspondence between the model points
to the measured points
 For simplicity we denote a model point
and its matched measurement with the same indices

The problem

Given a model M � a measurement M � and a matching as above�
estimate a transformation T which optimally maps the points ui
of the model onto the corresponding measured points ��u�i��i	

The estimated transformation T describes the position of the
measured object M � in the �D scene

The method described below fuses the information from all

the measured points and estimates the transformation T by in�
cremental re�nement using Kalman��lter tools
 At each step a
matched pair is introduced and an updated solution is produced


As previously noted� in our approach� an uncertainty matrix
must be evaluated for each and every synthesized point feature

That is� each extracted feature is associated with both� a set of
estimated parameter values and an uncertainty matrix associ�
ated with these values
 This uncertainty is derived from several
factors


� Uncertainty due to measurement noise �e
g
 digitization�
blurring and chromatic aberrations	


� Uncertainty dependent upon the feature detection process

For example� a detected end�point of a line segment will
have a low positional uncertainty in the direction perpen�
dicular to the line segment and a high uncertainty in its
direction


� Uncertainty due to the lack of information caused by pro�
jections


In this paper� we will not deal with the modeling of the mea�
surement noise but we present a uni�ed representation of the
measured data
 We separate our class of measurements into two
categories


�D measured data

The simplest case is that of a point q � M � presented by the
pair


q � ��u���� �

where �u� � ��x�� �y�� �z�	 is the measured location vector and � is
its uncertainty


�D projected data

When the measurements are obtained using a projection� we
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Fig� �� A perspective
projection of the point
u� into an image plane
�v�w�� The point can
be represented in ei�
ther� a Cartesian system
�x�� y�� z�� or a spherical
system �r��� ���
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describe the measured data as a measurement in �D where the
uncertainty in the direction of projection is in�nite
 Assume
the measurements are performed on the image plane using the
coordinate system �v�w	


proj�q	 � ���v� �w	��vw� �

where �vw is a ��� covariance matrix describing the uncertainty
of the measurement ��v� �w	

In the case where the projection is along the z�axis �ortho�

graphic	 we represent this data as


q � ���v� �w� �z�	�

�
�vw �
� �

�
� �

where �z� is any estimate of the z� coordinate

In the case of a perspective projection� modeling of the un�

certainty is a little more complicated
 Assume the origin of the
viewer�centered frame of reference is at the focal point as shown
in Figure � and the focal length is f 

We aim to transform the measurement given in the image�

plane coordinate system into a representation in the Cartesian
system u� � �x�� y�� z�	

Considering the spherical coordinate system �r� �� �	 �Figure

�	
 The vector ��v� �w	 determines the angular coordinates ��� �	
but leaves the value of r undetermined


�� � arctan�

p
�v� � �w�

f
	 � �� � arccos�

�vp
�v� � �w�

	 �

Additionally� the uncertainty of ��v� �w	 is translated into a co�
variance matrix in the ��� �	 system as follows


��� �

�
���� �	

��v�w	

�
�vw

�
���� �	

��v�w	

�t

�

where ������
��v�w� is the Jacobian of the transform from �v�w	 to

��� �	� and the derivative is taken at point ��v� �w	
 The trans�
formation into spherical coordinates� as an intermediary stage�
allows a simple representation of the measurement in �D
 q �
���r� ��� ��	��r��� � where

�r�� �

� � � �
�
� ���

�

and �� � �� � ��� are the expressions described above
 �r is un�
known but an estimation of �r will be chosen as is explained later
in this section

In practice we are interested in representing the measurement

in Cartesian coordinates� thus� the measurement is transformed
again from the spherical coordinates to Cartesian coordinates
u� � �x�� y�� z�	 as follows
 q � ���x�� �y�� �z�	��xyz� � where

�x� � �r sin �� cos �� � �y� � �r sin �� sin �� � and �z� � �r cos ��

and the covariance matrix is


�xyz �

�
��x� y� z	

��r� �� �	

�
�r��

�
��x� y� z	

��r� �� �	

�t

�

The derivatives are taken at the point ��r� ��� ��	
 Here too� all
values are known except for �r
 Since the solution to the location
problem incrementally improves the estimation of T � i
e
 at step
k there exists an estimate �Tk�� from the previous step
 We use
this estimate to calculate an estimate of �r at step k as follows


�rk � k �Tk���u	k �

where u � M is the location of the corresponding point in the
model
 We emphasize that the uncertainty of this estimate� as
expressed in the covariance matrix� is in�nite


