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ABSTRACT

Video analysis often requires mapping of activity or object lo-
cations from image coordinates to ground plane coordinates.
This process is termed Plane Rectification. In this paper
we propose an geometric method to find plane rectification
using the plane’s vanishing line and the vertical vanishing
point. Unlike common methods that provide sophisticated al-
gebraic solutions and non-linear optimizations, the proposed
approach is intuitive and simple to implement while provid-
ing a geometric explanation and interpretation of the plane
rectification. We show that the proposed approach provides
stable and accurate solutions also in the presence of noise.

Index Terms— Plane Rectification, symmetric vanishing
points, people tracking, video sequences.

1. INTRODUCTION

Video surveillance cameras are often configured such that
tracking, trajectory analysis and multi view merging require
mapping multiple images into a unified frame of reference.
Having a ground plane in the scene suggests the use of Plane
Rectification which transforms the images to a view as if
they were acquired by an orthographic projection where the
projection plane is parallel to the ground plane. In fact, this
can be seen as a transformation from image coordinates to the
2D ground plane coordinates. We distinguish between affine
rectification where parallelism is retained, but other proper-
ties such as angle size and ratio of lengths are not, and metric
rectification where distances are preserved up to similarity
(translation, rotation and isotropic scale).

In contrast to existing methods for metric plane rectifica-
tion which use algebraic constraints and complex entities, we
present here a rectification method which is purely geomet-
ric. The geometry aspect of the approach, provides a novel
point of view for the rectification process, making it easier to
visualize and understand.

In this paper, we define a a set of three special vanish-
ing points which we term symmetric vanishing points. These
points are extracted from the the ground plane vanishing line
and the vertical vanishing point. We show that a metric rectifi-
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cation matrix can be composed directly from these symmetric
points with no additional computations.

2. DIRECT METRIC RECTIFICATION

Consider a world scene with a ground plane acquired by a
(pinhole) camera (Figure 1). We define a world coordinate
system XY Z, such that the origin of the coordinate system
lies on the ground plane, the Z axis is perpendicular to the
plane, and the X and Y axes span the ground plane. The
transformation from world coordinates to image coordinates
can be simply defined as

x = PX (1)

where X = (X,Y, Z, 1)T is a homogeneous 4-vector repre-
senting a point in the world, P is the 3 × 4 homogeneous
camera projection matrix, and x = (x, y, w)T denotes a ho-
mogeneous 3-vector representing the projected image point.
Restricting the projection to the ground plane alone, (Z = 0),
we consider only world points of the form X = (X,Y, 0, 1).
The projection can then be reduced to a 3 × 3 homography
H that projects points on the world’s ground plane to the im-
age plane. Inverting this homography gives the rectification
matrix that transforms the image back to the world plane:

M = H−1

The homography H can be decomposed into a similarity
transformation HS , an affine transformation HA and a pro-
jective transformation HP [1]:

H = HPHAHS

HP can be constructed from the image coordinates of two
vanishing points v1, v2 on the vanishing line of the ground
plane, and the image coordinates v3 of the world origin [2]:

HP =

v1x v2x v3x
v1y v2y v3y
v1w v2w v3w

 (2)

Image rectification usingM = H−1
P , is an affine rectification.

In order to obtain a metric rectification additional computa-
tions must be performed, e.g. evaluation of the calibration
parameters (external camera parameters) as in [2],[3].
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Fig. 1: C is the center of projection (camera), a the piercing
point andA the intersection of the optical axis with the ground
plane. The two symmetric vanishing points vx and vy are
symmetric about d on the ground plane’s vanishing line.

In this paper ,we show that by carefully selecting three orthog-
onal vanishing points - the symmetric vanishing points - and
collecting them in a matrix form as in Equation 2, a metric
rectification can be obtained.

