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A Discriminative Approach for Wavelet Denoising
Yacov Hel-Or and Doron Shaked

Abstract—This paper suggests a discriminative approach for
wavelet denoising where a set of mapping functions (MFs) are
applied to the transform coefficients in an attempt to produce
a noise free image. As opposed to the descriptive approaches,
modeling image or noise priors is not required here and the MFs
are learned directly from an ensemble of example images using
least-squares fitting. The suggested scheme generates a novel set
of MFs that are essentially different from the traditional soft/hard
thresholding in the over-complete case. These MFs are demon-
strated to obtain comparable performance to the state-of-the-art
denoising approaches. Additionally, this framework enables a
seamless customization of the shrinkage operation to a new set
of restoration problems that were not addressed previously with
shrinkage techniques, such as deblurring, JPEG artifact removal,
and various types of additive noise that are not necessarily
Gaussian white noise.

Index Terms—Image deblurring, image denoising, JPEG arti-
fact removal, shrinkage, wavelet.

I. INTRODUCTION

MANY imaging devices that acquire or process digital im-
ages introduce artifacts in the processing pipeline. These

artifacts include additive noise, image blurring, compression ar-
tifacts, missing pixels, geometric distortions, etc. Image restora-
tion is an attempt to reduce such artifacts using postprocessing
operations. One important topic in image restoration deals with
image denoising, where noisy observations of images are at-
tempted to be cleaned. In this paper, we focus on denoising im-
ages contaminated with additive noise whose statistical distri-
bution is known. Consider a noisy image

(1)

where is the observed image, the unknown original image
and the contaminating noise (all in vector notation). The goal
is to reconstruct the original image given the noisy measure-
ment . This problem is a typical instance of an inverse problem
where the solution must consider prior knowledge of the distri-
bution of . Hence, the prior distribution of natural images or
of any other specific class of images plays a key role in any de-
noising approach.

A common approach for modeling the statistical prior of
natural images is to estimate their statistical distribution in a
transform domain. This is often implemented using some type
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of wavelet transform. The main motivation for this approach
stems from the observation that the wavelet transform of nat-
ural images tends to reduce coefficient dependencies [1]–[4].
Hence, it is possible to make a reasonable inference about the
joint distribution of the wavelet coefficients from their marginal
distributions. When dealing with image denoising, this leads to
a family of classical techniques known as the wavelet shrinkage
methods introduced by Donoho and Johnstone in 1994 [5]–[7].
These techniques amount to modifying the coefficients in the
transform domain using a set of scalar mapping functions,

, called mapping functions (MFs). The MFs are also
known as shrinkage functions since they commonly apply an
adaptive shrinking operation to the transform coefficients. The
shrinkage approach is comprised of a wavelet transform

(2)

followed by a correction step in which the wavelet coefficients
are rectified according to a set of MFs

(3)

where is a vector of scalar mapping
functions. The denoised image is obtained by applying the in-
verse transform to the modified coefficients

(4)

Due to their simplicity and good results, shrinkage ap-
proaches have received a great deal of attention over the last
decade. Hundreds of shrinkage methods have been proposed
differing mostly in the type of transform used and in the form
in which the MFs are applied. The justification for applying
a marginal (scalar) MF to each coefficient independently can
be shown to emerge from the independence assumption of the
wavelet coefficients where the noise is modeled as white and
Gaussian. This assumption was postulated in the early studies
in which MFs were applied to unitary transforms.

Since the pioneering work of Donoho and Johnston, various
efforts have been made to improve the denoising results of
wavelet based methods. Such efforts generally concentrated on
two main directions. The first direction attempts to improve the
results by abandoning the unitary representation and working
in over-complete transform domains. Such transforms include
undecimated wavelets [8], steerable wavelets [9], and other
recently developed transforms, such as ridgelets [10]–[12],
contourlets [13], [14], curvelets [15], and image dependent
transforms [16]. These transforms were shown to better repre-
sent natural images in the sense that their coefficients exhibit
better sparsity. Additionally, the over-completeness was shown
to significantly improve denoising results in addition to having
shift-invariant performance. Although the independence as-
sumption can no longer be justified in the over-complete
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domain, most of the conventional methods naively borrowed
the traditional MFs from the unitary case.

The second direction towards improvement relaxed the inde-
pendence assumption of the signal’s wavelet coefficients and
concentrated on modeling the statistical dependencies between
neighboring coefficients. This scheme can be seen as diverging
from the scalar MFs to multivariate MFs where transform
coefficients (an individual or a group) are rectified according to
a group of measured coefficients. Intercoefficient dependencies
are exploited using any of a range of techniques, such as
the joint sparsity assumption [17], [18], HMM and Bayesian
models [19]–[23], context modeling [24], [25], tree models
representing parent-child dependencies [26], co-occurrence
matrix [27], adaptive thresholding [28], [29], geometrical prior
models [30], and more. These types of techniques achieve very
good denoising performance; however, they generally lack the
efficiency and simplicity of the classical shrinkage approaches.

Common to all the conventional techniques for generating
MFs, regardless of the approach used, is that the MFs are de-
rived in a descriptive manner. Namely, a statistical model is first
constructed describing the statistical prior of the transform co-
efficients. Based on this prior, a set of MFs are derived (scalar or
multivariate, parametric or nonparametric) which are designed
to rectify the contaminated coefficients. Clearly, imprecise mod-
eling of the statistical prior directly leads to a deterioration in
the resulting performance. Because intercoefficient dependen-
cies are too complicated to model, in particular, in the over-com-
plete case, it is expected that the statistical models are far from
precise. And indeed, due to the high dimensionality of the joint
probability, ad-hoc assumptions have been commonly made in
order to make the problem tractable. Such assumptions include,
e.g., ignoring the intercoefficient dependencies (e.g., [5] and
[9]), modeling only bivariate or parent-child dependencies (e.g.,
[26]), and modeling the joint dependencies of a small group
of neighboring coefficients but assuming simplified parametric
models (e.g., [25]).