The uncertainty generated from the raw input�data is prop�
agated into uncertainty of the solution �i
e
 estimated �D loca�
tion	
 Solution uncertainty denotes the belief we associate with
the estimated location of the object
 This uncertainty will be
represented by a covariance matrix whose dimension is equal
to the degrees of freedom of the transformation �� for a rigid
��D transformation	
 The optimal estimate will be that which
minimizes the covariance matrix �or rather minimizes its norm	

When representing the transformation as a � component vector�
the dependence between the estimated rotation and estimated
translation is expressed through the entries in the covariance
matrix
 This dependence is not considered in methods where
the process of determining the rotation is separated from the
process of determining the translation �e
g
 ���� ����	
 Taking
this dependence into account is shown to give a more accurate
result ����


A� The System De�nition

The variables to be estimated

The representation of the transformation is composed of two
components


� The translation component is expressed by the vector t�

t � �tx� ty� tz	
t �

� The rotation component is described by a unit quaternion
�q ����


�q � �q	�q	 � �q	� q�i� q�j � q
k	 �

The rotation quaternion should satisfy the normality con�
straints
 �q�q� � q�	 � kqk� � � � where �q� is the conjugate
of �q

In practice we represent the rotation component by the vec�

tor
 s � q�q	 from which the quaternion �q can be reconstructed


q	 �
�p

� � sts
� �q � �q	� q	s	 �

The vector s is a convenient representation of the rotational
component� in addition to being minimal �having � parameters	
the rotation equation is linear in s as will be shown later
 In
order to avoid singularities in the representation when q	 � �
we simultaneously use two di�erent coordinate systems

Considering these two components� the parameter vector to

be estimated during the �ltering process is


T �
�
s
t� tt

�t
�



HEL�OR AND WERMAN� POSE ESTIMATION BY FUSING NOISY DATA OF DIFFERENT DIMENSIONS 


The observations

A model point is represented by a vector ui � �x� y� z	t in an
object centered frame of reference� where the index i denotes
the step of the process at which this feature is considered �the
same model point can be considered many times when there are
several measurements of this point	

u�i � �x�� y�� z�	t � is the real position of the point ui in the
viewer centered frame of reference

�u�i � is the measured position of the point u�i
 This measurement
is imprecise and can be represented as


�u�i � u
�
i � �i �

where �i is white noise satisfying


Ef�ig � � � Ef�i�tig � �i � Ef�i�tjg � � �i �� j �

The measurement model

A mathematical relationship between the measured vector and
the estimated vector is expressed� for each feature i� by a non
linear quaternion equation


�u�i � �q�ui�q
� � �t � ��	

where �ui� �u
�
i��t are quaternions associated with the vectors

ui�u
�
i� t respectively
 Given that �q�q� � �� multiplying Equa�

tion ��	 by �q yields


�u�i�q � �q�ui ��t�q �

Isolating the vector component of this quaternion equation and
dividing by q	 we get the matrix equation


hi�ui�u
�
i�T	 ��u�i � ui� s��u�i�ui	��I
� �s�	t � � � ��	

where s � q
q�

as previously de�ned� I
 is the � � � identity
matrix and ��� denotes the matrix form of a cross product� i
e


�v��

�
� �vz vy
vz � �vx
�vy vx �

�
� and �v� u � v� u �

Notice that according to the de�nition of the measurement
noise� we assume no correlation between the di�erent measure�
ment noise �covf�i� �jg � � �i �� j	
 This assumption is not
always valid
 When there is correlation between several mea�
surements� we may consider these measurements as a single
measurement by grouping the measurement values into a single
vector and by combining their corresponding equations into a
single vector equation


B� The Estimation Control

The estimation process is composed of an incremental pro�
cess� for which at each step k � �� there exists an estimate

�Tk�� �

�
�sk��
�tk��

�
of the transformation T and a covariance

matrix �k�� which represents the �quality� of the estimate
�Tk��
 Given a new match �uk� �u

�
k	 the current estimate is

updated to be �Tk with the associated uncertainty �k
 The
accuracy of the estimate increases� as additional matches are
fused� i
e
 �k � �k�� ��k�� � �k is nonnegative de�nite	

The process terminates as soon as the uncertainty satis�es our
criterion for accuracy or no additional match can be supplied
����

Fusing the information from a match with the old estimate is

performed using the extended Kalman filter �E
K
F
	 process
����� ����


Implementing the K
F
 yields an unbiased estimate of T
which is optimal in the linear minimal variance criterion ����
 In
the case where the measurement noise 	 is a Gaussian process
�which is a reasonable assumption� considering the numerous
sources of noise	� the K
F
 gives an estimate which is also the
maximum�likelihood

