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Abstract

The Polynomial Texture Map framework (PTM) extends the simple model of image formation from the
Lambertian variant of Photometric Stereo (PST) to more general reflectances and to more complex-shaped
surfaces. It forms an alternative method for apprehending object colour, albedo, and surface normals. Here
we consider solving such a model in a robust version, not to date attempted for PTM, with the upshot that
both shadows and specularities are identified automatically without the need for any thresholds. Instead of
the linear model used in few-source PST for Lambertian surfaces, PTM adopts a higher degree polynomial
model. PTM has two aims: interpolation of images for new lighting directions, and recovery of surface prop-
erties. Here we show that a robust approach is a good deal more accurate in recovering surface properties.
For new-lighting interpolation, we demonstrate that a simple radial basis function interpolation can accu-
rately interpolate specularities as well as attached and cast shadows even with a medium-sized image set,
with no need for reflectance sharing across pixels or extremely large numbers of interpolation coefficients.

Keywords: Polynomial texture mapping; photometric stereo; robust estimation, shadows; specular; radial
basis functions; continuous interpolation.

1. Introduction

The Reflectance Transformation Imaging (RTI) approach [1] captures the broad range of reflectance
characteristics for any surface. One implementation is PTM (Polynomial Texture Maps) [1], using a fixed
standard digital camera at constant exposure and varying lighting. A strength of PTM, in comparison to
a simple Lambertian Photometric Stereo (PST) [2], is that the PTM applies a higher order polynomial
regression from lighting direction parameters to model image values; thus it can better model real radiance,
and to some degree apprehend intricate dependencies due to self-shadowing and interreflections. In a typical
setup, a camera is mounted at the apex of a hemisphere or other collection of lights (see Fig. 2(a)), and each
light is then fired in turn, thus generating a sequence of images. Usually, some 40 to 80 images are captured,
with the larger the number of images the better.

While the number of source images seems large compared to traditional PST [2], this amount of data is
in fact necessary to capture the intricacies in, e.g., highlights, self shadowing, and cast shadows. It is for this
reason that many museum professionals are interested in this technique, and the original PTM method is
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already in use at major museums in the U.S. including the Smithsonian, the Museum of Modern Art, and the
Fine Arts Museums of San Francisco, and is planned for the Metropolitan and the Louvre [3]. There is also
a good deal of interest in applying the method in-situ in situations when artwork cannot be moved, such as
imaging paleolithic rock art [4]. In this application, the highlight on a reflecting sphere can provide direction
information. Of course, one could instead apply matrix factorization strategy to recover lighting directions
as well as surface normals simultaneously (e.g. [5]) but, typically, due to non Lambertian phenomena matrix
factorization methods can produce inaccurate lighting directions.

With the objective being re-lightable images, PTM models the dependency of a pixel’s luminance (or
RGB in a different embodiment) on lighting directions using a 6-term polynomial model while fitting its
coefficients using least squares (LS) minimization. The polynomial variables are the light-direction param-
eters and thus, re-rendering can take place by relighting images using a new lighting direction. Using the
PTM, surface normals can be extracted and used for other effects, in non-photorealistic rendering, such as
generating artificial specular highlights, increasing directional sensitivity to lighting direction in order to
enhance contrast, or extrapolating directions of light source [1]. However the basic method rests on a matte
model and linear regression, and thus fails to model higher-degree phenomena such interreflections, specu-
larities and shadows. Increasing the degree of the PTM polynomial model may help to model these effects
but at the expense of deteriorating the interpolated results at non-sampled light directions due to overfitting
phenomena.

In this paper, we set out a robust version of PTM to generate increased accuracy of recovery of surface
normals, albedo, and colour. As a consequence we also automatically identify specularities and shadow
pixels and, as a result, we can interpolate these. We show that a simple RBF interpolation can deliver
excellent specularity and shadow interpolants for such medium-sized image input sets, without the need for
sharing spatial information across pixels. We also provide a hierarchy of methods, from simple to complex,
trading off accuracy of recovery of surface properties against speed.

To the best of our knowledge our approach to modelling non-matte components has not been applied to
PTM before, and the results are striking. E.g., considering an interpolation of an object partially covered
in gold leaf for a novel lighting direction (Fig. 1). 2 In the top row, for in-sample lighting directions with
images shown in (a,c), the reconstructed output using our proposed method exactly matches (to machine
accuracy) the measured input images, and the interpolant is sensible. In contrast, in the bottom row, using
the original LS method we note that clearly a matte model cannot describe the reflectance properties of such
a surface. Not only is this the case for interpolated light directions, but even in reproducing the original
source imagery.

