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A Discriminative Approach for

Wavelet Denoising
Yacov Hel-Or and Doron Shaked

Abstract

This paper suggests a discriminative approach for wavelet denoising where a set of mapping functions

(MF) are applied to the transform coefficients in an attempt to produce a noise free image. As opposed to

the descriptive approaches, modeling image or noise priors is not required here and the MFs are learned

directly from an ensemble of example images using least-squares (LS) fitting. The suggested scheme

generates a novel set of MFs that are essentially different from the traditional soft/hard thresholding in

the over-complete case. These MFs are demonstrated to obtain comparable performance to the state-

of-the-art denoising approaches. Additionally, this framework enables a seamless customization of the

shrinkage operation to a new set of restoration problems that were not addressed previously with shrinkage

techniques, such as: de-blurring, JPEG artifact removal, and various types of additive noise that are not

necessarily Gaussian white noise.

I. INTRODUCTION

Many imaging devices that acquire or process digital images introduce artifacts in the processing

pipeline. These artifacts include: additive noise, image blurring, compression artifacts, missing pixels,

geometric distortions, etc. Image restoration is an attempt to reduce such artifacts using post-processing

operations. One important topic in image restoration deals with image denoising, where noisy observations

of images are attempted to be cleaned. In this paper we focus on denoising images contaminated with

additive noise whose statistical distribution is known. Consider a noisy image

y = x + n (1)

where y is the observed image, x the unknown original image and n the contaminating noise (all in

vector notation). The goal is to reconstruct the original image x given the noisy measurement y. This
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problem is a typical instance of an inverse problem where the solution must consider prior knowledge

of the distribution of x. Hence, the prior distribution of natural images or of any other specific class of

images plays a key role in any denoising approach.

A common approach for modeling the statistical prior of natural images is to estimate their statistical

distribution in a transform domain. This is usually implemented using some type of wavelet transform.

The main motivation for this approach stems from the observation that the wavelet transform of natural

images tends to reduce pixel dependencies [30], [31], [20], [24]. Hence it is possible to make a reasonable

inference about the joint distribution of the wavelet coefficients from their marginal distributions. When

dealing with image denoising, this leads to a family of classical techniques known as the wavelet shrinkage

methods introduced by Donoho and Johnstone in 1994 [10], [11], [12]. These techniques amount to

modifying the coefficients in the transform domain using a set of scalar mapping functions, {Mi}, called

mapping functions (MFs). The MFs are also known as shrinkage functions since they commonly apply

an adaptive shrinking operation to the transform coefficients. The shrinkage approach is comprised of a

wavelet transform:

yW = Wy (2)

followed by a correction step in which the wavelet coefficients are rectified according to a set of MFs:

x̂W = ~MW{yW} (3)

where ~MW = [M1
W,M2

W, · · ·] is a vector of scalar mapping functions. The denoised image is obtained

after applying the inverse transform to the modified coefficients:

x̂ = W−1x̂W (4)

Due to their simplicity and good results, shrinkage approaches have received a great deal of attention

over the last decade. Hundreds of shrinkage methods have been proposed differing mostly in the type of

transform used and in the form in which the MFs are applied. The justification for applying a marginal

(scalar) MF to each coefficient independently can be shown to emerge from the independence assumption

of the wavelet coefficients. This assumption was postulated in the early studies in which MFs were applied

to unitary transforms.

Since the pioneering work of Donoho and Johnston, various efforts have been made to improve the

denoising results of wavelet based methods. Such efforts generally concentrated on two main directions.
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The first direction attempts to improve the results by abandoning the unitary representation and working in

over-complete transform domains. Such transforms include un-decimated wavelets [6], steerable wavelets

[41], and other recently developed transforms, such as: ridgelets [2], [3], [28], contourlets [9], [26],

curvelets [42], and image dependant transforms [14]. These transforms were shown to better represent

natural images in the sense that their coefficients exhibit better compaction (sparsity). Additionally, the

over-completeness was shown to significantly improve denoising results in addition of having shift-

invariant performance. Although the independence assumption can no longer be justified in the over-

complete domain, most of the conventional methods naively borrowed the traditional MFs from the

unitary case.

The second direction toward improvement relaxed the independence assumption of the wavelet coeffi-

cients and concentrated on modeling the statistical dependencies between neighboring coefficients. This

scheme can be seen as diverging from the scalar MFs to multivariate MFs where transform coefficients

(an individual or a group) are rectified according to a group of measured coefficients. Inter-coefficient

dependencies are exploited using any of a range of techniques, such as: the joint sparsity assumption

[5], [25], HMM and Bayesian models [8], [39], [40], [15], [33], context modeling [4], [34], tree models

representing parent-child dependencies [37], co-occurrence matrix [38], adaptive thresholding [23], [32],

geometrical prior models [21], and more. These types of techniques achieve very good denoising perfor-

mance; however, they generally lack the efficiency and simplicity of the classical shrinkage approaches.

Common to all the conventional techniques for generating MFs, regardless of the approach used,

is that the MFs are derived in a descriptive manner. Namely, a statistical model is first constructed

describing the statistical prior of the transform coefficients. Based on this prior, a set of MFs are derived

(scalar or multivariate, parametric or non-parametric) which are designed to rectify the contaminated

coefficients. Clearly, imprecise modeling of the statistical prior directly leads to a deterioration in the

resulting performance. Because inter-coefficient dependencies are complicated to model, in particular in

the over-complete case, it is expected that the statistical models are far from precise. And indeed, due to

the high dimensionality of the joint probability, ad-hoc assumptions have been commonly made in order

to make the problem tractable. Such assumptions include, e.g., ignoring the inter-coefficient dependencies

(e.g. [41], [10]), modeling only bivariate or parent-child dependencies (e.g. [37]), and modeling the joint

dependencies of a small group of neighboring coefficients but assuming simplified parametric models
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(e.g. [34]).

This paper suggests a new scheme for designing a set of MFs using a discriminative framework.

In contrast to the conventional approaches, this technique does not require any estimation of the prior

model nor the noise characteristics. Rather, a set of MFs is constructed using an ensemble of example

images whose clean and contaminated versions are supplied off-line. The MFs are designed to perform

“optimally” with respect to the given examples, under the assumption that they will perform equally well

with similar new examples.