3. RECTIFICATION USING SYMMETRIC
VANISHING POINTS

Assume a vanishing line lv associated with the world plane,
and a vertical vanishing point vz associated with the direction
perpendicular to the world plane are given. Any method may
be used to compute these. For example, in [4, 5] trajectories
of people moving on a planar ground induce head and feet
parallel lines from which the vanishing line is computed. The
vertical vanishing point vz is computed from the intersection
of head-feet lines. In [3], parallel lines in an indoor scene are
found from which 3 orthogonal vanishing points are obtained.
Two of these are on the vanishing line and the third is vz. In
[2], known lines associated with house walls are used to find
vanishing points from which vz and lv can be extracted.

We define the symmetric vanishing points as vx and vy,
two vanishing points on lv , such that, together with vz, are
associated with an orthogonal triplet of directions in 3D. The
uniqueness of the points vx and vy is that they are symmetric
with respect to the image line (vz,d) passing through vz and
perpendicular to lv (Figure 1).

Collecting the symmetric vanishing points (in homoge-
neous coordinates) in columns, we show that:

M = H−1
m =

vxx
vyx vzx

vxy
vyy vzy

1 1 1

−1

(3)

is a metric rectification matrix.

Proof. Consider the scene and camera setup shown in Figure
1. C is the center of projection and a the image piercing point.
We define the origin O of the world coordinate system to be
at the perpendicular projection of C on the world plane. The
world coordinate axes X ,Y and Z are the three mutually or-
thogonal directions induced by the three symmetric vanishing
points: vx, vy, and vz. Given a 3D point X = (X,Y, Z, 1),
its image x = (x, y, w) in the image plane is given by Eq. 1.
The projection matrix P is decomposed as [1]:

P = KR [I; − C] = [KR; −KRC] (4)

where C is the camera’s center in world coordinates and R is
a rotation matrix of the world coordinate system to camera co-
ordinate system. Assuming a non-skew camera and piercing
point a at the image’s center we have:

K =

f 0 0
0 f 0
0 0 1

 (5)

is the camera’s internal parameter matrix with focal length f .
Assuming the camera is at height h above the world ground
plane, we haveC=(0, 0,−h) and the camera z-axisA − C =
(Ax, Ay, 0 + h) where A is the intersection of the z-axis and
the ground plane. This selection of the world axes yields that
the ray (O,A) on the ground plane is projected on the image
plane to the line (vz, a), which intersects the vanishing line lv
at point d. It can easily be seen that the symmetric selection
of vanishing points about d yields that the world axes are also
symmetric about (O,A) and that the world X and Y axes both
form a 45 degree angle with respect to the direction (O,A).
Thus, the representation of point A in world coordinates is
Ax = Ay and A = (Ax, Ax, 0). The camera’s z-axis is then:

Rz = A− C = (Ax, Ax, h) (6)

Now consider again, the camera projection matrix P (Eq. 4).
The rotation matrix R is given by composing the camera’s
axes vectors Rx,Ry,Rz in matrix form. With Eq. 6 and 5
and given that C = (0, 0,−h), we obtain:

P = [KR; −KRC] =

Rx1
f Rx2

f Rx3
f Rx3

fh
Ry1f Ry2f Ry3f Ry3fh
Ax Ax h h2


(7)

The world coordinates (1, 0, 0, 0),(0, 1, 0, 0),(0, 0, 1, 0) and
(0, 0, 0, 1), project onto the image points vx,vy,vz,vz respec-
tively. However due to homogeneity of the coordinates, these
image points are unique up to a scale factor λ. Thus:

P =

vxx
vyx vzx vzx

vxy
vyy vzy vzy

1 1 1 1



λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 (8)



To obtain the homography, H that maps the world plane to
the image plane, we omit the third column of P (since ground
plane points have z-coordinate equal 0):

H =

vxx
vyx vzx

vxy
vyy vzy

1 1 1

λ1 0 0
0 λ2 0
0 0 λ4

 (9)

From 7 and 8 we have:

λ1 = Ax λ2 = Ax λ4 = h2

Thus, λ1 = λ2 and defining λ4 as the homogeneous scale
factor and setting λ = λ1

λ4
, we obtain:

