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Abstract

We introduce a binary embedding framework, called Prox-
imity Preserving Code (PPC), which learns similarity and
dissimilarity between data points to create a compact and
affinity-preserving binary code. This code can be used to apply
fast and memory-efficient approximation to nearest-neighbor
searches. Our framework is flexible, enabling different prox-
imity definitions between data points. In contrast to previous
methods that extract binary codes based on unsigned graph
partitioning, our system models the attractive and repulsive
forces in the data by incorporating positive and negative graph
weights. The proposed framework is shown to boil down to
finding the minimal cut of a signed graph, a problem known to
be NP-hard. We offer an efficient approximation and achieve
superior results by constructing the code bit after bit. We show
that the proposed approximation is superior to the commonly
used spectral methods with respect to both accuracy and com-
plexity. Thus, it is useful for many other problems that can be
translated into signed graph cut.

Introduction
Content-based image retrieval is a fundamental problem in
computer vision, media indexing, and data analysis. A com-
mon solution to the problem consists of assigning each image
an indicative feature vector and retrieving similar images by
defining a distance metric in the feature vector space.

One of the successful uses of deep learning is data em-
bedding (Chopra, Hadsell, and LeCun 2005; Koch, Zemel,
and Salakhutdinov 2015), where a network is used to map
input data into a feature vector space, satisfying some desired
distance properties. This technique has many applications,
such as word embedding for machine translation (Mikolov
et al. 2013), face embedding for identity recognition (Taig-
man et al. 2014; Schroff, Kalenichenko, and Philbin 2015;
Wen et al. 2016; Liu et al. 2017), and many more. The main
idea behind data embedding is to find a mapping from input
space into a vector space where the distances in the embed-
ding space conform with the desired task.

In a typical scenario, the embedding space is several hun-
dreds of bytes long (e.g., 512 bytes in FaceNet (Schroff,
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Kalenichenko, and Philbin 2015) embedding), and a new
query may be compared to the existing images by nearest-
neighbor (NN) search. As the number of images scales up,
the memory required to store all the examples becomes too
large, and the time complexity to apply NN search becomes
a critical bottleneck.

Many solutions have been proposed to mitigate this issue,
including dimensionality reduction (Liu and Schisterman
2004) and approximate NN search (Muja and Lowe 2014).
In recent years, a family of algorithms called Binary Hashing
or Hamming Embedding has gained popularity. These algo-
rithms find a mapping from a feature space into a Hamming
space using a variety of methods. The main advantages of a
binary representation are the significant reduction in storage
and in the time required to apply vector comparisons: vectors
are compared not in high-dimensional Euclidean space, but
rather in the Hamming space, utilizing the extremely fast
XOR operation. This representation is highly valuable in
mobile systems, as on-device training is limited due to com-
putational shortage. This requires ad-hoc hashing methods
that can be computed on simple hardware, and that can be
generalized well to novel data points.

Many modern Hamming embedding techniques are data-
dependent. Data-dependent methods work by learning an
affinity matrix between data points while attempting to pre-
serve their affinities in Hamming space. In-sampled tech-
niques aim at generating a set of binary codes, a single code
for each data point, whose Hamming distances conform with
the affinity matrix. Out-of-sample techniques deal with novel
samples that are not known in advance. These techniques
learn a general functional mapping that maps query points
from feature space into Hamming space.

Affinity between data pairs can be, for example, related
to the metric distances between their associated features, or
semantic relations indicating data points belonging to the
same semantic class. The affinity matrix is usually relaxed to
positive values, where small values indicate weak proximity
(far pairs), and large values indicate strong proximity (near
pairs). This encourages near pairs to be located close by in
the Hamming space but does not constrain the far pairs.

We propose a binary hashing framework called Proximity
Preserving Code (PPC). The main contribution of our method



is that the binary code is constructed based on positive and
negative proximity values, representing attractive and repul-
sive forces. These forces properly arrange the points in the
Hamming space while respecting the pairwise affinities. Our
solution models this proximity as a signed graph, and the
code is computed by finding the min-cut of the graph. This
problem can be formulated as the max-cut problem (due to
the negative values) and is known to be NP-hard (Alon and
Naor 2004). We demonstrate that our approach is more ac-
curate and memory-efficient as compared to state of the art
graph-based embeddings.

Previous Works
Previous works in Hamming embedding can be classified into
two distinct categories: data-independent and data-dependent.
Data-independent methods are composed of various tech-
niques for dimensionality reduction or techniques for divid-
ing the N-dimensional space into buckets with equal distri-
butions. One of the most popular data-independent hashing
methods is Locality Sensitive Hashing (LSH) (Datar et al.
2004). LSH is a family of hash functions that map similar
items to the same hash bucket with higher probability than
dissimilar items.