The suggested approach retains the traditional scalar MFs that are applied to each wavelet coefficient

independently. Nevertheless, although the MFs are applied in a marginal manner, their construction is

affected by inter-coefficient dependencies. In fact, it is shown that the obtained MFs differ essentially

from the conventional monotonic hard/soft thresholding functions. Moreover, despite the fact that scalar

MFs are used, the denoising results are comparable and sometimes even better than the state-of-the-art

multivariate prior based techniques. Thus, the suggested approach, while maintaining the simplicity and

efficiency of the scalar shrinkage approaches, typically does not compromise the resulting quality.

The advantages of the proposed scheme stem, in part, from the following characteristics:

• First, the MFs are constructed in an optimal manner taking into account inter-coefficient dependen-

cies. Although the MFs apply non-linear operations, their construction is performed in a closed form

solution using a spline based representation.

• The second source of improvement stems from the optimality criteria applied in this method. While

most shrinkage approaches construct the MFs using the MAP criterion that rely on imprecise prior

models, the proposed method uses a least-squares (LS) scheme approximating the MFs directly from

an example set. Thus, the suggested scheme avoids the need for modeling complex statistical prior

in high dimensional space.

• The third source of improvement is due to the domain in which the optimality criterion is preferably

performed. In the suggested method, the objective goal is expressed in the spatial domain, which is

the domain within which images are perceived. Most wavelet shrinkage approaches use optimality

criteria expressed in the wavelet domain. While a transform-domain optimization criterion is justified

in unitary transforms, it does not properly extend to over-complete transforms. Furthermore, it can be

shown that the optimal solution in the over-complete transform domain does not guarantee optimality
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in the spatial domain (see Appendix in [19]).

The approach suggested in this paper is presented in the context of denoising. However, using the

proposed discriminative framework, other reconstruction problems that were not previously addressed

with shrinkage approaches, can be dealt with seamlessly, as long as the reconstruction process involves

scalar look-up-tables applied in the wavelet domain. These include, e.g.: image de-blurring, JPEG artifact

removal, and various types of additive noise. Some results will be shown for these cases.

The rest of the paper is organized as follows. The next two sections describe the classical shrinkage

approaches in the unitary and the over-complete domains. These sections provide the background for our

proposed method. In Section IV, the spline representation is introduced along with its properties. Section

V presents the proposed method, and Section VI addresses several computational issues. Simulation

results as well as implementations in other restoration problems are presented in Section VII.

II. IMAGE RESTORATION IN UNITARY TRANSFORM DOMAINS

The justification for using scalar mapping functions can be shown to emerge from the MAP estimation

and the independence assumption of the wavelet coefficients. Consider a degradation model as described

in Eq. 1. The MAP solution x̂(y) is the image that maximizes the a-posteriori probability:

x̂(y) = arg max
x

P (x|y)

This maximization can be expressed in the wavelet domain as well. Denoting a unitary wavelet transforms

xW = Wx and yW = Wy, the MAP estimation gives:

x̂W(yW) = arg max
xW

P (xW|yW) (5)

Using the Bayes conditional rule and exploiting the monotonicity of the log function, the maximization

in Eq. 5 is equivalent to:

x̂W = arg max
xW

P (yW|xW)P (xW) = arg min
xW

{− log P (yW|xW)− log P (xW)} (6)

The first term, log P (yW|xW), is referred to as the likelihood term. It depends solely on the noise

characteristics. In the case of white Gaussian noise, this term reduces to:

− log P (yW|xW) = λ‖xW − yW‖2 = λ
∑

i

‖xi
W − yi

W‖2 (7)

where xi
W and yi

W denote the ith elements of the corresponding vectors and λ is a constant depending on

the noise variance. The second term in Equation 6, log P (xW), is known as the regularization term or
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the prior term as it specifies the a-priori probability of the original image xW. Taking into account the

independence assumption of the wavelet coefficients, the second term can be rewritten as:

− log P (xW) = − log
∏

i

Pi(xi
W) = −

∑

i

log Pi(xi
W) (8)

Substituting Equations 7 and 8 into Equation 6, the overall minimization amounts to a set of independent

scalar minimizations, each of which corresponds to a particular coefficient:

x̂i
W(yi

W) = arg min
xi

W

{
λ‖xi

W − yi
W‖2 − log Pi(xi

W)
}

∀ i (9)

The last expression gives the justification for applying a scalar MF to each wavelet coefficient indepen-

dently. Each value yi
W is mapped to: x̂i

W = Mi
W{yi

W} which is given in Eq. 9. Note, that for a particular

noise variance, the variations in the MFs, Mi
W{·}, depend solely on Pi(xi

W). Furthermore, assuming the

statistics of natural images are homogeneous [17], it implies that all wavelet coefficients belonging to a

particular wavelet subband share the same distribution. Namely, w.l.o.g. if a coefficient xi
W belongs to

the jth subband where j = band(i), we have:

Pi(xi
W) = Pband(i)(x

i
W) and consequently x̂i

W = Mband(i)
W {yi

W} (10)

Thus, if the wavelet transform is composed of K subbands, only K distinct MFs must be evaluated. To

emphasize this point and simplify notations in the rest of the paper, we reorder the rows of the Wavelet

transform W in Eq. 2 so that transform rows corresponding to a wavelet subband are co-located in a

block. Naturally, we extend the same reordering to yW. Assuming a corresponding permutation matrix

P ,

B = PW =




B1

...

BK




and correspondingly By = yB =




yB1

...

yBK




(11)

where yBk
represents the coefficients in the kth subband. In the new reordering, a vector of MFs, ~MB =

[M1
B,M2

B, · · · ,MK
B ], is applied as follows. Since Mk

B is applied individually to all coefficients in the

kth subband, the estimated image of Eq. 4 is rewritten as:

x̂ = BT ~MB{yB} =
K∑

k=1

BT
k Mk

B{Bky} =
K∑

k=1

BT
k Mk

B{yBk
} (12)

The main scope of this paper is the optimal estimation of the MFs Mk
B{·}. There is a wealth of papers

dealing with the estimation of the MFs in the context of denoising. The early studies of Donoho and
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Johnston suggested using soft thresholding or hard thresholding as shrinkage functions [11], [12]. These

can be shown to emerge from the MAP estimation where the distributions of the wavelet coefficients are

Generalized Gaussians (GGD): P (x) ∼ e(|x|/s)p

. Soft-thresholding is a result of assuming a Laplacian

distribution (i.e. p = 1) while hard-thresholding assumes a sharper distribution with p = 0.5 [39],

[27]. Later studies extended the thresholding approach to other distributions adapting the MFs to these

distributions ( e.g. [27], [41], [16], [39], [1].

