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Pattern Detection

A given pattern Is sought in an Image.

e The pattern may appear at any location in the image.

 The pattern may be subject to any transformation
(within a given transformation group).
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Face detection




Why Is It Expensive?

The search in Spatial Domain

Searching for faces in a
1000x1000 image, Is - :
applied 1e6 times, for each § . < £
pixel location. |

A very expensive search problem



Why Is It difficult?

The Search In Transformation Domain

A pattern under transformations draws a very complex manifold
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In “pattern space’:

— Inavery high dimensional space.

— Non convex.

— Non regular (two similarly perceived patterns may be distant in pattern
space). o
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Suggested Approach

Reduce complexity of search using 2 complementary

Processes:
1. Reduce search in Transformation Domain.

2. Reduce search in Spatial Domain.

Both processes are based on a Rejection Scheme.




Efficient Search In the
Trransformation Domain
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Trranstformation Manifold

A pattern P can be represented as a point in 93kxk

T(a)P 1s a transformation T(a) applied to pattern P.

T(a)P for all o forms an orbit in 9k
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Fast Search in Group Orbit

e Assume d(Q,P) Is a distance metric.
 We would like to find

A(Q,P)=min, d(Q,
T(a)P)
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Fast Search in Group Orbit (Cont.)

 In the general case A(Q,P) Is not a metric.
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e Observation: if d(Q,P)=d(T(a)Q, T(ct)P)

A(Q,P) Is a metric




Fast Search in Group Orbit (Cont.)

The metric property of A(Q,P) implies triangular inequality on
the distances.



Orbit Decomposition
e Inpractice T(a) Issampled into T (e1)=T_(1), 1=1,2,...

* We can divide T_(i)P Into two sub-orbits:
T,.()P and T, ()P’ where P’=T_(1) P
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Orbit Decomposition (Cont.)
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A,(Q,P)=Min{A,,(Q,P).A,,(Q,P))




Orbit Decomposition (Cont.)

. N/ . . /J P

N

TZS(I)P TZS(i)P’

Since A,, Isametric and A, (P,P’) can be calculated in advance
we may save calculations using the triangle inequality constraint.



Orbit Decomposition (Cont.)

* The sub-group subdivision can be applied recursively.
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Fast Search in Group Orbit: Conclusions

Observation 1: Orbit distance is a metric when the point distance

IS transformation invariant.

Observation 2: Fast search in orbit distance space can be applied

using recursive orbit decomposition.
Distant patterns are rejected fast.

Important: Can be applied to any metric distance d(Q,P).




Efficient Search In the
Spatial Demain




Trhe Euclidean Distance

—P(x, y,t)f




Complexity (2D case)
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Average # Run Time for
: 1Kx1K |
Operations per | Space Integer o IR
: Arithm. 32x32 pattern
Pixel P11, 1.8 Ghz
: +. 2k?
Naive e 2 n2 Yes 5.14 seconds
+. 36 logn
Fourier |« n2 N[o 4.3 seconds




Norm Distance in Sub-space

* Representing an image window and the pattern as
vectors in Rkxk:

de(p.a)= |Ip-all*= ‘E

2
e |fpand 11 were projected onto a kernel u, it follows

from the Cauchy-Schwarz Inequality:
de(p,a) = |ul> dg(pu, qTu)
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Distance Measure In Sub-space (Cont.)

 |f gand p were projected onto a set of kernels [U]:

It can be shown that:

-
de(p,0)= Y ng(pTuk,unk)

k=l “k



How can we Expedite the Distance Calculations?

Two necessary requirements:

1. Choose projecting kernels [U] having high
probability to be parallel to the vector p-g.

2. Choose projecting kernels that are fast to apply.
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Projecting Kernels: Walsh-Hadamard

Following the above requirement we use the kxk

Walsh-Hadamard kernels

e Each window In a natural image Is closely
spanned by the first few kernel vectors.

e (Can be applied very fast in a recursive mannetr.



