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Abstract. We present a novel approach for online shrinkage functions
learning in single image super-resolution. The proposed approach lever-
ages the classical Wavelet Shrinkage denoising technique where a set of
scalar shrinkage functions is applied to the wavelet coefficients of a noisy
image. In the proposed approach, a unique set of learned shrinkage func-
tions is applied to the overcomplete representation coefficients of the
interpolated input image. The super-resolution image is reconstructed
from the post-shrinkage coefficients. During the learning stage, the low-
resolution input image is treated as a reference high-resolution image
and a super-resolution reconstruction process is applied to a scaled-down
version of it. The shapes of all shrinkage functions are jointly learned by
solving a Least Squares optimization problem that minimizes the sum of
squared errors between the reference image and its super-resolution ap-
proximation. Computer simulations demonstrate superior performance
compared to state-of-the-art results.

1 Introduction

Single Image Super-Resolution (SISR) is the process of reconstructing a high-
resolution image from an observed low-resolution image. Typical applications
include zoom-in of still images in digital cameras, scaling-up an image before
printing and conversion from low-definition to high-definition video. SISR is an
inverse problem, associated with the following linear degradation model

y = DHx, (1)

where y € R" is the observed low-resolution input image (column-stacked),
x € R™ is the unknown high-resolution image, H € R"*"L ig a blurring filter
(block-circulant) convolution matrix and D € R"*"% is a down-sample operator
matrix, decimating the image by a factor of v/L along the horizontal and vertical
dimensions.

A solution to the SISR problem is an approximation X to the unknown high-
resolution image x. Since the linear system () is underdetermined, there are
infinitely many solutions X that can ”explain” the observed image y. For this
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reason, there are various approaches addressing the SISR problem. The simplest
techniques are the bi-linear and bi-cubic interpolators. These interpolators utilize
a polynomial approximation model to compute each missing pixel from a small
local neighborhood of it, often generating blurry results and stair-case shaped
edges.

State-of-the-art SISR reconstruction is based on a sparse-representation ap-
proach [I], [2] where a set of high-resolution and low-resolution dictionaries are
learned from example images. In this approach, a sparse coding process is ap-
plied to small overlapping patches, extracted in a raster-scan order from the
observed image. The sparse representation coefficients (i.e the outcome of the
sparse coding process) of each low-resolution patch are assumed to faithfully rep-
resent each corresponding (unknown) high-resolution patch by replacing the low-
resolution dictionary with its high-resolution counterpart. The super-resolution
image is reconstructed by fusion of all of the overlapping high-resolution patches.
A similar approach was proposed in [3], where a reduced redundancy dictio-
nary was employed to accelerate the SISR process. The sparse-representation
approach evolved from an example-based approach [4], where a dictionary of
100, 000 pairs of low-resolution and high-resolution images patches was utilized
in conjunction with a markov-network model to search-and-match the corre-
sponding high-resolution patches. A combination of the example-based approach
with multi-frame super-resolution was proposed in [5], where patch repetitions
within an image were exploited in a multi-scale approach. Additional example-
based approaches such as learning the prior parameters, learning the poste-
rior and building example-based regularization expression are reviewed in [6].
A shrinkage-based approach was introduced in [7] where a hard-thresholding
function was iteratively applied to DCT transform coefficients. This approach
was later augmented in [§], where the Contourlet transform was chosen as the
overcomplete transform.

We propose to extend the shrinkage based approach and employ online-learned
shrinkage functions with an overcomplete representation. The proposed approach
leverages the discriminative learning technique suggested in [9] for wavelet de-
noising. In the discriminative approach, the shapes of all shrinkage functions
are learned offline from example images (rather then learning the parameters of
a probability distribution model of the transform coefficients). In the proposed
approach, we apply the discriminative approach to the SISR problem and ex-
ploit the scale-invariant property of natural images [I0] to learn the shrinkage
functions directly from the input image.

Contributions. The contributions presented in this paper are two-fold: 1) In-
troduction of the learned shrinkage approach [9] to solve the SISR problem,
in contrast to the hard-thresholding approach previously introduced for SISR
in [§], [7. 2) Introduction of the online learning approach, where the shrinkage
functions are learned directly from the observed input image - in contrast to
the offline example-based approach as suggested in [9]. The advantage of the
online approach is that online-learned shrinkage functions capture the statistical
properties of the observed image (to be scaled-up), rather than the statistical
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properties of other images. Performance evaluation of the proposed approach
demonstrate superior performance compared to the sparse representa‘cimﬁJ state-
of-the-art approach [I], [2].