For finding the matte part of the photometric model, we make use of the Least Median of Squares
(LMS) method [6], although other robust approaches could likely be used as well with comparable results;
e.g. one could use robust M-estimation or an iterated re-weighted LS. Robust methods have not to date been
applied to PTM. Using LMS robust regression for the matte part is advantageous because LMS provides
an automatic identification of outliers, with no programming intervention required. Outliers are excluded
from the input data used to estimate the matte component and, moreover, we can also classify outliers as
belonging to one of two types — either specular highlights, or shadows — by asking whether the observed
luminance at a pixel in a particular source image is greater respectively smaller than the predicted matte
luminance.

Knowledge of inlier pixel values means that recovered surface albedo, chromaticity, and surface nor-
mals are robust, in the sense of ignoring outlier contributions and thus more accurately mapping surface

2Elba image data courtesy of Dr. Roberto Scopigno, Visual Computing Laboratory, ISTI-CNR, Pisa, Italy: object is “Allegory
of the meeting between Corsica and Elba”, gilded wood (100 × 70 cm), 1904, Magazzini della Collezione Foresi, in Portoferraio,
Isola d’Elba, Tuscany.
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(a) (b) (c)

(d) (e) (f)
−→ Interpolated angle ←−

Figure 1: Image “Elba”: Reconstruction of input images (Left, Right) and interpolation (Center) for new, non-sampled light. (a,b,c):
Proposed method — input images are (to machine accuracy) identical to the reconstructed image (a,c) for in-sample images, and
the out-of-sample interpolation (b) is reasonable; (d,e,f): Original matte-based PTM method — while image representations appear
useful and interesting, they are not close enough to actual physical appearance of object.

reflectance, colour, and shape. We also change the matte model that was used in the original PTM method.
Because we go over to a robust regression from a least-squares one, here we can alter the polynomial used
in PTM so as to automatically generate a subset of three regression coefficients that are exactly correct in
the case when inliers are indeed Lambertian. In that case, surface normal and albedo directly fall out of the
matte regression. In the ordinary case of surfaces that are not in fact Lambertian, this subset of matte regres-
sion coefficients will not equal the scaled normal; instead, though, knowledge of inlier labelling allows us to
apply ordinary PST just on inlier pixels, yielding what we show to be superior estimates of surface normal
and albedo. Finally, by generating a tripartite set of labels — inlier, outlier-shadow, and outlier-specular
— we can independently identify and model specularity and shadow. Thus for a new lighting direction,
we can generate pixel values interpolating robustly-identified values of both, specular as well as shadow
components, using RBF interpolation. We found that for the matte regression it was sufficient to carry out
robust regression on the luminance values, not on R,G,B separately, in order to find outlier pixel values. We
then go on to use RBF to generate the full-colour specularity, denoted ζ , in an interpolated image, either
separately from or together with the remaining full-colour non-matte contribution, denoted σ , to produce a
full-colour interpolant image.

Aside from re-creating the sampled images in complete agreement with the originals, as opposed to
in the original PTM, we also demonstrate using a leave-one-out analysis that the proposed method greatly
outperforms the original PTM in generating images for non-measured, out-of-sample lighting directions.
The price we pay for being able to model specularities and shadows is that we need to carry regression
coefficients for each pixel numbering in fact more data than in the original image set. The benefit, however,
is in being able to correctly physically model non-smooth visual information.

In §2, we discuss related work, and in §3 we outline the PTM model as well as the PTM as modified here
with specular and shadow outliers. Section 4 shows how vector chromaticity and scalar albedo, as well as
normal-vector estimation, falls out of robust regression, and how these are improved via PST. Interpolation
of highlights and shadows is set out in §5 in an RBF framework. Section 6 shows how colour may then be
incorporated. Section 7 displays and discusses a set of results, and §8 gives concluding remarks.
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2. Related Work

PTM is formulated as a generalization of the simplest variant of PST [2], wherein no calibration object
is used but instead a basic Lambertian model is extended to a polynomial model. PTM moves a linear
regression involving lighting directions into a nonlinear, polynomial model whose variables are two of the
components of the normalized lighting direction. In this paper, in fact we go back to a regression including a
linear part corresponding to all three components of light direction, since if the surface is indeed Lambertian
plus outliers due to specularities and shadows, then a robust version of nonlinear regression will still pick up
the correct, linear, Lambertian dependence in an accurate manner Then this paper goes on to model specular
and non-specular outlier contributions.

Early efforts at specularity detection in PST [7, 8, 9] used four lights and excluded values yielding
significantly differing albedos. Rushmeier et al. [10] used a similar, 5-light approach. They proposed a
PST system where the highest and lowest values in five components are discarded to avoid highlights and
shadows, using the three middle intensities to reconstruct surface normals.

Miyazaki et al. [11] proposed a five light-source PST which is suitable for images taken from a virtual
museum, where objects are kept behind glass. Their aim is to detect specularities and exclude them from
normal and albedo reconstruction. The main idea behind this algorithm is as in [12] with the addition of a
smoothness constraint on the albedo. Their method is robust to outliers under the condition that only a small
number of images is supplied.