III. RESTORATION IN OVER-COMPLETE DOMAINS

Although the shrinkage approach using unitary transforms provides good results, significant improve-

ment is achieved when implementing this technique in over-complete representations. In most cases,

this is implemented using the un-decimated wavelet transform or any other shift-invariant transforms

(sliding local DCT, ridgelets, contourlets, steerable wavelet, etc.). Adopting the notation of Eq. 11 for

the over-complete case, the image transform is given by yB = By, where B is composed of distinct

subband matrices. Unlike the unitary transform, however, the number of rows in B is larger than the

dimensionality of the signal y. Modifying yB using a vector of MFs ~MB {yB} aims at removing the noise

components. Hence, it is assumed that

Bx = ~MB {By}

and the image is reconstructed using the pseudo-inverse:

x̂ = (BT B)−1BT ~MB{yB} = (BT B)−1
K∑

k=1

BT
k Mk

B{yBk
} (13)

where we have

(BT B)−1 =

(
K∑

k=1

BT
k Bk

)−1

If the transform B is tight frame, Equation 13 can be simplified due to the fact that 1
N BT B = I

Viewing the shrinkage approach as a set of mapping functions applied to each subband independently

may suggest that the MFs applied in the over-complete case are correspondingly similar to those applied

in a unitary case (Eq. 9). And indeed this attitude was broadly adopted in previous works [13], [3], [42],

[26], [6]. However, even if we may assume statistical independence in the coefficients belonging to a

unitary transform, it definitely cannot be extended to coefficients in the over-complete transform where

the transform coefficients are inherently dependant. Thus, a new set of MFs must be designed that takes

into consideration the inter-band dependencies.
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Another issue that causes the over-complete case to differ from the unitary case is the domain in

which the minimization criterion is applied. To clarify this point, consider finding the optimal MFs for

the unitary case with respect to the MSE criterion. Namely, finding ~MB that minimizes

ε = Ex|y{‖x̂(y)− x‖2}

where we have determined that x̂(y) = BT ~MB{By}, and Ex|y{·} stands for the conditional expectation

of x given y. Whenever B is unitary, this minimization can be expressed equivalently in the transform

domain, namely:

Ex|y{‖BT ~MB{By} − x‖2} = Ex|y{‖ ~MB{By} −Bx‖2} (14)

However, for an over-complete transform this equality in not valid anymore (see [19] for more details),

which implies that the optimization for ~MB should be expressed in the spatial domain. Due to the fact

that the inverse transform couples wavelet coefficients, spatial domain optimization is far more complex.

Although scalar MFs may no longer be justified when the transform coefficients are mutually dependant,

the superior results of applying scalar MFs in the over-complete case suggest that such a scheme is still

very useful in addition to its appealing efficiency. Furthermore, in a recent paper, Elad [13] justifies scalar

MFs as being the 1st step in an iterative minimization scheme. Justified as the optimal solution or not,

there is definitely an interest in finding the best MFs in the over-complete case while considering inter-

coefficient dependencies. To the best of our knowledge, the optimal design of MFs in the over-complete

domain was not discussed in the literature, and in most cases the applied MFs were naively borrowed

from the unitary case.

This paper, presents a new scheme for image denoising in the over-complete case, where MFs are

represented in a linear manner using a spline representation which we call a Slice Transform (SLT). As

an introduction to the proposed approach we first introduce the SLT of an image. This representation

will be used in later sections to calculate the optimal MFs.

IV. THE SLICE TRANSFORM AND ITS PROPERTIES

Let x ∈ [a, b) ∈ R be a real value in the half open interval [a, b). The interval is divided into M bins

whose boundaries form a vector q:

q = [q0, q1, · · · , qM ]T such that q0 = a < q1 < q2 . . . < qM = b
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Fig. 1. Left: Representing x as a quantized value and residue. Right: Illustration of a piecewise linear map in accordance with

the substitution property of the SLT.

The value x is naturally associated with a single bin π(x) ∈ {1 · · ·M} and a corresponding normalized

residue, r(x), where (see Figure 1-left):

π(x) = j if x ∈ [qj−1, qj) and r(x) =
x− qπ(x)−1

qπ(x) − qπ(x)−1

Note, that r(x) ∈ [0, 1), where r(x) = 0 if x = qπ(x)−1, and r(x) → 1 if x → qπ(x). The value x can

then be expressed as a linear combination of qπ(x) and qπ(x)−1:

x = r(x)qπ(x) + (1− r(x))qπ(x)−1 (15)

Eq. 15 can be rewritten in vectorial form:

x = Sq(x)q (16)

where Sq(x) is defined as an M + 1 dimensional row vector as follows:

Sq(x) = [0, · · · , 0, 1− r(x), r(x), 0, · · · , 0]

and where the values 1− r(x) and r(x) are located in the (π(x)− 1)th and π(x)th entries, respectively.

We now define a vectorial extension of Eq. 16. Let x be an N dimensional vector whose elements satisfy

xi ∈ [a, b). The Slice Transform (SLT) of x is defined as follows:

x = Sq(x)q (17)
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where Sq(x) is an N × (M + 1) matrix defined as follows (see Figure 1-left):

[Sq(x)](i, j) =





r(xi) if π(xi) = j

1− r(xi) if π(xi) = j + 1

0 otherwise

(18)

The matrix Sq(x) has N rows, each corresponding to an entry in x, and M + 1 columns associated

with the bin boundaries defined in q. The SLT (Eq. 17) is eventually a linear representation of a signal

x where the basis functions are linear splines. A unique property of the SLT is the substitution property:

Proposition: Substituting the boundary vector q with a different vector p performs a piecewise linear

mapping of the values in x:

Mq,p{x} = Sq(x)p

where Mq,p{x} is such that values {x ∈ [qj−1, qj)} are mapped linearly to the interval [pj−1, pj). This

means that for every α ∈ [0, 1), and j ∈ {1, 2, . . . M} the value x = αqj + (1 − α)qj−1 is mapped to

Mq,p{x} = αpj + (1− α)pj−1 (see Figure 1-right for an illustration of such a mapping).