This paper is organized as follows: Section 2 presents shrinkage-based restora-
tion theory for the unitary and over-complete cases. Section 3 describes the Slice
Transform (SLT) which is a piece-wise linear model utilized for the representation
and learning of the shrinkage functions. Section 4 presents the proposed SISR
algorithm concept along with a detailed explanation of the shrinkage-learning
stage and the super-resolution reconstruction stage. Section 5 overviews perfor-
mance evaluation along with a comparison versus the state-of-the-art approach.

2 Shrinkage-Based Image Restoration

This section provides an overview of shrinkage-based image restoration in the
unitary and overcomplete cases. The discussion evolves from an image denois-
ing problem and the connection to the SISR problem is established in the last
subsection. Consider the following image degradation model,

v=u+m, (2)

where v € R! is an observed noisy image, u € R! is the unknown clean image and
m € R! is white Gaussian noise. In the shrinkage-based approach, the restored
image is given by the following algorithm

=W Wy, (3)

N
where W is a unitary or overcomplete transform, ¥ = [¥y,Ps,...] is a set of
scalar shrinkage functions and W1 is the reverse transform. The utilization of
scalar shrinkage functions is derived in the following subsections.

2.1 The Unitary Case

The shrinkage-based reconstruction ([B) can be shown to solve a MAP estima-
tion problem under the assumptions of a unitary transform, independent trans-
form coefficients and white Gaussian noise. The discussion is focused on the
unitary wavelet transform, since it provides a sparse representation of natural
images [I1] and its coefficients are assumed independent. These properties of the
unitary wavelet transform play a fundamental role in the formulation of sparsity-
promoting image priors [12] that can be decoupled into a product (or a sum in
the log domain) of scalar probability distributions. The MAP estimator @ (v) is
given by maximizing the a-posteriori probability:

a(v) =arg ml?xP (u|v). (4)

! In this paper we refer to the work in [I], [2] as ”sparse representation” based, although
the shrinkage based approach also emerges from sparse representation modeling.
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This maximization can be cast also in the transform domain, as follows:

aw (viy) = arg I{llgvxp (aw | viv), (5)

where uyy = Wu, viy = Wv and W is a unitary wavelet transform. By utilizing
Bayes rule and the monotonicity of the log function, the wavelet domain MAP
estimator can be reformulated as

~

Uw (v) = argmin{—log P (vw [ uw) — log P’ (uw)}. (6)

The term log P (vyy | uw) is the log likelihood and the term log P (uy) is the
prior. For the white Gaussian noise case, the log likelihood term is given by

—log P (v | uw) = Mluw — v > = A |lufy — viy 1%, (7)

where u;, and v}, are the i-th elements of uy and vy, respectively and \ is a
constant inversely proportional to the noise variance. Note, that by utilizing the
I2-norm preserving property of unitary transforms, equation () can be rewritten
as

—log P (viy |uw) = A|W (u=v) | = AJu = v||* = ~log P (v |u).  (8)

Thus, the spatial domain MAP estimator (4]) and its unitary transform domain
counterpart (B]) are equivalent, as long as the prior term is a function of Wu [12].
By utilizing the independence assumption of the unitary wavelet coefficients, the
prior term is reformulated as

log P (uy) = 1ogHR (u@v) = Zlog P (u@v) (9)

The unitary wavelet domain MAP estimator (@) can be rewritten using the
results of equations () and (@), leading to a decoupling of the Fdimensional
minimization problem to a set of [ scalar minimization problems

@y (viy) = argmiin{)\Hu%,V —viy |I> = log P; (ujy)} Vi. (10)

Uy

The optimization in equation (I0) is solved by applying a scalar lookup table
function Wév, termed shrinkage function, to the wavelet coefficients: 4%}, (v{v) =
vl (v{v) The shrinkage function depends solely on the noise variance and the
prior term P; (u};). The pioneering studies of Donoho and Johnstone [13], [14]
suggested using hard-thresholding and soft-thresholding shrinkage functions. Fur-
thermore, for a K subband wavelet transform, only K distinct shrinkage func-
tions are required to solve the MAP estimation problem. To clarify this property
we follow the notation in [9] and utilize a permutation matrix P to reorder the
rows of the wavelet transform W. The reordering is performed such that wavelet
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transform rows corresponding to a specific subband are co-located in a distinct
block
B VB,
B=PW=|: and vg = Bv = o (11)

By VBk

The set of K shrinkage functions are denoted by @E = Up,,¥B,,...,¥p,] and
the restored image (@) is given by

K
.,
a=B"Wg{ve}=> Blvp{ve}, (12)
k=1

where BT is the reverse transform due to the unitary case assumption.

