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Abstract

A fast pattern matching scheme termed Matching by Tone Mapping (MTM)

is introduced which allows matching under non-linear tone mappings. We show

that, when tone mapping is approximated by a piecewise constant/linear func-

tion, a fast computational scheme is possible requiring computational time sim-

ilar to the fast implementation of Normalized Cross Correlation (NCC). In fact,

the MTM measure can be viewed as a generalization of the NCC for non-linear

mappings and it actually reduces to NCC when mappings are restricted to be

linear. We empirically show that the MTM is highly discriminative and robust

to noise with comparable performance capability to that of the well performing

Mutual Information, but on par with NCC in terms of computation time.

Keywords: Pattern matching, template matching, structural similarity, photo-

metric invariance, Matching by Tone Mapping, MTM, nonlinear tone mapping.
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1 Introduction

Template or pattern matching is a basic and fundamental image operation. In its

simple form a given pattern is sought in an image, typically by scanning the image and

evaluating a similarity measure between the pattern and every image window. Fast

and reliable pattern matching is a basic building block in a vast range of applications,

such as: image denoising, image re-targeting and summarization, image editing, super-

resolution, object tracking and object recognition, and more (e.g. [7, 32, 19, 2]).

In most cases, however, the input image is acquired in an uncontrolled environment,

thus, the sought pattern may vary in tone-levels due to changes in illumination con-

ditions, camera photometric parameters, viewing positions, different modalities, etc.

[21]. Commonly, these changes can be modeled locally by a non-linear tone mapping

- a functional mapping between the gray-levels of the sought pattern and those of the

image pattern. In this paper we deal with pattern matching where gray-levels may be

subject to some unknown, possibly non-linear, tone mapping.

When dealing with matching under tone-mapping, three classes of approaches have

been considered: The first approach attempts to determine local signatures within the

pattern and image that are invariant to tone mapping. Examples of this approach

include Gradient Signatures [16], Histogram of Gradients [12], SIFT [22] and others

(see [23] for comparative study). These signatures are often encoded to be invariant

to geometric transformations as well as tone variations. However, the data contrac-

tion implemented by these methods inherently involve loss of information and, thus,

weaken their discrimination power. Consequently, these techniques often requiring an

addition verification phase. Another approach to matching under tone-mapping, in-

volves transformation of the pattern and image into a canonical configuration. Exam-

ples of this approach include Histogram Equalization and the well known Normalized

Cross-Correlation [6]. These approaches are limited in that there is no known canon-

ical configuration for non-linear mappings. Finally, brute force methods attempt to

perform template matching by searching the entire transformation parameter space,

resulting in highly time consuming methods. Many distance measures for pattern

matching have been suggested in the literature and the interested reader is referred to

[11, 6] for excellent reviews. The approach suggested in this paper involves a search in

the tone-mapping parameter space, however this search is performed very efficiently in

closed form.

By far, the most common distance measure used in template matching is the Eu-

clidean distance. Assume the pattern p and the candidate window w are both vectors

in Rm, (e.g. by raster scanning the pixels). The Euclidean distance between p and

w is denoted: dE(p,q) = ∥p − w∥2. Searching for the pattern over the entire im-
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Figure 1: Pattern Matching under tone mapping. Euclidean, NCC, MI and MTM

distance measures were used to evaluate distances between a pattern and all image

windows for different tone mappings. To simplify visualization results are shown as

the minimum distance value between pattern and image windows along image columns.

Distance values have been normalized to the range [0, 1] for easier comparison. Lower

values indicate greater similarity of the window to the pattern. The dashed line marks

the column of the correct match. Rows (top to bottom): Linear, Monotonic and Non-

Monotonic tone mappings. Columns (left to right): Tone mapping function, followed

by plots for Euclidean, NCC, MI (using bins of 20 tone-values) and MTM (using bins

of 20 tone-values).

age is performed by scanning the image and determining the minimal dE value. This

search can be applied very fast using efficient convolution schemes [14]. Nevertheless,

although very common, the Euclidean distance assumes that no tone mapping has been

applied or, equivalently, that the tone mapping between p and w is the identity map-

ping. Clearly, the Euclidean distance is inadequate when the image undergoes tone

deformations as demonstrated in Figure 1.

To overcome gray tone mapping effects in images, the normalized cross correlation

(NCC) distance is often used [6]. Consider the pattern p and the candidate window w

as random variables with samples pi and wi, i = 1..m, respectively. The NCC is then

defined as:

ρ(p,w) = E

[(
p− E[p]√

var(p)

)(
w − E[w]√

var(w)

)]
where for any vectors x ∈ Rm, E[x] and var(x) denote the sample mean and variance.

Due to the substraction of the mean and normalization by the s.t.d. in both p and

w, the NCC distance is invariant to linear tone mappings (Figure 1 - top). The NCC
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distance can be applied very efficiently requiring little more than a single convolution

on the input image [20]. However, such a distance will fail to detect patterns in cases

where non-linear tone mappings have been applied (Figure 1 bottom row)1.

In many cases, the tone mapping is non-linear but still maintains monotonicity,

namely, the order of tone-levels is preserved under the mapping. This scenario is com-

mon between images acquired using different cameras whose internal photometric pa-

rameters differ (tone correction, sensor spectral sensitivity, white balancing, etc.). An

example of such a mapping is presented in Figure 1 (middle row). Distance measures

that are based on ordinal values rather than the tone-levels themselves can account

for monotonic mappings. Examples of such measures, include Local Binary Pattern

(LBP) [24], Speeded Up Robust Features (SURF) [3] and Binary Robust Independent

Elementary Features (BRIEF) [9]. The LBP is an image representation where each

pixel is assigned a rank value according to its ordinal relationships with its immediate

neighboring pixels. The SURF and BRIEF methods encode the ordinal relationship

between a sequence of (random) pairs of pixels within a pattern as a binary string.

These representations are invariant to monotonic tone mapping and thus can be used

to detect patterns in such cases. These approaches are fast to apply but, as will be

shown below, they are very sensitive to noise. Furthermore, these measures fail under

non-monotonic mappings.

Finally, when non-linear mapping is considered (Figure 1 - bottom row), theMutual

Information (MI) is commonly used, initially proposed for image registration [35]. MI

measures the statistical dependency between two variables. Clearly, the statistical

dependency is strong when gray-levels of one image result from a functional mapping

of the gray-levels of the other image. Thus, MI can account for non-linear mappings

(both monotonic and non-monotonic as in Figure 1).

In the context of pattern matching, MI measures the loss of entropy in the pattern

p given a candidate window w:

MI(p,w) = H(w)−H(w|p) = H(w) +H(p)−H(w,p)

where H is the differential entropy.

Although MI is an effective distance measure that can account for non-linear map-

pings, it is hindered by computational issues. First, it is computationally expensive as

it requires the construction of the joint histogram (pattern vs. window) for each window

to be matched. Although fast methods for evaluating histograms on running windows

have been suggested [27, 36], fast methods for calculating local joint histograms are

1NCC often performs well even under monotonic non-linear mappings as these can often be assumed

to be locally linear.
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yet a challenge. Additionally, entropy as well as MI is very sensitive to the the size

of histogram bins used to estimate the joint density, especially when sparse samples

are given (small pattern size). Using kernel density estimation methods [34] rather

than discrete histograms is, again, computationally expensive when dealing with joint

probability, not to mention its sensitivity to the kernel width.

In this paper we propose a very fast pattern matching scheme based on a distance

measure expressed as a minimization problem over all possible tone mappings, thus, we

term the resulting measureMatching by Tone Mapping (MTM). From its definition, the

MTM is invariant to non-linear tone mappings and can be viewed as a generalization

of the NCC for non-linear mappings and actually reduces to NCC when mappings are

restricted to be linear [30]. In fact, for the general case, it can be shown that the MTM

measure coincides with the statistical measure known as the correlation-ratio [15].