Data-dependent methods learn the distribution of the data
in order to create accurate and efficient mapping functions.
These functions are usually comprised of three elements: the
hash function, the similarity measure, and an optimization
criterion. Hash functions vary and include linear functions
(Norouzi and Blei 2011), nearest vector assignment (He, Wen,
and Sun 2013), kernel functions (Kulis and Darrell 2009),
neural networks (Lin et al. 2015), and more. Similarity mea-
sures include Hamming distance and different variants of
Euclidean or other compute-intensive distances that are pre-
computed for vector assignment (Jegou, Douze, and Schmid
2011). Optimization criteria mainly use variants of similarity
preservation and code balancing. We will focus on binary
hashing methods.

An influential work in binary hashing methods is Spectral
Hashing (Weiss, Torralba, and Fergus 2009). This method
creates code words {ci} that preserve the data similarity.
By defining an affinity matrix Wij = exp(−‖xi−xj‖2

ε2 ), the
authors turn the hashing problems into a minimization of∑
ijWij‖ci − cj‖2, subject to: ci ∈ {−1, 1}k,

∑
i ci =

0 (code balancing), and 1
n

∑
i cic

T
i = I (independence).

This minimization problem for a single bit can be cast as a
graph partitioning problem which is known to be NP-hard.
A good approximation for this problem is achieved by using
spectral methods. The code is obtained by computing the k
eigenvectors corresponding to the smallest eigenvalues of the
graph Laplacian of W and thresholding them at zero.

Liu et al. (2011) proposed the Anchor Graph Hashing, a
hashing method utilizing the idea of a low-rank matrix that
approximates the affinity matrix, to allow a graph Laplacian
solution that is scalable both for training and out-of-sample
computation. Shen et al. (2013) present Inductive Manifold
Hashing, a method that learns a manifold from the data and
utilizes it to find a Hamming embedding. They demonstrate
their results with several approaches, including Laplacian

eigen-maps and t-SNE. Shen et al. (2015) and Liu et al.
(2014) directly optimize the discrete problem, and employ
discrete coordinate descent to achieve better precision on the
graph problem. Scalable Graph Hashing with Feature Trans-
formation (Jiang and Li 2015) uses a feature transformation
method to approximate the affinity graph, allowing faster
computation on large scale datasets. They also proposed a
sequential approach to learn the code bit-by-bit, allowing for
error-correcting of the previously computed bits. Li, Hu, and
Nie (2017) revisit the spectral solution to the Laplacian graph
and propose a spectral rotation that improves the accuracy of
the solutions.

All of the above approaches formulate the graph Laplacian
by defining an affinity matrix that takes into account the sim-
ilarities between points in the training set. However, they do
not address the dis-similarity, or push-pull forces in the data
set. In this paper, we propose a binary embedding method
that employs an affinity matrix of both positive and negative
values. We argue that this type of affinity better represents the
relationships between data points, allowing a more accurate
code generation. The characteristics and the advantages of
this work are as follows:

• Our code is constructed by solving a signed graph-cut
problem, to which we propose a highly accurate solution.
We demonstrate that the signed graph provides a better
encoding for the forces existing in the coding optimiza-
tion. We show that the commonly used spectral solution,
which works well in the unsigned graph-cut problems, is
unnecessary, costly, and inferior in this scenario.

• The code is computed one bit at a time, allowing for error
correction during the construction of the hashing functions.

• We split the optimization into two steps. We first optimize
for a binary vector representing the in-sample data, and
then we fit the hashing functions to obtain accurate code
for out-of-sample points.

• Our framework is flexible, allowing various proximity def-
initions, including semantic proximity. This can be useful
for many applications, especially in low computation envi-
ronments.

Problem Formulation
We are given a set of n data points X = {x1,x2, · · · ,xn},
xi ∈ Rd, in some vector space, and a proximity relation
between pairs of points (i, j) ∈ S, where S = {1..n} ×
{1..n}. We assign each pair of points in S to be in the Near
or Far group, according to some proximity measure. This
proximity measure can have a semantic meaning, geometric
meaning, or any other adjacency relation. Formally, we define

N = {(i, j) | xi and xj are in the same class}

and

F = {(i, j) | xi and xj are in different classes}

Note that N and F induce a partition of S into two disjoint
sets: N ∪ F = S where N ∩ F = ∅.

In a classification scenario, for example, two points be-
longing to the same class will be defined as Near; otherwise,



(a) PPC Algorithm (b) Unsigned vs. signed graph

Figure 1: (a) PPC algorithm overview. To compute the tth bit, we first find the optimal α for the existing code (t− 1 bits), then
compute a new bit b by minimizing the loss E . For this bit, we compute a binary classifier ht(x) that is used as the tth hashing
function. (b) Illustration of an unsigned graph (left) vs. a signed graph (right) describing the same relations between nodes. The
graph edges in green (solid line) are edges with positive weights, and the red (dashed lines) are edges with negative weights. The
line thickness indicates the weight magnitude.

they will be defined as Far. Another example of an adjacency
matrix is a neighborhood of a certain radius. For a distance
metric dij = d(xi,xj) in Rd and a given radius r we define:

N = {(i, j) | dij ≤ r} and F = {(i, j) | dij > r} (1)

Denote the p-length binary code of point xi by ci ∈
{±1}p. Our goal is to find n binary codes {ci}ni=1 that satisfy
the following two requirements:
• Compactness: The length of the code should be short, i.e.,
p should be as small as possible.

