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Abstract

Many applications in computer vision require compar-
isons between two images of the same scene. Comparison
applications usually assume that corresponding regions in
the two images have similar colors. However, this assump-
tion is not always true. One way to deal with this problem is
to apply a color mapping to one of the images. In this paper
we address the challenge of computing color mappings be-
tween pairs of images acquired under different acquisition
conditions, and possibly by different cameras. For images
taken from different viewpoints, our proposed method over-
comes the lack of pixel correspondence. For images taken
under different illumination, we show that no single color
mapping exists, and we address and solve a new problem
of computing a minimal set of piecewise color mappings.
When both viewpoint and illumination vary, our method can
only handle planar regions of the scene. In this case, the
scene planar regions are simultaneously co-segmented in
the two images, and piecewise color mappings for these re-
gions are calculated. We demonstrate applications of the
proposed method for each of these cases.

1. Introduction

Variations in camera parameters, different illumination
conditions, or changes in viewpoint often cause changes in
the color values of corresponding regions in two images of
a scene. One way to overcome this problem is to compute
a mapping between the colors of the two images. However,
when the image pair is acquired under different illumina-
tion and viewpoint, extracting the color mapping becomes
challenging. In this paper we study the problem of comput-
ing consistent color mappings between a pair of images of
a static scene, taken under different acquisition conditions.
We define a consistent color mapping (CCM) as a mono-
tonically increasing mapping that transforms the color of
each pixel in the first image to the color of its corresponding

pixel in the second image. All pairs of images considered in
this paper may be acquired using different photometric pa-
rameters of the camera (e.g., exposure time, white balanc-
ing, gamma correction, sensor sensitivity (ISO)) or different
cameras.

A classic method for extracting a color mapping between
images is histogram matching, which calculates a mapping
that optimally aligns the histogram of the first image with
that of the second one [4]. This method obtains a CCM
that accounts for the entire image, assuming that such a
CCM exists, and the two images view almost entirely the
same scene regions. Clearly, these assumptions hold when
the images are taken from the same viewpoint and under
the same illumination. In other cases the obtained mapping
might be erroneous and inconsistent. In this work we con-
sider cases where these assumptions do not hold, and no
global CCM can be found for the two images. Nevertheless,
histogram matching is used successfully as a basic building
block in our method.

When the viewpoint varies between the two images and
the illumination is fixed, the color values of corresponding
pixels vary only due to changes in the photometric param-
eters of the cameras (assuming a Lambertian scene), and a
global CCM exists for this case. However, since such im-
ages also include non-corresponding regions, applying his-
togram matching to the entire image will produce an incor-
rect result. This is demonstrated in Fig. 1 for the degenerate
case where the two images are taken with the same camera
and same photometric parameters but their histograms dif-
fer. Therefore, although the identity mapping is the correct
one for this case, histogram matching will produce an in-
correct result. We suggest a new algorithm that computes
the global mapping function using only a set of correspond-
ing image regions, detected using an illumination invariant
feature detector (e.g. SIFT [9]).

When the two images are taken under different illumi-
nation conditions, it can be shown that there is no global
CCM for the two images even if taken from the same view-
point. In particular, a set of pixels with the same intensity
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Figure 1. A degenerate case of two images taken from different
viewpoints under the same illumination with the same camera and
same photometric parameters. Note that the identity color map-
ping is correct although the histograms of the two images are dif-
ferent (right plot).

value in the first image corresponds to a set of pixels with
more than one intensity value in the second one. This is il-
lustrated in Fig. 2 (f)-(g) by the joint histogram (defined in
Sec. 3) of two such images. When the regions have a CCM,
a monotonically increasing thin line in the joint histogram
is expected (as in Fig. 2 (d)). For the case where the regions
are not consistent, we propose a new algorithm that com-
putes a minimal set of piecewise-consistent color mappings
and their associated regions, which are a priori unknown.

Finally, the most challenging case is when both illumi-
nation and viewpoint vary, for which our method can only
handle planar regions of the scene. In this case the proposed
method simultaneously co-segments such regions and com-
putes their piecewise-consistent color mappings.

Color mapping is often used for applying perceptual con-
sistency of images (e.g., [14]). In contrast, our method
is precise and therefore can be used for inspecting differ-
ences between images (e.g., change detection), taken from
the same viewpoint but under extreme variations in light-
ing (Fig. 8). Our color mapping can be used by algorithms
that compare pixels in images taken from different view-
points at the same time, e.g., surveillance applications using
cameras with overlapping fields of view [3]. Finally, co-
segmentation of planes in images taken with different cam-
eras under different illumination conditions can be used for
verifying identical image regions despite large variations in
color (Fig. 9 and 10).