This measure was previously suggested as an image similarity measure in the context of

multi-modal image registration [29, 31]. In this paper we show how this measure can be

adapted to pattern matching, and suggest a very fast computational scheme requiring

computational time similar to the fast implementation of NCC. Additionally, we extend

and modified the statistical scheme to be appropriate in cases of small samples, as

typically occurs when matching is applied on small patches. We empirically show that

the MTM is highly discriminative and robust to noise with comparable performance

capability to that of the well performing Mutual Information. Thus, the MTM allows

a pattern matching scheme on par with NCC in terms of computation time but with

performance capability equivalent to that of the Mutual Information scheme.

2 Matching by Tone Mapping

In the proposed pattern matching scheme, we wish to evaluate the minimum distance

between a pattern and a candidate window under all possible tone mappings. Since tone

mapping is not necessarily a bijective mapping, two alternatives may be considered:

i) tone mapping applied to the pattern, transforming it to be as similar as possible to

the candidate window, and ii) tone mapping applied to the window, transforming it to

be as similar as possible to the pattern. For each case we find the minimum normed

distance over all possible tone mappings.

Let p ∈ Rm be a pattern and w ∈ Rm a candidate window to be compared against.

Denote by M : R → R a tone mapping function. Thus, M(p) represents the tone

mapping applied independently to each entry in p. For the case of tone mapping
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applied to the pattern, the MTM distance is defined as follows:

D(p,w) = min
M

{
∥ M(p)−w ∥2

m var(w)

}
(1)

Similarly, if the mapping is applied to the window rather than the pattern, we define:

D(w,p) = min
M

{
∥ M(w)− p ∥2

m var(p)

}
(2)

The numerator in both cases is simply the norm distance after compensating for the

tone mapping. The denominator is a normalization factor enforcing the distance to

be scale invariant. Thus D(p,w) = D(p, αw) for any scalar α. Additionally, it

penalizes incorrect matching of p to smooth windows when using the constant mapping

M(p) = c. Due to the tone mapping compensation, the MTM measure reflects the

inherent structural similarity between the pattern p and the window w.

Searching for the pattern in the entire input image requires calculating the optimal

tone mapping for each possible window in the image. Although seemingly a computa-

tionally expensive process, we show in the following sections that in fact this distance

can be calculated very efficiently requiring an order of a single convolution with the

input image!

In the next section we introduce the Slice Transform [18]. This transform enables

the representation of tone mappings in a linear form allowing a closed form solution

for the defined MTM distance.

2.1 The Slice Transform (SLT)

The Slice Transform (SLT) was first introduced in [18] in the context of Image Denois-

ing. In this paper we exploit the SLT to represent a mapping function using a linear

sum of basis functions. We first introduce a simplified version of the transform: the

Piecewise Constant (PWC) case. Consider an image segment represented as a column

vector x = [x1, · · · , xm]T with values in the half open interval [a, b). The interval is

divided into k bins with boundary values q1 · · · qk+1 such that:

a = q1 < q2 < . . . < qk+1 = b

Any value v ∈ [a, b) is naturally associated with a single bin π(v) ∈ {1 · · · k}:

π(v) = i if v ∈ [qi, qi+1)

Given the bins defined by {qi}, the vector x can be decomposed into a collection

of binary slices: Slice xi = [xi1, · · · , xim] is an indicator function over the vector x
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Figure 2: Top: the SLT matrix for a 5-pixel vector having 3 gray values. Bottom: a

piecewise constant mapping and its representation using the SLT matrix.

representing the entries of x associated with the i-th bin.

xij =

{
1 if π(xj) = i

0 otherwise
(3)

The vector x can then be approximated as a linear combination of slice images:

x ≈
k∑

i=1

αix
i (4)

where the weights {αi}ki=1 are the values assigned for each bin (e.g αi = qi or αi =

(qi + qi+1)/2). The approximation is in fact a quantization of the values of x into the

bins represented by {αi}. The greater the number of bins the better the approximation

of the original image. In particular, if x values are discrete and ∀j xj ∈ {qi}k+1
i=1 then

x =
∑k

i=1 αix
i.

Collecting the slices xi in columns, we define the SLT matrix of x:

S(x) = [x1,x2, · · · ,xk] (5)

Then Equation 4 can be rewritten in matrix form:

x ≈ S(x)α (6)

where we define α = [α1, α2, · · · , αk]
T . Note, that since the slices are mutually disjoint,

the columns of S(x) are mutually orthogonal, satisfying:

xi · xj = |xi| δi,j (7)
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Figure 3: Linear Combination of image slices. The SLT transform was applied to an

image using 5 bins defined by α = [0, 51, 102, 153, 204, 256]. Top: Reconstructing the

original images using α values as weights in the linear combination. Bottom: Using

weights other than α produces a tone mapped version of the original image. Slice

images are shown inverted (1=black, 0=white).

where ′·′ is the vectorial inner product, |x| denotes the cardinality of x and δi,j is

the Kronecker’s delta. The SLT matrix enables the representation of any piece-wise

constant mapping of x. In fact, substituting the vector α in Equation 6 with a different

vector β, we obtain

y = S(x)β (8)

Image y is a piecewise constant tone mapping of x s.t. all pixels of x with values in

the j-th bin are mapped to βj. Thus, the columns of S(x) form an orthogonal basis

spanning the space of all images that can be produced by applying a piecewise constant

tone mapping on x. Figure 2 illustrates an SLT matrix (top) and a piecewise mapping

of a 5-pixel signal with 3 gray-level values (bottom). Figure 3 shows an example of

linearly combining image slices to form the original (quantized) image (top row) and

to form a tone mapped version (bottom row).

In the context of this paper, we use the SLT for tone mapping approximation. A

mapping applied to pattern p is approximated by a piecewise constant mapping:

M(p) ≈ S(p)β

Consequently, the distance measures as defined in Equations 1-2 can be rewritten using

the SLT:

D(p,w) = min
β

∥ S(p)β −w ∥2

m var(w)
(9)
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and similarly

D(w,p) = min
β

∥ S(w)β − p ∥2

m var(p)
(10)

where S(p) and S(w) are the SLT matrices as defined in Equation 5. In the following

sections we elaborate on the two possible alternatives defined above. We show that

solving for D for each image window can be applied in a very efficient manner. In fact,

computing D for the entire image requires on the order of a single image convolution.

2.2 MTM Distance Measure using SLT

The SLT scheme allows a closed form solution for the minimizations defined in Equa-

tions 1 and 2. To introduce the matching process, we first consider the pattern-to-

window case where a pattern p is to be matched against a candidate window w. Thus,

the distance measure used is that given in Equation 9. To simplify notation, we hence-

forth denote the SLT matrix S(p) as S. The solution for β that minimizes Equation 9

is given by:

β̂ = argmin
β

∥Sβ −w∥2 = S† w

where S† = (STS)−1ST is the Moore-Penrose pseudo-inverse. Substituting into Equa-

tion 9 we obtain:

D(p,w) =
∥ Sβ̂ −w∥2

m var(w)
=

∥S(STS)−1STw −w∥2

m var(w)

Due to the orthogonality of S, we have that G = STS is a diagonal matrix with the

histogram of p along its diagonal: G(i, i) = |pi| where pi is the pattern slice associated

with the i-th bin as defined in Equation 3. Expanding the numerator it is easy to verify

that:

∥S(STS)−1STw −w∥2 = ∥w∥2 − ∥G−1/2STw∥2

Exploiting the diagonality of G and using S =
[
p1,p2, · · · ,pk

]
, the above expression

can be re-written using a sum of inner-products:

∥w∥2 − ∥G−1/2STw∥2 = ∥w∥2 −
∑
j

1

|pj|
(pj ·w)2

As a result, the overall MTM distance D(p,w) reads:

D(p,w) =
1

m var(w)

[
∥w∥2 −

∑
j

1

|pj|
(pj ·w)2

]
(11)
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In a similar manner, when matching is applied by mapping w towards p (window-

to-pattern), we use Equation 10 and exchange the role ofw and p to obtain a symmetric

expression:

D(w,p) =
1

m var(p)

[
∥p∥2 −

∑
j

1

|wj|
(wj · p)2

]
(12)

2.3 Calculating MTM Distance Over an Image

Equations 11 and 12 provide a method for computing the structural difference between

p and w using two complementary distances. For pattern matching, this computation

must be performed on each candidate window of a given input image. Naively applying

the above expressions to each image window is highly time consuming and impracti-

cal. In the following we show that, in fact, computing D(p,w) or D(w,p) over an

entire image can be calculated very efficiently. We first describe the pattern-to-window

mapping case, and then detail the window-to-pattern case.

