
The Gray-Code Filter Kernels
Gil Ben-Artzi, Hagit Hel-Or, Member, IEEE Computer Society, and

Yacov Hel-Or, Member, IEEE Computer Society

Abstract—In this paper, we introduce a family of filter kernels—the Gray-Code Kernels (GCK) and demonstrate their use in image

analysis. Filtering an image with a sequence of Gray-Code Kernels is highly efficient and requires only two operations per pixel for

each filter kernel, independent of the size or dimension of the kernel. We show that the family of kernels is large and includes the

Walsh-Hadamard kernels, among others. The GCK can be used to approximate any desired kernel and, as such forms, a complete

representation. The efficiency of computation using a sequence of GCK filters can be exploited for various real-time applications, such

as, pattern detection, feature extraction, texture analysis, texture synthesis, and more.

Index Terms—Image filtering, filters, filter kernels, convolution, Walsh-Hadamard, pattern matching, block matching, pattern

detection.

Ç

1 INTRODUCTION

MANY image processing and vision applications require

filtering of images with a successive set of filter kernels;

pattern classification, texture analysis, image denoising, and

pattern detection are a few examples. In many such

applications, however, applying a large set of filter kernels

is prohibited due to time limitations. This limitation is even
more severe when dealing with video data in which spatio-

temporal filtering is required. Even when exploiting the

convolution theorem and the Fast Fourier Transform (FFT)

algorithm, the complexity remains high. A possible approach

to increase efficiency is to design a set of specific kernels

which are efficient to apply. Studies that took this course of

action include the integral image [1], summed-area tables [2],

and a generalized version of these called boxlets [3]. The main
drawback of these approaches is that they allow only a limited

set of filter kernels to be computed efficiently.
In this paper, we aim to improve run-time and approach

real-time performance for image filtering. Our work is
motivated by a previous study [4], [5] in which the authors
have shown that real-time pattern matching can be
achieved using successive image filtering with a set of
carefully chosen filter kernels.

The goal of this paper is to form a set of filter kernels that
can be applied efficiently in various real-time applications.
Toward this end, the suggested kernels should have the
following desired characteristics:

. Informative. The kernels should be “informative”
with respect to the relevant task.

. Efficiency. The kernels should be efficient to apply,
enabling real-time performance.

. Variety. The kernel set should consist of a large
variety of kernels so that it can be used in various
applications. It is advantageous to have a kernel set
that forms a complete basis, enabling approxima-
tions of any desired kernel.

In this paper, we introduce a family of filter kernels such
that successive convolution of an image with a set of such
filters is highly efficient and requires only two operations per
pixel for each filter kernel, regardless of the size or
dimension of the filter. Moreover, the memory required is
at most two times the size of the original image. This family,
which we named Gray-Code Kernels (GCK), consists of a very
large set of filter kernels, including the Walsh-Hadamard
basis kernels, which can be used in a wide variety of
applications. A specific application, demonstrating the
method’s efficiency, is presented in Section 6.

2 PREVIOUS WORK

Image filtering is a very common operation in image
processing, yet its computational complexity poses severe
limitations in many applications. Numerous techniques
have been proposed to expedite this operation (e.g., [6], [7],
[8], [9], [10], [3]). These techniques can be categorized into
three main classes of approaches: 1) computational speedup
of the filtering process independent of the kernel used,
2) design of special families of kernels for which each kernel
can be applied efficiently, and 3) design of special families
of kernels for which a sequence of filters can be applied
efficiently in a cascade manner.

The first class deals with reducing runtime of the filtering
operation which can be applied to any given filter kernel. The
most common approach in this category is to exploit the
convolution theorem and apply filtering in the frequency
domain using the Fast Fourier Transform (FFT) [11]. In spite
of the versatility of this approach, the scheme is efficient only
for kernels with wide support, due to the overhead calcula-
tions of the FFT. Its performance in real-time applications is
still inadequate (see, e.g., [5]). Another approach in this class
is to apply the filtering process in the Wavelets domain while

382 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007

. G. Ben-Artzi is with the Department of Mathematics, Bar-Ilan University,
Ramat-Gan 52900, Israel. E-mail: gbenart@math.biu.ac.il.

. H. Hel-Or is with the Department of Computer Science, University of
Haifa, Haifa, 31905 Israel. E-mail: hagit@cs.haifa.ac.il.

. Y. Hel-Or is with the School of Computer Science, The Interdisciplinary
Center, Kanfey Nesharim St., Herzliya, 46150 Israel.
E-mail: toky@idc.ac.il.

Manuscript received 2 Oct. 2005; revised 9 May 2006; accepted 19 July 2006;
published online 15 Jan. 2007.
Recommended for acceptance by J. Goutsias.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0530-1005.

0162-8828/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

ignoring high frequency coefficients and exploiting the
energy compactization of the image in this domain [7]. Here,
too, in addition to the lossy results, the overhead of the
Wavelet transform limits the profitability of this scheme in
real-time applications.

The second class of approaches suggest fast image-
filtering with filter kernels of specially defined families of
kernels. These families of kernels have special character-
istics that are exploited to reduce filtering complexity.
Studies that took this course of action include the integral
image [1], summed-area tables [2], and a generalized
version of these called boxlets [3]. Another example is
kernels that belong to known function spaces that are fast to
apply [6]. These techniques are restricted to the specially
defined families of kernels and do not generalize to allow
filtering with any given kernel.

The third class includes techniques for fast filtering with a
cascade of kernels. In such cases, efficiency of computation is
achieved by exploiting relationships between the applied
kernels. One approach in this direction is to find a reduced
subspace in which the kernel set is approximately or exactly
embedded. Filtering is performed with a small number of
kernels that span this subspace. Then, due to linearity of the
filtering process, the original kernel filtering results are
computed as linear combinations of these few filtering
results. The steerable filters technique [10], [12], deformable
kernels [9], and the SVD filtering [8] follow this scheme.

This paper introduces a novel technique that belongs to
the third class of approaches. A preliminary study was
presented in [13]. Our work is motivated by a previous
study [4], [5] where a fast filtering scheme for the Walsh-
Hadamard (WH) kernel set was used for pattern detection.
In this earlier study, the computational cost of convolving
an image with each WH kernel is between 1 ops/pixel and
up to at most 2logk ops/pixel for kernels of size k� k. This
performance is achieved by exploiting the recursive
structure of the WH kernels. This previous approach,
however, is constrained by several limitations:

. The method applies only to the Walsh-Hadamard
Kernels.

. Filtering with each kernel requires Oð1Þ �Oðd logkÞ
operations per pixel (d being the kernel dimension
and k its width).

. The fast filtering approach is limited to filtering in a
fixed order of kernels (defined by the linear scanning
of the leaves of the Walsh-Hadamard tree. See [5] for
details).

. Filtering is restricted to dyadic sized kernels.

. The method requires maintaining d logk images in
memory. This requirement might be prohibitive
when dealing with 3D or higher-dimensional images.

In this paper, we introduce the Gray-Code Kernels (GCK)
and demonstrate their advantages:

. The GCK family of kernels enables filtering in O(1)
operations per pixel per kernel, independent of the
kernel size and dimension!

. The GCK family consists of a very large set of kernels.