We begin with reviewing previous work in Section 2. In
Section 3 we define the consistency of a color mapping,
which is fundamental for our study. Then, the algorithms
for different acquisition conditions are presented in Sec-
tion 4. Finally, the results of our algorithms are presented
in Section 5 and conclusions in Section 6.

2. Previous work
Methods for computing color mapping are based on ei-

ther pixel-to-pixel correspondence, e.g., [2], or based on
the statistical distributions of color values [12, 13, 14]. In
the statistical approaches, exact correspondence is not re-
quired although correctness is not assured (see Sec. 3). All
these methods assume that there is a global CCM for the
two images, and therefore fail in cases where this assump-
tion is violated. In addition, methods that use pixel-to-pixel
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Figure 2. (a) is a reference image. (b) differs from (a) only in the
photometric parameters of the camera, and (c) differs also in the
illumination conditions. (d) is a joint histogram of (a) and (b), and
(e) is a joint histogram of (a) and (b) after applying the histogram
matching algorithm to (a). (f) is a joint histogram of images (a) and
(c), and (g) is a joint histogram calculated for the planes outlined
in (a) and (c). Note that set of pixels with the same intensity in the
first image may correspond to a set of pixels with more than one
intensity level in the second image. Surprisingly, this is true even
for a single plane.

correspondence are prone to correspondence inaccuracy. In
our method we use the histogram matching approach [4] as
a building block, but other statistical methods ([12, 13, 14])
can be used as well.

Several approaches find multiple color mappings for a
pair of images using corresponding regions [7, 14, 17].
In [14], corresponding regions, swatches, are manually de-
tected and matched. In [7, 17], automatic segmentation is
performed separately in each image using colors or texture,
and the segments in the two images are matched using the
mean and variance of the segments’ color [17], or using the
probability of the existence of a color mapping between the
regions [7]. In these methods, the consistency of the color
mapping is not guaranteed, and the number of color map-
pings may be larger than necessary.

When both viewpoint and illumination vary, between the
images, our method finds the mapping only between pla-
nar regions of the scene. This can be regraded as plane co-
segmentation from a pair of images. Co-segmentation of
planes was addressed by several studies, where all of them,
including ours, compute the homography as a first step us-
ing corresponding features. In previous studies the plane’s
segments are detected by assuming identical colors [16],
Delaunay triangulation [1], or by setting the boundaries
using the intersection line between planes as determined
by their homographies [18]. The first approach makes a
strong assumption about scene illumination (identical col-
ors) while the other approaches make a strong assumption
about scene structure (e.g., hole-free planes or intersecting
planes). In our method none of these assumptions is needed,
and segmentation and color mapping are solved simultane-
ously.



3. Consistent Mappings
Here we define the consistency of a color mapping and

the consistency of a pair of regions, which play a fundamen-
tal role in our method. We then suggest a novel measure for
testing consistency.
Consistency Definitions: A color mapping M is a mono-
tonically increasing scalar function that maps the intensity
values between two images. A color mapping is said to be
a consistent color mapping (CCM) if it maps the color of
every pixel in one image to the color of its corresponding
pixel in the second one. Here, two pixels correspond if they
are projections of the same 3D point in the scene. Formally,
let I1 and I2 be two images and let α be a function that
associates each pixel p ∈ I1 with its corresponding pixel
α(p) ∈ I2. Denote by Ii(p) the intensity of a pixel p in
image Ii. Then, a consistent color mapping M between I1
and I2 must satisfy:

∀p ∈ I1, M(I1(p)) = I2(α(p)). (1)

When color images are considered, the mapping is de-
fined for RGB channels independently. The integration of
the different channels is discussed below.

Region P ⊆ I1 is defined to be consistent with region
Q ⊆ I2, if there exists a CCM between all corresponding
pixels of the regions. For simplicity, we say that P and Q
are consistent regions. Formally, let α be the correspon-
dence function between the regions’ pixels. Then P and Q
are consistent if and only if the following conditions hold:

• Color consistency: For any two pixels in the set P with
the same color, their corresponding pixels in Q must
have the same color as well. That is, if p1, p2 ∈ P
such that I1(p1) = I1(p2), it follows that I2(α(p1)) =
I2(α(p2)).