The convergence of the estimate to the true solution can be

evaluated by studying the qualitative behavior of the covariance
matrix �
 The evolution of � during the process is given by �see
����	


���
t
� � Ht

t
��
��
t
�Ht
� � ���

t �

Under the assumption that H and � are constant along time�
we have


�����t	

�t
	 ���

t
� ����
t � Ht���H

so that
 ��t	 
 �Ht���H	��

t

i
e
 the convergence is at a rate of t�� and thus the squared
deviation kT� �Ttk� also converges as t��


A� Matching Control

The use of the K
F
 process enables us to obtain reasonable
matches during the estimation process ���� ����� at each step i�

use the current estimate �Ti and its corresponding con�dence �i

to select �good� matches
 The selection is done using goodness
of �t tests

Given a model�feature uk� let a candidate for a match be
the measurement ��u�k��k	
 According to this hypothesis�

hk�uk� �u
�
k� �Tk��	 �Equation �	 is an independent random vari�

able with a normal distribution which satis�es

Efhk�uk� �u�k� �Tk��	g � Ef�hkg � �

Varf��hk	g � �
�hk
�u�k

	�k�
�hk
�u�k

	t � �
�hk
�T

	�k�
�hk
�T

	t � Sk �

The �goodness� of �t between uk and �u�k is then given by the
Mahalanobis distance


d�uk� �u
�
k	 � ��hk	S

��
k ��hk	

t � g� �Tk ��k	 �

where g has 
� distribution with rank�Sk	 degrees of freedom

The probability that the match is correct is inverse to g
 As
the process proceeds� the uncertainty � decreases lowering the
number of acceptable matches


B� Parallelization of the Process

Assume that the E
K
F
 process was performed on two sepa�
rate channels a and b� using n matches in each channel


f�u�igi�����n E�K�F��� �Ta��a

f�u�igi�n
�����n E�K�F��� �Tb��b

Optimal fusion of the �n matches can be performed easily us�
ing the K
F
 equations if we interpret � �Ta��a	 as an a�priori

estimation of T and consider �Tb as a �new measurement� with
associated covariance matrix �b
 Extension of this method can
fuse estimates obtained from a greater number of channels �re�
quiring logm steps form channels	
 It is thus possible to decom�
pose the K
F
 process into several channels and then fuse the
obtained estimates into a single optimal solution
 This frame�
work can also be used to fuse information from several kinds of
measured primitives� e
g
 lines and planes� where each channel
is dedicated to one kind of primitive
 Simulation results �that
can be seen in ����	 show that the parallel process converges to
the same solution as the serial process
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We tested our method by simulating a model as a collection
of points
 The points of the model were chosen randomly from
the �������

 The model points were transformed by a transfor�
mation T composed of a rotation s and a translation t limited
in length to ���
 The measurements of the transformed points
were contaminated by white Gaussian noise
 The algorithm
estimates the transformation T using three types of measure�
ments


� �D measurements from a perspective projection

� �D measurements from an orthographic projection

� �D measurements


The algorithm assumes the correspondence between the points
of the model and the measured points

Typical results obtained by the simulations are presented in

graphs ���
 These graphs represent examples of measurement
fusion from a single type and examples of measurement fusion
from a mixture of types
 When one type of measurement was
used� a single measurement was fused at each step
 In the case
of mixed data types� perspective� orthographic and �D mea�
surements were fused together at each step
 In the depicted
simulations the s
t
d for perspective� orthographic and �D mea�
surements were �
�� �
�� and �
� respectively
 In the case of
perspective projection� noise was added to the measurements in
the image plane
 Gaussian noise in the image plane with s
t
d of
�
� is equal in our camera con�guration to �� of the total size
of the body as observed in the image plane
 This corresponds
to about �� pixels of error in an object such as in Figure �

The s
t
d
 of the measurements were chosen such that trace��	
as a function of the number of fused measurements is identical
for the three simulations involving single data types �see graph
��left in which the plots of trace � coincide	
 Thus� the contri�
bution of each measurement to the quality of the pose estimate
is equivalent for each type of data allowing a comparative eval�
uation of the fusion process