H =

vxx
vyx vzx

vxy
vyy vzy

1 1 1

λ 0 0
0 λ 0
0 0 1

 = HmHS (10)

with HS being a similarity transformation (uniform scale).
Thus it can be deduced that

Hm =

vxx
vyx vzx

vxy
vyy vzy

1 1 1

 (11)

and

M = H−1
m (12)

is a metric rectification matrix. Note that any other world
coordinate system (with Z axis perpendicular to the world
plane) is a similarity transformation away, thus maintaining
that M is a metric rectification (i.e. up to similarity) of any
other world coordinate system. Also note that if any other
triplet of orthogonal vanishing points is selected, the con-
straint λ1 = λ2 does not hold in Eq. 9 which results in M
being an affine rather than metric rectification matrix.

3.1. Rectification in Practice

In order to compute the symmetric vanishing points, the cam-
era’s focal length f must be computed. Since (C, d) is per-
pendicular to (C,vz) [1], simple geometry shows that the
triangles (C, a,vz) and (d, a, C) are similar. Thus, defining
α = ‖(d, a)‖ and β = ‖(a,vz)‖, it is easy to show that:

f =
√
αβ (13)

Now, since (C, d) is mid-perpendicular to (vx,vy) (it is
on the plane spanned by (C,vz) and (C, a), which is mid-
perpendicular to the symmetric vanishing points by defini-
tion) and its length is

√
α2 + f2, we have

‖(vx, d)‖ = ‖(vy, d)‖ =
√
α2 + f2 (14)

The following algorithm summarizes the process of comput-
ing the metric rectification matrix (refer to Figure 1).
Given the vanishing line lv and vanishing point vz:

1. Determine the point d on the vanishing line which is
the perpendicular projection of the vanishing point vz

onto the vanishing line.

2. Compute the camera focal length: Define α = ‖(d, a)‖
and β = ‖(a,vz)‖, and compute f =

√
αβ. Note,

that in real images, the piercing point often does not
necessarily align with image center. We follow [4] to
correct for this.

3. Determine the symmetric vanishing points vx and vy

on the vanishing line that are on either side of d at the
distance: ‖(vx, d)‖ = ‖(vy, d)‖ =

√
α2 + f2

4. Collect the three vanishing point coordinates (in nor-
malized homogeneous coordinates) in the matrix H:

H =

vxx
vyx vzx

vxy vyy vzy
1 1 1

 (15)

5. Define the Metric rectification M :

M = H−1

3.2. Why it works - Insights

In principle, given the vertical vanishing point vz, any 2 or-
thogonal points on the vanishing line lv can be used to form
a non-metric rectification matrix (Eq. 2). However to create a
metric rectification, the skew factors λ1 and λ2 (Eq. 9) must
be determined whether explicitly [3] or implicitly [2, 5]. By
choosing the unique configuration, using the symmetric van-
ishing points, there is no skew as λ1 = λ2 and there is no
need to correct the transformation for these values.

A geometric interpretation of this key point is as follows
(see Figure 1). Image rectification can be viewed as involving
a 3D transformation that maps the image plane (in 3D) to the
world plane (in 3D). Without loss of generality assume the
transformation involves a rotation about the 3D camera posi-
tionC so that the image plane is parallel with the world plane,
followed by a 3D translation that aligns the 2 planes. Further
assume the rotation is a rotation about the camera’s pitch axis
which passes through point C and parallel to the vanishing
line (degree of rotation is given by the angle ](vz, C, a))1.
Now, given any 2 orthogonal vanishing points v1,v2, this
pitch will map the vanishing points to the world plane such
their distance from the originO is unequal and proportional to
‖(vz,v1)‖/‖(vz,v2)‖. This ratio is the source of skew in the
final rectification and can be shown to equal λ1/λ2! Thus to
eliminate the skew, one must choose 2 vanishing points on lv
that are symmetric about the plane perpendicular to the pitch
angle and passing through C - namely 2 vanishing points that
are symmetric about the point d in the image.