The substitution property is the key principle behind the approach suggested in this paper. Namely,

expressing a family of non-linear MFs in a linear matrix form. This, in turn, enables a simple optimization

of the MFs as a solution to a linear set of equations. Thus, if we are willing to approximate general

non-linear maps as piece-wise linear maps, we can obtain the optimal (piece-wise linear) map. Note that

one may always use a finer quantization grid that will result in a better approximation of the desired

optimal map.

V. ESTIMATING THE MAPPING FUNCTIONS

Consider the restoration scheme in the over-compete domain and recall that our main goal is to find

a vector of MFs ~MB = [M1
B,M2

B, · · ·] that would best restore x from yB using Eq. 13:

x̂(y) = (BT B)−1BT ~MB{yB} = (BT B)−1
K∑

k=1

BT
k Mk

B{yBk
} (19)

If we are willing to restrict our MFs to be a piecewise linear map we may apply the substitution

property of the SLT and obtain

Mk
B{yBk

} ≈ Mqk,pk
(yBk

) = Sqk
(yBk

)pk
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where Mqk,pk
describes the piecewise linear approximation of the mapping Mk

B . Using Eq. 19, the

resulting image is then given by:

x̂(y) = (BT B)−1
K∑

k=1

BT
k Sqk

(yBk
)pk = L(yB)p (20)

where now p is a K(M + 1) dimensional column vector constructed by stacking all pk vectors together

and L(yB) is composed of all the SLT matrices:

L(yB) = (BT B)−1
[
BT

1 Sq1(yB1) BT
2 Sq2(yB2) · · · BT

KSqK
(yBK

)
]

(21)

Note that in the undecimated transform cases, the term BT
k Sqk

(yBk
) can be calculated efficiently by

applying a 2D convolution to each of the images composing the columns of Sqk
(yBk

).

The off-line step of the proposed scheme aims at learning the optimal MFs to be applied. Namely, the

goal is to find, for each k, the optimal pk vector that together with the qk vector defines the piecewise

mapping functions Mqk,pk
. In the proposed scheme, the MFs are trained from an example set of clean

signals {xe} that are given along with their noisy counterparts {ye}. For simplicity, we first assume that

a single signal xe is given as an example along with its noisy version ye. The optimal (piecewise) MFs

are obtained using a curve-fitting approach minimizing a LS criterion:

p̂ = arg min
p
‖x̂(ye)− xe‖2 (22)

Substituting Eq. 20 into the above equation gives rise to a closed form solution:

p̂ =
(
LT L

)−1
LTxe where L = L(ye

B) (23)

The above solution provides the optimal K MFs to be applied to the K wavelet bands respectively. In

fact, the resulting MFs are designed to optimally reconstruct the clean example from its noisy counterpart.

The obtained MFs are then used for denoising new signals that are assumed to have similar statistical

characteristics as the training example (signal and noise). If possible, clean and noisy examples should

be acquired prior and following to the degradation process (e.g. before and after a noisy channel, before

and after JPEG compression). Another possibility is to model the degradation model and synthetically

synthesize noisy examples from clean natural images. If both options are not available, it is always

possible to approximate the noise variance using available methods for noise estimation (e.g. [22], [7],

[35]) and synthesizing noisy images based on the estimated noise characteristics. Note, that this process

is applied only once. Additionally, it is not required to train the MFs for each possible noise variance,

since the MFs follow a scaling rule as will be elaborated in the next section.
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VI. IMPLEMENTATION CONSIDERATIONS

The proposed optimal solution was detailed in Eq. 23. However, several computational issues are

critical to the implementation of the approach. These will be addressed in this section.

Stabilizing the Solution:

The first issue is related to the kurtotic distributions of the wavelet coefficients. In such distributions the

vast majority of the coefficient values are close to zero while only a negligible fraction of the coefficients

depart from zero. This behavior may give rise to over-fitting phenomena in the higher part of the mapping

domain, where a small number of measured coefficients are available. In more severe cases there are

quantization bins without any sample values at all, and the matrix LT L in Eq. 23 then becomes singular or

ill-posed. In order to resolve this problem, one must incorporate a regularization term in the minimization

scheme. Referring to Eq. 22 we add a regularization term as follows:

p̂ = arg min
p

{
‖x̂(ye)− xe‖2 +

√
λ‖p− q‖2

}

The regularization term deviates the solution of p towards q (identity MFs), in particular in p entries

where limited or no sampled data is available. This makes intuitive sense for large coefficients because

it means they will have little shrinkage applied to them. The constant parameter λ controls the influence

strength of the regularization term. It can be easily verified that the final solution of this system gives:

p̂ = (LT L + λI)−1(LTxe + λq) (24)

where I denotes a K(M + 1) × K(M + 1) identity matrix. In order to maintain the influence of the

measured data the regularization term should be kept as small as possible. In our implementation we used

λ = (0.005N/M)2 where N is the number of image pixels, and N/M is the average number of pixels

per quantization bin. Since we used a very weak regularization strength this term influences only those

quantization bins with very few or no sampling values at all. In those bins the regularization term causes

the respective coefficients to remain untouched. In fact, the regularization term stabilizes the shape of

the MFs but its influence on the denoising performance is marginal.

Out-of-Range Coefficients:

Another issue to address is how to deal with transform coefficients whose values fall outside the domain

interval. Since the SLT transform assumes a limited range of transform coefficients, namely the range

[q0, qM ), there might be cases where the coefficients fall outside this range. In such cases, we ignore the
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influence of these coefficients on the desired solution by adding a residual term to the SLT definition

(Eq. 17):

x = Sq(x)q + h

where the residual term h contains all entries in x whose values are outside the range [q0, qM ). In our

restoration scheme this gives:

Mqk,pk
{ye

Bk
} = Sqk

(ye
Bk

)pk + he
k

Inserting this term into Eq. 20 gives:

x̂e = Lp + h̃e where h̃e = (BT B)−1
∑

k

BT
k he

k (25)

This also updates the final solution which now reads:

p̂ = (LT L + λI)−1(LT (xe − h̃e) + λq) (26)

Accordingly, during the restoration process, the piece-wise mapping functions are applied only to

in-range coefficients while out-of-range coefficients are left untouched.

Multiple Examples and Memory Allocation:

In the previous sections it was assumed that a single example image, xe, was used to learn the MFs.

In practice, however, a single image may not deliver the correct properties of the underlying statistics.