Graphs ��left and ��right show the convergence of the es�

timates of the rotation �s and the translation �t as a func�
tion of the number of measurements �matched points	
 The
vertical ordinate represents the normalized error of the es�

timate
 terrori � k�ti�tk
ktk in Graph ��left and serrori �

k�si�sk
ksk in Graph ��right � Each of these graphs show the con�

vergence in � cases
 three cases depict fusion of a single data
type and the fourth case depicts the convergence when the three
types of measurements were fused together at each step
 It can
be seen that the convergence rate in the integrated case is much
better than in the other cases
 Graphs ��left and ��right depict
the trace of the covariance matrix corresponding to the estimate
�T
 EfkT� �Tk�g in comparison with the squared deviation of
�T from the true transformation
 kT� �Tk� �in the orthographic
case the trace and the deviation are calculated without the last
component of T which is the z component of the translation	

The trace and the deviation shown in these graphs were av�
eraged over ��� processes of ��� randomly generated objects

Graph ��left shows the identical convergence of the traces for
the three types of data which are fused separately� and the im�
provement in the trace in the integrated case
 Graphs ��left
and ��right show a high correlation between the estimate qual�
ity and the certainty its covariance matrix describes
 This be�
havior indicates that the algorithm indeed exploits the supplied
information
 Moreover� it can be seen that the convergence rate
of the estimate corresponds to a decay rate of t�� as expected
�see Section IV	
 Additional simulation results on various cases
including simulations of the parallel process can be founded in

����


Our algorithm was applied to measurements taken from �D
images of a battery charger �see Figure �	
 The object model
consists of �� model points where the the location of each model
point was measured relative to the front�bottom�left corner �the
� edges are considered as the object centered coordinates	
 In
the following example we took images of the object at four dif�
ferent positions
 In all images the object was placed on a planar
table �see the � pictures in Figure �	 and the real transforma�
tion between every two positions was measured �i
e
 translation
distance and angle of rotation	
 The algorithm was applied to
each of the given images
 The measurements consisted of ��
feature points� �� features were �D measurements taken from
the image coordinate and � features were �D measurements cal�
culated by stereo triangulation
 The �D measurement noise was
assumed to be a bivariate Gaussian process
 The uncertainty
of an image point measurement can be calculated by �tting
a bivariate Gaussian to the local auto�correlation function of
the point image ����
 The �D measurement uncertainty can
be easily derived from the image point uncertainty �for details
see ����	
 According to the results� the relative transformations
between every two positions were calculated
 The comparison
between the real transformation and the constructed transfor�
mation as estimated by the algorithm is given in the following
table
 As can be seen� the results obtained by our algorithm
are close to the real solution with a deviation of up to ��� cm
in translation and ���� in rotation


True Solution

pose B pose C pose D

pose A ���� cm � ����� ���� cm � ����� ��
� cm � �����

pose B ���� cm � ����� ���� cm � �����

pose C ���� cm � �����

Estimated Solution

pose B pose C pose D

pose A ���� cm � ����� ���� cm � ����� ��
� cm � �����

pose B ���� cm � ����� ���� cm � �����

pose C ���� cm � �����

In this paper we presented a new approach to estimating the
pose of a rigid object in space� where no limitations are imposed
on the dimensionality of the measurements and on the type of
projection
 The main advantages of the suggested approach are
as follows


� A uniform formulation for all types of measurements al�
lowing simple and e�cient fusion of information obtained
from di�erent types of sensors


� Considering the spatial uncertainty of each measurement�
in an explicit manner� enabling optimal exploitation of the
available information from the measurements


� The process additionally supplies an estimation of the qual�
ity of the solution
 This quality estimate can assist in
determining the number of measurements required for es�
timating the pose at a given precision


� Fusing the measurements in an incremental process� thus
easily incorporated into the matching process which is per�
formed by a pruning�search of the interpretation tree
 Ad�
ditionally� the quality of the matching can be estimated by
using statistical tests
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Fig� �� Four images of four di�erent positions of an object that
were analyzed by our method� Top�left� pose A� top�right�
pose B� bottom�left� pose C and bottom�right� pose D�

� The process can be easily parallelized

Simulations of the described pose estimation process� showed
quick and stable convergence of the estimate to the true so�
lution
 Good and stable solutions were also obtained for real
models and images
 We plan in the future to extend the results
to more complicated features such as line and curved primitives

It is also possible to associate uncertainty with model�features
due to imprecise modeling of the �D object �for example� when
modeling faces or other semi�elastic objects	
 In this paper we
assumed an exact model with no uncertainties� but it is straight�
forward to include uncertainties in the model
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Fig� 	� Left graph� convergence of the normalized deviation

of the translation estimate 
t� Right graph� convergence of
the normalized deviation of the rotation estimate 
s� The
graphs show � cases� fusing only perspective data� fusing
only orthographic data� fusing only 	D data� and fusing all
the above data types together�
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