In another 4-source method [13], ambient illumination is explicitly included, as is surface integrability,
and regression is employed in an iterative fashion to eliminate shadows. However, all these methods depend
on eliminating a small number of outlier values per pixel whereas the present paper can operate correctly
even if half the number of values per pixel, minus one, are outlier values, due to the high breakdown point
of the LMS robust regression used [6].

In [14] it was shown that the minimum number of lights for PST for the complete visible surface of
any convex object is six. Unlike [10], they argued that simply discarding highest or lowest intensity pixels
may lead to information loss so they discard only pixels with doubtful intensities. As extra lights are better,
[15] uses a spherical device to capture 156 images. Since the data is then highly over-determined, they
simply discard the lowest 50% and the highest 10% to aid PST. Here, we avoid thresholds or arbitrarily
discarding pixels by relying on LMS outlier detection, which automatically generates outliers [16]. In [11],
an iterative scheme is devised for finding albedo and normal, which essentially uses the median of each plus
smoothness. In this paper, inliers are used with no need for iteration to immediately generate both albedo
and normal.

Julia et al. [17] defined two thresholds to simply discard shadow and highlight pixels. The lower thresh-
old, which corresponds to shadows, depends on the intensity values in each set of images, while they set the
upper threshold, related to highlights, to the maximum grey value, so the second threshold actually applies
only to the quite special circumstance of pixel saturation.

Recently, probabilistic models have been proposed to deal with outliers. The method proposed by Chan-
darker et al. [18] uses a fast graph-cut method for performing Lambertian PST in the presence of shadows.
They pose shadow detection as an iterative Markov Random Field (MRF) formulation, assigning each pixel
a shadow label and assuming neighbouring pixels likely have similar shadow labels.

In [19], 169 images of an object are captured and a probabilistic imaging model is introduced, initialized
by considering the 50% brightest intensities as inliers. Whereas the choice of prior directly influences their
method, here we do not need any prior information. In a method using only three sources, [20] proposes
a simple MRF formulation to identify shadow regions. Since one constraint has been lost due to shadow-
ing, they showed that integrability over the two remaining constraints can still lead to surface geometry
reconstruction in the shadow region. In this paper, we can indeed find surface normals, but no surface
reconstruction is required or used.
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In a generalization of [9], Refs. [21] and [22] extend [9] into a multiple light source technique. They
propose a recursive algorithm which eliminates intensities affected by shadows or highlights, based on a
least squares error scheme. However, that method can only cope with one highlight plus multiple shadows
at a pixel, whereas our algorithm can cope with multiple highlights and shadows.

These works are concerned with dealing with specularities and shadows so as to better model surface
properties: surface normal, albedo, and colour. As well, many approaches to a purely appearance-based
modelling have been developed for specular interpolation. In Reflectance Sharing [23, 24] a known surface
geometry is assumed, and it is argued that in order to capture high frequency information such as specular
highlights it is necessary to share across neighbouring pixels. These authors use RBF for interpolation
of BRDFs (Bidirectional reflectance distribution functions), over some thousands of centers for modelling
spatially-varying BRDFs, using a subset of all pixels as the sample points. In contrast, here we focus on
recovery of a robust estimate of surface normals (along with colour and albedo), and demonstrate that one
can use a number of RBF centers equal to the number of input images, separately for each pixel, for image
input sets of modest size (some 40 or 50 images). Here we model departures from a basic matte model using
RBFs, but instead of interpolating spatially we interpolate over luminance values at a pixel. The argument
in [23, 24] is that image sets may have no evidence of specular highlights, at a particular pixel, and in fact
these authors aim at reducing the input image acquisition down to a sparse set. Here, we take a middle
ground and use a medium-sized set. As well, we explicitly assume that some evidence of specular content
exists at many pixels, even if high frequencies are not observed. The reasoning behind this assumption is
that most materials possess some “sheen” quality, i.e., distributed specular content. Once RBF coefficients
are obtained, rendering with lighting from any direction is simple. We demonstrate using real datasets that
indeed convincing appearance modelling can be accomplished, including highlights and shadows, without
neglecting recovery of surface properties including normals.

For recovery of surface normals, some works have made use of polarized light ([25] and references
therein). In [26], the authors view pixel values under lighting with varying directions as measurements of
the bidirectional reflectance distribution function (BRDF), for a 2D slice of the BRDF for fixed view. They
compute the local tangent and binormal directions and thus normal by using symmetry of the BRDF in an
orthographic projection of a hemispherical function the data parameterized with respect to the half-angle
vector.

Appearance-based rendering approaches (e.g., [27, 28, 29]) are indeed concerned with appearance and
BRDF modelling, and not surface recovery. Here we strike a balance by proposing a hierarchy of methods
that progressively trade speed for accuracy of recovered surface properties. Asking for appearance modelling
only is the simplest and fastest algorithm, while the best, robust recovery of surface normals is the slowest.