Hence, it is preferable to learn the MFs from several images. Adding more images into the system can be

implemented easily by concatenating all image equations together into a single equation and proceeding

as above. If there are R example images denoted xe
1 · · ·xe

R, Eq. 25 is extended to:

Lip + h̃e
i = x̂e

i for i = 1 · · ·R

where Li and h̃e
i are calculated as defined above for a single image. The solution p̂ minimizing the LS

cost function:

p̂ = arg min
p

{
R∑

i

‖x̂(ye
i )− xe

i‖2 +
√

λ‖p− q‖2

}

gives rise to the following solution which replaces Eq. 26 above:

p̂ =

(
R∑

i

(Li
T Li) + λI

)−1 (
R∑

i

Li
T (xe

i − h̃e
i ) + λq

)

Note that the dimensions of Li
T Li is K(M + 1) × K(M + 1) where commonly K(M + 1) << N .

Therefore, implementing the above solution needs only a memory capacity on the order of (KM2) which
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is independent of the number of images. This scheme can also be implemented with a single image if

its size is too large. In such a case, the image is split into several sub-images, and each sub-image is

treated as a separate image.

Exploiting the Symmetry of Mapping Functions

The marginal distributions of the wavelet coefficients are known to be symmetric, i.e. Pi(xi) = Pi(−xi).

This induces symmetric MFs as well. Exploiting this fact, it is possible to limit the SLT interval to include

only the positive part of the mapping domain. In this case the q values are all positive: q = [q0 · · · qM ]

where q0 = 0. The SLT equation x = Sq(x)q + h is still correct if the definition of Sq(x) is modified

as follows:

[Sq(x)](i, j) =





sign{xi} r(xi) if π(|xi|) = j

sign{xi} (1− r(xi)) if π(|xi|) = j + 1

0 otherwise

There are two advantages using the new definitions. First, the size of the linear system to be solved is

half the size of the original system, enabling more efficiency in memory allocation. Second, pulling more

pixel values to the available bins stabilizes the solution and reduces the chance of over-fitting.

Quantization Bins

An important parameter in the proposed scheme is the number of quantization bins used in the SLT. The

greater the number of bins used, the more flexibility we gain for the generated MFs (although at the

expense of computational burden). It was experimentally demonstrated that relatively few quantization

bins (15 bins in our experiment settings) produce superior results that are very close to the asymptotic

quality (see results in Section VII). Additionally, since small wavelet values are much more probable that

higher values, it is preferable to implement a non-uniform quantization where quantization boundaries are

populated more densely in the lower part of the mapping domain. In our experiments, we implemented

a polynomial scaling to a set of quantization values {tj} which was produced by uniformly dividing a

unit interval, such that each tj ∈ [0, 1] is mapped to qj ∈ [a, b] by applying qj = tβj · (b − a) + a, for

β > 1. It is also possible to develop an iterative scheme for optimal sampling similar to the Lloyd-Max

scheme [18], however this extension is outside the scope of this paper.



15

VII. RESULTS

In order to demonstrate the advantages of the proposed approach and to indicate the source of

improvements, we compare the de-noising results using three different schemes:

• Method 1 (transform domain - independent bands): A set of MFs is optimized in the transform

domain. The optimization is applied to each band independently, minimizing the objective function:

εk = ‖xe
Bk
−Mk

B{ye
Bk
}‖2

where ye
Bk

= Bkye and similarly xe
Bk

= Bkxe. In the case of piecewise linear mapping functions

the above minimization gives:

pk = (ST
k Sk)−1ST

k xe
Bk

∀ k

where we define Sk = Sqk
(ye

Bk
). Using this method, the solution ignores the statistical dependencies

that exist between wavelet coefficients. Note that this minimization criterion is in accord with the

traditional shrinkage approaches [10], [6], [41] with the exception that the MFs are optimized here

in a LS sense.

• Method 2 (spatial domain - independent bands): A set of MFs is optimized in the spatial domain.

The objective term for this method reads:

εk = ‖BT
k xe

Bk
−BT

k Mk
B{ye

Bk
}‖2

This minimization gives rise to the following solution:

pk = (ST
k BkB

T
k Sk)−1ST

k BkB
T
k xe

Bk
∀ k

Note, that the objective criterion is expressed in the spatial domain, yet, the MFs are evaluated for

each band independently. Thus, while within-band dependencies are considered through the backward

projections, inter-band dependencies are ignored.

• Method 3 (spatial domain - joint bands): The scheme suggested in this paper (Sec. V) where the

objective goal is expressed in the spatial domain:

ε = ‖xe − (BT B)−1
∑

k

BT
k Mk

B{ye
Bk
}‖2

and the solution is given in Eq. 23. In this scheme the MFs are evaluated simultaneously while

taking into account inter-band as well as intra-band dependencies.
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Fig. 2. Left: The images on which the denoising schemes were tested. From left to right top down: BARBARA, BOAT,

FINGERPRINT, HOUSE, LENA, PEPPERS. Right: The images on which the MFs were trained.

It is easy to verify that for unitary transforms, the three methods listed above eventually coincide and

express identical objective functions. This is not the case, however, in the over-complete scheme.

The above methods were tested and compared using a set of experiments. In all the experiments

described below, we used the undecimated windowed Discrete Cosine Transform (DCT) as the image

transform. Since the undecimated DCT is a tight frame, the term (BT B)−1 in Eq. 21 can be ignored,

enabling efficient implementation. Note that due to the undecimated form, each wavelet band can be

calculated using a single 2D separable convolution (with the corresponding DCT basis as the convolution

kernel). Additionally, the inverse transform can be applied by convolving the rectified coefficients with

the kernels forming BT
k which are the reflected (180 degree rotation) DCT kernels.

In the following experiments, unless mentioned otherwise, the setting parameters were defined as

follows: (1) Test images were taken from Figure 2-left. (2) Training was performed on the top-right

image of Figure 2-right. (3) Transform basis was the undecimated 8× 8 DCT. (4) The noise consists of

additive Gaussian noise with a s.t.d. of 20 gray levels.