P2W - Mapping pattern to window

Let F be a 2D image with n pixels in which the pattern p is sought. Denote by wr

the r-th window of F, r ∈ {1, · · · , n}. Consider the pattern-to-window (P2W) scheme

where the distance given in Equation 11 is used. For each window wr ∈ F two terms

must be calculated, namely the numerator and the denominator of Equation 11:

d1(r) = ∥wr∥2 −
∑
j

1

|pj|
(pj ·wr)

2 and d2(r) = m var(wr)

Since computing the inner-product over all windows can be performed using image

convolution, the terms above can be calculated efficiently. We use var(wr) = E [w2
r ]−

E2 [wr] to efficiently calculate the denominator. Algorithm 1 gives the pseudo-code for

calculating the P2W MTM distance between pattern p and each window in F (code

can be found in [17]). In the pseudo-code ’∗’ denotes image convolution2, ⊙ and ⊘
denote elementwise multiplication and division, respectively. We denote by upper-case

letters arrays of size similar to that of the image F , and by lower-case letters scalar

variables. Vectors and filter kernels are denoted by bold lower-case letters. 1 is an

m-vector of 1’s (box filter).

Prior to the loop, two convolutions with a box filter are calculated, each of which can

be applied efficiently (with a separable 1D box filter) requiring a total of 4 additions

per pixel. Within the loop there are k convolutions with the pattern slices {pj}kj=1.

2In fact, correlations rather than convolutions are required, thus, a flipped kernel is used when

needed.
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Algorithm 1 MTM - Pattern-to-Window

{Input: pattern p, image F .}
{Output: image D of MTM distances.}
W1 := 1 ∗ F {window’s sum}
W2 := 1 ∗ (F ⊙ F ) {window’s sum of squares}
D2 := W2 − (W1 ⊙W1)/m {calc d2 (denominator)}
Generate {pj}, for j = 1..k

D1 := 0 {will accumulate the numerator}
for j := 1 to k do

n = 1 · pj, {calc |pj|}
T := flip(pj) ∗ F {convolve image with slice j}
T := (T ⊙ T )/n

D1 := D1 + T

end for

D := (W2 −D1)⊘D2

return D

Since each slice pj is sparse, convolving it with an image requires only |pj| additions
per pixel using a sparse convolution scheme [37]. Additionally, since all pattern slices

are mutually disjoint the number of additions sum up to a total of m additions per

pixel. All other operations sum to O(k) operations per pixel, thus, the algorithm

requires a total of O(mn + kn) operations which is comparable in complexity to a

single convolution! Memory requirement is also economized. Distance value for each

image window is accumulated in place, thus the required memory is on the order of

the image size.

W2P - Mapping window to pattern

Consider now the window-to-pattern (W2P) scheme using the distance given in Equa-

tion 12. For each window wr ∈ F , the expressions to be calculated are:

d1(r) = ∥p∥2 −
∑
j

1

|wj
r|
(wj

r · p)2 and d2 = m var(p)

d2 and the first term of d1 are constant for all windows and are calculated only once.

The second term in d1 differs for each window. Algorithm 2 gives the pseudo-code

for calculating the W2P distance over the entire image. In this algorithm F j denotes

the j-th image slice, i.e. F j(x, y) = 1 iff π(F (x, y)) = j. Since each F j is a sparse

image, convolution can be applied efficiently in this case as well. Note that {F j} are
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mutually disjoint, thus the operations required for the k sparse convolutions sum to

O(mn) operations. As in the P2W case, the entire algorithm requires O(mn + kn)

operations, which is on the order of a single image convolution. Memory requirement

is also economical and is on an order order of the image size.

Algorithm 2 MTM - Window-to-Pattern

{Input: pattern p, image F .}
{Output: image D of MTM distances.}
p1 := 1 · p {pattern’s sum}
p2 := 1 · (p⊙ p) {pattern’s sum of squares}
d2 := p2 − p21/m {computation of d2 (denominator)}
Generate {F j}, for j = 1..k

D1 := 0 {will accumulate the numerator}
for j := 1 to k do

N := 1 ∗ F j {calc |wj
r| ∈ F}

T := flip(p) ∗ F j {convolve image slice with p}
T := (T ⊙ T )⊘N

D1 := D1 + T

end for

D := (p2 −D1)/d2

return D

3 Statistical Properties

In this section we give statistical justification for the proposed distance. We show that

the MTM distance measures the relative reduction in the variance of the pattern given

the window (or vice versa). With this rationalization, the MTM distance is similar in

spirit to the MI measure where variance takes the role of entropy. We will show that

the MTM is closely related to the Correlation Ratio measure [15] and to the Fisher

Linear Discriminant [13]. Additionally, when restricting to linear tone mappings, the

MTM minimization scheme results in the NCC solution. Thus, the MTM distance

can be viewed as a generalization of the NCC distance when non-linear functional

dependencies are considered.

Throughout this section we discuss the pattern-to-window case where D(p,w) dis-

tance is used. All observations and claims are obviously applicable in a symmetrical

manner to the window-to-pattern case (using D(w,p)).
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Recall that D(p,w) is composed of two terms:

D(p,w) =
d1
d2

where

d1 = ∥w∥2 −
∑
j

1

|pj|
(pj ·w)2 and d2 = m · var(w)

Theorem 1 states that D(p,w) measures the ratio between the conditional variance of

w|p and the variance ofw. As in Section 1, we consider the pattern p and the candidate

window w as random variables with m samples pi and wi, i = 1..m, respectively.

Theorem 1.

D(p,w) =
E [var(w|p)]

var(w)

where E[·] is taken over all sample values pi of p.

Proof 1. Proof is given in Appendix A.

Figure 4 shows a scatter diagram of a specific pair p and w. The horizontal axis

indicates pattern values and the vertical axis indicates corresponding window values.

Each pair of values is represented as a point in the scatter diagram. The empirical mean

E[w|pj] for the jth bin is drawn as a full circle, and the conditional variance var(w|pj)

is illustrated as a double headed arrow. Note, that in terms of MTM matching, E[w|pj]

is the estimated tone map value for the tones in p associated with the jth bin. The

expectation value of var(w|pj) over all bins pj, j = 1..k is E[var(w | p)]. Intuitively,
this evaluates the spread of the data around the estimated tone mapping.

E(w|pj)

var(w|pj)   

p

w

Tone Mapping

pj

Figure 4: Conditional expectation E[var(w|pj)].
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Thus, Theorem 1 implies that when seeking a good match for p over the en-

tire image, a candidate window w is sought that minimizes the ratio D(p,w) =

E[var(w|p)]/var(w). Note, however, that rather than minimizing D(p,w) one can

equivalently maximize the term

D̃(p,w) = 1−D(p,w) =
var(w)− E[var(w|p)]

var(w)
. (13)

which is the normalized reduction in the variance of w when p is given. This relation

bears a strong similarity to the mutual-information measure. In both cases the aim is

to maximize the reduction in the uncertainty of w given p. However, while in the MI

scheme the entropy is used as the uncertainty measure, the MTM uses the variance

as the uncertainty measure. Using variance rather than entropy enables the MTM

scheme to be applied very fast on large images. Additionally, while the MI measure is

very sensitive to the size of the bins (or the width of the kernel, if kernel estimation is

used), the variance based MTM measure does not suffer from this parameter. Further

discussion on MTM vs MI can be found in Section 5.