. The GCK set includes nondyadic kernels.

. The GCK method requires maintaining only two
images in memory.

The GCK filters can be exploited in real-time applica-
tions, including pattern detection, feature extraction, texture
analysis, texture synthesis, and more.

3 THE GRAY-CODE KERNELS (GCK)—1D CASE

Consider first the 1D case where signal and kernels are
one-dimensional vectors. Denote by V ðkÞs a set of 1D filter
kernels expanded recursively from an initial seed vector s
as follows:

Definition 3.1.

V ð0Þs ¼ s;

V ðkÞs ¼ f½vðk�1Þ
s �kv

ðk�1Þ
s �g s:t: vðk�1Þ

s 2 V ðk�1Þ
s ;

�k 2 fþ1;�1g;

where �kv indicates the multiplication of kernel v by the value
�k and ½. . .� denotes concatenation.

The set of kernels and the recursive definition can be
visualized as a binary tree of depth k. An example is shown in
Fig. 1 fork ¼ 3. The nodes of the binary tree at level i represent
the kernels of V ðiÞs . The leaves of the tree represent the eight
kernels of V ð3Þs . The branches are marked with the values of �
used to create the kernels (where þ=� indicates þ1=� 1).

BEN-ARTZI ET AL.: THE GRAY-CODE FILTER KERNELS 383

Fig. 1. The set of kernels and the recursive definition can be visualized as a binary tree. In this example the tree is of depth k ¼ 3 and creates
23 ¼ 8 kernels of length 8. Arrows indicate pairs of kernels that are ��-related.

Denote jsj ¼ t the length of s. It is easily shown that V ðkÞs is
an orthogonal set of 2k kernels of length 2kt. Furthermore,
given an orthogonal set of seed vectors s1; . . . sn, it can be
shown that the union set V ðkÞs1

S
. . .
S
V ðkÞsn

is orthogonal with
2kn vectors of length 2kt. If n ¼ t the set forms a basis.

Fig. 1 also demonstrates the fact that the values �1 . . .�k
along the tree branches uniquely define a kernel in V ðkÞs .

Definition 3.2. The sequence �� ¼ �1 . . .�k, �i 2 fþ1;�1g that
uniquely defines a kernel v 2 V ðkÞs is called the ��-index of v.

We now define the notion of ��-relation between two
kernels:

Definition 3.3. Two kernels vi;vj 2 V ðkÞs are ��-related iff the
hamming distance of their �-index is one.

Without loss of generality, the �-indices of two �-related
kernels are ð�1 . . .�r�1;þ1; . . .�kÞ and ð�1 . . .�r�1;�1; . . .�kÞ.
We denote the corresponding kernels as vþ and v�, respec-
tively. Since�1 . . .�r�1 uniquely define a kernel in V ðr�1Þ

s , two
�-related kernels always share the same prefix vector of
length 2r�1t ¼ �. The arrows of Fig. 1 indicate examples of
�-related kernels in the binary tree of depth k ¼ 3. Note that
not all possible pairs of kernels are �-related. Of special
interest are sequences of kernels that are consecutively
�-related.

Definition 3.4 An ordered set of kernels v0 . . . vn 2 V ðkÞs that are
consecutively �-related form a sequence of Gray Code Kernels
(GCK). The sequence is called a Gray Code Sequence (GCS).

The term Gray Code relates to the fact that the series of �-
indices associated with a GCS forms a Gray Code [14], [15],
[16]. The kernels at the leaves of the tree in Fig. 3 in a left to
right scan are, in fact, consecutively�-related and form a Gray
Code Sequence. Note, however, that this sequence is not
unique and that there are many possible ways of reordering
the kernels to form a Gray Code Sequence.

The main idea of this paper relies on the fact that two
�-related kernels share a special relationship: Given two
�-related kernels vþ;v� 2 V ðkÞs , their sum vp and their
difference vm are defined as follows:

Definition 3.5.

vp ¼ vþ þ v�;

vm ¼ vþ � v�:

Theorem 3.6. Given two �-related kernels, vþ, v� 2 V ðkÞs with a
common prefix vector of length �, the following relation holds:

½0� vp� ¼ ½vm 0��;

where 0� denotes a vector with � zeros.

Proof is given in Appendix A. For example, consider the
two �-related kernels from Fig. 1 whose �-indices are ½þ þ
þ� and ½þ � þ�, respectively:

vþ ¼ ½ s s s s s s s s �;
v� ¼ ½ s s �s s s s �s �s �:

They share a common prefix of length � ¼ 2t. Then,

vp ¼ ½ 2s 2s 0t 0t 2s 2s 0t 0t �;
vm ¼ ½ 0t 0t 2s 2s 0t 0t 2s 2s �;

and Theorem 3.6 holds with

½02t vp� ¼ ½0t 0t 2s 2s 0t 0t 2s 2s 0t 0t �
¼ ½vm 02t�:

For simplicity of explanation, we now expand v 2 V ðkÞs to

an infinite sequence such that vðiÞ ¼ 0 for i < 0 and for

i � 2kt. Using this convention, the relation ½0� vp� ¼
½vm 0�� can be rewritten in a new notation:

vpði��Þ ¼ vmðiÞ:

With the new notation, Theorem 3.6 gives rise to the

following corollary:

Corollary 3.7.

vþðiÞ ¼ þvþði��Þ þ v�ðiÞ þ v�ði��Þ;
v�ðiÞ ¼ �v�ði��Þ þ vþðiÞ � vþði��Þ:

Corollary 3.7 is the core principle behind the efficient

filtering scheme introduced in this paper. Let bþ and b� be

the signals resulting from convolving a signal x with filter

kernels vþ and v�, respectively,

bþðiÞ ¼
X

j
xðjÞvþði� jÞ;

b�ðiÞ ¼
X

j
xðjÞv�ði� jÞ:

Then, by linearity of the convolution operation and

Corollary 3.7, we have the following:

bþðiÞ ¼ þbþði��Þ þ b�ðiÞ þ b�ði��Þ;
b�ðiÞ ¼ �b�ði��Þ þ bþðiÞ � bþði��Þ:

This forms the basis of an efficient scheme for convolving

a signal with a set of GCK kernels. Given the result of

convolving the signal with the filter kernel v�ðvþÞ,
convolving with the filter kernel vþðv�Þ requires only two

operations per pixel independent of the kernel size (Fig. 2).

Example—The 1D Walsh-Hadamard Kernels. Following is

a specific example for the above definitions and

discussions.

Considering Definition 3.1, and setting the prefix string

to s ¼ ½1�, we obtain that V ðkÞs is the Walsh-Hadamard basis
set of order 2k. A binary tree can be designed such that its

leaves are the Walsh-Hadamard kernels ordered in

dyadically increasing sequency and they form a Gray

Code Sequence (i.e., are consecutively �-related). Such a

tree and a discussion of its efficiency in pattern detection is

384 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007

Fig. 2. Given b� (convolution of a signal with the filter kernel v�) the
convolution result bþ can be computed using 2 ops/pixel regardless of
kernel size.

described in [4], [5]. An example for k ¼ 2 is shown in Fig. 3

where every two consecutive kernels are �-related. For

example, the first two kernels are

v0 ¼ ½ 1 1 1 1 �;
v1 ¼ ½ 1 1 �1 �1 �;

They share the prefix string ½1 1�, thus � ¼ 2. Their
sum and difference are, respectively, vp ¼ ½2 2 0 0� and
vm ¼ ½0 0 2 2� and Theorem 3.6 holds with

vpði� 2Þ ¼ vmðiÞ;

which yields:

v1ðiÞ ¼ �v1ði� 2Þ þ v0ðiÞ � v0ði� 2Þ:

Thus, given the result of filtering an image with the
first Walsh-Hadamard kernel, filtering with the second
kernel requires only two operations (additions/subtrac-
tions) per pixel.