This paper suggests a new scheme for designing a set of MFs
using a discriminative framework. In contrast to the conven-
tional approaches, this technique does not require any estima-
tion of the prior model nor the noise characteristics. Rather, a
set of MFs is constructed using an ensemble of example images
whose clean and contaminated versions are supplied offline. The
MFs are designed to perform “optimally” with respect to the
given examples, under the assumption that they will perform
equally well with similar new examples.

The suggested approach retains the traditional scalar MFs that
are applied to each wavelet coefficient independently. Never-
theless, although the MFs are applied in a marginal manner,
their construction is affected by intercoefficient dependencies.
In fact, it is shown that the obtained MFs differ essentially from
the conventional monotonic hard/soft thresholding functions.
Moreover, despite the fact that scalar MFs are used, the de-
noising results are comparable and sometimes even better than
the state-of-the-art multivariate prior based techniques. Thus,
the suggested approach, while maintaining the simplicity and
efficiency of the scalar shrinkage approaches, typically does not
compromise the resulting quality.

The advantages of the proposed scheme stem, in part, from
the following characteristics.

• First, the MFs are constructed in an optimal manner taking
into account intercoefficient dependencies. Although the
MFs apply nonlinear operations, their construction is per-
formed in a closed form solution using a spline based rep-
resentation.

• The second source of improvement stems from the op-
timality criteria applied in this method. While most
shrinkage approaches construct the MFs using the MAP
criterion that rely on imprecise prior models, the proposed
method uses a least-squares (LS) scheme approximating
the MFs directly from an example set. Thus, the suggested
scheme avoids the need for modeling complex statistical
prior in high-dimensional space.

• The third source of improvement is due to the domain in
which the optimality criterion is preferably performed. In
the suggested method, the objective goal is expressed in the
spatial domain, which is the domain within which images
are perceived. Most wavelet shrinkage approaches use op-
timality criteria expressed in the wavelet domain. While a
transform-domain optimization criterion is justified in uni-
tary transforms, it does not properly extend to over-com-
plete transforms. Furthermore, it can be shown that the op-
timal solution in the over-complete transform domain does
not guarantee optimality in the spatial domain (see Ap-
pendix in [31]).

The approach suggested in this paper is presented in the con-
text of denoising. However, using the proposed discriminative
framework, other reconstruction problems that were not previ-
ously addressed with shrinkage approaches, can be dealt with
seamlessly, as long as the reconstruction process involves scalar
look-up-tables applied in the wavelet domain. These include,
e.g., image deblurring, JPEG artifact removal, and various types
of additive noise. Some results will be shown for these cases.

The rest of the paper is organized as follows. The next two
sections describe the classical shrinkage approaches in the uni-
tary and the over-complete domains. These sections provide the
background for our proposed method. In Section IV, the slice
transform (SLT) is introduced along with its properties. Sec-
tion V presents the proposed method, and Section VI addresses
several computational issues. Simulation results as well as im-
plementations in other restoration problems are presented in
Section VII.

II. RESTORATION IN UNITARY TRANSFORM DOMAINS

The justification for using scalar mapping functions can be
shown to emerge from the MAP estimation and the indepen-
dence assumption of the wavelet coefficients. Consider a degra-
dation model as described in (1). The MAP solution is the
image that maximizes the a posteriori probability

This maximization can be expressed in the wavelet domain, as
well. Denoting a unitary wavelet transform and

, the MAP estimation gives

(5)
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Using the Bayes conditional rule and exploiting the mono-
tonicity of the function, the maximization in (5) is equiv-
alent to

(6)

The first term, , is referred to as the likelihood
term. It depends solely on the noise characteristics. In the case
of white Gaussian noise, this term reduces to

(7)

where and denote the th elements of the corresponding
vectors and is a constant depending on the noise variance. The
second term in (6), , is known as the regularization
term or the prior term as it specifies the a priori probability of
the original image . Taking into account the independence
assumption of the wavelet coefficients, the second term can be
rewritten as

(8)

Substituting (7) and (8) into (6), the overall minimization
amounts to a set of independent scalar minimizations, each of
which corresponds to a particular coefficient

(9)

The last expression gives the justification for applying a scalar
MF to each wavelet coefficient independently. Each value
is mapped to: which is given in (9). Note
that for a particular noise variance, the variations in the MFs,

, depend solely on . Furthermore, assuming the
statistics of natural images are homogeneous [32], it implies that
all wavelet coefficients belonging to a particular wavelet sub-
band share the same distribution. Namely, w.l.o.g. if a coeffi-
cient belongs to the th subband so that , we
have

and, consequently

(10)

Thus, if the wavelet transform is composed of subbands, only
distinct MFs must be evaluated. To emphasize this point and

simplify notations in the rest of the paper, we reorder the rows
of the Wavelet transform in (2) so that transform rows cor-
responding to a wavelet subband are co-located in a block.