Tihe Walsh-Hadamard Kernels:




\Walsh-Hadamard v.s. Standard Basis:

Energy of Walsh Coeficients for distance between 2 images Energy of Delta Coefiicients for distance between 2 images

100 150 250 i a0 100 150
Walsh Coefficients Delta Coefficients

The lower bound for distance value in % The lower bound for distance value in %
v.S. number of Walsh-Hadamard v.S. number of standard basis projections,
projections, Averaged over 100 pattern-image pairs of
Averaged over 100 pattern-image pairs of Size 256x256 .

Size 256x256 .



The Walsh-Hadamard Tree (1D case)
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The Walsh-Hadamard Tree - Example




Properties:

Descending from a node to its child requires one addition
operation per pixel (convolution).

A projection of the entire image onto one kernel is performed in
a top-down traversal.

A projection of a particular window In the image onto one kernel
IS performed In a bottom-up traversal.

All operations are performed in ] ,
Integers.



Complexity (1D):

Projecting all windows in the image onto a single kernel
requires log k additions per pixel.

Projecting all windows in the image onto I<k kernels requires
m additions per pixel, where m is the number of nodes
preceding the | leaf.

Projecting all windows in the image onto k kernels requires 2k
additions per pixel.

Projecting a single window onto a single /+ \
kernel requires k-1 additions.
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Walsh-Hadamard Tree (2D):

 For the 2D case, the projection iIs performed In a
similar manner where the tree depth is 2log k

o The complexity Is calculated accordingly.
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Construction tree for 2x2 basis



Pattern Matching algorithm

— Ilteratively apply Walsh-Hadamard kernels to each
window w; In the Image.

— At each iteration and for each w; calculate a lower-
bound Lb; for |p-w;|-.

— If the lower-bound Lb; is greater than a pre-defined
threshold, reject the window w; and ignore it in
further projections.



Pattern Matching algorithm - Complexity

All windows are projected onto the first kernel :
2logk ops/pixel

Only a few windows are further projected using ~2k
operations per active window :

g ops/pixel

Total : 2logk + g ops/pixel



Example:

I1[Fi|guna No. 1 #
e |

Sought Pattern

Initial Image: 65536 candidates



5 | Figure No. 2

After the 1% projection: 563 candidates



After the 2" projection: 16 candidates



5 Figure No. 4

After the 3" projection: 1 candidate



% of pixels remaining at each projection
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100 120
Frojection # (Basis #)

Percentage of windows remaining following each
projection,
averaged over 100 pattern-image pairs.

Image size = 256x256, pattern size = 16x16.



Mumber of accumulated additions performed
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Frojection #(Basis #

Accumulated number of additions after each projection
averaged over 100 pattern-image pairs.
Image size = 256x256, pattern size = 16x16.

Average Number of operations per pixel: 8.0154



Example with Noise
Noise Level =40  Detected patterns.
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Noise Level

Number of projections required to find all patterns, as a
function of noise level. (Threshold is set to minimum).
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100 150

Projection #

Percentage of windows remaining following each
projection,
at various noise levels.

Image size = 256x256, pattern size = 16x16.



DC-invariant Pattern Matching
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Five projections are required to find all 10 patterns
(Threshold is set to minimum).



Complexity (2D case)

Average H Run Time for
: |nteger 1Kx1K Image
Operat_lons pet Space Arithm. 32x32 pattern
Pixel PIlI, 1.8 Ghz
: +. 2k?
Naive e 2 n2 Yes 4.86 seconds
_ +. 36 log n
Fourier : n2 No 3.5 seconds
*: 24 logn
New +: 2logk + ¢ n‘log k Yes 78 msec




Advantages:

* Walsh-Hadamard per window can be applied very fast.

* Projections are performed with additions/subtractions
only (no multiplications).

* Integer operations (3 times faster for additions).
 Fast rejection of windows.
* Possible to perform pattern matching at video rate.
e EXxtensions:

— DC Invariant pattern matching.

— Other norms.

— Multi size pattern matching.



LLimitations:

e 2n°log k memory size.
e Pattern size must be 2M-
e Limited to normed distance metrics.



Conclusion

Pattern Detection using 2 complementary processes:
1. Reduce search in Transformation Domain.
2. Reduce search in Spatial Domain.

Processes are based on rejection schemes, and are
restricted to a specific domain.

The two processes can be combined into a single, highly
efficient, search process.