• Proximity Preserving: The binary code should preserve
the proximity of X . That is, there exists a constant α
s.t. dH(ci, cj) ≤ α for each pair (i, j) ∈ N , and
dH(ci, cj) > α for each (i, j) ∈ F , where dH(·, ·) stands
for the Hamming distance between two binary codes1:

dH(ci, cj) =

p∑
k=1

(1− ci[k]cj [k]) = (p− cTi cj).

It can be shown that if proximity relationships are determined
according to `1 or `2 distance between points in Rd, the
Proximity Preserving requirement can be fully satisfied using
large enough codes (i.e., p is large). However, due to the
compactness requirement, we want to relax the proximity
preserving requirement and try to find an optimal code for a
given code length.

Denote a proximity label, yij , associated with each pair of
points (i, j) ∈ S:

yij =

{
+1 if (i, j) ∈ N
−1 if (i, j) ∈ F

For a given value α > 0 we define:

zij = yij(α− dH(ci, cj)) . (2)

We would like that for each pair (i, j), zij ≥ 0, and accord-
ingly we define a loss function:

l(zij) =

{
1 if zij < 0
0 otherwise (3)

1In fact, this definition is twice the Hamming distance, but we
stick with it for sake of clarity.

The empirical loss for the entire set reads:

E({yij}, {ci}) = min
α

∑
(i,j)∈S

l(zij) (4)

This loss penalizes pairs of points that are mislabeled, that
is, pairs of points in F whose Hamming distance is smaller
than α, or pairs of points in N whose Hamming distance is
larger than α.
Definition 1 (Proximity Preserving Code). Given a set of
data points X along with their proximity labels, {yij}, a
Proximity Preserving Code (PPC) of length p is a binary
code, {ci}ni=1, ci ∈ {±1}p, that minimizes E({yij}, {ci}).

In the following we describe the procedure to generate the
PPC. In particular, we show that finding PPC for a given set
of points boils down to applying an integer low-rank matrix
decomposition. We provide two possible approximated so-
lutions and show their connection to the minimum signed
graph-cut problem. Finally, we provide a solution for extract-
ing hashing functions for out-of-sample data points.

Proximity Preserving Code
Recall the definition of zij (Equation 2): zij = yij(α −
dH(ci, cj)). Substituting the Hamming distance into this
expression we get:

zij = yij
(
α−

(
p− cTi cj

))
= yij

(
cTi cj − β

)
(5)

where we define β = p− α.
To simplify notations we define a code matrix C ∈

{±1}p×n by stacking the code words along its columns:

C =

( | | |
c1 c2 · · · cn
| | |

)
Similarly we define

B = CTC where Bij = cTi cj

Equation 5 can now be defined over the entries of matrix B:

zij = yij(Bij − β)



and the total loss (Equation 4) is:

E({yij}, B) = min
β

∑
ij

l(zij) (6)

Denote by bk the rows of C (similarly, the columns of CT )
such that

CT =

 | | |
b1 b2 · · · bp

| | |


Each bk ∈ {±1}n is a vector representing the kth bit of

all the code words (n words). The matrixB = CTC can now
be represented as a linear sum of n× n matrices:

B =

p∑
k=1

bkbk
T

=

p∑
k=1

Bk (7)

where Bk = bkbk
T is a rank-1 matrix extracted from the

kth bit of the code words. Thus, each additional bit can either
increase the rank of matrix B or leave it the same. Our goal
then is to find a low rank matrix B = CTC, minimizing the
loss defined in Equation 6.

The minimization function defined in Equation 6 intro-
duces a combinatorial problem which is NP-hard. Therefore
we relax the binary loss function and re-define it using a
logistic loss function:

l(zij) = ˜̀(yij(Bij − β))

where ˜̀(z) = ln(1 + e−z). The relaxed total loss is therefore

E({yij}, B) = min
β

∑
ij

˜̀(yij(Bij − β)) (8)

Bit Optimization
In the proposed process we generate the codes for n data
points in a sequential manner, bit after bit. In the following
we detail the minimization process for bit k. This is also
illustrated in Figure 1a.

At this step we assume that k − 1 bits of PPC code have
already been generated. Denote

B1:k =

k∑
`=1

B` where B` = b`b`
T
.

For the kth bit, we minimize Equation 8 with respect to Bk
and β as follows:

Ek =
∑
ij

˜̀(yij(B
1:k−1
ij +Bkij − β)) (9)

Note that B1:k−1
ij is already known at step k. As mentioned

above, Ek is minimized using alternate minimization,
described below.