As stated above, the empirical mean E[w|pj] for the jth bin (full circle in Figure

4) is the estimated tone-mapping for the values in pj. The collection {E[w|pj]} for all

j = 1..k, forms the estimated optimal tone mapping that maps p to w (solid red curve

in Figure 4). The variance of the collection {E[w|pj]} is closely related to the MTM

distance D(p,w). We state this relation in the following theorem:

Theorem 2.

D̃(p,w) = 1−D(p,w) =
var(E[w|p])

var(w)

Proof 2.

The theorem is derived directly from the law of total variance [30] which states:

var(w) = E[var(w|p)] + var(E[w|p])

Therefore,

D̃(p,w) = 1−D(p,w) =
var(w)− E[var(w|p)]

var(w)
=

var(E[w|p])
var(w)

Note that the term D̃(p,w) is the Correlation Ratio statistical measure [15]. Roche et.

al. suggested to use the Correlation Ratio measure for multi-modal image registration

[29].

Theorem 2 implies that the mean of the conditional variance and the variance of

the conditional mean are interchangeable, in the sense that, minimization over the first

is the maximization over the latter:

argmin
w

E[var(w|p)]
var(w)

= argmax
w

var(E[w|p])
var(w)
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Both measures are in the range [0, 1]. In the case where the optimal tone mapping

is uniform, i.e. ∃c, s.t. E(w|pj) = c for all j = 1..k, then var(E[w|p]) = 0 and

E[var(w|p)] = var(w) and D̃(p,w) = 0 while D(p,w) = 1. Thus, although the

w values are well predictable from p, the MTM distance is still large since the pre-

dictability is only due to the low dispersion of w. This property is imperative for

pattern matching, since the w values located in smooth image regions (such as sky

or non-textured surfaces) are predictable from p, but this is not the desired matching

solution. Note, that this is also the reason that the mutual information was preferred

over the conditional entropy in [35].

Additionally, consider again the law of total variance [30]. It can be shown that

argmax
w

var(E[w|p])
var(w)

= argmax
w

var(E[w|p])
E[var(w|p)]

(See Appendix B) which yields that MTM is related to the Fisher Linear Discriminant

[13], in which the goal is to maximize inter-class variance (numerator) while minimizing

intra-class variance (denominator), where, in our case, each bin takes the role of a class.

In the final part of this section and for the sake of completeness we mention that the

MTM scheme is a generalization of the NCC distance measure. In particular, when

tone mappings are restricted to be linear functions, the NCC and MTM distances

coincide [29]:

Theorem 3. In the context of pattern matching using MTM, assume tone mappings are

restricted to be linear, i.e. M(p) = ap+ b, where a, b are scalar parameters. Denoting

by ρ(p,w), the normalized cross correlation distance as defined in Equation 1, we have:

D̃(p,w) = ρ2(p,w)

Proof 3. Proof is given in Appendix C.

4 Piecewise Linear MTM

The benefits of using the piecewise constant (PWC) approximation for tone mappings

as suggested in Section 2.1 are simplicity and computational efficiency. This approx-

imation allows an unconstrained functional relationship between the pattern and the

sought window. In some cases, however, this flexibility introduces a weakness as it

generates an under-determined system of equations that may produce false matches.

Such scenarios occur mainly when small sized patterns are sought and only sparse

sampling values are available for many bins. Increasing the bin sizes of the SLT does

not solve this problem as it also increases the mapping representation error. To allow
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larger bin sizes without degrading the modeling precision we extend the SLT transform

to implement a higher order model, namely, a Piecewise Linear (PWL) approximation.

This representation approximates the tone mapping as a piecewise linear function and

enables aggregating more samples for each bin without compromising representation

accuracy. Similar to the Piecewise Constant SLT, the PWL-SLT slices a given image

into k slices, but rather than being binary slices, the slices now contain real values.

Recall the SLT definition described in Section 2.1, we denote bin boundaries as a

sequence q1, · · · , qk+1 where q1 < q2 < · · · < qk+1. A value x in the half open interval

[q1, qk+1) is associated with a bin π(x)

π(x) = j if x ∈ [qj, qj+1)

We define r(x) to be the relative position of x in its bin:

r(x) =
x− qπ(x)

qπ(x)+1 − qπ(x)

Note, that r(x) ∈ [0, 1], where r(x) = 0 if x = qπ(x), and r(x) → 1 when x → qπ(x)+1.

For every x ∈ [q1, qk+1) the following relation holds:

x = (1− r(x)) · qπ(x) + r(x) · qπ(x)+1 (14)

Defining a k + 1 dimensional vector α as a vector composed of the bin boundaries:

α = [q1, q2, · · · , qk+1]

Equation 14 can be rewritten in vectorial form:

x = Q(x)α (15)

where Q(x) is a row vector:

Q(x) = [0, · · · , 0, 1− r(x), r(x), 0, · · · , 0]

s.t. the values 1−r(x) and r(x) are located in the π(x) and π(x)+1 entries, respectively.

We now define a matrix extension of Equation 15. Let x ∈ Rm be a real valued vector

whose elements satisfy xi ∈ [q1, qk+1). The piecewise linear slice transform (PWL-SLT)

of x is defined as:

x = Q(x)α (16)

where Q(x) is an m× (k + 1) SLT matrix:

[Q(x)](i, j) =


1− r(xi) if π(xi) = j

r(xi) if π(xi) = j − 1

0 otherwise

(17)
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Note that, in contrast with the PWC case, multiplying Q(x) with the vector α does

not quantize x but reproduces x exactly (Equation 16), regardless of the number of

bins. Substituting the boundary vector in the expression Q(x)α with a different vector

β we obtain a piecewise linear tone mapping of x:

y = Q(x)β (18)

This mapping implies that values in the interval [αi, αi+1) are linearly mapped to the

interval [βi, βi+1). Note, that in contrast with the PWC-SLT matrix S(x), the columns

of matrix Q(x) are not orthogonal. Thus we define a variant of the original image slice

defined in Section 2.1:

We define x̃j = [x̃j1, · · · , x̃jm] as a real valued vector associated with the jth bin:

x̃ji =

{
r(xi) if π(xi) = j

0 otherwise
(19)

The matrix Q(x) can then be represented as a collection of column vectors (slices):

Q(x) = [x̄1, x̄2, · · · , x̄k+1]

where we define

x̄j = xj − x̃j + x̃j−1 (20)

where x̃j is defined above (Equation 19), and xj is the originally defined slice vector

(Equation 3). The end cases are set to be: xk+1 = x̃k+1 = x̃0 = 0.

In the following sections we describe how MTM-PWL matching can be applied

efficiently on the entire image. In this case, the minimum normed distance between

a pattern and candidate window (Equations 1 and 2 ) is evaluated under all possible

piecewise linear tone mappings. Again, since tone mapping is not necessarily a bijec-

tive mapping, two alternatives must be considered: Pattern-to-Window (P2W) and

Window-to-Pattern (W2P).

4.1 P2W by Piecewise Linear Mapping

The MTM distance is given by the minimization of Equation 1 where M(p) = Q(p)β.