Subsequently, by ordering the Walsh-Hadamard
kernels to form a Gray-Code Sequence, the windowed
Walsh-Hadamard transform can be performed using
only two operations per pixel per kernel regardless of
signal and kernel size.

4 EXTENSION OF GCK TO HIGHER DIMENSIONS

The previous sections can be generalized to higher dimen-
sions. The most common use would be in 2D where input
signals and filter kernels are 2D images. Thus, in this section,
we present only the two-dimensional extension. However,
the advantages of the approach are even more significant in
3D and higher dimensions. Extension to higher dimensions
and proofs can be found in the Appendices.

In the previous sections, it was shown that successive
filtering with �-related kernels can be applied efficiently
using at most two operations per pixel. We now define the
conditions under which higher dimensional filter kernels
can be applied efficiently in a similar manner. We show that
computation cost remains at two operations per pixel per
kernel regardless of the dimension.

Definition 4.1. Two filter kernels vf1
and vf2

are considered
efficiently computable, if given an image filtered with one of
the kernels, filtering the image with the second kernel is
possible using two operations per pixel.

The following lemma forms the basis of the Gray Code
Kernel results for two dimensions:

Lemma 4.2. Assume v01ði1; i2Þ, v02ði1; i2Þ are two filter kernels

in two dimensions. v01 and v02 are efficiently computable if

both kernels are separable and can be factored into 1D kernels:

v01 ¼ v0 � v1 and v02 ¼ v0 � v2 or v01 ¼ v1 � v0 and

v02 ¼ v2 � v0, such that v1 and v2 are �-related.

The symbol “�” denotes the outer product: ½v0 � v�ði1; i2Þ ¼
v0ði1Þvði2Þ. Proof is given in Appendix B.

As an example, consider the following two filter kernels:

v01 ¼

10 10 �10 �10
5 5 �5 �5
5 5 �5 �5
10 10 �10 �10

2
664

3
775 v02 ¼

10 10 10 10
5 5 5 5
5 5 5 5
10 10 10 10

2
664

3
775:

These kernels are separable:

v01 :
v02 :

v0 ¼

10
5
5
10

2
664

3
775 � v1 ¼ ½1 1 �1 �1�

v2 ¼ ½1 1 1 1�:

If s ¼ ½1�, the �-indices of v1;v2 are

��1 ¼ ½þ; ��;
��2 ¼ ½þ; þ�

and, therefore, by Definition 3.3, the kernels are �-related.
Given the filtering result b1 ¼ I � v01 of the two-dimen-

sional image I with kernel v01, the filtering b2 ¼ I � v02 can

be calculated using two operations per pixel:

b2ði1; i2Þ ¼ b2ði1; i2 � 2Þ þ b1ði1; i2Þ þ b1ði1; i2 � 2Þ:

The operations in this example are along the second

dimension.

4.1 Separable Gray Code Kernels

Considering two-dimensional separable kernels, a set that

spans a two-dimensional image window is often required. Of

special interest are separable kernels of the form v ¼ v1 � v2,

where v1 and v2 are each from a one-dimensional set of

BEN-ARTZI ET AL.: THE GRAY-CODE FILTER KERNELS 385

Fig. 3. Using initial vector s ¼ ½1� and depth k ¼ 2, a binary tree creates

the Walsh-Hadamard basis set of order 4. Consecutive kernels are

�-related, as shown by the arrows.

Fig. 4. The outer product of two sets of one-dimensional Gray Code

Kernels forms the set of two-dimensional kernels. When s = [1], the

Walsh-Hadamard kernels of size 4� 4 are obtained.

Gray Code Kernels. The two-dimensional version of V ðkÞs is
defined as

V ðk1;k2Þ
s1;s2

¼ v1 � v2 j vi 2 V ðkiÞsi

n o
: ð1Þ

That is, for v 2 V ðk1;k2Þ
s1;s2

, vði1; i2Þ ¼ v1ði1Þv2ði2Þ. For exam-

ple,V
ð2;3Þ
½1�;½1� is the set of 25 two-dimensional kernels of size 4� 8.

The set V
ð2;2Þ
½1�;½1� is shown in Fig. 4 and forms the 4� 4 Walsh-

Hadamard kernels.

Since the two-dimensional kernel v is separable and can be

defined by two one-dimensional kernels, the associated two

�-indices uniquely define v. Thus, the following definition is

consistent with the one-dimensional case (Definition 3.2):

Definition 4.3. For v 2 V ðk1;k2Þ
s1;s2

such that v ¼ v1 � v2, with
associated �-indices ��1 and ��2, the sequence �� ¼ ½��1; ��2�
uniquely defines v and is called the ��-index of v.

The set of kernels can then be computed using a binary
tree of depth k1 þ k2 such that k1 levels of the tree operate
on the first dimension and k2 on the second (see Fig. 5).

Accordingly, the notion of ��-relation between two two-
dimensional kernels is defined:

Definition 4.4. Two kernels vi;vj 2 V ðk1;k2Þ
s1;s2

are ��-related iff
the hamming distance of their �-indices is one.

For example, in Fig. 4, every pair of horizontally or
vertically neighboring kernels is �-related.

The notion of a Gray Code Sequence of kernels can be
extended to two dimensions:

Definition 4.5. An ordered set of two-dimensional kernels,
v0 . . . vn such that every consecutive pair are �-related, is
called a Gray Code Sequence of kernels.

From Lemma 4.2 and Definition 4.5, we have the
following corollary:

Corollary 4.6. Every two consecutive 2D kernels in a Gray Code
Sequence are efficiently computable.

The GCK definitions extend naturally to higher dimen-
sions. The d-dimensional version of V ðkÞs is defined as

V ðk1;...;kdÞ
s1;...;sd

¼ fv1 � . . .� vd j vi 2 V ðkiÞsi
g

and the d-dimensional kernel v 2 V ðk1;...;kdÞ
s1;...;sd

is defined as
vði1; . . . ; idÞ ¼ v1ði1Þv2ði2Þ . . . vdðidÞ, where vi are one-di-
mensional Gray Code Kernels.

The d �-indices associated with vi uniquely define v:

Definition 4.7. For v ¼ v1 � . . .� vd, such that vi 2 V ðkiÞsi
with

associated �-index ��ii, the sequence �� ¼ ½��1 . . .��dd� uniquely
defines v and is the ��-index of v.

These kernels can be computed using a binary tree of
depth k1 þ . . .þ kd similar to the tree of Fig. 5.

If s1 ¼ s2 ¼ . . . ¼ sd ¼ s and k1 ¼ k2 ¼ . . . ¼ kd ¼ k, then
the set is denoted V ðkÞ

d

s and contains d-dimensional
square kernels.