PTM has been used in numerous applications. Padfield et al. [30] employed PTM to monitor surface
changes of paintings. They examined several paintings and showed that PTM can record surface features
such as craquelure, planar distortion, wood grain, canvas wave, etc. They applied PTM to paintings be-
fore and after physical changes, enabling them to monitor surface changes. Hammer et al. [31] used PTM
in paleontology to visualize fossils. Since many fossils cannot be fully imaged using conventional photo-
graphic approaches, PTM was used to provide a better view of the data. Other applications include criminal
forensics, cultural heritage preservation, painting brushstroke visibility, and art conservation [32].

In the initial version of this work [33] we compared the method proposed to the reference point of
the original work [1]. Here we retain this comparison but also go on to compare against a more shadow-
error resistant method [15]. We show that this method performs relatively well, but not as well as our new
method. To test the noise resistance of all the methods, in [33] we made use of synthetic data as ground
truth to quantify accuracy of recovered surface properties; here we add a more stringent test, using measured
range-finder data to generate synthesized, but inherently noisy, ground truth. Whereas in [33] we indicated
in general how the algorithm proceeds, here we explicitly introduce and specify each step, justifying the
approach for each algorithmic stage. We also investigate the tradeoff involved in separately modelling
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(a) (b) u=0.22,v=0.35 (c) u=0.18,v=0.08 (d) u=-0.0,v=-1.0

Figure 2: (a): Hemispherical dome with multiple, identical lights [Image due to Phillip Klausmeyer of the Worcester Art
Museum].; (b,c,d): Three of inputs (from set of 50), with lighting direction denoted (u, v, w).

specular and shadow interpolation, versus more simply modelling the entire departure from an underlying
(polynomial) matte model. Considering accuracy of recovered surface properties and also of appearance of
interpolated images, we set out a hierarchy, from complex to simpler, of methods that can be used depending
upon the level of accuracy required for obtaining surface normals and colour. We replaced the method in
[33] for obtaining the colour of the specularities with a much more reliable method based on a separation
of the modelling procedure for each colour channel. This eliminates colour artifacts seen previously in the
output. In experiments, we also devise an exhaustive test consisting of generating interpolated views for
out-of-sample light-direction angles consisting of a large set of averages over random pairs of in-sample
values measured, for synthetic data. This shows the benefit of going over to a robust method. As well, for
real measured in-sample images here we carry out a leave-one-out analysis whereby an interpolation basis
is generated in turn leaving out one input image and then regenerating the missing image, over a large image
set. Finally, we test the algorithm for a set of new data that is very challenging to the method, consisting
largely of gold, or gold-leaf applied to art objects. Both the complexity of these surface shapes, as well as
the metallic surface reflectance, make these images sets very demanding on the method, with the original
method failing on these sets. Instead, here we obtain excellent results.

3. Image Formation and Polynomial Modelling

3.1. Polynomial Texture Mapping
In the following we show how we extend (an altered version of) PTM [1] to explicitly deal with high-

lights and shadows. PTM assumes that least squares fitting will effectively be adequate in a polynomial
regression, for a smooth dependence of images on lighting direction. Along with adopting a polynomial
for capturing aspects of matte reflectance, at each pixel location, we also explicitly model change with light
direction for specularities and shadows. Then apprehending these values in an RBF framework, we can
go on to interpolate between captured images and arrive at a much more realistic interpolant that correctly
displays both highlights and shadows.

3.2. PTM Model
Suppose we have acquired n images of a scene, taken with a fixed-position camera but with lighting

from i = 1..n different lighting directions ai = (ui, , viwi)T . Fig. 2(a) shows what a typical hemispher-
ical lighting frame looks like (but note that there is no requirement that a hemisphere is used for lighting
positions), with Figs. 2(b,c,d) showing a subset of measured images.

Let each RGB image acquired be denoted ρi. Suppose we make use of the luminance images instead,
Li =

∑3
k=1 ρ

i
k. This reduction in dimensionality reduces the computational burden of robust regression and

we can re-insert colour later.
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A matte PTM model consists of a polynomial regression from lighting to luminance via a vector of
polynomial terms p, with p = p(a) a low-dimensional vector function of vector lighting direction a.
PTM uses a regression that is pixel-wise, so if we have n lights, then we are interested in regressing from
a set of n vectors p(ai) onto the set of n luminance values Li observed at that pixel over the n images
taken. For example, suppose n = 50 (i.e., there are 50 images, taken under 50 different lights) and suppose
p(ai), i = 1..50, is a 6-vector function of the three components of normalized lighting direction ai. In the
original PTM [1], the polynomial function used was

p(a) = (u2, v2, uv, u, v, 1) , where a = (u, v, w) (1)

So with a separate regression at each pixel (x, y), we seek a 6-vector of regression coefficients c(x, y) via
least squares as follows:

p(a1)
p(a2)
...
p(an)

 c(x, y) =


L1(x, y)
L2(x, y)
...
Ln(x, y)

 , or
P c(x, y) = L(x, y)

50×6 6×1 50×1
(2)

Each pixel has its own c(x, y), and the L(x, y) vector is the collection of all observed luminances at that
pixel over the n images. All lights are assumed to have the same intensity. 3

In the original PTM [1], p(a) is the 6-component set of polynomial terms in (u, v) [Eq. (1)], and so
coefficient vector c(x, y) is a 6-vector.