Step I - optimizing β:
Ek is convex with respect to β, so any scalar search is appli-
cable here. Since the loss ˜̀(z) is nearly linear for z ≤ 0, a
fast yet sufficiently accurate approximation for β is to choose

the value that equates the number of misclassified pairs in the
N and F sets. For the current code {ci}ni=1, ci ∈ {±1}k−1,
and a constant value α, define the misclassified sets:

EN (α) = {(i, j) | (i, j) ∈ N and dH(ci, cj) > α}
and similarly

EF (α) = {(i, j) | (i, j) ∈ F and dH(ci, cj) ≤ α}
The value of α is set such that the cardinality of the two sets
is equal, i.e., the α̂ that satisfies:

|EN (α̂)| = |EF (α̂)| (10)

and accordingly β̂ = (t− 1)− α̂. This is visualized in Step
I of Figure 1a. We show a histogram of the near pairs of
samples in blue and the far pairs in red, and α is the vertical
black line thresholding the Hamming distance.

Step II - optimizing bk:
For the evaluated β̂, Equation 9 becomes:

Ek =
∑
ij

˜̀(yij(B
1:k−1
ij +Bkij − β̂))

=
∑
ij

˜̀(yij(B
k
ij + γk−1

ij ))

where we define γk−1
ij = B1:k−1

ij − β̂. In a forward greedy
selection process, we approximate the potential decrease
in the loss using the gradient. Our goal is to find Bk that
minimizes Ek ≈ Ek−1 + ∆Ek or alternatively maximizes
−∆Ek where:

−∆Ek = −
∑
ij

∂Ek

∂Bkij
Bkij = −

∑
ij

˜̀′(yijγ
k−1
ij )yijB

k
ij

where ˜̀′ stands for the derivative of the logistic loss function
˜̀′(z) = −1/(1 + ez).

Defining wij = −yij ˜̀′(yijγ
k−1
ij ), we arrive at the follow-

ing maximization problem:

max
Bk

∑
ij

wijB
k
ij = max

bk

∑
ij

wijb
k[i]bk[j]

where the maximization is taken over all entries of bk ∈
{±1}n. For the sake of simplicity we omit the superscript
k and denote bk by b. Collecting {wij} into matrix W , s.t.
W (i, j) = wij , the above maximization can be simply ex-
pressed in a matrix form:

b̂ = argmax
b

bTWb s.t. b ∈ {±1}n (11)

If the weight matrix W was all positive (all entries are
positive values), this problem can be interpreted as a graph
min-cut problem. In our problem, however, the matrix W is
comprised of both positive and negative values, indicating
pairs (i, j) that are properly and improperly assigned as near
or far according to the code computed. This is termed in the
literature a signed min-cut problem which is equivalent to the
max-cut problem whose solution is NP-hard.

In the proposed solution we start with an initial guess for
the bit vector b and improve it by using a forward greedy
selection scheme. We present two iterative approaches for
the selection scheme: vector update and bit update.



Vector Update Given an initial guess for b, the vector
update method updates the entire vector at once. At each
iteration the vector is improved by applying:

b′ = sign(Wb)

where b′ is the updated vector that satisfies: b′TWb′ ≥
bTWb. The following four theorems prove that b′ is a better
vector than b:
Theorem 1. For any n × n matrix W and b,b′ ∈ {±1}n,
if b′ = sign(Wb), then b′TWb ≥ bTWb

Theorem 2. Assuming W is Positive Semidefinite, if
b′
T
Wb > bTWb, then b′

T
Wb′ > bTWb.

Theorem 3. Any symmetric matrix W can become Positive
Semidefinite by applying W ← W + |λ|I where λ is the
smallest eigenvalue of W .

Theorem 4. Adding a constant value to the diagonal of the
weight matrix W will not affect the output code computed.

Proofs are given in the Appendix. Using the above theo-
rems, Algorithm 1 summarizes the vector update iterations.

Algorithm 1 Vector Update (b,W )

b̂← b
W ←W + |λ|I where λ is the smallest e.v. of W
repeat

b← b̂
b̂← sign(Wb)

until b̂ = b
return b

Bit Update Unlike the vector update, the bit update
method changes one bit at a time: For each bit in vector b, we
flip the bit and determine whether the new value improved the
objective bTWb. This is repeated for each bit sequentially,
and over the entire vector, until convergence. This procedure
can be applied very efficiently using the following scheme:
Define b = b(i) + b(−i), where b(i) = (0...bi...0) is a
one-hot vector with the ith entry of b at the ith coordinate.
Accordingly, b(−i) = b− b(i) is the vector b with 0 at the
ith coordinate. When optimizing the ith bit:

bTWb = (b(i) + b(−i))
T
W (b(i) + b(−i)) =

= b2
(i)W (i, i) + 2bT(−i)Wb(i) + const

It can be verified that the only term affecting the optimization
is bT(−i)Wb(i). Therefore we can optimize each bit in b by
looking at the value of the ith element of bT(−i)W . Subse-
quently, the only elements affecting this value in the matrix
W are in the ith column of W . Thus,

b[i]′ = sign
(
bT(−i)W [:, i]

)
(12)

where we denote by W [:, i] the ith column of W. We apply
this optimization scheme for each bit sequentially, and re-
peatedly over the entire vector b, until convergence. Each bit

update is inserted immediately into b so that the optimization
for the i+ 1 bit will account for the preceding bits that have
been calculated. This update is computationally inexpensive,
requiring O(n) operations for each bit update, and O(n2)
operations for one round over the entire b. This method is
summarized in Algorithm 2.