2.2 The Overcomplete Case

The shrinkage restoration approach in the unitary case provides good results,
however, visual artifacts sometimes appear in the restored image. By utilizing
an overcomplete transform, significant improvements can be achieved. This was
originally discovered by Coifman and Donoho [15] where an undecimated wavelet
transform provided superior shrinkage denoising results compared to the unitary
case. This improvement was later demonstrated in various overcomplete trans-
forms such a Curvelets [16], Contourlets [I7], undecimated windowed DCT [9]
and others. By applying equation (1) to the overcomplete case, the noisy image
transform is given by vg = Bv. The overcomplete transform B is an M x [ matrix
where M > [. By modifying v using a vector of shrinkage functions W—B){VB} it
is desired that all the post-shrinkage overcomplete components be equal to the
overcomplete transform components of the original (unknown) image

Bu= @{VB}. (13)

The estimated image is reconstructed using the pseudo-inverse

K
a=(B"B) ' B"Wi{ve} = (B"B) Y Bl Us{vs,}. (14)
k=1

A key difference between the unitary and overcomplete cases is statistical depen-
dence of the transform coefficients: the scalar shrinkage approach emerged from
the independence assumption of the unitary wavelet coefficients, however, this
assumption no longer holds in the overcomplete case. Traditionally, the unitary
case shrinkage functions were applied also to the overcomplete case, however,
the interband dependencies of the overcomplete transform coefficients should be
taken into account. The most accurate approach to handle this issue is to de-
sign a set of multi-dimensional shrinkage functions, however, such approach is
highly complex. The approach suggested in [9] for image denoising is to learn a
set of scalar shrinkage functions that would take into account interband as well



A Shrinkage Learning Approach for Single Image Super-Resolution 627

as intraband dependencies. In this approach, the shrinkage functions are learned
offline from an example set of pairs of clean and noisy images. In this paper, we
leverage the shrinkage learning technique to the SISR problem and propose to
learn the shrinkage functions online - from the observed image - in a way that
would capture the statistical properties of (only) the image to be scaled-up.

2.3 From Image Denoising to Super-Resolution

The shrinkage-based restoration framework was originally developed for image
denoising. However, it has been successfully utilized for more complex inverse
problems then (2)), by designing the shrinkage operation to minimize all struc-
tured noise components inherent to the specific problem. For example, inpainting
by hard-thresholding [18], SISR by hard-thresholding [7], [8] and JPEG deblock-
ing [9]. We Assume a general image degradation model:

v=02{u} =u+e, (15)

where 2{-} is a degradation operator (not necessarily linear) and e is an error
image with unknown statistical properties. We propose to recover the unknown
image u by utilizing the restoration algorithm (Idl), with a set of shrinkage
functions that were designed to maximize the restored image quality, given the
degradation model (IH). For the SISR problem, we utilize the following degra-
dation operator

2{u} =7} (DHu), (16)

where 1% () is a simple interpolator (implemented either by a bi-linear or bi-
cubic interpolator). Note, that this degradation operator simply amounts to an
interpolation of the observed image y in the SISR model ({]) and the dimensions
of the degraded image v = 2{u} = 77 (DHu) are identical to u. Therefore, the
proposed restoration scheme for the SISR problem is as follows

K
a=(B"B) ' B"Wi{ve} = (B"B) Y Bl Us{ve,}. (17)
k=1

In the proposed approach, the shapes of all shrinkage functions W_B) are trained
for the SISR problem. The training is performed online (i.e. directly) from the
observed image D Hu, exploiting the scale-invariant property of natural images
[10]. The learning procedure relies on a piece-wise linear model of the shrinkage
functions as explained in the following section. The learning process is explained
in section 4.

3 The Slice Transform

The Slice Transform (SLT) [9] enables the approximation of a shrinkage function
in a linear manner

WB)C {VBk} ~ qu (VBk) Pk- (18)
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Note, that while the shrinkage function is a scalar function, the representation
([IR) incorporates the element-wise shrinkage operation for the entire subband
By. The #th row of the sparse matrix Sq, (vp,) is determined uniquely by
the ¢th element of the vector vp, and the predefined vector qi. The vector
Pk is the design parameter that controls the input-output mapping relation of
the k-th shrinkage function. In the following we explain the concept behind the
representation (I8) and begin, for simlicity, with the scalar case.