Here, we start off by firstly replacing the polynomial p in (1) with the following:

p(a) = (u, v, w, u2, uv, 1) , where w =
√

1− u2 − v2 (3)

The rationale is as follows: Suppose we indeed happen to have an underlying Lambertian surface plus
specularities and shadows; since we mean to use a robust regression to solve for c, then regardless of
specularities or shadows (assuming at least half plus one of the pixel values at an image location are non-
outliers), the regression will just generate the correct surface normal vector, multiplied by a surface albedo
times a lighting strength factor. One is then not trying to model a linear function by using a nonlinear model,
and the regression will simply place zeros in c for the higher order terms. Nevertheless, it is useful to keep
a polynomial description, to suit surfaces with matte component which is not Lambertian, and also because
even for a purely Lambertian surface more than three components are useful in modelling the discarding of
negative shading components (cf. [35]). Note that if we were to use instead p = (u, v, w) the method would
simply reduce to PST. Here we regress making no assumption about a Lambertian character of the surface,
and can reconstruct pixel values without making any such assumption. The reason for 6-D in (3) is simply to
retain the same low dimensionality, rather than the 10-D possible for quadratic combinations of (u, v, w, 1).
(Also, we found that 7-D, with a v2 term in (3) that symmetrizes the use of u and v, performed the same in
terms of accuracy.)

Within the modified PTM model then (as in eq. (3)) at each pixel located at (x, y) we can utilize the
values of coefficients c(x, y) derived from measured images to generate a new matte image illuminated from
a novel lighting direction a′ as L(x, y) = max[p(a′) c(x, y), 0], where negative values are nullified as they
represent self-shadowing values.

3Multi-view acquisition hardware, and the use of spherical harmonics (SH) instead of polynomials, are discussed in [34].
However note that SH are not appropriate for modeling specular and shadow phenomena since their support is too wide and one
may need a great many basis functions to approximate local and sharp changes. Wavelets could be used, but then there are many
options for basis functions and here we model non-matte contributions using RBF.
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3.3. Outlier Identification and Mapping to Highlight and Shadow

To make the regression process in eq. (2) robust to outliers we utilize the LMS [16], which generates
outliers “on a silver platter”, without any intervention. So here, regression is

c(x, y) = LMS (P ,L(x, y)) (4)

LMS proceeds by randomly selecting test sets of six values of L from 1..n and inverting eq. (2) for non-
singular sets; the number of sets to try is guaranteed to be much lower than nC6 while still retaining a high
breakdown point [6]. Outliers are first identified as values of L outside a band around a predicted linear re-
gression on the independent variables (the components of p ). The band’s width is chosen to be proportional
to the least median of squared residuals over all tests, and then a Reweighted Least Squares regression is
carried out using only the accepted points. (Note the lens flare artefact in Fig. 2(c): this type of non-specular
and non-shadow artefact will be handled as well by the robust regression.)

Fig. 3 shows the effect of robust regression for a single pixel (from the noisy-sphere image in Fig. 5
below) over 50 lights, on synthetic data for which we know ground truth. Here we wish to recover the matte
contribution to luminance by using regression: correct matte values are shown as black crosses whereas the
total contribution of matte, specularity, and shadow is shown as black dots (the data is sorted by luminance
value). While a least squares regression (blue circles) is led astray by the specularity and shadow content,
the robust regression (red squares) almost always finds close to the correct value.

Figure 3: Robust regression versus non-robust regression for matte plus specular plus shadow data in noisy sphere of Fig. 5.
(The pixel used here is mid-way on the vertical axis and 1/4 of the way across the horizontal axis.) Black dots are
Matte+Shadow+Specular luminance; blue circles are non-robust matte LS regression; black crosses are correct matte luminance;
and red squares are robust LMS fit. The RMS error to the correct matte values for non-robust fit is 15.3% whereas for robust fit is
3.4%.

The output of LMS is the set of regression coefficients c, plus a set of n weights (labels) ω identifying
inliers (ω = 1) and outliers (ω = 0), thereby excluding some lights at this pixel. But we know here
that outliers are generated because (a) L values are too high to suit the model eq. (2) — we take these
to be specular contributions; or (b) L values are too low (or the model generates negative values), for a
particular light — these are likely shadow locations. Thus we arrive at a tripartite set of binary weights
{ω 0, ω +, ω −} at each pixel, with ω 0 set for lights generating inlier values, ω + for specularities, and ω −
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for shadows. Fig. 4(b) shows weights corresponding to input image 4(a), ω 0 as white, ω + as green, and
ω − as red.