Definitions and lemmas for the separable d-dimensional
GCKs are similar to the 2D case and are given in Appendix C.

Thus, two consecutive kernels in a GCS are efficiently
computable, requiring only two ops/pixel, even in higher
dimensions. Consequently, the use of GCK in higher
dimensions is even more advantageous.

In summary, successive convolution of a signal with
kernels of a GCS requires only two ops/pixel/kernel
regardless of the kernel size or dimension. Furthermore, the
successive convolution scheme requires maintaining in
memory only the results of the previous convolution; thus,
only memory space the size of two times the original signal
size is required throughout the process.

5 SEQUENCING THE GRAY-CODE KERNELS

In previous sections, we presented the GCK as a set of filter
kernels. It was shown that successive filtering with �-related
kernels of this set can be applied efficiently using two
operations per pixel per kernel. However, the efficiency of
using the GCK in a particular application is determined not
only by the computational complexity of applying each
kernel, but also by the total number of kernels taking part in
the process. This, in turn, depends upon the order in which
the kernels are applied. In this section, we discuss the issue of
ordering kernels into sequences of Gray Code Kernels.

Consider thesetV ðkÞ
d

s ofd-dimensional separablekernelsof
size 2kt (as defined in Section 4.1). The kernels in this set are
uniquely represented by �-indices of length kd (Defini-
tion 4.3). A Gray Code Sequence is then equivalent to an
ordering of these binary kd-vectors. As demonstrated above,
many such sequences are possible. In this case, the question
arises as to how many GCS are possible and how the optimal
GCS for a particular application is chosen.

386 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007

Fig. 5. The set of 2D kernels V ðk1;k2Þ
s1 ;s2

can be computed using a binary tree
of depth k1 þ k2 such that k1 levels of the tree operate on the first
dimension and k2 on the second.

Fig. 6. (a) The set V ð1Þ
3

s represented by a three-dimensional hypercubic
graph. The vertices are marked by the �-index associated with the
kernel (for simplicity, 0 and 1 replace þ and �, respectively). Every pair
of �-related kernels share an edge in the hypercubic graph. (b) A
Hamiltonian Path is marked on the graph, representing a GCS.

It is easily shown that the set V ðkÞ
d

s is isomorphic to a

kd-dimensional hypercube graph of 2kd vertices; every kernel

v 2 V ðkÞds is associated with a vertex whose coordinates are

equal to the �-index of v. Edges in this hypercube connect

vertices associated with �-related kernels. An example is

shown in Fig. 6a, where the 2� 2� 2 kernels of V ð1Þ
3

s are

represented by vertices of the three-dimensional hypercube.

The vertices are marked by the �-index associated with the

kernel (þ;�are representedhere by0,1, respectively). Pairs of

vertices connected by an edge represent �-related kernels.

A Gray Code Sequence is a sequence of �-related kernels;

thus, it is isomorphic to a path in the hypercube graph. A

GCS containing all the kernels of V ðkÞ
d

s is isomorphic to a

Hamiltonian path in the kd-dimensional hypercube [14],

[15]. For example, in Fig. 6b, a Hamiltonian path is marked

on the graph and represents a complete sequence of Gray

Code Kernels. Given this relationship between Gray Code

sequencing and Hamiltonian paths in graphs, it is evident

that the number of possible Gray Code Sequences contain-

ing all kernels of the set V ðkÞ
d

s is equal to the number of

Hamiltonian paths in a kd-dimensional hypercube: 2, 8, 144,

91,392, . . . for kd ¼ 1; 2; 3; 4; . . . [17], [15].

Hamiltonian paths are isomorphic to linear GCS in

which a filter kernel appears only once. However, other

variations may be considered as well, including allowing

multiple appearances of a kernel (see Backtracking in [18])

and sequences that are isomorphic to a spanning tree on the

hypercubic graph (see Increasing Memory Allowance in

[18]) In this paper, we concentrate on linear GCS.

In typical situations where filtering with GCKs is used,

only a subset of filters from the filter set V ðkÞ
d

s are required to

complete the process. In such cases, the Optimal Gray Code

Sequence should be chosen from among the numerous

possible GCS. To do so, a priority value is assigned to each

kernel, representing its contribution in achieving the goal of

the process. The priority value strongly depends on the

application and possibly the input data. For example, using

the projected values as features in a classification process, the

priority value may reflect the discrimination power of each

kernel, i.e., the ability of classifying examples based on the

projection values of the specific kernel. A detailed example is

given in Section 6.

Assigning a priority value to each kernel is analogous to

associating a weight with every node in the isomorphic

hypercube graph. Given the priority values, the optimal

Gray Code Sequence and accordingly the chosen path in the

hypercube graph can be determined. In this paper, we

determined the optimal GCS of a given length as that which

maximizes the accumulated priority values. This definition

of optimality is appropriate for applications with limited

runtime that allow only a fixed predefined number of filter

kernels to be applied. Note that the order of the kernels

within the sequence is insignificant. This is analogous to

finding the maximally weighted path of a given length in a

hypercube graph. It can be shown that this problem is a

special case of the Travelling Salesman’s Subtour Problem

[19] and the Orienteering Problem (OP) [20], shown to be

NP-hard. Approximation algorithms for this problem have

been suggested [21], [22].
In order to demonstrate the advantage of the optimal

GCS over other orderings of the Gray Code Kernels, we

compared three types of Gray Code sequencing:

. Greedy. This algorithm orders the kernels in decreas-
ing priority value. This order maximizes the accumu-
lated priority value for any given length of sequence;
however, the sequence produced is not necessarily a
Gray Code Sequence since consecutive kernels are not
necessarily �-related. In terms of computation, filter-
ing with each k� k kernel of the sequence naively
requires 2logk ops/pixel (e.g., by computing projec-
tion onto each kernel along a branch of the Walsh-
Hadamard tree as explained in [5]).

. Sequency. This algorithm creates a GCS of Walsh-
Hadamard kernels ordered with increasing sequency
(the number of sign changes along each dimension
of the kernel—analogous to frequency). For the
2D Walsh-Hadamard kernels, the “snake” order as
depicted in Fig. 7 is used. In Section 4.1, we have
shown that neighboring kernels in the 2D Walsh-
Hadamard array are �-related. Thus, the Walsh-
Hadamard kernels ordered in this manner form a
Gray Code Sequence and the computation cost for
each kernel reduces to two ops/pixel. The Sequency
order is known to perform well on natural images due
to energy compactization in the low order sequencies
[23], [24], [5]. Note that, in contrast to the Greedy
ordering, this computation scheme does not depend
on the priority values of the kernels.

. Optimal. Given a priority value associated with each
kernel, this algorithm returns a GCS of a given length
with maximum accumulated priority values. This, in
theory, is an NP-hard problem; however, for short
sequences (lengthn � 10), an exhaustive search can be
implemented in reasonable time. For longer se-
quences ðn > 10Þ, we implemented a pseudo-optimal
GCS, which is created by concatenating several (n/10)

BEN-ARTZI ET AL.: THE GRAY-CODE FILTER KERNELS 387

Fig. 7. An array of Walsh-Hadamard kernels of order n ¼ 8 ordered with
increasing sequency in each column and row. White represents the
value 1, and black represents the value �1. A “snake” ordering of these
kernels is shown by the overlayed arrow. This ordering of kernels forms
a GCS of Walsh-Hadamard kernels ordered with pseudoincreasing
sequency.

optimal GCS of short length with an additional
constraint that requires the last kernel in each short
sequence to be �-related to the first kernel in the
following short sequence. Recurrent kernels are
allowed; thus, kernels may appear more than once in
the Optimal GCS; however, their priority value is
accumulated only once.