Figure 3 displays some of the MFs obtained for an 8×8 DCT basis, using the three methods described

above. MFs on each row correspond to band indices (i, i) of the 8× 8 DCT basis, where i = 2..6 (left

to right). Note, that a DCT bands with index (i, j) is a result of convolving the image with a DCT basis

whose frequency is i along the x-axis and j along the y-axis. The top and the middle rows show the

MFs resulting from the 1st and the 2nd methods, respectively. It can be seen that these MFs generally

resemble the shrinkage shapes of the traditional MFs. The MFs shown in bottom row present the results
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Fig. 3. Comparison of the produced MFs using Method 1 (top row), Method 2 (middle row), and Method 3 (bottom row).

MFs on each row correspond to band (i, i) of the 8 × 8 DCT basis, where i = 2..6 (left to right). Graph axes are shown in

the range [-120,120].

of the 3rd method. In contrast to the previous methods, here, the MFs produced do not necessarily retain

monotonicity and have portions in which positive coefficients are mapped to negative values and portions

in which negative coefficients are mapped to positive values, producing regions of negative slope.

The obtained MFs were tested on several images shown in Figure 2-left. These images are commonly

used as test cases for denoising algorithms1. Figure 4 compares the resulting PSNR for each one of the

described methods. The figure is composed of 6 clusters of bars, each of which compares the denoising

results of a particular image. Each bar presents the denoising results averaged over 10 realizations of

noise with a s.t.d. of 20 gray levels. The results demonstrate the improvement of the 2nd method over the

1st method, and the superiority of the 3rd method over the other two. Note that the traditional approaches

which optimize the MFs in the transform domain are analogous to the 1st method. It can be seen that

most of the improvement is achieved due to formulating the objective in the spatial domain (Method 2).

Further improvement, although less significant, is achieved when incorporating the band dependencies

into the solution (Method 3). Examples of denoised images after applying Method 3 are shown in Figure

5.

1Taken from http : //decsai.ugr.es/javier/denoise/test images/index.htm
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Fig. 4. PSNR after applying the MFs produced by methods 1-3. Each bar is an average over 10 different noise realizations.

Running time for the training phase depends, of course, on the size of the example image (or images).

In a typical setup, the run time for producing 64 MFs (8 × 8 DCT basis) which were trained on a

1K × 1.5K image was 4.2 minutes. The program was implemented in Matlab and run on a 1.7 GHz

Pentium processor. Applying the 64 MFs to denoising a 512× 512 image required 18 sec.

A. The Non-monotonic Mapping Functions

The non-monotonicity and in particular the sign-change in the MFs of Method 3 (Figure 3 bottom row)

are surprising results that were not reported in previous studies. Since this behavior was not observed

in Methods 1 and 2, it can be concluded that this phenomena is due to the inter-band dependencies that

are taken into account only in Method 3. An explanation for this behavior is illustrated in Figure 6. For

demonstration purposes we assume a two-valued signal x ∈ <2. A signal x is represented in a unitary

transform domain whose bases are the (u, v) axes. Thus, the signal is denoted by a point in the (u, v)

plane (see Figure). In analogy to the wavelet transform we assume a signal prior of sparse characteristic

in the transform coefficients. Therefore, a non-noisy signals are expected to be located within the shaded

area extending along the main axes. In this illustration, the true signal x is located on the u-axis and

marked by a white dot. Due to additive noise the acquired signal y is measured outside the shaded area

denoted by the black dot. Denoising the measured signal using classical shrinkage operations in the (u, v)

domain (using e.g. the hard thresholding MFs) results in a new signal whose u-component is shrunk to

zero and the v-component is left untouched (due to its large value). This indeed produces the desired
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Fig. 5. Some examples of de-noised images. The images in the top row were contaminated with white noise with a s.t.d. of

20 gray-levels. The reconstructed images are shown on the bottom row.

solution. Consider now the case where the unitary transform is extended to form a shift-invariant system

forming an over-complete transform. An additional unitary transform is appended whose basis vectors

are composed of spatially shifted versions of the original transform basis. This additional transform can

be viewed in our 2D example by the (u′, v′) basis which is obtained by an axes rotation about the origin

(due to its unitarity). Applying classical shrinkage operations to the new transform coefficients provides a

signal correction which can handle corrupted signals proximal to the new axes as well (shift invariance).

However, this advantage comes with a drawback: Since the two transforms interfere with each other,

in some cases the new estimation is inferior to that obtained with a single unitary transform. In our

example, denoising the measured signal in the (u, v) transform produces the white dot, while denoising

in the (u′, v′) transform does not affect the signal (since both coefficients are large enough). Thus, the

estimation using the over-complete transform, will result in a signal which is the arithmetic mean of

the white and black dots 2. This estimation is inferior to the previous estimation given by the original

unitary transform. The sign change in the MFs as obtained by our numerical optimization solves this

problem; The MFs of the (u, v) transform now modify the u-coefficient by negating its value (gray dot).

2It can be easily verified that the pseudo-inverse of a set of unitary transforms is equivalent to the arithmetic mean of the

individual transform inverses.
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The arithmetic mean between the (u, v) transform estimation and the (u′, v′) estimation (black dot) is

now located again within the shaded area. Note, that due to symmetry, this behavior is carried out for

signals along the (u′, v′) axes as well, providing the shift-invariant characteristics.

u

u’v’

clean signal x
new-MFs

noisy signal y

v

Fig. 6. A 2-valued clean signal is represented by the white dot in a unitary transform domain (u, v). The noisy signal is

represented by the black dot. An additional unitary transform is represented by the (u′, v′) axes. Applying the sign-changing

MFs to the noisy signal in both transforms (over-complete) results in the clean signal (see text).

B. Comparison with Other Methods

The proposed approach was tested on the images presented in Figure 2-left which were contaminated

with Gaussian white noise under various noise levels. The resulting PSNR are shown in Table I. The

transform used in this table was the undecimated 9x9 DCT. Although the transform used is not optimal

for natural images and the training image was chosen arbitrarily, the PSNR obtained presents high

quality results. These results were compared to the Bayes Least-Squares Gaussian Scale Mixture (BLS-

GSM) approach suggested by Portilla et. al. [34] and considered the state-of-the-art in image denoising.

The comparison results are shown in Figure 7 for each image independently. It is demonstrated that the

proposed method presents comparable results with the BLS-GSM method. In low noise variance scenarios

the suggested method marginally outperforms BLS-GSM in almost all images, and in more severe noise

cases (15 s.t.d. and above) the BLS-GSM demonstrates marginally better performance.