(a) (b) (c) (d) (e)

Figure 4: (a): One input image, light direction (u = 0.322, v = −0.378). (b): Weights: green are outliers with luminance having
positive residual, red are outliers with luminance having negative residual. (c): Matte output from robust regression for this lighting
direction (once colour is added back). (d): Chromaticity, eq. (5). (e): Instrinsic image, as defined in eq. (6).

Now we can go on to generate a matte version of the input set of images, (or indeed an interpolated
matte image) using the regression result c, as in Fig. 4(c). We are assured of doing better than the standard
PTM since we have excluded distracting specularities and shadows from consideration whilst generating
coefficients c.

4. Colour, Albedo, and Normal

4.1. Chromaticity

At this point, we already have an advantage of applying a robust method to the problem at hand, viz. a
more reliable calculation of coefficient c. But in fact we also have produced a better grasp of colour as well.
Let us factor each RGB triple ρ into luminance L = R +G+ B times chromaticity χ. Luminance L will
be composed of a scalar albedo α times lighting strength I times shading factor s (e.g., the shading factor
for a Lambertian surface would be surface normal dotted into normalized lighting direction). Since we have
no way of disentangling scalar lighting intensity from scalar albedo, we shall simply lump both scalars I
and α into α. Thus,

ρ = Lχ, L = s α, χ ≡ {R,G,B}/(R+G+B) (5)

An intrinsic image [36] (for this lighting strength), i.e. surface independent of shading, would then be

ρintrinsic = αχ (6)

I.e., this is what the surface would look like under this light, with shading removed. Chromaticity and
intrinsic image are shown in Fig. 4(d,e).

Since we have weights ω 0 identifying pixels indeed corresponding to the polynomial matte PTM model,
the robust regression delivers a reliable estimate of chromaticity. For suppose that at this pixel a set of all
chromaticities χ is given by χi

k = ρik/L
i, k = 1..3, for the ith light, i = 1..n (with, say n = 50 lights).

Then we can identify a good estimate for the chromaticity independent of light direction via the median, for
each colour channel k = 1..3, over ω 0 = 1 inlier pixels:

χ = median
i∈ω 0

(
ρi/Li

)
(7)

That is, we form chromaticity (colour without magnitude) by dividing input image RGB values at the current
pixel by input luminance, and obtain a best estimate as the median of these vectors over inlier values.
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Fig. 4(d) shows how this recovered chromaticity appears: indeed it is colour without magnitude and, to
large measure, without shading as well. And Fig. 4(e) shows the Lambertian-based matte intrinsic image
ρintrinsic = αχ from eq. (6) with albedo α as generated below. Since image (c), the matte output ρ = Lχ
with L = p(a)c, includes shading its appearance is more realistic, of course. But note in image (c) that
using robust slopes can generate black output since dark values may form a majority at some pixels, giving
slopes that are near zero.

4.2. Surface Normal and Albedo from Matte Regression

The regression involving eq. (3) automatically generates an estimate of surface normal n̂ and albedo α,
by considering the contribution to the first three terms of p(a):

n = (c1, c2, c3); α = ‖n‖, n̂ = n/α (8)

Let us denote this surface-normal algorithm as Method:COEFF. We compare the accuracy of this estimate
of albedo and surface normal with LS, with LMS, and with a third alternative method, described below in
the next section.

4.3. Comparison to a Quantile-Based LS

We can evaluate how well the robust regression of matte quantities does, compared to the original LS
approach, in a simple noise sensitivity test. However, to also include a comparison with a better method
than a simple LS, consider a less-simple but still very fast method suggested in [15]. As explained in §2,
at each pixel Ref. [15] simply drops the bottom 50% and top 10% of luminance values. However, rather
than performing a straightforward LS on the set of values that are left, these authors use a “tent” (triangular)
function to weight lighting directions in the middle of the resulting range highest when carrying out PST.
We denote this method as Method:QUANTILE, and denote the original PTM method as Method:LS — but
using our improved polynomial model as given in eq. (3). The robust method based on LMS in eq. (4) we
denote Method:LMS.

For both Method:QUANTILE and our proposed Method:LMS we can generate a better estimate of
surface normals than by simply using PST: Since we have classified the pixel values as inliers and outliers,
we can write a robust version of PST by using only inlier pixels (i.e. ω 0 = 1). Suppose we collect all
lighting directions ai, i = 1..n into an n × 3 matrix A. Now suppose that the number of inlier pixels is
m < n, i.e., there are m pixel measurements (at the current pixel location (x, y)), amongst the n measured
values, that are deemed to be inliers. The remaining n−m values are regarded as outliers. LetA(ω 0) be the
set of rows of matrixA corresponding to these “good” lighting directions (at this pixel): submatrixA(ω 0)
still has 3 columns but only m rows. Likewise, let L(ω 0) be the subset of luminance values corresponding
to inliers, so that L(ω 0) is an m-vector.