Algorithm 2 Bit Update (b,W )
repeat

b̂← b
for i← 1, N do

b−i ← b, b−i[i]← 0
b[i]← sign(bT−iW [:, i])

until b̂ = b
return b

The two algorithms presented for the iterative bit optimiza-
tion scheme provide a solution to the max-cut problem where
both positive and negative weights appear on the graph edges.
The iterations require several light computations and stop
when a local maximum is reached and the iteration scheme
can no longer improve upon the current bit vector. We show in
the Experiments Section that the bit update scheme achieves
better codes than the vector update and is therefore prefer-
able.

Initial Guess
Our method is based on an iterative scheme. Therefore, we
start the optimization with an initial guess and improve upon
it. A common solution is to relax the constraints b[i] ∈ ±1
and allow real-valued solutions. This enables the maximiza-
tion problem to be cast as an eigenvalue problem. The final
solution is then obtained by thresholding the results, in a
similar manner to Weiss, Torralba, and Fergus (2009). Inter-
estingly, we have found that starting from a random guess
and applying the suggested iterations produces more accu-
rate solutions and with much faster compute time than the
traditional eigenvalue solutions.

In conclusion, the algorithm provided above can be used to
solve the signed graph min-cut problem where W consists of
both positive and negative weights. We show empirically that
our solution is equivalent to or outperforms other methods,
by starting from a random guess solution and applying an
update scheme until convergence. Note, that the proposed
update schemes can improve upon any approximated solution
suggested in the literature, as the suggested iterations do
not deteriorate and can only improve the objective function.
Our evaluations and experimental results are provided in the
Experiments Section.

Signed Graph Min-Cut Problem
Equation 11 suggests that our problem can be cast as a signed
graph min-cut problem. A weighted graph is represented by
a vertex set V = {1, · · · , n} and weights Wij = W [i, j] =
W [j, i] for each pair of its vertices (i, j) ∈ V × V . The
weight of the minimum cutw(G, Ḡ) is given by the following



problem:

Minimize
1

2

∑
i,j

Wij(1− bibj) s.t. bi ∈ {±1}. (13)

where b = [b1, · · · , bn] is an indicator vector s.t. bi = 1 if
i ∈ G and bi = −1 if i ∈ Ḡ. The above minimization is an
integer quadratic program whose solution is known to be NP-
hard (Alon and Naor 2004). Note that the above formulation
can be expressed similarly by maximize btWb s.t. b ∈
{±1}n, which is similar to the expression given in Equation
11. The weights collected in Equation 13 refer only to pairs
(i, j) s.t. bi 6= bj . Thus, the minimal cut aims at including as
many negative weights as possible while excluding positive
weights. Since we are dealing with signed graphs, balancing
the cut is not critical as it is in unsigned graphs since cutting a
small component with few edges does not necessarily provide
the smallest cut.

Alon and Naor (2004) define the above problem as
a ‖W‖∞→1 norm and provide a semidefinite relaxation:
maximize

∑
ijWijui · vj s.t. ‖ui‖ = ‖vj‖ = 1. The

semidefinite program can be solved within an additive er-
ror of ε in polynomial time. Alon and Naor suggested three
techniques to round the semidefinite solution into a binary
solution (bi ∈ {±1}), which provides an approximation
to the original solution up to a constant factor (KG, called
Grothendieck’s constant, 1.570 ≤ KG ≤ 1.782). In the Ex-
periments Section we show that our iterative update approach
can improve over Alon and Naor’s solution when taking their
solution as an initial guess. Moreover, taking a random guess
as an initial solution provides a final solution that is compa-
rable or better, so the benefit of using a costly approximated
solution as initial guess is questionable.

The minimization in 13 can be equivalently rewritten in a
quadratic form:

Minimize
1

2

∑
i,j

Wij(bi − bj)2 s.t. bi ∈ {±1} (14)

The matrix form of the above minimization reads:
mimimize btLb s.t. b ∈ {±1}n, where L = D −W
is the Laplacian of W and D is a diagonal matrix Dii =∑
jWij . The Laplacian of a graph is frequently used for

graph clustering or graph-cut using spectral methods. It
was shown that taking the second-smallest eigenvector (the
Fiedler vector) and thresholding it at zero provides a re-
laxed approximation for the minimization in Eq. 14 (see
Von Luxburg for more details). However, spectral methods
commonly deal with positive weights where the matrix W
is guaranteed to be positive semidefinite. This is not the sit-
uation in our case where eigenvalues might be negative as
well.