Naturally, we extend the same reordering to . Assuming a
corresponding permutation matrix

... and ... (11)

where represents the coefficients in the th subband. In the
new reordering, a vector of MFs, ,
is applied as follows. Since is applied individually to all
coefficients in the th subband, the estimated image of (4) is
rewritten as

(12)

The main scope of this paper is the optimal estimation of the
MFs . There is a wealth of papers dealing with the esti-
mation of the MFs in the context of denoising. The early studies
of Donoho and Johnston suggested using soft thresholding or
hard thresholding as shrinkage functions [6], [7]. These can be
shown to emerge from the MAP estimation where the distri-
butions of the wavelet coefficients are generalized Gaussians
(GGD): . Soft-thresholding is a result of as-
suming a Laplacian distribution (i.e., ) while hard-thresh-
olding assumes a sharper distribution with [20], [33].
Later studies extended the thresholding approach to other distri-
butions adapting the MFs to these distributions (e.g., [9], [20],
[33]–[35]).

III. RESTORATION IN OVER-COMPLETE DOMAINS

Although the shrinkage approach using unitary transforms
provides good results, significant improvement is achieved
when implementing this technique in over-complete rep-
resentations. In most cases, this is implemented using the
un-decimated wavelet transform or any other shift-invariant
transforms (sliding local DCT, ridgelets, contourlets, steerable
wavelet, etc.). Adopting the notation of (11) for the over-com-
plete case, the image transform is given by , where

is composed of distinct subband matrices. Unlike the unitary
transform, however, the number of rows in is larger than the
dimensionality of the signal . Modifying using a vector
of MFs aims at removing the noise components.
Hence, it is assumed that

and the image is reconstructed using the pseudo-inverse

(13)

where we have
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If the transform is tight frame, (13) can be simplified due to
the fact that .

Viewing the shrinkage approach as a set of mapping func-
tions applied to each subband independently may suggest that
the MFs applied in the over-complete case are correspondingly
similar to those applied in a unitary case (9). And indeed this
attitude was broadly adopted in previous works [8], [11], [14],
[15], [36]. However, even if we may assume statistical indepen-
dence in the coefficients belonging to a unitary transform, it def-
initely cannot be extended to coefficients in the over-complete
transform where the transform coefficients are inherently depen-
dent. Thus, a new set of MFs must be designed that takes into
consideration the interband dependencies.

Another issue that causes the over-complete case to differ
from the unitary case is the domain in which the minimization
criterion is applied. To clarify this point, consider finding the
optimal MFs for the unitary case with respect to the MSE crite-
rion. Namely, finding that minimizes

where we have determined that , and
stands for the conditional expectation of given .

Whenever is unitary, this minimization can be expressed
equivalently in the transform domain, namely

However, for an over-complete transform this equality is not
valid anymore (see [31] for more details), which implies that
the optimization for should be expressed in the spatial do-
main. Due to the fact that the inverse transform couples wavelet
coefficients, spatial domain optimization is far more complex.

Although scalar MFs may no longer be justified when the
transform coefficients are mutually dependent, the superior re-
sults of applying scalar MFs in the over-complete case sug-
gest that such a scheme is still very useful in addition to its
appealing efficiency. Furthermore, in a recent paper, Elad [36]
justifies scalar MFs as being the first step in an iterative mini-
mization scheme. Justified as the optimal solution or not, there
is definitely an interest in finding the best MFs in the over-com-
plete case while considering intercoefficient dependencies. To
the best of our knowledge, the optimal design of MFs in the
over-complete domain was not discussed in the literature, and
in most cases the applied MFs were naively borrowed from the
unitary case.

This paper, presents a new scheme for image denoising in
the over-complete case, where MFs are represented in a linear
manner using a spline representation which we call a slice trans-
form. As an introduction to the proposed approach we first in-
troduce the SLT of an image. This representation will be used
in later sections to calculate the optimal MFs.

IV. SLICE TRANSFORM AND ITS PROPERTIES

Let be a real value in the half open interval
. The interval is divided into bins whose boundaries

form a vector

Fig. 1. Representing x as a quantized value and residue.

such that

The value is naturally associated with a single bin
and a corresponding normalized residue, , where

(see Fig. 1)

if

and

Note that , where if , and
if . The value can then be expressed as a

linear combination of and

(14)

Equation (14) can be rewritten in vectorial form

(15)

where is defined as an dimensional row vector as
follows:

and where the values and are located in the
and entries, respectively. We now define a vectorial

extension of (15). Let be an - dimensional vector whose
elements satisfy . The SLT of is defined as follows:

(16)

where is an matrix defined as follows (see
Fig. 1)

if
if
otherwise

(17)

The matrix has rows, each corresponding to an entry
in , and columns associated with the bin boundaries
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Fig. 2. Illustration of a piecewise linear map in accordance with the substitution
property of the SLT.

defined in . The SLT (16) is eventually a linear representation
of a signal where the basis functions are linear splines. A
unique property of the SLT is the substitution property.

Proposition: Substituting the boundary vector with a
different vector performs a piecewise linear mapping of the
values in

where is such that values are
mapped linearly to the interval . This means that
for every , and the value

is mapped to
(see Fig. 2 for an illustration of such a mapping).

The substitution property is the key principle behind the ap-
proach suggested in this paper. Namely, expressing a family of
nonlinear MFs in a linear matrix form. This, in turn, enables a
simple optimization of the MFs as a solution to a linear set of
equations. Thus, if we are willing to approximate general non-
linear maps as piece-wise linear maps, we can obtain the optimal
(piece-wise linear) map. Note that one may always use a finer
quantization grid that will result in a better approximation of the
desired optimal map.

V. ESTIMATING THE MAPPING FUNCTIONS

Consider the restoration scheme in the over-compete domain
and recall that our main goal is to find a vector of MFs

that would best restore from using (13)

(18)

If we are willing to restrict our MFs to be a piecewise linear
map, we may apply the substitution property of the SLT and
obtain

where describes the piecewise linear approximation of
the mapping . Using (18), the resulting image is then given
by

(19)

where now is a dimensional column vector con-
structed by stacking all vectors together and is com-
posed of all the SLT matrices

(20)

where we define

Note that in the undecimated transform cases, the term
can be calculated efficiently by applying a 2-D

convolution to each of the images composing the columns of
.