The optimal mapping is then given by:

β̂ = argmin
β

∥Qβ −w∥2 = (QTQ)−1QTw

For simplicity we denote Q(p) by Q. Substituting back into Equation 1, the MTM

distance reads:

D(p,w) =
∥ Qβ̂ −w∥2

m · var(w)
=

∥Q
(
QTQ

)−1
QTw −w∥2

m · var(w)
(21)
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Expanding the numerator of the above term we obtain:

d1 = ∥Q
(
QTQ

)−1
QTw −w∥2 = ∥w∥2 − (wTQG−1QTw) (22)

where G = QTQ. Unlike the PWC case, the matrix G in this case is not diagonal,

thus calculating the right hand term in Equation 22 is more challenging than the PWC

case. Fortunately, G is a tridiagonal matrix (see Appendix D), a property we exploit

to expedite calculations. Note, that in the P2W case, G is a function of p and may be

calculated only once for all candidate windows.

Consider the right most term in Equation 22: wTQG−1QTw, and recall that the

columns p̄j of Q are given by Equations 19 and 20. Thus calculating QTw requires 2k

dot products {w · pj}kj=1 and {w · p̃j}kj=1:

ρj = [QTw]j = w · p̄j = w · (pj − p̃j + p̃j−1)

However, since the pattern slices are mutually exclusive, the k dot-products with {pj}
as well as with {p̃j} require only O(m+ k) operations, for each.

Calculating the entire termwTQG−1QTw requires additional multiplication ofQTw

with G−1. Since G−1 is a k× k matrix, this would require an additional k2 operations.

However, since G is tridiagonal we use the Tridiagonal Matrix Algorithm (TDMA) [10]

in the following manner. Denote β̂ = G−1QTw, thus Gβ̂ = QTw. Using TDMA,

solving for β̂ can be implemented in O(m + k) operations using Gaussian elimina-

tion and backward substitution (Appendix E). Therefore, calculating the entire term

wTQG−1QTw requires O(2(m + k)) operations. Algorithm 3 gives a pseudo-code for

applying P2W pattern matching over an entire image F using PWL approximation. In

the pseudo-code capital letters and bracketed variables (such as [ρj]) represent images

of size equal to F . Assuming the image F is of n pixels, the entire search requires

O(2(nm+ nk)) operations, which is equivalent to two image convolutions!

4.2 W2P by Piecewise Linear Mapping

Due to the symmetry between p and w we can exchange p and w in Equations 21 and

22 above and obtain:

D(w,p) =
∥ Qβ̂ − p∥2

m · var(p)
=

∥p∥2 − pTQG−1QTp

m · var(p)

where Q = Q(w) and G = QTQ. The scalars ∥p∥2 and var(p) are calculated once

for all windows, however, the term pTQG−1QTp must now be calculated explicitly for

each window in F . In this case, we denote

ρj = [QTp]j = wj · p̄
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Algorithm 3 MTM-PWL: Pattern-to-Window

{Input: pattern p, image F . Output: image D of distances}
{Calculate PWL Pattern Slices}
Generate {pj}kj=1

Generate {p̃j}kj=1

p0 = pk+1 = p̃0 = p̃k+1 = 0

p̄j = pj − p̃j + p̃j−1, for j = 1..k + 1

{Calculate matrix G according to Eq. 35 Appendix D}
φj
p = p̄j · p̄j, for j = 1..k + 1

ψj
p = p̄j · p̄j+1, for j = 1..k

Calculate ωj
p, for j = 1..k {Eq. 38 Appendix E}

{Calculate all window projections}
T̃ 0 = 0;

T j = flip(pj) ∗ F , for j = 1..k + 1 {calculate pj ·w, ∀w ∈ F}
T̃ j = flip(p̃j) ∗ F , for j = 1..k + 1 {calculate p̃j ·w, ∀w ∈ F}

{TDMA - Forward pass}
for j := 1 to k + 1 do

[ρj] = T j − T̃ j + T̃ j−1 {Compute [QTw]j}
Calculate [σj] {Eq. 39 Appendix E}

end for

{TDMA - Backward pass}
for j := k + 1 to 1 do

Calculate [β̂j] {Eq. 40 Appendix E}
end for

{Calculate distances for all windows}
D1 =

∑
j[β̂j]⊙ [ρj] {calculation of d1 (numerator)}

W1 := 1 ∗ F {window sum}
W2 := 1 ∗ (F ⊙ F ) {window sum of squares}
D2 := W2 − (W1 ⊙W1)/m {calculation of d2 (the denominator)}
D := (W2 −D1)⊘D2

return D
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Figure 5: (a) Original image with a sub-window used as pattern (marked square). (b)

Tone mapped image with added noise. (c) Non-Monotonic mapping used to create (b).

where

w̄j = wj − w̃j + w̃j+1

We use again the tridiagonal property of G and the TDMA algorithm to produce the

MTM distance for each window in image F with O(2(nk + nm)) operations. Algo-

rithm 4 describes the process of calculating D(w,p),∀w ∈ F . In this algorithm we

define F j to be the jth slice of image F , i.e. F j(x, y) = 1 ⇔ π(F (x, y)) = j, and F̃ j to

be the jth PWL image slice, i.e. F̃ j(x, y) = r(F (x, y)) ⇔ π(F (x, y)) = j.

5 Results

The suggested method was tested under various scenarios. Performance was compared

with four distance measures discussed in Section 1, namely, the Euclidean distance,

Local Binary Pattern (LBP), Normalized Cross Correlation (NCC), and Mutual In-

formation (MI). In this section we show that even under extreme tone mappings and

under heavy noise conditions, the MTM approach successfully and efficiently detects

the sought patterns, performing significantly better than the compared methods.

To illustrate the performance of the proposed approach, consider the image and

the selected pattern presented in Figure 5a. Figure 5b shows the original image after

applying the tone mapping plotted in Figure 5c, adding a tone gradient and adding

white Gaussian noise. The selected pattern was sought in the tone mapped image by

evaluating the distance measures between the pattern and every window in the image

using the five distances mentioned above. For MI and MTM measures, bin size was

chosen to provide best results (MTM with bin size 20, MI with bin size 40).

Figure 6 presents the distance values for all image windows for each of the measures,

shown as a color map. The maps in Figures 6d-e have been morphologically eroded to

assist in visualizing the sharp detection peaks (these peaks are in fact much sharper).

From the maps it can be seen that the MTM distance (Figure 6e) clearly shows a sharp
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Algorithm 4 MTM-PWL: Window-to-Pattern

{Input: pattern p, image F . Output: image D of distances}
{Calculate PWL Window Slices}
Generate {Fj}kj=1

Generate {F̃j}kj=1

F0 = Fk+1 = F̃0 = F̃k+1 = 0

F̄ j = F j − F̃ j + F̃ j−1, for j = 1..k + 1

{Calculate matrix G for each window (Eq. 35)}
[φj

w] = 1 ∗ (F̄ j ⊙ F̄ j), for j = 1..k + 1 {calculates w̄j · w̄j, ∀w ∈ F}
[ψj

w] = 1 ∗ (F̄ j ⊙ F̄ j+1), for j = 1..k {calculates w̄j · w̄j+1, ∀w ∈ F}
[ωj

w] for j = 1..k {according to Eq. 38 Appendix E}

{Calculate all pattern projections}
T̃ 0 = 0;

T j = p ∗ F j, for j = 1..k + 1 {calculate p ·wj, ∀w ∈ F}
T̃ j = p ∗ F̃ j, for j = 1..k + 1 {calculate p · w̃j, ∀w ∈ F}

{TDMA - Forward pass}
for j := 1 to k + 1 do

[ρj] = T j − T̃ j + T̃ j−1 { Compute [QTp]j}
Calculate [σj] {Eq. 39 Appendix E }

end for

{TDMA - Backward pass}
for j := k + 1 to 1 do

Calculate [β̂j] {Eq. 40 Appendix E}
end for

{Calculate distances for all windows}
D1 =

∑
j[β̂j]⊙ [ρj] {calculation of d1 (numerator)}

p1 := 1 · p {pattern sum}
p2 := 1 · (p⊙ p)/m {pattern sum of squares}
d2 := p2 − p21 {calculation of d2 (the denominator)}
D := (p2 −D1)/d2

return D
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peak at the correct location overcoming both non-monotonic mapping and noise. The

Euclidean and the LBP measures both strongly fail due to the non linearity of the

mapping and due to the noise. The NGC, fails due to the non-linearity of the tone

mapping. The MI shows confusion in the detection locations, this is mainly due to the

relatively small pattern size which implies very sparse data in the MI bins (even when

bin size increases to 40 gray values).

a. b. c.

d. e. 0

0.2

0.4

0.6

0.8

1

Figure 6: The pattern shown in Figure 5a was sought in the tone mapped image of

Figure 5b. Distance maps display distance values between pattern and image windows

for different distance measures. (a) Euclidean (b) NGC (c) LBP (d) MI (e) MTM.