• Monotonicity: The color order is maintained for cor-
responding pixels. That is, if p1, p2 ∈ P such
that I1(p1) < I1(p2), it follows that I2(α(p1)) ≤
I2(α(p2)).

Computing the mapping: Pixel correspondence can be
used directly to compute the color mapping between a pair
of images. However, it is not necessarily available or re-
liable, even when images are taken from the same view-
point. (The correspondence may be inaccurate due to small
camera movements or imprecise image alignment, as in
Sec. 4.4.) Histogram matching [4] is based on color distri-
butions of two images, hence it avoids the necessity of using
reliable pixel correspondence. Roughly speaking, it defines
the mapping, MP,Q, that best converts the histogram of a
region P to that of another region Q. Note that MP,Q is not
necessarily a CCM, in particular when a CCM does not exist
or when the image histograms include non-corresponding
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Figure 3. Regions a and b are consistent regions but regions c and
d are inconsistent, since the monotonicity requirement is not satis-
fied. Nevertheless, in both cases the corresponding histograms are
similar.

regions. Histogram matching is used as a building block by
our method for computing color mapping between a pair of
images. Other methods that are based on color distributions,
e.g., [12, 14], could be used as well.
Testing consistency: A test for the consistency of a pair of
regions and the consistency of a color mapping with respect
to a pair of regions is essential for our method. Given a pair
of regions and their pixel-to-pixel correspondence, the con-
sistency conditions defined above can be directly used. This
can be illustrated by the joint histogram of two consistent
images. The intensity of point (v1, v2) in the joint histogram
indicates the number of pixels in the first image with inten-
sity v1 that correspond to pixels in the second image with
intensity v2. When the regions are consistent, a monotoni-
cally increasing thin line in the joint histogram is expected
(see Fig. 2(d)). However, as discussed before, we do not as-
sume exact correspondence, since it is not necessarily avail-
able or reliable. Rather, we use a distance measure on the
statistical distribution of pixel colors. This allows mapping
evaluation without exact pixel-to-pixel correspondence.

Denote by d(M,P,Q), a measure which indicates the
consistency of mapping M with respect to the regions P
and Q. In our implementation, d measures the discrep-
ancy between the histogram of P after applying the color
mapping M , P ′ = M(P ), and that of Q. We use the
sum of absolute difference (SAD) between two cumulative
histograms as a distance measure. Formally, let CP ′ and
CQ denote the cumulative histograms of regions P ′ and Q.
Then, we define:

d(M,P,Q) =
∑

s

|CP ′(s)− CQ(s)|, (2)

where the summation is over the color values of a given
color channel. This distance is also shown to be the Earth
Mover’s Distance (EMD) for 1D histograms [15] and is
computed for each color channel separately. Since the map-
ping should be consistent for all three color channels, the
maximal distance between the three channels is taken.
Hierarchical consistency measure: Since only histograms



are considered in d, low distance value is a necessary but not
a sufficient condition forP andQ to be consistent. A toy ex-
ample demonstrating this point is presented in Fig. 3. In this
example, regions a and b are consistent regions but regions
c and d are inconsistent, since the monotonicity requirement
is not satisfied. Nevertheless, in both cases the correspond-
ing histograms are similar. Furthermore, as M is computed
using histogram matching, the histograms of P ′ and Q are
usually similar. Therefore, histogram based measures can-
not distinguish between these cases unless subregions are
tested as well.

We use this observation to define our new measure of
consistency between regions. Let a set of subregions of P
be given by {Pi}ki=1 and let {Qi}ki=1 be their corresponding
regions in Q. The region consistency measure between P
and Q is defined as follows:

Ck(P,Q) = max
1≤i≤k

d(MP,Q, Pi, Qi). (3)

Small measure values indicate that the mapping, MP,Q, can
be applied to each subregion Pi, mapping its histogram
close to that of its corresponding region Qi.

Note that d(MP,Q, Pi, Qi) is not symmetric because
MP,Q may be a many-to-one mapping. However, symme-
try is required to avoid degenerate mapping, e.g., mapping
a structured area into a constant value. Therefore, we define
a symmetric region consistency measure indicating whether
P and Q are non-trivially consistent:

Ĉk(P,Q) = max(Ck(P,Q), Ck(Q,P )). (4)

To measure the consistency of two regions, Ĉk is applied
to their subregions. Note, that this score indicates whether
subregions {Pi}ki=1 can be merged into a bigger region that
is still consistent with its counterpart. For k = 1, C1(P,Q)
is simply given by d(MP,Q, P,Q). These measures are used
in various parts of our algorithm as described below.