The offline step of the proposed scheme aims at learning the
optimal MFs to be applied. Namely, the goal is to find, for each

, the optimal vector that together with the vector de-
fines the piecewise mapping functions . In the proposed
scheme, the MFs are trained from an example set of clean sig-
nals that are given along with their noisy counterparts

. For simplicity, we first assume that a single signal
is given as an example along with its noisy version . The
optimal (piecewise) MFs are obtained using a curve-fitting ap-
proach minimizing a LS criterion

(21)

Substituting (19) into the above equation gives rise to a closed-
form solution

(22)

The above solution provides the optimal MFs to be applied
to the wavelet bands respectively. In fact, the resulting MFs
are designed to optimally reconstruct the clean example from
its noisy counterpart. The obtained MFs are then used for de-
noising new signals that are assumed to have similar statistical
characteristics as the training example (signal and noise). If pos-
sible, clean and noisy examples should be acquired prior and fol-
lowing to the degradation process (e.g., before and after a noisy
channel, before and after JPEG compression). Another possi-
bility is to model the degradation model and synthesize noisy
examples from clean natural images. If both options are not
available, it is always possible to approximate the noise variance
using available methods for noise estimation (e.g., [37]–[39])
and synthesize noisy images based on the estimated noise char-
acteristics. Note that this process is applied only once. Addition-
ally, it is not required to train the MFs for each possible noise
variance, since the MFs follow a scaling rule as will be elabo-
rated in the next section.

VI. IMPLEMENTATION CONSIDERATIONS

The proposed optimal solution was detailed in (22). However,
several computational issues are critical to the implementation
of the approach. These will be addressed in this section.
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Stabilizing the Solution: The first issue is related to the kur-
totic distributions of the wavelet coefficients. In such distribu-
tions the vast majority of the coefficient values are close to zero
while only a negligible fraction of the coefficients depart from
zero. This behavior may give rise to over-fitting phenomena in
the higher part of the mapping domain, where a small number of
measured coefficients are available. In more severe cases there
are quantization bins without any sample values at all, and the
matrix in (22) then becomes singular or ill-posed. In order
to resolve this problem, one must incorporate a regularization
term in the minimization scheme. Referring to (21) we add a
regularization term as follows:

The regularization term biases the solution of towards (iden-
tity MFs), in particular, in those entries which are associated
with bins where limited or no measured data is available for
them. This makes intuitive sense for large coefficients because
it means they will have little shrinkage applied to them. The
constant parameter controls the influence strength of the reg-
ularization term. It can be easily verified that the final solution
of this system gives

(23)

where denotes a identity matrix. In
order to maintain the influence of the measured data the reg-
ularization term should be kept as small as possible. In our
implementation, we used where is the
number of image pixels, and is the average number of
pixels per quantization bin. Since we used a very weak regu-
larization strength, this term influences only those quantization
bins with very few or no sampling values at all. In those bins, the
regularization term causes the respective coefficients to remain
untouched. In fact, the regularization term stabilizes the shape
of the MFs but its influence on the denoising performance is
marginal.

Out-of-Range Coefficients: Another issue to address is how
to deal with transform coefficients whose values fall outside
the domain interval. Since the SLT transform assumes a limited
range of transform coefficients, namely the range , there
might be cases where the coefficients fall outside this range. In
such cases, we ignore the influence of these coefficients on the
desired solution by adding a residual term to the SLT definition
(16)

where the residual term contains all entries in whose values
are outside the range . In our restoration scheme, this
gives

Inserting this term into (19) gives

(24)

This also updates the final solution, which now reads

(25)

Accordingly, during the restoration process, the piece-wise
mapping functions are applied only to in-range coefficients
while out-of-range coefficients are left untouched.

Multiple Examples and Memory Allocation: In the previous
sections, it was assumed that a single example image, , was
used to learn the MFs. In practice, however, a single image
may not deliver the correct properties of the underlying sta-
tistics. Hence, it is preferable to learn the MFs from several
images. Adding more images into the system can be imple-
mented easily by concatenating all image equations together
into a single equation and proceeding as above. If there are
example images denoted , (24) is extended to

for

where and are calculated as defined above for a single
image. The solution minimizing the LS cost function

gives rise to the following solution which replaces (25):

Note that the dimensions of is
where commonly . Therefore, implementing
the above solution needs only a memory capacity on the order
of which is independent of the number of images. This
scheme can also be implemented with a single image if its size
is too large. In such a case, the image is split into several subim-
ages, and each subimage is treated as a separate image.

Exploiting the Symmetry of Mapping Functions: The mar-
ginal distributions of the wavelet coefficients are known to be
symmetric, i.e., . This induces symmetric
MFs as well. Exploiting this fact, it is possible to limit the SLT
interval to include only the positive part of the mapping domain.
In this case, the values are all positive: where

. The SLT equation is still correct if the
definition of is modified as follows:

if
if
otherwise.

There are two advantages using the new definitions. First, the
size of the linear system to be solved is half the size of the
original system, enabling more efficiency in memory allocation.
Second, pulling more pixel values to the available bins stabilizes
the solution and reduces the chance of over-fitting.