Kunegis, Lommatzsch, and Bauckhage (2009) suggested
an alternative for graph Laplacian for signed-graphs: L̄ =
D̄ −W , where D̄ii =

∑
j |Wij | and proved that L̄ is pos-

itive semidefinite. However, Knyazev (2017) argue that the
signed Laplacian does not give better clustering results than
the original definition of Laplacian, even if the graph is
signed. We show in our experiments that neither solution
works as well as the greedy update scheme suggested in this
paper.

Optimizing the Hashing Functions
Finally, we arrive at the out-of-sample extension and explain
how to learn hashing functions to encode out-of-sample data
points. We found that it is preferable to first optimize for
the binary vector bk, then learn a hashing function hk(x)
requiring hk(xi) = bk[i], for i = 1..n. Optimizing directly
for the hashing function yields a non-linear optimization that
often provides inaccurate results. Splitting the optimization
into two steps allows each step to be exploited in the best
manner. We assume that novel data points will be drawn from
the same distribution of the given data X . Therefore, the
hashing functions can be optimized using the empirical loss
over X .

We denote by b̃k the optimal bk resulting from the first
step. This vector encodes the optimal binary values for the
kth bit (over all data points). We then train a binary classifier
hk(x; Θ) over the input pairs {(xi, b̃k[i])}, by minimizing a
loss function:

min
Θ

n∑
i=1

L(hk(xi,Θ), b̃k[i])

where Θ denotes the classifier’s parameters. We use kernel
SVM (Scholkopf and Smola 2001) with Gaussian kernels
to classify the points {xi} into ±1, but any standard clas-
sifier can be applied similarly. At step k, we train the hash
functions hk and construct the kth bit for the binary codes:
bk = [hk(x1), hk(x2), · · · , hk(xn)]T . This bit is updated
immediately in the codes {ci}ni=1, allowing the k + 1 bit to
account for the errors in bk. This error correcting scheme is
another benefit of the two-step solution.

As we proceed, the algorithm adds more bits to the PPC
code. Each additional bit is aimed at decreasing the total loss.
The process terminates when the total loss is below a given
threshold, or when the number of bits exceeds p.

Experiments and Results
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Figure 2: Visualizations of the bits assigned to each data point
in a 2-dimensional space according to PPC. In these images,
blue points have been assigned 1 while red points have been
assigned -1.

To illustrate the optimization process, a synthetic example
is shown in Figure 2. In this figure 300 points are drawn in
2D in a range of [−0.5..0.5]× [−0.5..0.5]. The figure shows
the first 4 first bits (red/blue indicate ±1) where the proxim-
ity matrix was generated with a r-neighborhood proximity
measure. This demonstrates how the PPC algorithm tries to
separate the vector space into two labels by balancing be-
tween areas with high neighbor density and correcting for the
errors of previous bits.



AUC CIFAR-10
Code Length 12 16 24 32 48 64 96 128

SH 0.121379 0.121498 0.119628 0.121108 0.126965 0.12771 0.130133 0.129777
IMH-tSNE 0.154169 0.165783 0.168781 0.150094 0.165669 0.16049 0.163685 0.174634
IMH-LE 0.170701 0.164687 0.144931 0.154949 0.165396 0.152761 0.162143 0.152876

SGH 0.129056 0.12776 0.131998 0.138006 0.136264 0.144698 0.153421 0.157661
LGHSR 0.136739 0.144933 0.149855 0.148962 0.144178 0.144102 0.150296 0.147022

SDH 0.249316 0.191575 0.229962 0.250167 0.227537 0.257303 0.288238 0.326233
PPC 0.28365 0.312302 0.308905 0.329332 0.343186 0.352296 0.354291 0.355555

Table 1: Area under the curve of precision-recall for varying code lengths on the CIFAR-10 dataset. The methods compared:
Spectral Hashing (SH) (Weiss, Torralba, and Fergus 2009), Inductive Manifold Hashing (IMH) (Shen et al. 2013), Scalable
Graph Hashing (SGH) (Jiang and Li 2015), Large Graph Hashing with Spectral Rotation (LGHSR) (Li, Hu, and Nie 2017),
Supervised Discrete Hashing (SDH) (Shen et al. 2015), and our method (PPC).
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Figure 3: Joint histogram of Hamming distances (x-axis)
with respect to the Euclidean distances (y-axis) for PPC code
computed on data with r-neighborhood affinity of (left-to-
right) r = 10, r = 20 and r = 30.

The mutual relationships between the actual distances and
the Hamming distances are illustrated in Figure 3, which
shows the joint histogram of dH(ci, cj) vs. the Euclidean
distances, dij for three cases. This is another synthetic 2D ex-
ample with varying r-neighborhood proximity measures. The
x-axis indicates the Hamming distances of the generated code
and the y-axis indicates the actual Euclidean distances. The
histograms are plotted as gray-scale images where the gray-
value in each entry indicates the number of pairs with the
associated distances. The brighter the gray-value, the greater
the number of pairs (we display the log of the actual values for
a better visualization). For each case we see that most of the
pairs with Euclidean distance below r = 10, 20, 30 (the pairs
labeled as ”Near” in this example) are concentrated to the
left of the respective Hamming distances, dH = 11, 12, 13.
These were also the final α values at the last step of each case.
It is interesting to note that the conditional distributions of dH
at the two sides of the alpha values are wide, while the order
of the Euclidean distances is not necessarily preserved in the
respective Hamming distances. This indicates that the bits
are allocated solely to optimize the neighborhood constraints,
and not to meet any other requirements such as preserving
the ordinal distances. This allows for optimal allocation of
the bit resources.