6 EXPERIMENTAL RESULTS

The most attractive property of the GCK framework is that it
enables filtering with each kernel using only two ops/pixel.
However, this can only be achieved if the kernels are used in
an order which forms one of the many possible Gray-Code
Sequences. This section tests the implications of this require-
ment on the GCK efficiency in a specific application: Pattern-
Matching, where a given pattern is sought in an image. We
follow the scheme suggested in [4], [5], where a framework
for real-time pattern matching was introduced. In this section
we compare performance of filtering using the 2D Walsh-
Hadamard kernels as projection vectors when ordered as
GCS and when ordered otherwise. We also compare
performance with another known fast filtering scheme,
namely, the Integral Image kernels as used in [1].

6.1 Projection-Based Pattern Matching

Finding a given pattern in an image is typically performed by
scanning the entire image and evaluating the similarity
between the pattern and a local 2D window about each pixel.
In our experiments, we assume the most common measure of
similarity—the Euclidean distance.

Assume a k� k pattern p is to be sought within a given
image. Pattern p is matched against a similarly sized
window w at every location in the image. Referring to the
pattern p and the window w as vectors in <k2

, the Euclidean
distance between them is given as

d2
Eðp;wÞ ¼ kp�wk2: ð3Þ

The smaller the distance value, the more similar are w and
p. If the distance is found to be below a given threshold, then
it is concluded that window w is similar to the pattern p.
Now, assume that p and w are not given, but only the values
of their projection vT1 p and vT1 w onto a particular projection
vector v1, where kv1k ¼ 1. Since the Euclidean distance is a
norm, it follows from the Cauchy-Schwartz inequality that a
lower bound on the actual Euclidean distance can be inferred
from the projection values [5]:

d2
Eðp;wÞ � d2

E vT1 p;vT1 w
� �

: ð4Þ

If an additional projection vector v2 is given along with
the projection values, vT2 p and vT2 w, it is possible to tighten
the lower bound on the distance. Define the distance vector
d ¼ w� p, and assume that the projection values of d onto
r orthonormal projection vectors are given:

MTd ¼ b;

where M ¼ ½v1 v2 � � �vr� is a matrix composed of the
r orthonormal projection vectors and b ¼ ½b1 b2 � � � br� is
a vector of projection values bi ¼ vTi d ¼ vTi w� vTi p. It
is straightforward to verify that the lower bound on
the distance is

d2
Eðp;wÞ ¼ dTd � bTb:

A similar expression can be obtained when vi are not
orthonormal [5].

Note that as the number of projection vectors increases,
the lower bound on the distance dEðp;wÞ becomes tighter.
In the extreme case where r ¼ k2 and the projection vectors
are linearly independent, the lower bound reaches the
actual Euclidean distance.

The above implies that a lower bound on the distance
between a window and the pattern can be estimated from the
projections. Thus, complexity and runtime of the pattern
matching process can be significantly reduced by rejecting
windows with lower bounds exceeding a given threshold
value. This can be utilized within the following process:

1. The sought pattern p is projected onto a set of
n normalized projection vectors fvig, resulting in
n values: p̂i ¼ vTi p, for i ¼ 1 . . .n.

2. All signal windows fwjg are projected onto the first
projection vector v1 : ŵ1

j ¼ vT1 wj.
3. This projection sets a lower bound on the true

distance between each window wj and the pattern:
LB1

j ¼ ðŵ1
j � p̂1Þ2. According to the lower bound

values, any window j whose LB1
j value is greater

than the given threshold can be rejected.
4. The windows of the image that have not been rejected

are projected onto the second projection vector
v2 : ŵ2

j ¼ vT2 wj. This produces updated lower bounds:
LB2

j ¼ LB1
j þ ðŵ2

j � p̂2Þ2.
5. Steps 3 and 4 are repeated for the subsequent

projection vector.
6. The process terminates after all n kernels have been

processed or until the number of nonrejected image
windows reaches a predefined percentage.

Earlier experiments (e.g., see [4], [5]) showed that for
reasonable threshold values, almost all nonmatching win-
dows in the image are rejected when the lower bound ðLBjÞ
reaches 80 percent of the true Euclidean distance for each
window.

The main advantage using this framework is that by
carefully choosing the appropriate projection vectors, this
lower bound can be reached using a small number of
projections. Note that projecting all image windows onto a
projection vector can be implemented using convolution.
Thus an efficient scheme for convolving an image with a
sequence of projection vectors is advantageous within this
pattern matching framework. In this section, we show the
advantage of using the Gray Code Kernels as projection
vectors for pattern matching. For detailed description of the
rejection framework, the reader is referred to [4], [5].

6.2 Experimental Results I—General Pattern Case

The efficiency of the pattern matching process is measured
by the total number of operations required to find pattern
appearances in the image. Using the above described
rejection framework, the total number of operations is
dependent on two factors: the number of projection vectors
required to reject the nonmatching windows and the cost of
computing the projections onto each of the projection
vectors. In turn, the number of required projection vectors
is dependent on the order of the vectors used in the process.

388 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007

Thus, fewer vectors would be needed if the kernels with
strong rejection power are applied early in the process.

In the first experiment, we tested the rejection power of
different orders of kernels. The experimental setting assumes
an unknown pattern and an unknown window, both sampled
from natural scenes. This setting represents applications
where image windows are given online and no specific
knowledge on the patterns is known a priori, (e.g., match-
based texture synthesis [25], or video coding [26]). Thus, more
than 3,000 pattern-window pairs of size 8� 8 were randomly
chosen from a collection of images and the Euclidean
distances between them were computed. Each 8� 8 Walsh-
Hadamard kernel vi was assigned a priority value which
indicates the percentage of the distance between the pattern-
window pairs captured by the given kernel:

�i ¼ Ej
ðvTi ðpj � wjÞÞ

2

ðpj �wjÞ2

()
:

Here, the expectation is calculated over all randomly chosen
pattern-window pairs. Given the priority values, the Walsh-
Hadamard kernels were ordered according to the three
methods described in Section 5: Greedy, Sequency, and

Optimal. We compared the rejection power of these three

sequences by evaluating the lower bound calculated from the

kernels in the sequence. The tighter the lower bound, the

greater the rejection power of the sequence and accordingly

the expected performance in a pattern matching application.
Fig. 8 compares filtering performance and runtimes of the

three Sequences of Walsh-Hadamrd kernels. Fig. 8a shows

the lower bound (given as the percentage of the actual

distance between pattern and window) as a function of the

number of kernel projections. Values are the average over the

3,000 pattern-window pairs. The Greedy order of Walsh-

Hadamard kernels creates tight lower bounds with fewer

kernels than the Optimal and Sequency GCS. These results,

however, do not exhibit the runtimes required to obtain the

lower bounds. Fig. 8b shows the lower bound (given as the

average percentage of the actual distance between pattern

and window) as a function of the number of operations per

pixel required to compute the lower bound. The Optimal GCS

outperforms the Sequency and Greedy sequences. The

Sequency GCS performs relatively well as expected for

pattern-window pairs chosen randomly from natural images.