Quantization Bins: An important parameter in the proposed
scheme is the number of quantization bins used in the SLT. The
greater the number of bins used, the more flexibility we gain for
the generated MFs (although at the expense of computational
burden). It was experimentally demonstrated that relatively few
quantization bins (15 bins in our experiment settings) produce
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Fig. 3. Images on which the denoising schemes were tested. From left to right
top down: Barbara, Boat, Fingerprint, House, Lena, Peppers.

superior results that are very close to the asymptotic quality (see
results in Section VII). Additionally, since small wavelet values
are much more probable that higher values, it is preferable to im-
plement a nonuniform quantization where quantization bound-
aries are populated more densely in the lower part of the map-
ping domain. In our experiments, we implemented a polynomial
scaling to a set of quantization values which was produced
by uniformly dividing a unit interval, such that each
is mapped to by applying ,
for . It is also possible to develop an iterative scheme for
optimal sampling similar to the Lloyd–Max scheme [40]; how-
ever, this extension is outside the scope of this paper.

VII. RESULTS

In order to demonstrate the advantages of the proposed ap-
proach and to indicate the source of improvements, we compare
the denoising results using three different schemes.

• Method 1 (transform domain—independent bands): A set
of MFs is optimized in the transform domain. The op-
timization is applied to each band independently, mini-
mizing the objective function

where and similarly . In the
case of piecewise linear mapping functions, the above min-
imization gives

where we define . Using this method,
the solution ignores the statistical dependencies that exist
between wavelet coefficients. Note that this minimization
criterion is in accord with the traditional shrinkage ap-
proaches [5], [8], [9] with the exception that the MFs are
optimized here in a LS sense.

• Method 2 (spatial domain—independent bands): A set of
MFs is optimized in the spatial domain. The objective term
for this method reads

This minimization gives rise to the following solution:

Fig. 4. Images on which the MFs were trained.

Note that the objective criterion is expressed in the spatial
domain, yet, the MFs are evaluated for each band indepen-
dently. Thus, while within-band dependencies are consid-
ered through the backward projections, interband depen-
dencies are ignored.

• Method 3 (spatial domain - joint bands): The scheme sug-
gested in this paper (Section V) where the objective goal is
expressed in the spatial domain

and the solution is given in (22). In this scheme, the MFs
are evaluated simultaneously while taking into account in-
terband as well as intraband dependencies.

It is easy to verify that, for unitary transforms, the three methods
listed above eventually coincide and express identical objective
functions. This is not the case, however, in the over-complete
scheme.

The above methods were tested and compared using a set of
experiments. In all the experiments described below, we used
the undecimated windowed discrete cosine transform (DCT)
as the image transform. Since the undecimated DCT is a tight
frame, the term in (20) can be ignored, enabling effi-
cient implementation. Note that, due to the undecimated form,
each wavelet band can be calculated using a single 2-D sep-
arable convolution (with the corresponding DCT basis as the
convolution kernel). Additionally, the inverse transform can be
applied by convolving the rectified coefficients with the kernels
forming which are the reflected (180-degree rotation) DCT
kernels.

In the following experiments, unless mentioned otherwise,
the setting parameters were defined as follows. 1) Test images
were taken from Fig. 3. 2) Training was performed on the top-
right image of Fig. 4. 3) Transform basis was the undecimated
8 8 DCT. 4) The noise consists of additive Gaussian noise
with a s.t.d. of 20 gray levels.

Fig. 5 displays some of the MFs obtained for an 8 8 DCT
basis, using the three methods described above. MFs on each
row correspond to band indices of the 8 8 DCT basis,
where (left to right). Note that a DCT band with index
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Fig. 5. Comparison of the produced MFs using Method 1 (top row), Method 2 (middle row), and Method 3 (bottom row). MFs on each row correspond to band
(i; i) of the 8� 8 DCT basis, where i = 2 � �6 (left to right). Graph axes are shown in the range [�120; 120].

is a result of convolving the image with a DCT basis whose
frequency is along the -axis and along the -axis. The top
and the middle rows show the MFs resulting from the first and
the second methods, respectively. It can be seen that these MFs
generally resemble the shrinkage shapes of the traditional MFs.
The MFs shown in bottom row present the results of the third
method. In contrast to the previous methods, here, the MFs pro-
duced do not necessarily retain monotonicity and have portions
in which positive coefficients are mapped to negative values and
portions in which negative coefficients are mapped to positive
values, producing regions of negative slope.

The obtained MFs were tested on several images shown in
Fig. 3. These images are commonly used as test cases for de-
noising algorithms.1 Fig. 6 compares the resulting PSNR for
each one of the described methods. The figure is composed
of six clusters of bars, each of which compares the denoising
results of a particular image. Each bar presents the denoising
results averaged over ten realizations of noise with a s.t.d. of
20 gray levels. The results demonstrate the improvement of the
second method over the first method, and the superiority of the
third method over the other two. Note that the traditional ap-
proaches which optimize the MFs in the transform domain are
analogous to the first method. It can be seen that most of the
improvement is achieved due to formulating the objective in the
spatial domain (Method 2). Further improvement, although less
significant, is achieved when incorporating the band dependen-
cies into the solution (Method 3). Examples of denoised images
after applying Method 3 are shown in Fig. 7.

Running time for the training phase depends, of course, on
the size of the example image (or images). In a typical setup,
the run time for producing 64 MFs (8 8) DCT basis which
were trained on a 1 K 1.5 K image was 4.2 min. The program
was implemented in Matlab and run on a 1.7-GHz Pentium pro-
cessor. Applying the 64 MFs to denoising a 512 512 image
required 18 s.

1Taken from http://decsai.ugr.es/javier/denoise/test_images/index.htm

Fig. 6. PSNR after applying the MFs produced by Methods 1–3. Each bar is
an average over ten different noise realizations.