4. Method: The four cases
For each of the four acquisition conditions, we suggest a

method for computing the piecewise-consistent color map-
ping. In all cases we assume that the photometric parame-
ters of the cameras may vary.

4.1. Basic case: Same viewpoint, same illumination

Here we consider a pair of images taken from the same
viewpoint for which only the photometric parameters of the
cameras vary (see Fig. 2(a,b)). We describe this case only
for the sake of completeness. The two images are consis-
tent, as demonstrated by the joint histogram in Fig. 2(d), and
the CCM can therefore be solved using histogram matching.
After the computed CCM is applied, the joint histogram
consists of a thin line along the diagonal, representing the
identity as desired (Fig. 2(e)).

Figure 4. Two images taken under different illumination divided
into consistent regions. Regions which are small but inconsistent
are discarded (black colored). One of the clusters, found in the
clustering phase, is shown in red.

4.2. Same viewpoint, different illumination

Here, we consider two images of the same scene whose
illumination varies. The images are taken from the same
viewpoint under possibly different photometric parameters.
In this case, the correspondence is trivial; however, there
is no global CCM between the two images since the dif-
ferences between the intensities of corresponding pixels de-
pend also on the pixels’ normals. The joint histogram of
the two images in Fig. 2(f) demonstrates that indeed no
CCM exists. The joint histogram of a single plane of the
box in Fig. 2(g) shows that even for a single plane, for
which, theoretically, a CCM is expected to exist, this is
not the case. This may be explained by image noise, non-
Lambertian reflectance, illumination not at infinity, shad-
ows, inter-reflections, and so forth.

We suggest a new approach for computing a minimal set
of piecewise color mappings and their induced consistent
regions (regions for which the mapping is consistent). Note
that without the minimal set requirement, any single pixel
can be chosen as an independent region. To the best of our
knowledge, this problem has not been addressed before.

Piecewise consistent mappings: To compute the minimal
set of consistent color mappings, we decompose the image
using a quad-tree. That is, each region is recursively di-
vided into four quarters up to a predefined leaf size. Note
that choosing too small a leaf size results in many spatially
incoherent mappings (a 1-pixel leaf is always consistent).
In a top-down manner, each node in this tree is tested for its
consistency with respect to its corresponding region in the
other image. The consistency of a node is determined us-
ing the symmetric region consistency measure, Ĉk (Eq. 4),
where the subregions considered are the k leaves of its sub-
tree. A lower level of the subtree is tested for consistency
only if its parent is determined to be inconsistent. When a
leaf tested by Ĉ1 is determined to be inconsistent, it is dis-
carded. Such leaves usually indicate changes between the
images. At the end of this process, we end up with a set of
consistent regions and their consistent color mappings.

In the next phase, we cluster the obtained color map-
pings to reduce their number. The distance between each



pair of consistent regions from the previous phase is de-
fined by Ĉ2. A minimal number of regions are computed
by grouping together close regions using a complete link-
age clustering algorithm [5]. That is, a hierarchical clus-
tering where two clusters are grouped together according to
their furthest neighbors. For each cluster a new color map-
ping is computed using the regions associated with it. The
result of this process is a set of consistent mappings and
their associated consistent regions in the two images.

Consistent region detection: The consistent regions com-
puted in the previous phase are inaccurate and blocky due
to the quad-tree structure. We next suggest a method for re-
fining the induced regions for each of the computed CCMs.
Our goal is to compute piecewise continuous consistent re-
gions, and to avoid detection of pixels and regions that are
accidentally consistent with the mapping.

This last step is performed by applying each of the map-
pings to the first image and comparing the mapped image
to the second one. A simple comparison of the two images
may result in incorrect detection of consistent regions due to
inaccurate pixel correspondence (resulting in false negative
detection) and accidental color correspondence (resulting in
false positive detection). To overcome the accidental color
correspondence of pixels, we search for continuous regions
that are associated with the same color mapping. That is, a
pixel is detected as associated with a color mapping only if
its neighboring area is associated with this mapping as well.
For overcoming small location errors due to correspondence
inaccuracy, we compare the colors, while allowing small jit-
tering of the neighboring area of the pixel. Finally, smooth
color regions can also be accidentally detected, just like a
single pixel. Such regions are expected to result in associ-
ation to the same color mapping, regardless of the size and
direction of the considered jitter. If this is the case, these re-
gions are discarded. For implementing this process, without
setting the size of the region a priori, we use a modification
of the patch correlation suggested in [10].