Then we can generate a robust estimate of normalized surface normal n̂ and albedo α via

ñ =
(
A(ω 0)

)+
L(ω 0); α = ‖ñ‖, n̂ = ñ/α (9)

where A+ denotes the Moore-Penrose pseudoinverse. For Method:QUANTILE we instead use matrices
weighted by the triangular functions.

Comparing the four methods, Figs. 5(a,b) shows results over increasing percent Gaussian noise, for
a synthetic sphere RGB image, with pixel values generated for 50 non-uniform lighting directions for a
Lambertian surface plus Phong illumination [37] with roughness 1/20, plus noise. Here the lines show the
results for the median error over the sphere for normal vector direction, in Fig. 5(a), and for albedo, in
Fig. 5(b). Results for our proposed method are shown as the solid line in blue, and for the LS-based PTM
method as the dotted line in red. For an intermediate approach, the dashed magenta line shows median
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results for Method:QUANTILE; and we also show the result for Method:COEFF from §4.2 in dot-dashed
green. As an further example, we shaded the depth map for a Mozart bust, again for 50 lighting directions, 4

showing both attached and raycaster cast shadows as well as specularities: error results are similar.
Unsurprisingly, if there is indeed no noise and the base reflectance is Lambertian, a robust regression

ignores the polynomial terms in the regression model and returns regression coefficients proportional to the
surface normal since the shading model is the surface normal dotted into light direction, and specularities
and shadows do not distract the robust regression. Therefore both Method:COEFF and Method:LMS start at
zero error. As noise increases, Method:LMS still does very well. Method:COEFF is much worse so will be
dropped. In comparison, standard PST, based on straightforward least squares including all pixel values, has
the poorest estimates because the effect of noise is swamped by the main problem, inclusion of shadow and
specular values. The intermediate approach, Method:QUANTILE – dashed magenta lines – does reasonably
well, but not as well as our Method:LMS. Obtaining better estimates of surface normals has practical impli-
cations, in that as well as PTMs providing interpolation of appearance to novel lighting, the techniques of
reflectance transformation [1] have lead to the most important breakthroughs. These methods transform the
reflectance properties to new material types, by either introducing specular components (specular enhance-
ment) or increasing the second derivative of the reflectance function (diffuse gain). Both of these techniques
require estimates of the surface normal.

For real images below we therefore apply robust PST, eq. (9), with matte weights generated by LMS, as
our estimator of albedo and normal.

5. Specularities and Shadows

5.1. Modelling Specular and Shadow Pixels

The model (2) for the luminance L for a basic matte reflectance will not account completely for the
luminance, since L will include highlight and shadow contributions that drive L higher respectively lower
than the matte luminance. Since we have in hand labels for specular ω + and shadow ω − pixels (over
lights i = 1..n at each x, y location), we can model these extra contributions, with a view to being able to
interpolate them later, for new, unmeasured, lighting conditions.

We first consider the extra value at each pixel, on top of matte luminance L̂, due to specularity. Let us
call this highlight-driven value the “sheen”, ζ , defined as

ζ (i) =

{
L(i) − L̂(i) if ω +(i) = 1,
0 if ω +(i) = 0

(10)

for each pixel location. That is, at a pixel x we define ζ as non-zero only for specular-outlier values.
Then we can model the dependence of specularity on lighting direction using a set of RBF coefficients.
We call the remaining non-matte contribution the “shade”, denoted σ :

σ (i) =

{
L̂(i) − L(i) if ω +(i) = 0,
0 if ω +(i) = 1

(11)

Again, we model this contribution using RBF, separately. The reason for including all non-sheen pixels in
the shade σ , and not just ω −, is that then the two RBF interpolations, plus matte, combine to exactly equal
the input luminance images and for in-sample lighting directions we always have input images reproduced,
as in Fig. 1 above.

4The laser range data for the bust of Mozart is due to Fridtjof Stein of the USC Institute for Robotics and Intelligent Systems.
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Thus, we have a model that describes luminance L at x = (x, y) as

Li(x) = L̂i(x) + ζ i(x) − σ i(x) (12)

over the i = 1..n lights, at a pixel. Again, note that the input luminance images themselves are exactly
regenerated, using this model. From the n images imaged under n different lighting directions, we now
interpolate the specular and shadow components between those lights, generating values for novel, unmea-
sured light angles.

5.2. RBF modelling

Let us consider the sheen interpolation first. We may wish to model specularity separately from shadows,
or indeed we can instead combine both sheen and shade into a single quantity. Here we carry out a per-pixel
interpolation. We might first consider using a linear interpolation scheme but, while appealing, such a
simple approach is bound to fail: e.g. for cast shadows if one image has a cast-shadow to the left, and a
second image has one to the right, then their linear interpolant will have both, rather than a shadow in an
interpolated direction. So instead we use per-pixel RBF modelling.