A. Nonmonotonic Mapping Functions

The nonmonotonicity and in particular the sign-change in the
MFs of Method 3 (Fig. 5 bottom row) are surprising results
that were not reported in previous studies. Since this behavior
was not observed in Methods 1 and 2, it can be concluded that
this phenomena is due to the interband dependencies that are
taken into account only in Method 3. An explanation for this
behavior is illustrated in Fig. 8. For demonstration purposes,
we assume a two-valued signal . A signal is repre-
sented in a unitary transform domain whose bases are the
axes. Thus, the signal is denoted by a point in the plane
(see figure). In analogy to the wavelet transform, we assume
a signal prior of sparse characteristic in the transform coeffi-
cients. Therefore, non-noisy signals are expected to be located
within the shaded area extending along the main axes. In this il-
lustration, the true signal is located on the -axis and marked
by a white dot. Due to additive noise the acquired signal is
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Fig. 7. Some examples of denoised images. The images in the top row were contaminated with white noise with a s.t.d. of 20 gray levels. The reconstructed
images are shown on the bottom row.

Fig. 8. Two-valued clean signal is represented by the white dot in a unitary
transform domain (u; v). The noisy signal is represented by the black dot. An
additional unitary transform is represented by the (u ; v ) axes. Applying the
sign-changing MFs to the noisy signal in both transforms (over-complete) re-
sults in the clean signal (see text).

measured outside the shaded area denoted by the black dot. De-
noising the measured signal using classical shrinkage operations
in the domain (using, e.g., the hard thresholding MFs)
results in a new signal whose -component is shrunk to zero
and the -component is left untouched (due to its large value).
This, indeed, produces the desired solution. Consider now the
case where the unitary transform is extended to form a shift-in-
variant system forming an over-complete transform. An addi-
tional unitary transform is appended whose basis vectors are
composed of spatially shifted versions of the original transform
basis. This additional transform can be viewed in our 2-D ex-
ample by the basis which is obtained by an axes rota-
tion about the origin (due to its unitarity). Applying classical

TABLE I
RESULTING PSNR FOR VARIOUS NOISE LEVELS. THE TRANSFORM

USED WAS THE UNDECIMATED 9� 9 DCT. THE MFS WERE

TRAINED ON THE TOP-RIGHT IMAGE IN FIG. 4

shrinkage operations to the new transform coefficients provides
a signal correction which can handle corrupted signals proximal
to the new axes as well (shift invariance). However, this advan-
tage comes with a drawback: Since the two transforms interfere
with each other. In some cases, the new estimation is inferior to
that obtained with a single unitary transform. In our example,
denoising the measured signal in the transform produces
the white dot, while denoising in the transform does
not affect the signal (since both coefficients are large enough).
Thus, the estimation using the over-complete transform, will re-
sult in a signal which is the arithmetic mean of the white and
black dots.2 This estimation is inferior to the previous estima-
tion given by the original unitary transform. The sign change in
the MFs as obtained by our numerical optimization solves this
problem; The MFs of the transform now modify the -co-
efficient by negating its value (gray dot). The arithmetic mean
between the transform estimation and the estima-
tion (black dot) is now located again within the shaded area.
Note that due to symmetry, this behavior is carried out for sig-
nals along the axes, as well, providing the shift-invariant
characteristics. Nevertheless, care must be taken in cases where

2It can be easily verified that the pseudo-inverse of a set of unitary transforms
is equivalent to the arithmetic mean of the individual transform inverses.
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Fig. 9. Comparison between the proposed method and the BLS-GSM method for various noise levels. Dark bars: The porposed method. White bars: The BLS-GSM
method.

coefficients include only noise. In such cases, the nonmonotonic
adjustment might degenerate the estimation. Since this will be
the case mainly for coefficients at finer (high frequency) scales,
it appears that the nonmonotonic adjustment is reduced for these
bands.

B. Comparison With Other Methods

The proposed approach was tested on the images presented
in Fig. 3 which were contaminated with Gaussian white noise
under various noise levels. The resulting PSNR are shown in
Table I. The transform used in this table was the undecimated
9 9 DCT. Although the transform used is not optimal for nat-
ural images and the training image was chosen arbitrarily, the
PSNR obtained presents high quality results. These results were
compared to the Bayes Least-Squares Gaussian Scale Mixture
(BLS-GSM) approach suggested by Portilla et al. [25] and con-
sidered the state-of-the-art in image denoising. The comparison
results are shown in Fig. 9 for each image independently. It is
demonstrated that the proposed method presents comparable re-
sults with the BLS-GSM method. In low noise variance sce-
narios the suggested method marginally outperforms BLS-GSM
in almost all images, and in more severe noise cases (15 s.t.d.
and above) the BLS-GSM demonstrates marginally better per-
formance.

C. Role of Noise Variance

The influence of the noise variance on the obtained MFs can
be seen in Fig. 10. Similar to the classical hard/soft thresholding
MFs, the profiles of the produced MFs scale down when the
noise variance decreases and scale up when the variance in-
creases. The amount of scaling was experimentally shown to
follow linearly with the relative increase/decrease in the noise

Fig. 10. MFs produced using Method 3 for various noise levels. MFs on each
row correspond to band (i,i) of the 8� 8 DCT basis, where i = 2 � �6 (left to
right). The noise levels were of 5, 10, 15, and 20 s.t.d. from top row to bottom
row, respectively. Graph axes are shown in the range [�120; 120].

variance. Thus, if a particular MF was obtained for
noise variance , the MF for noise variance is expected to be

where (26)

This scaling property is very useful as one can estimate the
noise variance of a given image using MAD or other available
methods (e.g., [37]–[39]) and then apply an appropriately scaled
MF set for denoising. An example of two sets of MFs, super-
imposed on the same plot, one for the s.t.d. and the
second for s.t.d. scaled by 2, are shown in Fig. 11.