BEN-ARTZI ET AL.: THE GRAY-CODE FILTER KERNELS 389

Fig. 8. Filtering by projection using WH kernels in three different Sequences and using Integral Image Kernels. The three WH orders include: Greedy,
Sequency, and Optimal GCS. (a) The lower bound as a function of the number of kernel projections. (b) The lower bound as a function of the number
of operations per pixel required to compute the lower bound. The lower bound is given as the average percentage of the actual distance between
pattern and window. All values are the average over 3,000 pattern-window pairs sampled randomly from natural scenes.

Fig. 9. The natural and texture images (a) and patterns (b) that were used in the experiments. Each of the two patterns was sought in each of the two

images. The origins of the patterns within the images are marked with a white square. The images are 512� 512 and the patterns are 32� 32.

6.3 Experimental Results II—Specific Pattern Case

In this experiment , the performance of the three computation
schemes (Greedey, Sequency, and Optimal) were compared
over four pattern-image scenarios. Two images of size 512�
512 (Fig. 9a) were chosen, representing a “natural” and a
“texture” image. A 32� 32 window (Fig. 9b) was chosen
randomly from each image and these served as the patterns,
denoted as “natural pattern” and “texture pattern.” Each case
of pattern and image pair was tested both with and without
the DC kernel (to eliminate illumination effects). Our main
interest is the comparison of the total number of operations
required per pixel by each of the computation schemes.
Comparison was based on the ability to reach the 80 percent
lower bound on the average Euclidean distance between the
pattern and image windows as described in Section 6.1.

Fig. 10 presents the number of kernels required by each
computation scheme in order to reach the 80 percent goal.
This number is dictated by the order of the kernels. As
expected, the Greedy sequence required the least number of
kernels and the Sequency order required the most. Since the
Optimal Sequence imposes constraints on the Greedy order, it
requires a few more kernels than the Greedy sequence. For the
case of natural pattern—natural image, the Sequency order of
kernels performs equally well as the optimal GCS as
expected. This is not true for the other three cases.

Fig. 11 shows the total number of ops/pixel required by the
three computation schemes for the four pattern-image cases

with and without the DC value. It can be seen that the Optimal
GCS scheme always required fewer ops/pixel than the other
two orderings even though the actual number of kernels used
is greater. The Greedy scheme always required more ops/
pixel even though it used the fewest number of kernels.

The comparison of the three schemes is graphically
displayed in Fig. 12 where each of the three schemes is
positioned in a plot of the number of kernels required vs. the
number of ops/kernel (log-log scale). The dashed lines
represent lines of equal total number of operations. Thus,
although the Greedy scheme requires fewer kernels, the cost
per kernel causes this scheme to be expensive in terms of total
number of operations. The Optimal GCS scheme requires
more kernels but since the computation cost per kernel is very
low, the total number of operations required is minimal.

Details of the experimental procedure and analysis can
be found in [18].

6.4 Experimental Results III—Comparison with the
Integral Image Kernels

The idea of choosing projection kernels that are fast to apply
was also suggested in [1], [27] in the context of classification.
Although similar in spirit, we emphasize the distinction
between our approach and that of Viola and Jones [1].
Whereas Viola and Jones perform efficient classification using
rapidlycomputedprojectionkernels,oursuggestedapproach
performs efficient filtering that can be exploited in block
matching in general. Thus, classification approaches are
impractical when patterns are given online, e.g., in the case
of texture synthesis and video coding (see GCK implementa-
tion for video coding in [26]). Nevertheless, the use of the
Integral Image Kernels themselves can be considered in the
rejection-based Pattern Matching application. Kernels of this
set are efficient to compute when they are of low sequency
(computational complexity of these kernels increases expo-
nentially with sequency). Moreover, the nonorthogonality of
the kernels adds additional computational costs due to the
redundancy in feature content captured by the kernels. This
tendency is shown in the following experimental results.

We compared the performance of the GCK filtering of
Walsh-Hadamard kernels with that of the Integral Image
kernels used in [1]. A priority value as defined in (5) was
assigned to a set of Integral Image kernels. The kernels of the
set thatare the most efficient to applyare the firstorder kernels
which sum a single rectangular region within the window.
Assuming the integral image is given, these kernels require
three ops per pixel to apply. We consider the set of all possible
first order integral image kernels of size 8� 8. These kernels

390 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007

Fig. 10. The number of kernels dictated by the order of each

computation scheme. Each experiment is denoted by the pattern-image

pair (N ¼ Natural, T ¼ Texture) and whether the DC was included

(þDC) or not (�DC).

Fig. 11. The total number of ops/pixel required by each of the

computation schemes. Each experiment is denoted as in Fig. 10.

Fig. 12. A comparison between the three computation schemes. Each

scheme is positioned in the plot according to the number of kernels

required and the number of ops/kernel. The dashed lines represent lines

of equal Total Number of Operations.

were ordered in decreasing priority order. Since these kernels
are not orthogonal, we considered the contribution of each
kernel to the lower bound (this is achieved using the Grahm-
Schmidt orthogonalization method in which the kernels are
iterativelyprojectedontothesubspacespannedbythealready
sorted kernels. See Appendix 3 in [5]). Filtering performance
with these filters were compared with those obtained by the
three sequences of Walsh-Hadamard kernels described
above. Results for the Integral image kernels are also shown
in Fig. 8. The lower bound as a function of the number of
Integral Image kernels applied is identical to that of the
Greedy sequence (the lines overlap perfectly in Fig. 8a). This is
due to the fact that both the Walsh-Hadamard kernels and the
first order Integral Image kernels span the 8� 8 pattern-
window space and a nonrestricted ordereing of both kernel
sets produce the tightest possible lower bounds for any given
number of kernels. In terms of runtime, however, all three
orders of Walsh-Hadamard kernels outperform the Integral
Image kernels in the number of operations per pixel as shown
in Fig. 8b. This is due to the fact that computation of the lower
bound for the nonorthogonal Integral Image kernels requires
significantly more computation than for the orthogonal
Walsh-Hadamard kernels (see Appendix C in [5]).

7 CONCLUSIONS

In this paper, we introduced a family of filter kernels called

the Gray Code Kernels (GCK). A special relationship

between pairs of such kernels allow filtering of images

with a cascade of such kernels to be performed very fast.

The GCK framework is a highly efficient computational

scheme mainly due to the following advantages:

. The ability of filtering an image using only two
operations per pixel per kernel.

. The computation cost is independent of the kernel
size and kernel dimension.

. The computations are performed using only integer
additions and subtractions (if the seed s is integer).

. Only a single image (the filtering results with a
preceding kernel) needs to be maintained in memory
in addition to that currently being computed.

. A wide variety of kernels can be used within this
framework.

. The kernels can be computed in a variety of different
orders.

. The kernel set forms an orthogonal basis.