We evaluate Proximity Preserving Code on several public
datasets: MNIST (Deng 2012), CIFAR-10 (Krizhevsky, Nair,
and Hinton 2014), and LabelMe (Russell et al. 2008). CIFAR-
10 (Krizhevsky, Nair, and Hinton 2014) is a labeled subset of
the 80 million tiny images dataset, consisting of 60,000 32x32
color images represented by 512-dimensional GIST feature
vectors (Oliva and Torralba 2001). It is split into 59,000
images in the training set and 1000 in the test set. MNIST
(Deng 2012) is the well-known database of handwritten digits
in grayscale images of size 28x28. The dataset is split into a
training set of 69,000 samples and a test set of 1,000 samples.
LabelMe (Russell et al. 2008) has 20,019 training images
and 2000 test images, each with a 512D GIST descriptor.
The descriptors were dimensionality reduced to 40D using
PCA. We use this dataset as unsupervised, and the affinity is
defined by thresholding in the Euclidean GIST space such
that each training point has an average of 100 neighbors.

We evaluate the results by computing a precision-recall
graph of varying Hamming thresholds (denoted by α in Equa-
tion 2). We compare our methods to the following state-
of-the-art spectral hashing methods: Spectral Hashing (SH)
(Weiss, Torralba, and Fergus 2009), Anchor Graph Hashing
(AGH) (Liu et al. 2011), Inductive Manifold Hashing (IMH)
(Shen et al. 2013), Scalable Graph Hashing (SGH) (Jiang
and Li 2015), Supervised Discrete Hashing (SDH) (Shen et
al. 2015), and Large Graph Hashing with Spectral Rotation
(LGHSR) (Li, Hu, and Nie 2017). We use the default settings
that the authors provided, and as in Shen et al. (2013) we use
settings of anchor number m = 300 and neighborhood num-
ber s = 3. For IMH, we show results using both Laplacian
eigenmaps (LE) and t-SNE.

We first compare our method in the unsupervised (or self-
supervised) setting to the unsupervised methods listed above.
Results are shown in Figure 4a. We show the precision-recall
graph of the LabelMe dataset with the self-supervised affinity
labels. The results are for the 50 bit code computed for the
train set vs. the test set. The results clearly show that our code
is more accurate than the other methods over all Hamming
thresholds.

Next, we compare our method in the supervised scenario.
Figure 4b shows the precision-recall of 50 bit codes for the
MNIST dataset. The results are computed for the test set
only, showing that our method outperforms the other methods
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Figure 4: Precision-recall of 50 bit codes with varying Hamming threshold α for different datasets. The methods compared:
Spectral Hashing (SH) (Weiss, Torralba, and Fergus 2009), Anchor Graph Hashing (AGH) (Liu et al. 2011), Inductive Manifold
Hashing (IMH) (Shen et al. 2013), Scalable Graph Hashing (SGH) (Jiang and Li 2015), Supervised Discrete Hashing (SDH)
(Shen et al. 2015), and Large Graph Hashing with Spectral Rotation (LGHSR) (Li, Hu, and Nie 2017).
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Figure 5: Loss of binary code as a function of code length for PPC with different initial guesses and iterative improvements. This
is shown for 4 small datasets. The initial guesses are: signed eigenvector corresponding to the smallest non-trivial eigenvalue of
the Laplacian (L) as described in Von Luxburg, signed Laplacian (SL) as suggested by Kunegis, Lommatzsch, and Bauckhage,
the sign of the random projection of the 3 smallest non-trivial eigenvalues of the original definition of Laplacian as suggested by
Alon and Naor (AN), and random guess (R). We show here results for PPC using only the initial guess, and bit update (BU).

in the more challenging out-of-sample scenario. Similarly,
Figure 4c shows the comparison for the CIFAR-10 dataset.

To compare performance at different code lengths, we
calculate the area under curve (AUC) for the precision-recall
graph in the out-of-sample scenario. Table 1 shows our results
on the CIFAR-10 dataset, compared to the results of the
spectral methods mentioned above. Our method consistently
outperforms the other methods in both short and long codes.

Our solution for the signed min-cut problem includes an
iterative scheme that continuously improves the initial guess.
As mentioned before, we argue that the initial guess does
not play a significant role in the final solution. In fact, at the
end of the iterative process, an initial guess based on spectral
methods provides similar results to a random initial guess.