1Note that any other transformation that performs the plane alignment can
be shown to be an in-plane similarity transformation of the one assumed here.
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Fig. 2: Comparison of results run on synthetic data.

4. RESULTS

We show that the suggested approach using symmetric van-
ishing points improves on other approaches in terms of error
rate. Additionally, we show the advantage of replacing the
original vanishing points with the symmetric vanishing points
in other methods. We note, however, that other approaches re-
quire calculating the external camera parameters regardless of
the vanishing points used.

Testing was performed on image sequences of people
walking on a ground plane. The method described in [4]
was used to compute the vertical vanishing point and to com-
pute numerous vanishing points on the vanishing line using
tracked heads and feet of the people. The calculated vanish-
ing line and vertical vanishing point were used as input to the
algorithms tested in this section.

Results from synthetic data - A synthetic world was cre-
ated and this configuration was later used as ground truth.
Targets of different heights (simulating people) were placed
randomly on the world plane. These targets then “moved”
in random directions and distances creating a second “time
frame” of the world. The two world time frames were pro-
jected onto an image plane using a virtual camera with preset
parameters (h = 80, f = 10 and A = (50, 100, 0) - see
Figure 1). Head and feet coordinates were contaminated with
Gaussian noise resulting in noisy vertical vanishing point and
noisy vanishing line. Tests were run at various noise levels
(std=0 .. 2.5 measured in image pixel units). 1000 trials of
different initial data point configurations were tested per each

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3) (3,4) (3,5)

(4,1) (4,2) (4,3) (4,4) (4,5)

(5,1) (5,2) (5,3) (5,4) (5,5)

Fig. 3: (a) A frame of the video sequence with tracked person
and selected data points (in white). (b) Ground truth pattern
associated with the selected data points in a.

Proposed Keren et al. Lv et al. Lv et al.
method (2004) (2002) (2006)

S 2.015 2.021 2.017 2.07
NS m = 2.194 m = 2.018 m = 2.022

std = 0.501 std = 0.088 std = 0.128

Table 1: Results on real data (S=symmetric NS=non-
symmetric vanishing points).

noise level. For each trial, image data points were rectified
back to the world plane using four different methods: The
method presented in this paper, and the methods presented
in[4], [5] and [3]. For fair comparison, we did not implement
the post-processing optimizations suggested in [5]. Note, that
in Euclidean rectification algorithms a height parameter is re-
quired. Since we are interested only in metric rectification, an
arbitrary height was provided (which, for these algorithms,
affects unit scale alone). Each method was tested using sym-
metric vanishing points, which were computed as described
in this paper, and randomly generated non-symmetric orthog-
onal vanishing points, computed following [4]. We compared
the results for each rectification method by finding the best
similarity transformation [6] that maps the rectified points to
the ground truth, and computing the mean square error of the
mapped points against the ground truth. Results are shown
in Figure 2. Results show that the proposed method performs
better than the other approaches. Furthermore, using symmet-
ric points in other methods (vs. using vanishing points as orig-
inally suggested in these methods) improves performance.

Results from real data - Testing was performed on a
real scenario using a video sequence of walking people (Fig-
ure 3a). People were tracked using the tracker from [7] and
the method described in [4] was used to compute the van-
ishing line and vertical vanishing point. A grid of 25 points
marked in the scene served as the ground truth (see Figure
3b). The image points of the ground truth grid were rectified
using the same set of methods as above. The rectified points
were compared to the ground truth up to similarity as above.
Results are shown in Table 1. The results once again con-
firm that the proposed method outperforms other tested meth-
ods and that using symmetric vanishing points rather than any
other vanishing point improves the results in the other meth-
ods as well.

5. CONCLUSION

An intuitive and simple method for metric plane rectification
is suggested. We obtain metric rectification without the need
to calculate camera parameters or extract any other features
or properties from the scene. The method computes the sym-
metric vanishing points which are collected in a matrix form
similar to the approach used for affine rectification. However,
due to the characteristics of the symmetric points the result-
ing rectification is metric. Experiments on simulated and real
data validated the advantage of the proposed method.
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