5.1 Sensitivity to Mapping Extremity

In order to quantitatively evaluate the performance of the suggested approach and

compare it with other methods we conducted a series of experiments on gray-level

images. Pattern matching was applied on a large set of randomly selected image-

pattern pairs under various conditions. For each input image, a pattern of a given size

was selected at a random location. To prevent smooth or ”non-interesting” patterns,

these were selected from among patterns with a degree of ”structure” above a specific

threshold. ”Structure” was measured at each pixel as the direct sum of the structure

tensor’s eigen-values (a 2x2 matrix of partial derivatives [5]). Given an image and a

selected pattern, a random tone mapping was applied to the image (with additive noise)

and the original selected pattern was then sought in the mapped image. Distances were
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Figure 7: Pattern detection performance vs. extremity of the tone mapping for (a)

monotonic mapping with noise (b) non-monotonic mapping with noise.

calculated for all possible locations in the mapped image, and the window associated

with the minimal distance was considered the matched window. If the matched window

was detected at the correct position the match is considered a correct detection3.

Figure 7 displays the detection rate as a function of the extremity of the tone

mapping applied to the image. Extremity of tone mapping was measured as the mean

squared distances between the original range of values ([0..255]) and the mapped tone

values. Results are shown separately for monotonic mappings (Figure 7a) and for non-

monotonic mappings (Figure 7b). Each data point represents the detection rate (in

percentages) over 2000 randomly selected image-pattern pairs. Images were of size

200 × 200 and patterns of size 20 × 20. Tone mappings were generated by randomly

selecting six new tone values serving as the mapping values for six equally spaced source

tone values (in the range [0..255]). The tone mapping was defined as a piecewise linear

function passing through the selected values. For monotonic mappings the randomly

selected tone values were sorted in increasing order prior to the construction of the

tone mapping. Additive Gaussian noise with s.t.d. of 15 gray-values was added to

each mapped image before pattern matching was performed.

We note an important caveat with respect to the mappings and their extremity

measure: in the case of monotonic mappings, the monotonicity constrains the extreme

mappings and typically produces deeply convex or concave mappings which imply

loss of spatial details in certain image regions. This in turn increases the difficulty

of correctly detecting a given pattern. Non-monotonic mappings on the other hand,

produce false contours but typically maintain the image structure (preserve original

3We note that using the top 5 or 10 minimal distance windows, did not significantly change the

results.
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edges though possibly increasing or decreasing their contrast). Thus, as will be seen,

performance under monotonic mappings is often degraded compared to non-monotonic

mappings.

Figure 7 shows that the Euclidean distance and the LBP degrade very fast with the

mapping extremity. Indeed, this is expected for the Euclidean case, however, the LBP

shows poor performance also in monotonic mappings where it should be insensitive to

such mappings. This can be explained by noise that was added to the image and, as will

be shown below, the LBP is very sensitive to additive noise. The NGC is expected to

fail in both monotonic and non-monotonic mappings, however in the monotonic case,

mapping is smooth and can be approximated locally as linear. Thus, NGC performs

relatively well under monotonic mappings compared to the non-monotonic mappings.

It can be seen that the MTM approach in both PWC (red lines-unfilled markers)

and PWL (blue lines - solid markers) schemes, performs very well and on par with

the MI approach. Both, MTM and MI perform better under non-monotonic mappings

compared with monotonic mappings due to the caveat described above. The MTM

and MI methods were optimized for bin size (in this case MTM used bin size 40 and

MI bin size 20).
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Figure 8: Performance comparison as a function of pattern size. (a) For specific mono-

tonic mapping. (b) For specific non-monotonic mapping. Gaussian noise of std=15

was added in both cases.

5.2 Sensitivity to Noise and Pattern Size

We examined the sustainability of the mentioned distances to additive noise and its

performance under various pattern sizes. Figure 8 shows the detection rate for various

pattern sizes under a specific monotonic mapping (Figure 8a) and under a specific non-

monotonic mapping (Figure 8b). All images were contaminated with Gaussian noise
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Figure 9: Performance comparison as a function of added noise. (a) For specific mono-

tonic mapping. (b) For specific non-monotonic mapping.

with s.t.d. = 15. It can be seen that for small patterns (under 10×10 pixels) detection

rates are very low in all methods. This behavior stems from the fact that histogram

bins of small sized patterns are populated with sparse samples or even not populated at

all. This may produce an under-determined system or an over-fitting solution. For this

reason techniques using a low number of free parameters are preferable and outperform

other methods in small pattern scenarios (NGC for monotonic mappings and MTM-

PWL). On the other hand, techniques with a small number of free parameters do not

model well all possible tone mappings (NGC for non-monotonic mappings). Figure 8

shows that MTM-PWL outperforms all other methods. This stems from the fact that

the PWL model allows increasing the bin size without sacrificing the mapping accuracy.

This implies lowering of the number of free parameters, and aggregating more pixel

values in each bin. In turn, this increases stability of the solution and reduces over-

fitting phenomena. This phenomena is also shown below in Figure 10.

Figure 9 evaluates the sensitivity of the above methods to additive noise. Pattern

matching was performed under a specific mapping with Gaussian noise of varying

variance added to each image. As above, data points represented average results over

2000 randomly selected image-pattern pairs. Figures 9a and 9b plot the results for

monotonic and non-monotonic mappings respectively. Overall, the results resemble the

behavior shown above in Figure 8. Methods with a small number of free parameters

perform better, as long as they model well the possible tone-mappings. It can be

seen that in both cases MTM-PWL is advantageous over MTM-PWC especially under

severe noise conditions.

Finally, we test for the sensitivity of the MTM to bin size and compare with that of



Technical Report - March 2012 25

MI. Figure 10 shows detection rates for MTM-PWC, MTM-PWL and MI over different

bin sizes. Results are shown for three different pattern sizes (8 × 8, 16 × 16 and

32 × 32). Each data point is a result of 200 randomly selected image-pattern pairs.

For every image-pattern pair, a random monotonic mapping was generated, within the

extremity range of 40-60, and Gaussian noise (s.t.d = 20) was added. These plots show

the difference in sensitivity to bin-size between the approaches. As expected, MTM-

PWL outperforms MTM-PWC accross pattern sizes as well as MI, and is especially

advantageous when using large bin size on smaller patterns. MI shows larger sensitivity

to bin size with decrease in performance for smaller bin sizes.

0 20 40 60 80
0

20

40

60

80

100

Bin Size

S
uc

ce
ss

 r
at

e 
(%

)

Pattern Size 8x8

MI
PWC
PWL

0 20 40 60 80
0

20

40

60

80

100

Bin Size

S
uc

ce
ss

 r
at

e 
(%

)
Pattern Size 16x16

MI
PWC
PWL

0 20 40 60 80
0

20

40

60

80

100

Bin Size

S
uc

ce
ss

 r
at

e 
(%

)

Pattern Size 32x32

MI
PWC
PWL

Figure 10: Performance comparison of MI and MTM as a function of bin size. For

patterns of size 8× 8, 16× 16 and 32× 32.