Authorized licensed use limited to: Herzeliya IDC. Downloaded on September 23,2020 at 20:32:06 UTC from IEEE Xplore.  Restrictions apply. 



HEL-OR AND SHAKED: DISCRIMINATIVE APPROACH FOR WAVELET DENOISING 453

It is demonstrated that the two MFs coincide almost perfectly
and are difficult to distinguish. For more extensive experiments
demonstrating the scaling relation between the MFs the reader
is referred to [31].

D. Training Images

The resemblance between the training images and the target
noisy images plays a role in the denoising quality. The influence
of this factor is demonstrated in Fig. 6 where the PSNR result
of the Fingerprint image is worse for Method 3 than for Method
2. The main reason for this result is that the training image in
this experiment (top-right image of Fig. 4) does not seem to be a
good representative for the textured Fingerprint image. In order
to verify this claim, we tested again the results of Method 3, this
time with a training image that is more “similar” to Fingerprint
(actually we used the Fingerprintimage rotated by 180 ). The
results are given in Fig. 12. This plot shows that for all but the
Fingerprint image the resulting PSNR are significantly worse,
however, for the Fingerprint image, training on a similar tex-
tured image exhibits an increase in the resulting PSNR of 0.3
dB.

The left diagram in Fig. 13 presents a set of resulting PSNR
using eight different MFs, each of which was trained on a dif-
ferent natural image taken from the set shown in Fig. 4. In this
experiment, the choice of the trained natural image influenced
the resulting PSNR by up to 0.6 dB. reflecting the role of the
training images on the resulting quality. However, this depen-
dency can be significantly reduced by increasing the number
of images included in the training set. The diagram in Fig. 13
(right) shows the resulting PSNR using MFs that were trained on
several images. The training images were the same images that
were used in the left diagram; however, this time the MFs were
generated using different numbers of training images ranging
from 1 to 8 (left-to-right bars). It is demonstrated that in gen-
eral the resulting PSNR moderately increases as the number of
training images grows. Furthermore, the PSNR fluctuations due
to the selection of trained images are drastically reduced.

E. Transform Used

Previous studies demonstrated the benefit of using par-
ticular transforms, such as steerable pyramids, curvelets,
and contourlet [9], [13], [15] as being more appropriate for
modeling natural images. Recent approaches customize the
transform used to the noisy image and adaptively learn the
transform basis [16]. The scheme presented in this paper is
general, and can work with any given transform or any set
of filters. In all our experiments, we used the undecimated
DCT transform with various window sizes. As it was shown
above, the results obtained demonstrate quality comparable
with the state-of-the-art methods. It is expected that further
improvement can be achieved if other, more appropriate, trans-
forms are used. Fig. 14 presents the denoising results using the
undecimated DCT transform with various window sizes. It is
shown that the optimal size of the DCT window may vary from
image to image. The choice of the most appropriate transform
for a given image is still an open problem.

Fig. 11. Comparison between the MFs produced for 20 s.t.d. (red line) and 10
s.t.d. scaled by 2 (black dots). The MFs shown are for DCT bands [2��4]�[2��4].
The graph axes are shown in the range [�120; 120]. The two graphs coincide
almost perfectly and hard to distinguish.

Fig. 12. Comparison results for denoising images using Method 3 where the
training images were Fingerprint rotated by 180 (gray bars) and a natural image
(black bars).

F. Number of Quantization Bins

Fig. 15 shows the resulting PSNR versus the number of
quantization bins used. It is shown that about 15 quantization
bins are sufficient for high-quality results and that finer quanti-
zation does not significantly improve the results. This behavior
is a direct outcome of the smooth manner of the optimal MFs.
It also strengthens the rationale behind modeling the MFs as
piece-wise linear functions. In all other experiments reported in
this paper we used 15 quantization bins to define the piece-wise
mapping functions. Additionally, since small wavelet values
are much more probable than higher values, we implemented a
nonuniform quantization as described in Section VI.

G. Other Reconstruction Problems

The approach described in this paper is presented in the con-
text of image denoising, where the contaminated noise is as-
sumed to be Gaussian. However, since the approach does not
require any modeling of the image statistics nor of the noise, it
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Fig. 13. Left: PSNR of denoised images using MFs that were trained on various natural images shown in Fig. 4. The transform used was DCT 8 � 8. The
contaminated noise was Gaussian noise with 20 s.t.d. gray levels. Right: PSNR of denoised images versus the number of training images on which the MFs were
trained. Each group of bars shows the PSNR arising from different sized training sets, ranging from 1 ot 8 (left to right).

Fig. 14. Resulting PSNR versus DCT window size

Fig. 15. Resulting PSNR versus the number of quantization bins used for the
MFs. The transform used was the undecimated 5 � 5 DCT. The results are
shown for various images with noise s.t.d. = 10.

can be seamlessly applied in other reconstruction problems and
with different types of noise characteristics. As long as the re-
construction process involves applying scalar look-up-tables in
the transform domain, optimal MFs can be obtained. One only
needs to provide predegradation and postdegradation images.
This section presents some examples of applying the suggested

approach to other reconstruction problems, namely: removing
JPEG artifacts, and image deblurring. These examples are given
in order to demonstrate the concept with no comparative study.

In the first experiment we attempted to deblur images using a
set of look-up tables (LUTs) applied to undecimated DCT trans-
form coefficients. The LUTs were trained on the image Lena
after it was blurred with a 5-tap Gaussian. A partial set of the
produced LUTs are given in Fig. 16 (left). The full set of LUTs
were applied to a blurred version of Barbara (same blurring pa-
rameters). A close-up view of the deblurred Barbara is given
in Fig. 17. The resulting image demonstrates promising sharp-
ening performance with relatively low Gibbs artifacts.