C. The Role of Noise Variance

The influence of the noise variance on the obtained MFs can be seen in Figure 8-left. Similar to

the classical hard/soft thresholding MFs, the profiles of the produced MFs scale down when the noise
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Noise s.t.d. BARB. BOAT FGRP. HOUSE LENA PEPPERS256

1 48.71 48.44 48.41 49.11 48.50 48.46

2 43.69 43.01 42.94 44.40 43.43 43.22

5 38.07 37.00 36.55 39.12 38.48 37.63

10 34.19 33.49 32.27 35.53 35.37 33.84

15 31.95 31.55 29.94 33.52 33.47 31.73

20 30.36 30.19 28.36 32.11 32.10 30.20

25 29.09 29.11 27.15 30.95 31.02 29.04

TABLE I

RESULTING PSNR FOR VARIOUS NOISE LEVELS. THE TRANSFORM USED WAS THE UNDECIMATED 9X9 DCT. THE

MFS WERE TRAINED ON THE TOP-RIGHT IMAGE IN FIGURE 2.

variance decreases and scale up when the variance increases. The amount of scaling was experimentally

shown to follow linearly with the relative increase/decrease in the noise variance. Thus, if a particular

MF Mσ0{v} was obtained for noise variance σ0, the MF for noise variance σ is expected to be

Mσ{v} = sMσ0{
v

s
} where s =

σ

σ0
(27)

This scaling property is very useful as one can estimate the noise variance of a given image using

MAD or other available methods (e.g. [22], [7], [35]) and then apply an appropriately scaled MF set for

denoising. An example of two sets of MFs, superimposed on the same plot, one for the σ = 20 s.t.d. and

the second for σ = 10 s.t.d. scaled by 2, are shown in Figure 8-right. It is demonstrated that the two MFs

coincide almost perfectly and are difficult to distinguish. For more extensive experiments demonstrating

the scaling relation between the MFs the reader is referred to [19].

D. The Training Images

The resemblance between the training images and the target noisy images plays a role in the denoising

quality. The influence of this factor is demonstrated in Figure 4 where the PSNR result of the FINGER-

PRINT image is worse for Method 3 than for Method 2. The main reason for this result is that the training

image in this experiment (top-right image of Figure 2 ) does not seem to be a good representative for the

textured FINGERPRINT image. In order to verify this claim, we tested again the results of Method 3, this

time with a training image that is more “similar” to FINGERPRINT (actually we used the FINGERPRINT
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Fig. 7. Comparison between the proposed method and the BLS-GSM method for various noise levels. Dark bars: The porposed

method. White bars: The BLS-GSM method.

image rotated by 180◦). The results are given in Figure 9-left. This plot shows that for all but the

FINGERPRINT image the resulting PSNR are significantly worse, however, for the FINGERPRINT image,

training on a similar textured image exhibits an increase in the resulting PSNR of 0.3 db.

The middle diagram in Figure 9 presents a set of resulting PSNR using 8 different MFs, each of which

was trained on a different natural image taken from the set shown in Figure 2-right. In this experiment

the choice of the trained natural image influenced the resulting PSNR by up to 0.6 db. reflecting the

role of the training images on the resulting quality. However, this dependency can be significantly lessen

by increasing the number of images included in the training set. The diagram in Figure 9-right shows

the resulting PSNR using MFs that were trained on several images. The training images were the same

images that were used in the middle plot, however this time the MFs were generated using different

numbers of training images ranging from 1 to 8 (left-to-right bars). It is demonstrated that in general the

resulting PSNR moderately increases as the number of training images grows. Furthermore, the PSNR

fluctuations due to the selection of trained images are drastically reduced.
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Fig. 8. Left: MFs produced using Method 3 for various noise levels. MFs on each row correspond to band (i,i) of the 8×8 DCT

basis, where i = 2..6 (left to right). The noise levels were of 5, 10, 15, and 20 s.t.d. from top row to bottom row, respectively.

Graph axes are shown in the range [-120,120]. Right: A comparison between the MFs produced for 20 s.t.d. (red line) and

10 s.t.d. scaled by 2 (black line). The MFs shown are for DCT bands [2..4] × [2..4]. The graph axes are shown in the range

[−120, 120]. The two graphs coincide almost perfectly and hard to distinguish.

E. The Transform Used

Previous studies demonstrated the benefit of using particular transforms, such as steerable pyramids,

curvelets, and contourlet [41], [42], [9], as being more appropriate for modeling natural images. Recent

approaches customize the transform used to the noisy image and adaptively learn the transform basis

[14]. The scheme presented in this paper is general, and can work with any given transform or any set of

filters. In all our experiments we used the undecimated DCT transform with various window sizes. As it
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Fig. 9. Left: Comparison results for denoising images using method 3 where the training images were: FINGERPRINT rotated

by 180◦ (gray bars) and a natural image (black bars). Middle: The PSNR of denoised images using MFs that were trained on

various natural images shown in Figure 2. The transform used was DCT 8 × 8. The contaminated noise was Gaussian noise

with 20 s.t.d. gray-levels. Right: The PSNR of denoised images v.s. the number of training images on which the MFs were

trained. Each group of bars shows the PSNR arising from different sized training sets, ranging from 1 to 8 (left to right).
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Fig. 10. Left: The resulting PSNR v.s. DCT window size. Right: The resulting PSNR v.s. the number of quantization bins used

for the MFs. The transform used was the undecimated 5x5 DCT. The results are shown for various images with noise s.t.d.=10.

was shown above, the results obtained demonstrate quality comparable with the state-of-the-art methods.

It is expected that further improvement can be achieved if other, more appropriate, transforms are used.

Figure 10-left presents the denoising results using the undecimated DCT transform with various window

sizes. It is shown that the optimal size of the DCT window may vary from image to image. The choice

of the most appropriate transform for a given image is still an open problem.

F. Number of Quantization Bins

Figure 10-right shows the resulting PSNR v.s. the number of quantization bins used. It is shown

that about 15 quantization bins are sufficient for high-quality results and that finer quantization does

not significantly improve the results. This behavior is a direct outcome of the smooth manner of the

optimal MFs. It also strengthens the rationale behind modeling the MFs as piece-wise linear functions.

In all other experiments reported in this paper we used 15 quantization bins to define the piece-wise

mapping functions. Additionally, since small wavelet values are much more probable than higher values,

we implemented a non-uniform quantization as described in Section VI.