The image pixels which correspond to a particular color
mapping are marked as a binary image, which we call color
mapping mask. Conflicts between masks are arbitrarily re-
solved, as conflicting pixels can be affiliated with both color
mappings. To preserve the spatial coherence of the compar-
ison result, the mask is smoothed using a Gaussian Filter
and the result is binarized using a threshold. The result of
the algorithm is a set of piecewise consistent color map-
pings along with their masks (the induced regions).

4.3. Different viewpoint, same illumination

In this scenario two images are taken from different
viewpoints, but with a fixed illumination. As in the other
cases, we assume that the photometric parameters of the
cameras may vary. Assuming a Lambertian scene, the two
images are consistent with a global color mapping, but con-

tain non-corresponding regions. Thus, naively applying the
histogram matching will produce a non-consistent mapping.
This is demonstrated in Fig. 6(e). Regions that are viewed
in both images can be used for computing the CCM, as long
as they cover the entire color range of the images. Because
the color mapping is monotonic, the histogram matching al-
gorithm can handle gaps in the matched histograms even if
the entire range of colors is not covered.

The challenge is, therefore, to detect corresponding re-
gions in the two images despite the variations in their col-
ors. Several image features suggested in the literature are
designed to be insensitive to illumination changes. We use
the SIFT features [9] for this purpose. SIFT correspondence
is determined using the distance between SIFT descriptors.
RANSAC is used for removing incorrect correspondences
using the epipolar constraints. Each corresponding SIFT
feature determines a corresponding region. We use a square
region centered at the SIFT position whose size is propor-
tional to the SIFT scale. Note that SIFT features are usually
located in textured areas, and hence their regions are likely
to cover a large range of colors.

A global color mapping is calculated from the union of
all matched SIFT regions. This is expected to provide suffi-
cient statistics over the color domain for the histogram map-
ping method. Fig. 6 shows the matched SIFT regions found
for the two images, along with the induced color mapped
image.

4.4. Different viewpoint, different illumination

The most challenging case is when the two images are
taken from different viewpoints and under different illumi-
nation conditions. Such images are not consistent, in con-
trast to Sec. 4.3, and the correspondence is not trivial, in
contrast to Sec. 4.2. Here we present an extension of the
method suggested in Sec. 4.2, for finding a set of piecewise
consistent mappings and their induced regions. The method
is limited to planar regions, since variations in the intensity
of corresponding pixels depends on their surface normals as
well. Therefore, pixels with different normals will usually
have different mappings.

We simultaneously co-segment planar regions in the two
images and compute their piecewise color mapping. We
use RANSAC on corresponding SIFT features in the two
images in order to compute the homography transforma-
tions that align image scene planes (as [16]). The set of
SIFT features computed for each planes is often too small
to provide sufficient statistics over the color domain of the
plane. In addition, a single plane may have more than a sin-
gle CCM. Hence, applying the method described in Sec. 4.3
is insufficient. For co-segmenting the plane defined by a
given homography transformation, we apply the method de-
scribed in Sec. 4.2 to the entire image, after aligning the
images using the homography transformation. Note that



the regions that lie off the considered plane are incorrectly
aligned. Most of these regions are discarded during the di-
vision phase due to their inconsistency, or in the consistent
region detection phase due to the lack of support from their
surrounding regions. This method is sequentially applied to
each of the detected homography transformations (one for
each plane) on the original images. Finally, association con-
flicts between different color mappings or different planes
are arbitrarily resolved. Such conflicts, however, are rare.

5. Results and Applications
In this section we demonstrate the results of applying

our algorithms on indoor and outdoor scenes. More results
are presented in [6]. All pairs of images were taken un-
der different photometric parameters. The algorithms were
implemented in MATLAB, using in part code from [8], [9]
and [10].