5.3 Run Time

A significant advantage of MTM over MI is computational efficiency. Figure 11 displays

run times of pattern matching using different schemes under varying pattern sizes. For

MI and MTM, run times are shown for different bin sizes as well. Run times shown are

the average over 10 runs. Run time was measured on an Intel 1.70 GHz Pentium M.

Since MI requires the computation of the joint histogram for every image window pairs,

it is more computationally demanding than MTM and other approaches. Furthermore,

run time for MI increases with the number of bins. On the other hand, run time of the

MTM-PWC scheme is of the order equivalent to a single image convolution (Section 4.1)

and thus on par with the NCC and EUC approaches. Run time of the MTM-PWL

scheme is slightly higher than the MTM-PWC (two image convolutions). The size of

bins in both, MTM-PWC and MTM-PWL, has very little effect on the run time.
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Figure 11: Algorithm run time for pattern matching under various schemes (and dif-

ferent bin sizes) for different pattern sizes.

6 Additional Applications

6.1 MTM for Multi-Modal Image Registration

To compare the capabilities of the MTM and MI in multi modality scenarios we eval-

uated the performance of pattern matching and image alignment between image pairs

originating from different modalities, including: visual - SAR, visual - InfraRed, CT

- MRI and CT - PET. These images display tone changes between their counterparts

which are one-to-many, thus, cannot be regarded as a mapping function.

Figure 12 displays the detection rates of pattern matching between multi-modal

images for various pattern sizes. The recorded performance is an average over five

multi-modal image pairs where 100 (randomly selected) pattern-window cases were
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Figure 12: Detection rates of pattern matching between multi-modal images for various

pattern sizes.
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tested for each pair. It is demonstrated that MI outperforms MTM and NGC for

almost all pattern sizes. While NGC severely fails in almost all pattern sizes, MTM

presents reasonable performance although inferior to MI. MTM, however is significantly

faster than MI as discussed above.

With respect to multi-modal image registration, both MI and MTM present compa-

rable accuracies since the matched areas are extremely large. To demonstrate this, we

evaluated the distance between an image and its modality counterpart under different

translation parameters. Figure 13 displays distance maps between pairs of images of

different modalities including visual-IR, visual-SAR and CT-MRI. Distance maps for

NGC, MTM and MI are shown (left to right). In each map, the center of the map

corresponds to the correct translation (∆x = 0,∆y = 0) and distance values for other

translation parameters (sampled in pixel’s width steps) are represented at the corre-

sponding locations. Map values are represented in pseudo-color corresponding to the

color-bar shown on the right. As can be seen, the minimum distance in the MI and

MTM maps correspond to the correct translation with a deep and global minima. The

results show that MTM and MI are comparable in their accuracy of alignment whereas

NGC largely fails. Similar performance is observed for other image modalities as well.

Similar results are obtained for distance maps between these pairs of images for

rotation and scale transformation as shown in Figure 14. Rotation parameters (x-axis

of map) range from −90◦ to +90◦. Scale parameters (y-axis of map) range from 0.8

to 1.2. As above, the center of the map corresponds to the correct transformation

parameters (∆θ = 0, s = 1).

Note that, searching for the correct transformation parameters in a multi-modal

alignment using MTM, can be implemented very efficiently: image slices need to be

computed only once for the reference image of the pair, while transformed image re-

quires only resampling and pointwise multiplication with the image slices. In contrast,

searching for the transformation parameters using MI requires computation of the joint

histogram of the image pairs for each candidate parameter - a time consuming process.
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Figure 13: Distance maps between multi-modal image pairs for horizontal and vertical

translations. Columns left to right: image pairs, distance maps for NGC, MI and

MTM.
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Figure 14: Distance maps between multi-modal image pairs for rotation and scale.

Columns left to right: image pairs, distance maps for NGC, MI and MTM. Rotation

parameters (x-axis of map) range from −90◦ to +90◦. Scale parameters (y-axis of map)

range from 0.8 to 1.2.
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6.2 Foreground Detection in Video

As an example of implementation of the MTM in a real time scenario, moving shad-

ows were detected in video clips acquired by outdoor surveillance cameras [8]. These

outdoor sequences show pedestrians walk across a static background with shadows

varying in size and length dependent on the time of day (see Figure 15). With the goal

of detecting pedestrians and not their shadows, recent approaches to shadow removal

have difficulty in such cases since shadows are non uniform, noisy and tend to have

wide penumbras [1]. Following classic techniques, a background image is computed

and continuously updated by the system using a Mixture of Gaussians approach [26].

For every frame of the sequence, the foreground regions are determined using back-

ground subtraction. These regions include the pedestrians as well as their shadows (see

Figure 15).

To distinguish between pedestrians and shadows, we exploit the assumption that

the shadow regions are a (not necessarily linear) tone mapping of the background.

Thus, the MTM distance is computed between the spatial neighborhood of every pixel

within the detected foreground regions and the corresponding region in the background

Figure 15: Top: A video frame acquired from a low-cost surveillance camera (left)

and the current background image (middle). Foreground detection using background

subtraction includes both actual foreground objects and shadows (right). Bottom:

Distance maps obtained for the foreground pixels using NCC (left) and MTM (middle).

Bright colors represent high values while dark colors represent low values. Right:

Thresholding of the MTM distances results in foreground image without shadows.
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a. b. c. d. e.

Figure 16: Shadow detection results. (a) Frames from the Highway (top) and Seam

(bottom) sequences, their shadow detection results using (b) the Constant Ratio (CR)

model, (c) the Statistical Shadow (SS) model, and (d) the proposed MTM method. (e)

Displays the ground-truth. Detected shadow pixels are shown in gray and foreground

pixels in white. Images are form [8].

image. Figure 15 (bottom) depicts the distance map calculated for the video frame

shown in Figure 15 - top) using NCC (left) and MTM (middle). The MTM results

in substantially lower values for shadowed pixels compared to foreground pixels. This

result is compared with the Normalized Cross-Correlation (NCC) metric that fails to

do so due to its false assumption of linear mapping between shadowed pixels and their

corresponding background pixels. Shadows are detected by thresholding the MTM

distance map using a two-class thresholding method [25]. Resulting foreground image

without shadows is shown in Figure 15 (bottom-right).

To evaluate performance, the proposed approach was compared in [8] with two

shadow detection methods - Constant Ratio (CR) [33] and Statistical Shadow (SS) [4].

The SZTAKI benchmark set [4, 28] was used as input. This dataset contains video

sequences with moving shadows in different scenarios, all of which have ground truth,

and results of the CR and SS methods. Figure 16 shows two video frames from the

dataset and their corresponding foreground and shadow detection results according

to the three shadow detection methods. It can be seen that the MTM’s results are

smoother and more accurate with respect to the given ground-truth. Figure 17 com-

pares quantitative shadow detection results of these methods using the F-measure (the

harmonic mean of precision and recall) over all frames of the sequence. The results

show that the proposed technique substantially outperforms the CR and SS methods,

yielding a significant advantage in terms of the F-measure. The proposed technique

results in about 21% increase in the F-measure compared with the CR method and

about 7% increase compared with the SS method on average.
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Figure 17: Foreground Detection results on sequences from the SZTAKI benchmark

Set. Result shown are for the Constant Ratio (CR), Statistical Shadow (SS), and the

proposed MTM methods. Adapted from [8].

Further details of the shadow detection approach using MTM can be found in [8].

7 Conclusions

In this paper, a fast pattern matching scheme calledMatching by Tone Mapping (MTM)

was introduced. The distance measure used is expressed as a minimization problem

over all possible tone mappings. Thus, by definition, the MTM is invariant to non-

linear tone mappings (both monotonic and non-monotonic). Furthermore, the MTM is

shown to be a generalization of the NCC for non-linear mappings and actually reduces

to NCC when mappings are restricted to be linear [30]. An efficient computation of

the MTM is proposed requiring computation time similar to the fast implementation

of NCC.