We note the following limitations of the GCK:

. The filtering with each kernel depends on the
filtering result of a preceding kernel. Thus when a
single kernel computation is required, the advan-
tages of this framework can not be exploited. This
also poses a limitation on the order in which the
kernels can be computed.

. The framework offers efficient filtering for a group of
image windows. Computing the projection of a
single image window might require more than two
ops/pixel.

We note that it is possible to extend the family of GCKs

even further by allowing the �-index to be of any integer

value (rather than only fþ1;�1g). This, however, incurs an

additional one ops/pixel. Details can be found in [18].
The unique properties of the GCK framework make it an

attractive choice for many applications requiring a cascade

of kernel computation scheme, such as feature extraction,

block matching for motion detection (e.g., [26]), texture

analysis and synthesis, classification, and more.

APPENDIX A

PROOF OF THEOREM 3.6

We prove the following theorem:

Theorem 3.6. Given two �-related kernels, vþ, v� 2 V ðkÞs with a

common prefix vector of length � ¼ 2r�1t, where t ¼ jsj, the

following relation holds:

½0� vp� ¼ ½vm 0��;

where 0� denotes a vector with � zeros.

Proof. Denote by vðlÞ the prefix of vector v of length 2lt.
Since vþ and v� are �-related there exists an entry r,
1 � r � k, for which their two �-indices differ. We prove

that the following holds for all l, r � l � k:

½0� vðlÞp � ¼ ½vðlÞm 0��:

Proof is by induction: For l ¼ r, we have by Defini-
tions 3.1 and 3.5 that

v
ðrÞ
þ ¼ v

ðr�1Þ
þ v

ðr�1Þ
þ

h i
;

vðrÞ� ¼ vðr�1Þ
� � vðr�1Þ

�

h i
¼ v

ðr�1Þ
þ � v

ðr�1Þ
þ

h i
;

thus

vðrÞp ¼ v
ðrÞ
þ þ vðrÞ� ¼ 2v

ðr�1Þ
þ 0�

h i
;

vðrÞm ¼ v
ðrÞ
þ � vðrÞ� ¼ 0� 2v

ðr�1Þ
þ

h i
and we have

0� vðrÞp

h i
¼ 0� 2v

ðr�1Þ
þ 0�

h i
¼ vðrÞm 0�

h i
:

By induction, we assume true for l� 1 � r and prove
for l (note that �l is identical for both �-indices):

½0� vðlÞp � ¼
h
0� v

ðlÞ
þ þ vðlÞ�

h ii
¼
h
0�

hh
v
ðl�1Þ
þ �lv

ðl�1Þ
þ

i
þ
h
vðl�1Þ
� �lv

ðl�1Þ
�

iii
¼
h
0�

h
vðl�1Þ
p �lv

ðl�1Þ
p

ii
¼
hh

0� vðl�1Þ
p

i
�lv

ðl�1Þ
p

i
from the induction assumption:

¼
hh

vðl�1Þ
m 0�

i
�lv

ðl�1Þ
p

i
¼
h
vðl�1Þ
m

h
0� �lv

ðl�1Þ
p

ii
¼
h
vðl�1Þ
m �l½0� vðl�1Þ

p

ii

BEN-ARTZI ET AL.: THE GRAY-CODE FILTER KERNELS 391

and again from the induction assumption:

¼
h
vðl�1Þ
m �l

h
vðl�1Þ
m 0�

ii
¼
hh

vðl�1Þ
m �lv

ðl�1Þ
m

i
0�

i
¼
h
vðlÞm 0�

i
:

ut

APPENDIX B

EFFICIENTLY COMPUTABLE FILTER KERNELS IN

D-DIMENSIONS

We now prove the efficiency of computation with d-

dimensional GCKs. To simplify the notations, we define a

short notation for a sequence of indices. A complete d-

dimensional kernel is defined as

vðiÞ ¼ vði1; i2; � � � ; idÞ

and a ðd� 1Þ-dimensional kernel lacking the dimensionm as

vðf	 imgÞ ¼ vði1; � � � ; im�1; imþ1; � � � ; idÞ:

Recall that two kernels can be regarded as efficiently

computable if their computation cost is two ops/pixel.

Lemma 2.1. Assume v01ði1; i2Þ, v02ði1; i2Þ are two filter kernels

in d dimensions. v01 and v02 are efficiently computable if

both kernels can be factored into �-related kernels: v01 ¼
v0 � v1 and v02 ¼ v0 � v2, where v0 is ðd� 1Þ-dimen-

sional, v1 and v2 are one-dimensional �-related kernels, and

� denotes the outer product along the mth dimension, i.e.,

½v0 � v�ðiÞ ¼ v0ðf	 imgÞvðimÞ.
Proof. Assume v01 and v02 are two such filters. Since v1;v2

are �-related, they share a common prefix vector of

length � ¼ 2r�1t and Corollary 3.7 holds. Thus, without

loss of generality, we assume

v2ðiÞ ¼ þv2ði��Þ þ v1ðiÞ þ v1ði��Þ:

Then, we have

v02ðiÞ ¼ v0ðf	 imgÞv2ðimÞ

¼ v0ðf	 imgÞ
�
v2ðim ��Þ þ v1ðimÞ þ v1ðim ��Þ

�
¼ v0ðf	 imgÞv2ðim ��Þ
þ v0ðf	 imgÞv1ðimÞ þ v0ðf	 imgÞv1ðim ��Þ
¼ v02ði1; . . . ; ðim ��Þ; . . . ; idÞ
þ v01ðiÞ þ v01ði1; . . . ; ðim ��Þ; . . . ; idÞ:

Given a d-dimensional signal s, denote by b1;b2 the
d-dimensional convolution of s with v01 and v02, respec-
tively. From (6) and linearity of the convolution, we have:

b2ðiÞ ¼b2ði1; . . . ; ðim ��Þ; . . . idÞ þ b1ðiÞ
� b1ði1; . . . ; ðim ��Þ; . . . idÞ:

Therefore, given b1, b2 can be calculated in scan order
using two operations per pixel and, thus, v01 and v02 are
efficiently computable. tu

APPENDIX C

SEPARABLE GCK IN D-DIMENSIONS

As in the two-dimensional case, a special class of d-
dimensional kernels are of interest ((2) in Section 4):

V ðk1;...;kdÞ
s1;...;sd

¼ v1 � . . .� vd j vi 2 V ðkiÞsi

n o
:

Thus, the d-dimensional kernel v 2 V ðk1;...;kdÞ
s1;...;sd

is defined as
vði1; . . . ; idÞ ¼ v1ði1Þv2ði2Þ . . . vdðidÞ, where vi are one-di-
mensional Gray Code kernels.

Since the d-dimensional kernel v is separable and can be
defined by d one-dimensional kernels, the associated d �-
indices uniquely define v. Thus, the following definition is
consistent with the one and two-dimensional cases, Defini-
tions 3.2 and 4.3):

Definition 3.1. For v 2 V ðk1;...;kdÞ
s1...;sd

such that v ¼ v1 � . . .� vd,
with associated �-indices ��1; . . . ; ��d, the sequence �� ¼
½��1; . . . ; ��d� uniquely defines v and is called the ��-index of v.