Assume x € [a,b) is a real value and the half open interval [a,b) is di-
vided into M slots. The boundaries of the slots are contained in the vector
q= [qo,ql,...,qM]T such that go = a < ¢1 < ¢2--- < g = b. The value z is
located in a single slot 7 (z) € {1,..., M} and associated with a residue r (z),
where 7 (z) = j if z € [gj_1,¢;) and

r (LL') _ T = Qr(z)-1
Ar(z) — Qr(z)—-1
Note that 7 () € [0,1), where r (v) = 0if & = gr(p)—1 and 7 () — 1if & — Gr(y)-
The value z can be expressed as a follows
&= Sq (2) 4 =7 (2) Gu(x) + (1 =7 (2)) Gu()-1, (19)
where the row vector Sg (z) € RM*Y) is defined as follows:

Sq () =10,...,0,1 =7 (x),r(z),0,...,0]

and where the values 1 — 7 (z) and r (z) are located in the (r (z) — 1) and
( ()™ entries, respectively. Extending equation ([J) to the multi-dimensional
case, we assume that x € RY and that each element satisfies 2 € [a,b). The
SLT of x is given by

x = Sq (x) q, (20)

where the matrix Sq (x) € RV*(M+1) is given by

r(x?) if 7(z%) = j
[Sq(x)];,; =41~— r(xt) ifw(zt)=j+1 (21)
0 otherwise.

Each row of the matrix Sq(x) is associated with a single element of the vec-
tor x and the representation (20)) is composed of linear splines basis functions.
According to [9], substituting the boundary vector q with a different vector p
performs a piece-wise linear mapping of the values in x

Mg p(x) = Sq (%) P, (22)

where Mg p (x) performs linear mapping of the values {z' € [g;_1,¢;)} to the
interval [pj_1,p;), as depicted in Fig. [l The substitution property [22)) is the
key principal behind the linear representation of the shrinkage functions (I8]).
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Fig. 1. Piece-wise linear mapping with the Slice Transform

4 The Super-Resolution Algorithm

The proposed Super-Resolution algorithm includes two stages: during the first
stage a pair of example images are utilized in an online discriminative learning
process of the shrinkage functions. In the second stage, the learned shrinkage
functions are applied during the super-resolution reconstruction.

4.1 Stage I: Learning the Shrinkage Functions

The shrinkage functions learning algorithm is inspired by an oracle based ap-
proach. Consider the SISR degradation model () and an oracle estimator of the
shrinkage functions that has access to the input image y and to the unknown
high-resolution image x. The oracle learning strategy is based on constructing
a super-resolution approximation X from the interpolated low-resolution image
vt =1} (y) by employing the scheme in ([I7) such that the unknown shrinkage
functions are represented by the SLT approximation (I8

K
X —1
%(y1,p) = (B"B) > _ B{'Sq; (yi5,)Px = L(y1)P, (23)
k=1
where p = [prf,pzT, .. .,pﬁ]T and

L(y;) = (B"B) ' [Hy,Ha,. .., H]

where H; = B'Sq; (y1B,). The oracle learns the unknown shrinkage functions
by solving the following Least Squares (LS) optimization problem

p = argmin [x — % (y1, p)|3. (24)
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This ideal strategy captures all interband and intraband statistical dependencies
of the reconstructed image such that the spatial domain mean squared error
(MSE) between the reconstructed and true images is minimized. In practice,
only the observed low-resolution image is available and a question arises - can
we learn the shrinkage functions in a similar fashion to the oracle with only y
at hand? Here we exploit the scale-invariant property of natural images [10] and
we approximate it by the following approach: the oracle training pair {x,y1} is
replaced with the pair {y, g} such that the reference image is now the observed
low-resolution image and its degraded counterpart is given by

g=T, (Eﬁy) eR",

where H € R®*® is a blurring filter (block-circulant) convolution matrix and

D e REX™ is a down-sampling operator matrix, by a factor of v/L along the
horizontal and vertical dimensions. Thus, the super-resolution reconstruction is
applied to a scaled-down version of the low-resolution observed image

K
- -1
§(8.p) = (B'B) "> Bl Sy (&50) i = L (2)p. (25)
k=1
The shrinkage functions are jointly learned by solving the following LS problem
p = argmin [y — ¥ (g, p)|3 (26)

and the solution is given by

where L = L (g).