In the second example, the LUTs were trained to reduce
severe JPEG artifacts. In this experiment the image Barbara
served as the training image and LUTs were applied to Lena.
The “noise” was generated by JPEG-compression with quality
parameter set to 30%. A partial set of the LUTs are shown
in Fig. 16 (right). The JPEG artifacts of the compressed
image are presented in Fig. 18 (left) and in a close-up view in
Fig. 19 (left). The artifact removal after applying the learned
LUTs are shown in Fig. 18 (right) and Fig. 19 (right). The
quality of the reconstruction is self-evident. It is interesting to
mention the resemblance of the proposed approach to that of
Nosratinia [41]. Nosratinia suggested a useful technique for
denoising JPEG images by re-applying the JPEG Q-table to
shifted versions of the un-compressed image. This technique
can be described identically by applying marginal LUTs to
the 8 8 undecimated-DCT coefficients. In contrast to Nosra-
tinia’s approach, the suggested scheme enables the design of a
new set of LUTs that are optimized to produce the best results.

VIII. DISCUSSION AND CONCLUSION

This paper suggests a new and simple scheme for wavelet de-
noising relying on a discriminative framework. One main ad-
vantage of the proposed technique is that the shrinkage functions
are optimized directly with respect to a set of example images,
eliminating the need for modeling complex statistical priors in
high-dimensional space. The existence of a statistical prior of
natural images is a standard assumption in image processing,
and there are several competing models for that prior (e.g., [21],
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Fig. 16. Left: LUTs that were learned to sharpen images blurred with a 5-tap Gaussain kernel. The filters used were 8� 8 DCT. The MFs shown are for the
DCT bands whose indices are: [3 � �6]� [3 � �6] (left to right � top to bottom). The scaling factor of each graph is indicated by the dotted lines, plotted at values
f�20 0 20g for each axis. Right: The LUTs that were learned from JPEG-compressed Barbara with quality = 30. The filters used were DCT 8� 8. The LUTs
shown are for the DCT bands whose indices are [3 � �6]� [3 � �6] (left to right � top to bottom). Graph axes are shown in the range [�60; 60].

Fig. 17. Left: Blurred Barbara after applying a 5-tap Gaussian blur. Right: Sharpened Barbara using LUTs that were trained on blurred Lena using 8� 8 over-
complete DCT.

[34], and [42]). Using the suggested scheme, however, we do not
need to select between alternative priors, but merely assume a
prior exists. Another important generalization in the proposed
approach is that there is no need to model the statistical charac-
teristics of the noise, as opposed to most alternatives that typi-
cally resort to the easily modeled white Gaussian noise. In con-
trast, we only assume the existence of a noise model and the
technique is applied similarly whether the true noise is simple
white Gaussian or more complex (e.g., JPEG noise). Thus, our
approach can be applied seamlessly to other degradation pro-
cesses, as long as the restoration process relies on marginal rec-
tification of transform coefficients. The suggested scheme pro-
duces optimal solution with respect to the following aspects.

• An optimal set of scalar MFs (in LS sense) is generated
for over-complete transforms taking into account intraband

and interband dependencies. As far as we know, previous
scalar MF-based techniques ignore these dependencies, as
they complicate the statistical models.

• The optimality is expressed in the spatial domain, which
is the domain in which the image is perceived. Whereas
working in the spatial domain might pose a significant
hurdle in the descriptive approach, in the proposed model
the restriction to the spatial domain posed only a computa-
tional burden.

As emphasized above, the suggested scheme is based on mar-
ginal rectification of transform coefficients, namely the MFs are
scalar look-up-tables. This restriction is the main limitation of
the proposed scheme as possible dependencies on other coeffi-
cients cannot be considered adaptively (online). This restriction
can be relaxed by applying multivariate MFs, possibly approx-
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Fig. 18. Left: JPEG artifacts after compressing Lena with JPEG quality = 30. Right: Artifact removal using LUTs that were trained from JPEG-compressed
Barbara using the 8� 8 DCT.

Fig. 19. Left: Zoom-in of Lena JPEG artifacts. Right: Zoom-in of the artifact removal using the proposed method.

imated by embedding quantization bins in higher dimensional
spaces. However, since the number of boundary variables in-
creases exponentially with dimensionality, a naive extension is
impractical and some sort of dimensionality reduction must be
applied. We leave this extension for future work.

Another limitation of the developed scheme is that it relies on
the assumption that the noise characteristics are homogeneous.
This noise model, although standard in many applications, is im-
precise in some real-world scenarios where the noise variance
is spatially dependent. An extension of the proposed technique
would be to apply an adaptive set of MFs that are scaled adap-
tively according to the estimated local noise variance.

There are two important issues that were not dealt with in this
paper and should be further investigated. The first issue concerns
the relation between the transform used and the quality of the
denoising results. Clearly, the applied transform plays an impor-
tant role in the resulting quality (Section VII-E). The transform
used should be influenced by the image characteristics as well as
the type of contaminating noise. The choice of transform (or set
of filters in the case of undecimated transforms) that produces
the best results is still an open question.

The second open issue concerns the selection of training
images. For simplicity, in this paper, we have arbitrarily chosen
natural images for training. This option is reasonable when
knowledge about the target images is unknown a priori. How-
ever, for better results, an attempt should be made to match
the test and the training images. Thus, MFs for cartoon type

images, for example, should be trained on cartoon examples
and MFs trained on a particular texture should be applied to
similarly textured images.
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