G. Other Reconstruction Problems

The approach described in this paper is presented in the context of image denoising, where the

contaminated noise is assumed to be Gaussian. However, since the approach does not require any modeling

of the image statistics nor of the noise, it can be seamlessly applied in other reconstruction problems and

with different types of noise characteristics. As long as the reconstruction process involves applying scalar
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Fig. 11. Left: The LUTs that were learnt to sharpen images blurred with a 5-tap Gaussain kernel. The filters used were 8x8

DCT. The MFs shown are for the DCT bands whose indices are: [3..6] × [3..6] (left to right × top to bottom). The scaling

factor of each graph is indicated by the dotted lines, plotted at values [−20 0 20] for each axis. Right: The LUTs that were

learnt from JPEG-compressed BARBARA with quality=30. The filters used were DCT 8x8. The LUTs shown are for the DCT

bands whose indices are [3..6]× [3..6] (left to right × top to bottom). Graph axes are shown in the range [−60, 60].

look-up-tables in the transform domain, optimal MFs can be obtained. One only needs to provide pre-

degradation and post-degradation images. This section presents some examples of applying the suggested

approach to other reconstruction problems, namely: removing JPEG artifacts, and image de-blurring.

These examples are given in order to demonstrate the concept with no comparative study.

In the first experiment we attempted to de-blur images using a set of look-up tables (LUTs) applied to

undecimated DCT transform coefficients. The LUTs were trained on the image LENA after it was blurred

with a 5-tap Gaussian. A partial set of the produced LUTs are given in Figure 11-left. The full set of

LUTs were applied to a blurred version of BARBARA (same blurring parameters). A close-up view of

the de-blurred BARBARA is given in Figure 12. The resulting image demonstrates promising sharpening

performance with relatively low Gibbs artifacts.

In the second example the LUTs were trained to reduce severe JPEG artifacts. In this experiment

the image BARBARA served as the training image and LUTs were applied to LENA. The “noise” was

generated by JPEG-compression with quality parameter set to 30%. A partial set of the LUTs are shown

in Figure 11-right. The JPEG artifacts of the compressed image are presented in Figures 13-left and

in a close-up view in Figure 14-left. The artifact removal after applying the learnt LUTs are shown in

Figure 13-right and Figure 14-right. The quality of the reconstruction is self-evident. It is interesting to
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Fig. 12. Blurred BARBARA after applying a 5-tap Gaussian blur. Right: Sharpened BARBARA using LUTs that were trained

on blurred LENA using 8x8 over-complete DCT.

mention the resemblance of the proposed approach to that of Nosratinia [29]. Nosratinia suggested a

useful technique for denoising JPEG images by re-applying the JPEG Q-table to shifted versions of the

un-compressed image. This technique can be described identically by applying marginal LUTs to the

8× 8 undecimated-DCT coefficients. In contrast to Nosratinia’s approach, the suggested scheme enables

the design of a new set of LUTs that are optimized to produce the best results.

VIII. DISCUSSION AND CONCLUSIONS

This paper suggests a new and simple scheme for wavelet denoising relying on a discriminative

framework. One main advantage of the proposed technique is that the shrinkage functions are optimized

directly with respect to a set of example images, eliminating the need for modeling complex statistical

priors in high dimensional space. The existence of a statistical prior of natural images is a standard

assumption in image processing, and there are several competing models for that prior (e.g. [36], [16],

[40]). Using the suggested scheme, however, we do not need to select between alternative priors, but

merely assume a prior exists. Another important generalization in the proposed approach is that there is

no need to model the statistical characteristics of the noise, as opposed to most alternatives that typically

resort to the easily modeled white Gaussian noise. In contrast, we only assume the existence of a noise

model and the technique performs similarly whether the true noise is simple white Gaussian or more

complex (e.g. JPEG noise). Thus, our approach can be applied seamlessly to other degradation processes,
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Fig. 13. Left: JPEG artifacts after compressing LENA with JPEG quality=30. Right: Artifact removal using LUTs that were

trained from JPEG-compressed BARBARA using the 8x8 DCT.

Fig. 14. Top: A zoom-in of LENA JPEG artifacts. Bottom: A zoom-in of the artifact removal using the proposed method.

as long as the restoration process relies on marginal rectification of transform coefficients. The suggested

scheme produces optimal solution with respect to several aspects:

• An optimal set of scalar MFs (in LS sense) is generated for over-complete transforms taking into

account intra-band and inter-band dependencies. As far as we know, previous scalar MF-based

techniques ignore these dependencies, as they complicate the statistical models.

• The optimality is expressed in the spatial domain, which is the domain in which the image is

perceived. Whereas working in the spatial domain might pose a significant hurdle in the descriptive

approach, in the proposed model the restriction to the spatial domain posed only a computational

burden.

As emphasized above, the suggested scheme is based on marginal rectification of transform coefficients,

namely the MFs are scalar look-up-tables. This restriction is the main limitation of the proposed scheme
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as possible dependencies on other coefficients cannot be considered adaptively (on-line). This restriction

can be relaxed by applying multivariate MFs, possibly approximated by embedding quantization bins

in higher dimensional spaces. However, since the number of boundary variables increases exponentially

with dimensionality, a naive extension is impractical and some sort of dimensionality reduction must be

applied. We leave this extension for future work.

Another limitation of the developed scheme is that it relies on the assumption that the noise char-

acteristics are homogeneous. This noise model, although standard in many applications, is imprecise in

some real-world scenarios where the noise variance is spatially dependent. An extension of the proposed

technique would be to apply an adaptive set of MFs that are scaled adaptively according to the estimated

local noise variance.

There are two important issues that were not dealt with in this paper and should be further investigated.

The first issue concerns the relation between the transform used and the quality of the denoising results.

Clearly, the applied transform plays an important role in the resulting quality (Section VII-E). The

transform used should be influenced by the image characteristics as well as the type of contaminating

noise. The choice of transform (or set of filters in the case of undecimated transforms) that produces the

best results is still an open question.

The second open issue concerns the selection of training images. For simplicity, in this paper we have

arbitrarily chosen natural images for training. This option is reasonable when knowledge about the target

images is unknown a-priori. However, for better results, an attempt should be made to match the test

and the training images. Thus, MFs for cartoon type images, for example, should be trained on cartoon

examples and MFs trained on a particular texture should be applied to similarly textured images.
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