As mentioned above the MTM and MI approaches are similar in spirit. While MI

maximizes the entropy reduction in w given p, MTM maximizes the variance reduc-

tion in w given p. The entropy and variance are two different measures of uncertainty.

While variance is a quantitative measure preferring a compact distribution of sam-

ples, the entropy is a qualitative measure disregarding bin rearrangements. The use of

variance rather than entropy is critical when a small number of samples are available.

Nevertheless, although MTM demonstrates superior performance with respect to run

time and stability under sparse samples, it relies on functional dependency between p

and w. When this assumption is violated, e.g. in multi-modal images (between which

functional mapping does not necessarily exist), MI often outperforms MTM, although

at the expense of longer running time. The following table summarizes the comparison



Technical Report - March 2012 32

between the MI and the MTM schemes.

MI MTM

Maximizes entropy reduction variance reduction

Speed slow fast

Bin size sensitive insensitive

Measure qualitative quantitative
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Appendix A

We prove that D(p,w) measures the ratio between the conditional variance of w|p
and the variance of w. The pattern p and the candidate window w are considered as

random variables with m samples pi and wi, i = 1..m, respectively.

Theorem 1.

D(p,w) =
E [var(w|p)]

var(w)

where E[·] is taken over all sample values pi of p.

Proof 1.

Let pj be the j-th slice of p. All the pattern slices are mutually exclusive, thus∑
j p

j = 1. Consequently, d1 can be rewritten as:

d1 =
∑
j

pj · (w ⊙w)−
∑
j

(pj ·w)2

|pj|
=

=
∑
j

|pj|p
j · (w ⊙w)

|pj|
−
∑
j

|pj|
(
pj ·w
|pj|

)2

=

=
∑
j

|pj|

(
pj · (w ⊙w)

|pj|
−
(
pj ·w
|pj|

)2
)

Let gjp denote the set of indexes of non-zero entries of slice pj. Therefore,

pj ·w =
∑
i∈gjp

wi, and as such,
pj ·w
|pj|

= E[w|pj]

Therefore,

d1 =
∑
j

|pj|

(
pj · (w ⊙w)

|pj|
−
(
pj ·w
|pj|

)2
)

=

=
∑
j

|pj|
(
E
[
w ⊙w | pj

]
− E2

[
w | pj

])
=

∑
j

|pj| var
(
w | pj

)
= mE [var (w | p)] (23)

where the expectation in the last equation is taken over all {pj}. From Equation 23 it

follows that

D(p,w) =
d1
d2

=
E [var (w | p)]

var (w)
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Appendix B

MTM is related to the Fisher Linear Discriminant [13], in which the goal is to maximize

inter-class variance while minimizing intra-class variance. From Theorem 2 we have

that minimizing D(p,w) is equal to maximizing D̃(p,w). Using the law of total

variance [30]:

argmax
w

D̃(p,w) = argmax
w

var(E[w|p])
var(w)

(24)

= argmin
w

var(w)

var(E[w|p])
(25)

= argmin
w

E[var(w|p)] + var(E[w|p])
var(E[w|p])

(26)

= argmin
w

(
E[var(w|p)]
var(E[w|p])

+ 1) (27)

= argmin
w

E[var(w|p)]
var(E[w|p])

(28)

= argmax
w

var(E[w|p])
E[var(w|p)]

(29)

(30)

Considering the grayscale bins associated with p as classes, we have that minimiz-

ing D(p,w) is similar to maximizing inter-class variance while minimizing intra-class

variance.

Appendix C

When constraining tone mappings to be linear, pattern matching using MTM results

in the NCC solution. Recall the original definition of MTM (Equation 1):

D(p,w) = min
M

{
(∥ M(p)−w) ∥2

m · var(w)

}
(31)

Since the mappings are restricted to linear mappings: M(p) = ap+ b, we seek param-

eters a, b satisfying:

min
a,b

∥ap+ b−w∥2



Technical Report - March 2012 37

It has been shown (e.g. [30] Ch. 7) that minimizing the above term gives:

a =
cov(p,w)

var(p)
= ρ(p,w)

√
var(w)

var(p)
(32)

b = E[w]− aE[p] = E[w]− ρ(p,w)E[p]

√
var(w)

var(p)
(33)

where ρ(p,w) = cov(p,w)√
var(p)var(w)

. Substituting a and b into Equation 31 we obtain [30]:

D(p,w) = 1− ρ2(p,w)

and thus,

D̃(p,w) = ρ2(p,w)

Appendix D

We show that Q(p) is a tridiagonal matrix. Recall that Q(p) is composed of column

vectors:

Q(p) = [p̄1, p̄2, · · · , p̄k+1]

where

p̄j = pj − p̃j + p̃j−1

To simplify notations, we denote Q(p) as Q. The matrix G = QTQ then reads:

[G(p)](i, j) = p̄i · p̄j = (pi − p̃i + p̃i−1) · (pj − p̃j + p̃j−1) (34)

Since the two sets of vectors {pi} and {p̃i} are each mutually orthogonal, we obtain

that the above term vanishes for all indices (i, j) except for indices satisfying |i−j| ≤ 1.

This results in a tridiagonal matrix:

G(p) =



φ1
p ψ1

p 0

ψ1
p φ2

p ψ2
p

ψ2
p φ3

p
. . .

. . . . . . ψk
p

0 ψk
p φk+1

p


(35)

where for the main diagonal we have:

φj
p = p̄j · p̄j =

∑
i∈gjp

(1− r(pi))
2 +

∑
i∈gj−1

p

(r(pi))
2, for j = 1 · · · k + 1
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and for the off diagonal entries:

ψj
p = p̄j · p̄j+1 =

∑
i∈gjp

(1− r(pi))r(pi), for j = 1 · · · k

Note, that in the summation above we assume that g0p = gk+1
p = ∅

Appendix E

In this section we solve for β̂ in the system Gβ̂ = QTw where G is a symmetric

tridiagonal matrix, Q = Q(p) is the SLT-PWL matrix of p and ρj = w · p̄j:

φ1
p ψ1

p 0

ψ1
p φ2

p ψ2
p

ψ2
p φ3

p
. . .

. . . . . . ψk
p

0 ψk
p φk+1

p


︸ ︷︷ ︸

G(p)=QTQ

·


β̂1

β̂2

β̂3
...

β̂k+1


︸ ︷︷ ︸

β̂

=


ρ1

ρ2

ρ3
...

ρk+1


︸ ︷︷ ︸
Q(p)Tw

(36)

Since G is tridiagonal, the above linear system can be solved with a linear number

of operations using a simplified version of the Gaussian elimination method [10]. The

process involves a forward sweep that eliminates the ψi
p’s below the main diagonal,

followed by a backward substitution that produces the solution.

In the first step the above system is modified to a new set of equations using

Gaussian elimination:

1 ω1
p 0

0 1 ω2
p

0 1
. . .

. . . . . . ωk
p

0 1


·


β̂1

β̂2

β̂3
...

β̂k+1

 =


σ1

σ2

σ3
...

σk+1

 (37)

where the new coefficients are calculated as follows:

ωi
p =


ψ1
p

φ1
p

for i = 1

ψi
p

φi
p − ωi−1

p ψi−1
p

for i = 2, 3, . . . , k

(38)
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and

σi =



ρi

φ1
p

for i = 1

ρi − σi−1ψ
i−1
p

φi
p − ωi−1

p ψi−1
p

for i = 2, 3, . . . , k + 1

(39)

The solution is then obtained using backward substitution:

β̂k+1 = σk+1

β̂i = σi − ωi
p β̂i+1, for i = k, k − 1, · · · , 1 (40)

Note, that during the elimination step the coefficients {ωi} are calculated only once for

all candidate windows, while {σi} and β̂ must be calculated for each window. Since

QTw is calculated using O(m) operations (Section 4) and calculating β̂ requires an

additional O(k) operations the entire process requires O(m+ k) operations.