Similar to the 2D case, the notion of ��-relation between
two d-dimensional kernels is defined:

Definition 3.2. Two kernels vi;vj 2 V ðk1;...;kdÞ
s1...sd

are ��-related iff
the hamming distance of the signs of their �-index is one.

The notion of Gray Code Sequence of kernels can be
extended to d-dimensions:

Definition 3.3. An ordered set of d-dimensional kernels,
v0 . . . vn such that every consecutive pair are �-related, are
called a Gray Code Sequence of d-dimensional kernels.

From Lemma 2.1 and Definition 3.3, we have the
following corollary:

Corollary 3.4. Every two consecutive d-dimensional kernels in a
Gray Code Sequence are efficiently computable.

REFERENCES

[1] P. Viola and M. Jones, “Robust Real-Time Face Detection,” Int’l J.
Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.

[2] F.C. Crow, “Summed-Area Tables for Texture Mapping,” Proc.
11th Ann. Conf. Computer Graphics and Interactive Techniques,
pp. 207-212, 1984.

[3] P. Simard, L. Bottou, P. Haffner, and Y. LeCun, “Boxlets: A Fast
Convolution Algorithm for Neural Networks and Signal Proces-
sing,” Advances in Neural Information Processing Systems 11, 1999.

[4] Y. Hel-Or and H. Hel-Or, “Real Time Pattern Matching Using
Projection Kernels,” Proc. Int’l Conf. Computer Vision, pp. 1486-
1493, 2003.

[5] Y. Hel-Or and H. Hel-Or, “Real Time Pattern Matching Using
Projection Kernels,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 9, pp. 1430-1445, Sept. 2005.

[6] M. Werman, “Fast Convolution,” J. WSCG, vol. 11, no. 1, 2003.
[7] I. Drori and D. Lischinski, “Fast Multiresolution Image Operations

in the Wavelet Domain,” IEEE Trans. Visualization and Computer
Graphics, vol. 9, no. 3, July/Oct. 2003.

[8] C. Gotsman, “Constant-Time Filtering by Singular Value Decom-
position,” Computer Graphics Forum, special issue on rendering,
vol. 13, no. 2, pp. 153-163, 1994.

[9] P. Perona, “Deformable Kernels for Early Vision,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 17, no. 5, pp. 488-499,
May 1995.

[10] W. Freeman and E. Adelson, “The Design and Use of Steerable
Filters,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 13, no. 9, pp. 891-906, Sept. 1991.

[11] R.C. Gonzalez and R.E. Woods, Digital Image Processing. Prentice
Hall, 2002.

[12] Y. Hel-Or and P. Teo, “Canonical Decomposition of Steerable
Functions,” J. Math. Imaging Vision, vol. 9, no. 1, pp. 83-95, 1998.

392 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 3, MARCH 2007

[13] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or, “Filtering with Gray-Code
Kernels,” Proc. 17th Int’l Conf. Pattern Recognition, pp. 556-559,
Sept. 2004.

[14] S. Skiena, Implementing Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica. Addison-Wesley, 1990.

[15] M. Gardner, “The Binary Gray Code,” Knotted Doughnuts and
Other Mathematical Entertainments, pp. 23-24. W.H. Freeman, 1986.

[16] N. Sloane, The On-Line Encyclopedia of Integer Sequences,
Sequence Number A014550, http://www.research.att.com/
~njas/sequences/, 2006.

[17] N. Sloane, The On-Line Encyclopedia of Integer Sequences,
Sequence Number A091299, http://www.research.att.com/
~njas/sequences/, 2006.

[18] G. Ben-Artzi, “Gray-Code Filter Kernels (GCK)—Fast Convolution
Kernels,” master’s thesis, Bar-Ilan Univ., Ramat-Gan, Israel, 2004.

[19] D. Gensch, “An Industrial Application of the Traveling
Salesman’s Subtour Problem,” AIIE Trans., vol. 10, pp. 362-
370, 1978.

[20] B. Golden, L. Levy, and R. Vohra, “The Orienteering Problem,”
Naval Research Logistics, vol. 34, p. 307318, 1987.

[21] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, “Improved
Approximation Guarantees for Minimum-Weight k-Trees and
Prize-Collecting Salesmen,” Proc. 27th Ann. ACM Symp. Theory of
Computing, pp. 277-283, 1995.

[22] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M.
Minkoff, “Approximation Algorithms for Orienteering and Dis-
counted-Reward TSP,” Proc. 44th Ann. IEEE Symp. Foundations of
Computer Science (FOCS), pp. 11-14, 2003.

[23] H. Kitajima, “Energy Packing Efficiency of the Hadamard Trans-
form,” IEEE Trans. Comm., pp. 1256-1258, 1976.

[24] D. Ruderman, “Statistics of Natural Images,” Network: Computa-
tion in Neural Systems, vol. 5, no. 4, pp. 517-548, 1994.

[25] A. Efros and T. Leung, “Texture Synthesis by Non-Parametric
Sampling,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1033-1038,
Sept. 1999.

[26] Y. Moshe and H. Hel-Or, “A Fast Block Motion Estimation
Algorithm Using Gray Code Kernels,” Proc. IEEE Symp. Signal
Processing and Information Technology, 2006, submitted.

[27] C. Papageorgiou, M. Oren, and T. Poggio, “A General Framework
for Object Detection,” Proc. Sixth Int’l Conf. Computer Vision,
pp. 555-562, Jan. 1998.

Gil Ben-Artzi is currently a PhD student in the
Department of Mathematics at Bar-Ilan Univer-
sity, Israel. He received the BSc and MSc (cum
laude) degrees in mathematics and computer
science from Bar-Ilan University, Israel. Concur-
rently, he held positions at several high-tech
companies in the field of real-time communica-
tion. His main research interests are image
processing, differential geometry and nonlinear
PDEs.

Hagit Hel-Or received the PhD degree in
computer science in 1994, from the Hebrew
University, Jerusalem, Israel. Dr. Hel-Or was a
postdoctoral fellow for two years in the Vision
Group in the Department of Psychology at
Stanford University. She was with the Depart-
ment of Mathematics and Computer Science at
Bar-Ilan University, Ramat-Gan, Israel, for two
years. Currently, Dr. Hel-Or is appointed as a
faculty member in the Department of Computer

Science at the University of Haifa, Haifa, Israel. Her research area is in
the field of imaging science and technologies and includes color vision,
image processing, computational and human vision. She is a member of
the IEEE Computer Society.

Yacov Hel-Or received the BSc degree in
physics and computer science from Bar-Ilan
University, Israel, in 1985, and the PhD degree
in computer science from the Hebrew University,
Jerusalem, Israel, in 1993. During the years
1993-1994, he was a postdoctorate fellow in the
Department of Applied Mathematics and Com-
puter Science at The Weizmann Institute of
Science, Rehovot Israel. From 1994-1996, he
was with the NASA Ames Research Center,

Moffet Field, California, as a National Research Council associate.
During 1996-1998, he was a researcher at the Hewlett Packard Labs,
Israel. He has been a faculty member at the Interdisciplinary Center,
Israel, since 1998. His research interests include computer vision, image
processing, robotics, and computer graphics. He is a member of the
IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BEN-ARTZI ET AL.: THE GRAY-CODE FILTER KERNELS 393

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