Results of applying the algorithm to images taken un-
der identical illumination but from different viewpoints (see
Sec. 4.3) are presented in Fig. 6. For accuracy assessment,
we present (c), an image taken from the same viewpoint
as the target image (b), but with photometric parameters of
the source image (a). This image is referred as the ground
truth. The images resulting from our algorithm (d) bear a
strong visual resemblance to the ground truth. For compar-
ison, the results of applying the naive histogram matching
to the entire images are presented in (e). The inefficiency of
the naive approach is clear (e.g., the color of the left wall of
the building, and the left part of the teddy bear’s head). For
qualitative evaluation, we present in Fig. 5(a-b) the joint his-
tograms of the resulting images with respect to their ground
truth. As can be seen, the joint histograms of the proposed
method resemble the identity histogram indicating the ac-
curacy of the results. We also measured the Root Mean
Squared Error (RMSE) between the resulting images and
the ground truth. The RMSE were 16 and 19 gray-values
for the upper and lower images in Fig. 6, and 26 and 33
gray-values for the naive approach.

We next consider the results of our algorithm when ap-
plied to images taken under different illumination and the
same viewpoint. The first two rows of Fig. 7 show this case.
Columns (a) and (b) present the source and target images,
(c) shows the results of applying our piecewise consistent
mapping, and (d) shows the results of applying histogram
matching. The ground truth, in this case, is simply the tar-
get image. Note that the black areas of our matching (c) are
regions where no color mapping was found. These regions
indicate mainly scene change. Some smooth regions were
not matched either, since our method removes smooth re-
gions. Note, that in the street image our approach managed
to “copy” the shadowed areas of the road (c). After applying
our method, the joint histogram resembles the identity his-
togram (Fig. 5 (c)), indicating a precise mapping. When the
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Figure 5. The first and the second rows of (a-b) and (c-d) corre-
spond to the first and the second rows of Fig. 6 and Fig. 7, re-
spectively. (a) and (c) are the joint histograms of the proposed
approach and the ground-truth/target image; (b) and (d) are the
joint histograms of the naive approach and the ground truth/target
image.

naive method is applied, the joint histogram looks like a fan
(Fig. 5 (d)), indicating inaccurate mapping. The RMSE be-
tween the resulting and target images for our approach were
3 and 15 gray-values as opposed to 24 and 25 gray-value for
the naive approach.

Finally, the last two rows of Fig. 7 present the results of
our algorithm when applied to images taken from different
viewpoints and different illuminations (Sec. 4.4). In this
case the black areas are the non-planar regions of the scene
(they can also be smooth regions without support from their
surroundings). The joint histograms for this case are not
presented since ground truth is not available. The results of
plane segmentations are shown in Fig. 9.

One possible application of the proposed algorithm is to
detect changes between images taken from the same view-
point despite large variations in illuminations. Regions for
which no color mapping is found are determined as candi-
date scene changes. Fig. 8 demonstrates that this is solved
by our method, without any further post-processing. The
changes found between images (a) and (b) are marked in
red in image (c). For comparison, we present in (d) the
normalized gray-scale correlations method, which accounts
for affine gray-scale variations. In (e) we present change
detected by image differences in the color chrominance do-
main (to account for illumination changes). These images
demonstrate the limitations of these methods with respect
to the suggested approach.

Our algorithm can be considered as the second phase of a
recognition algorithm that is based on homography of SIFT
features [11]. It allows verification of the correspondence of
regions that were determined by the set of SIFTs and their
homography as demonstrated in Fig. 10. Such verification
is not trivial due to the severe change of colors between im-
ages.



(a) (b) (c) (d) (e)
Figure 6. Results of our method for identical illumination and different viewpoints. Images are ordered in rows (a)-(e): (a),(b), source and
target images along with their SIFT features; (c), the ground truth; (d), resulting images using the suggested approach; (e), the results using
histogram matching.

Same viewpoint

Different viewpoints

(a) (b) (c) (d)
Figure 7. Results of our method for different illumination. In the upper two rows images were taken from the same viewpoints, and in the
lower two rows the viewpoints are different. Images are ordered in columns (a)-(d): (a),(b) the source images and the target images; (c),
resulting images using the suggested approach; (d), the results using histogram matching.



(a) (b) (c) (d) (e)
Figure 8. (a) and (b) show two images from different frames of a time-lapse video. Areas detected as different are marked in red. (c) shows
change detection using our method; (d) shows change detection using normalized gray-scale correlation; and (e) shows change detection
using image chrominance comparison. Images taken from i-Lids vehicle detection challenge.

6. Conclusions
The paper presents a complete solution for color map-

ping between images when acquisition conditions vary. Al-
though the considered cases are different to a large extent,
all proposed solutions basically rely on the consistency def-
initions and the consistency test. We believe that one of the
contributions of this paper is the observation that in many
cases a precise global mapping cannot account for the en-
tire image, and a piecewise mapping is a feasible solution.
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