4.2 Stage II: Super-Resolution Reconstruction

Once the parameters of the shrinkage functions are learned, the super-resolution
image is reconstructed as follows

K
%(y1,0) = (B"B) "> Bl Sq (vis, ) Br- (28)
k=1

5 Performance Evaluation

The performance of the proposed algorithm was evaluated by computer sim-
ulations and compared versus bi-cubic interpolation and the state-of-the-art
sparse-representation based algorithm [1], [2] (which outperforms the sparse-
representation approach [3]). Performance were not compared to the method [5]
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Fig. 2. The collection of tested images, all images are of size 512 x 512
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Fig. 3. PSNR improvement over bi-cubic interpolation for L =9
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Table 1. PSNR results for L =9

Image Bicubic Sparse  Shrink. Shrink. Shrink. Offline
Interp. Rep. [1] 4x4 6 x6 8§ x 8 Shrink.
Barbara  24.05 24.00 24.18 24.19 24.17 24.06
Peppers  29.82 30.14 30.51 30.76 30.75 29.77
Boat 27.14 27.49 27.58 27.65 27.61 27.31
Lena 30.76 31.17 31.45 31.55 31.53 30.85
Coronado 25.24 25.36 25.53 25.59 25.46 25.36
Cat 28.67 28.73 29.32 29.56 29.59 28.79
Man 28.35 28.77 28.92 28.98 28.91 28.46
Graphics 21.79 22.31 22.36 22.08 22.29 21.94
Baskets 21.13 21.45 21.48 21.54 21.51 21.20
Watch 28.10 28.49 28.60 28.75 28.68 28.18
Mandrill  22.01 22.13 22.24 22.28 22.27 22.86
Carriage 27.41 27.96 27.90 28.02 27.98 27.47
Original Sparse Representation Shrinkage

=

o
_

12

v,

W

i

Fig. 4. Super-resolution of the image barbara for L = 4

Original

Sparse Representation

il

Shrinkage

Fig. 5. Super-resolution of the image barbara for L = 4
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Original Sparse Representation Shrinkage

Fig. 6. Super-resolution of the image watch for L = 4

Original Sparse Representation Shrinkage

&

Fig. 7. Super-resolution of the image watch for L = 4
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Fig. 8. Examples of learned shrinkage functions for L = 9. In each row the image is
fixed and in each column the subband is fixed.
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as neither quantitative results nor a code of this method were available for eval-
uation. A collection of 12 images presented in Fig. 2l were compared against their
own SISR reconstructions (from their scaled-down versions) with scale-up fac-
tors of L = 4 and L = 9. The undecimated vK x vK windowed DCT (UDCT)
was chosen as the overcomplete transform. This transform is defined to include
all possible VK x VK = K DCT window shifts, leading to a redundancy factor
of K with K distinct subbands. In this approach, each subband y1, = Bryy
is generated by filtering the image with the respective basis kernel. In addition,
the UDCT is a tight frame thus the term (BTB)_1 boils down to the identity
matrix. PSNR results are compared in Fig. Blfor L = 9 and a 6 x 6 UDCT, where
it can be seen that the proposed approach outperforms the sparse-representation
approach for all the images (excluding the image graphics). The proposed ap-
proach achieved an average gain of 0.54dB over bi-cubic interpolation, versus
an average gain of 0.30dB achieved by the sparse-representation approach. De-
tailed PSNR results are presented in Table [I for all methods. Three different
UDCT window sizes were compared for online learning and it can be seen that
the 6 x 6 window size provided the best results. In addition, the offline learning
approach [9] was evaluated by training the shrinkage functions with an image
from the training collection reported in [9]. The offline training was performed
using equation (24), with a 6 x 6 UDCT. It can be seen that the offline ap-
proach provided inferior results compared to the online approach (excluding the
image mandrill). In the specific case of the image graphics, it is possible that the
assumption of scale-invariance is not as true, explaining the lower performance
obtained. These type of images could be treated using the offline approach with
adequately chosen training examples. Visual comparison of SISR reconstructions
are presented for L = 4 in Figs. [-[1 it can be seen that various artifacts appear
in the sparse-representation based approach while the proposed approach pro-
duces more natural and pleasant results (figures are best viewed in the electronic
version of this paper). Examples of learned shrinkage functions are presented in
Fig.[Rl where it can be seen that for a fixed subband the learned shrinkage func-
tions exhibit significantly different behavior for different images. For instance,
only in subband (6) of the image coronado there is significant boosting effect
with sign inversion for low amplitude coefficients.

6 Conclusions

This paper presented a novel approach for shrinkage functions learning in sin-
gle image super-resolution. By exploiting the scale-invariant property of nat-
ural images, the set of scalar shrinkage functions are jointly learned from the
low-resolution input image. Computer simulations with a simple overcomplete
dictionary - the undecimated windowed DCT - revealed superior performance
versus the state-of-the-art sparse-representation approach. Future research direc-
tions include a joint online-offline learning approach that combines additional
example images into the online learning process. In addition we will consider the
reconstruction of the residual error image in (I5)) rather then the complete image
- thus focusing the learning process only into the missing high-pass components.
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