In the following experiment, we compute the codes only
for the in-sample points (using a fixed random seed) and
plot the loss as shown in Equation 4 at each code length.
We show our results on the benchmark presented in Norouzi
and Blei (2011) for six small datasets, consisting of 1000
training points. Since we use the full versions of the MNIST
and LabelMe datasets in the previous sections, we show here

the four remaining datasets. We present the results gener-
ated from the following initial guesses: signed eigenvector
corresponding to the smallest non-trivial eigenvalue of the
Laplacian (L) (Von Luxburg 2007), signed Laplacian (SL)
(Kunegis, Lommatzsch, and Bauckhage 2009), the sign of the
random projection of the 3 smallest non-trivial eigenvalues
of the Laplacian (Alon and Naor 2004) (AN), and random
guess (R). We show the effect of improving upon the initial
guesses using bit update (BU) as presented in Algorithm 2.
Results are shown in Figure 5. The results clearly show that
the random guess with bit update performs as well as or sur-
passes the costly spectral computations, while the bit update
improves upon all of the initial guesses.

A comparison between vector update (Algorithm 1) and
bit update (Algorithm 2) for different initial guesses is shown
in Figure 6. It is clear that the bit update method outperforms
the vector update. This is reasonable as the bit update is an
optimization with smaller steps, allowing for a broader search
for the optimum, whereas the vector update takes large steps
and converges quickly into a local optimum.
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Figure 6: Loss of binary code as a function of code length for PPC with different initial guesses and iterative improvements. This
is shown for 4 small datasets. Here we compare the effects of bit update (BU), and vector update (VU). The initial guesses are:
signed eigenvector corresponding to the smallest non-trivial eigenvalue of the Laplacian (L) as described in Von Luxburg, signed
Laplacian (SL) as suggested by Kunegis, Lommatzsch, and Bauckhage, the sign of the random projection of the 3 smallest
non-trivial eigenvalues of the original definition of Laplacian as suggested by Alon and Naor (AN), and random guess (R).

Conclusions
We have shown a binary hashing method called Proximity
Preserving Code (PPC) based on the signed graph-cut prob-
lem. We propose an approximation to this problem and show
its advantages over other methods suggested in the literature.
We also introduce a hashing framework that can work for
both supervised and unsupervised datasets. The framework
computes binary code that is more accurate than state-of-the-
art graph hashing algorithms, especially in the challenging
out-of-sample scenario. We believe the use of the signed
graph problem instead of relaxation to the standard graph
problem can prove beneficial in other algorithms as well.

Appendix
The following four theorems are used in the Vector Update
method in Algorithm 1. The proofs are provided below.

Theorem 1. for any n×n matrix W and b,b′ ∈ {±1}n, if
b′ = sign(Wb), then b′TWb ≥ bTWb

Proof. Denote u = Wb. Thus b′TWb = b′Tu =∑
i b
′[i]u[i]. Since b′[i] ∈ ±1, the maximal value is ob-

tained when b′[i] = sign(u[i]). We arrive at b′TWb ≥
bTWb.

Theorem 2. Assuming W is positive semidefinite (PSD), if
b′
T
Wb > bTWb, then b′

T
Wb′ > bTWb.

Proof. We express vectors b,b′ using the eigenvectors of W,
Wui = λiui, b =

∑
αiui and b′ =

∑
i α
′
iui. Given

b′
T
Wb = (

∑
i

α′iu
T
i )(
∑
i

αiλiui) = (15)

=
∑
i

α′iαiλi ≥
∑
i

α2
iλi = bTWb (16)

we would like to show that

b′
T
Wb′ =

∑
i

α′i
2
λi ≥

∑
i

α2
iλi = bTWb

Using the PSD property of W (λi ≥ 0), we define

v =

 α1

√
λ1

...
αN
√
λN

 v′ =

 α
′
1

√
λ1

...
α′N
√
λN


Starting from our original assumption we have: vTv′ ≥ vTv.
Using the triangular inequality we have:

‖v‖ · ‖v′‖ ≥ vTv′ ≥ ‖v‖2

which follows that ‖v′‖ ≥ ‖v‖ and accordingly

v′
T
v′ = b′

T
Wb′ ≥ bTWb = vTv

Theorem 3. A symmetric matrix W can become positive
semidefinite by applying W ← W + |λ|I where λ is the
smallest eigenvalue of W .

Proof. According to the Gershgorin Circle Theorem (Ger-
shgorin 1931), for an n × n matrix W, define Ri =∑n
j=1,j 6=i |wij |. All eigenvalues of W are in at least one

of the disks {v : |v − wii| ≤ Ri}. Therefore, by adding the
smallest eigenvalue to wii, the disks will only contain values
greater than or equal to zero.

Theorem 4. Adding a constant value to the diagonal of the
weight matrix W will not affect the output code computed.

Proof. In PPC, we optimize the vector b according to Equa-
tion 11. Therefore:

argmaxbb
T (W + |λ|I)b

= argmaxbb
TWb + |λ|bTb

= argmaxbb
TWb + |λ|n

= argmaxbb
TWb
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