For our set of n images, each having N pixels, let the sheen at one pixel for one light be ζ(ai). We
wish to model the sheen in terms of a set of radial basis functions φ storing functions of distances from a
particular lighting-direction a to the n known lighting-direction vectors. That is, we adopt an interpolation
model

ζ(a) =
n∑

i=1

ψi φ(‖a− ai‖)

with RBF coefficients ψi, and functions φ that could be Gaussians, multiquadrics, logarithmic RBFs, thin-
plate splines, etc. 5

In some cases a first-degree polynomial in a is added to account for linear and constant portions of an
interpolation and ensure positive definiteness of the solution [39]. Therefore, our model is

ζ(a) = α+ β1u+ β2v + β3w +
n∑

i=1

ψi φ(‖a− ai‖) (13)

where a lighting direction is a = [u, v, w].
At a pixel, we have n sheen values corresponding to n lights ai and additional 4 coefficients, α, β1, β2β3,

so a system of n equations (13) is under-determined. Therefore one scalar and one vector constraint are
usually introduced into the system [38]:

n∑
i=1

ψi = 0,
n∑

i=1

ψia
i
k = 0, k = 1, 2, 3 (14)

where we denote [ui viwi] = [ai1 a
i
2 a

i
3].

5Here we make use of the special case of Gaussian RBF basis functions, and use distance functions φ(r) = exp(−0.5 r2/κ2)
with constant κ. If the entire set of n lighting-vectors ai is the n× 3 matrix A, the dispersion (κ for Gaussians) can be taken to be
the approximate average distance between interpolation nodes ak consisting of the columns of A [38]:

κ =
{

1

n
Π3

k=1

[
max
i=1..n

(aik) − min
i=1..n

(aik)
]}1/3

I.e., κ is (1/n)1/3 times the geometric mean of the bounding-box widths enclosing the lights.
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So extending the RBF model by including the 4-component “polynomial” term in eq.(13) we have now
a (n+ 4)-dimensional basis of RBF functions

φ′ =
[{
φ(‖a− ai‖), i = 1..n

}
, 1, u, v, w

]T
(15)

Accordingly, the set of n RBF coefficients is now extended into n+4 coefficientsψ′. Consider the collection
of n sheen values ζi at the current pixel for the i = 1..n lights. In order to solve for the coefficients ψ′

we substitute the estimated sheen values in eqs. (13) and (14), as well as the additional constraints. We
can define an n × n matrix Φ of functions of distances between all n lights: Φ(i, j) = φ(||ai − aj ||).
Additionally, we define an n× 4 matrixQas follows:

Q = [1n, A]
n×1 n×3

where 1n is an (n× 1)-vector of 1’s and whereA consists of the set of 3-vectors a1,a2, ...,an as rows.
Then we define a larger matrix Φ′ by

Φ′ =

[
Φ Q

QT 04

]
(16)

where 04 is a 4× 4 array of zeros.
Extending the sheen n-vector ζ into an (n+ 4)-vector by appending four zeros,

ζ′ = {[ζi, i = 1..n, ], 0, 0, 0, 0}

we can then solve the RBF model for RBF coefficients ψ′, via

ζ′ = Φ′ ψ′

(n+4)×1 (n+4)×(n+4) (n+4)×1
(17)

Here we solve this equation for an approximation ψ̂′ of the RBF coefficients ψ′ using the (pseudo-)
inverse of Φ′. Then the approximation ζ̂′ of sheen (extended by four components), over all the lights is
given by back-substituting ψ̂′ into eq. (17) and the sheen n-vector itself is the first n components of the
result; i.e.,

ψ̂′ = (Φ′)+ ζ′ ,

ζ̂′ = Φ′ ψ̂′ ,

ζ̂ = ζ̂′i=1..n

(18)

Since there are n + 4 equations and n + 4 unknowns, interpolation nodes are mapped exactly, but the
interpolated function might model the underlying dependency well or not, and this might also depend on the
amount of smoothing applied (but above we use no smoothing).

As opposed to in the Reflectance Sharing approach [23, 24], here we do not combine information across
pixels, but model each pixel separately. Implicit in such an approach is that we expect there to be some
specular and some shadow content at any pixel. For the intermediate-sized image sets used here (as opposed
to a sparse set aimed at in Reflectance Sharing) the results displayed below justify the suitability of this
assumption. The method set out here is considerably simpler than many methods advanced for strictly
appearance modelling (e.g., [27, 28, 29]) while at the same time also recovering surface properties such as
surface normal.
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Above we have dealt with an RBF expansion for the sheen values. The shade values can be treated
similarly separately. Alternatively we can apply RBF modelling onto the entire departure η from matte:

η = L− L̂ (19)

Also, for simplicity here we concentrate on luminance L, but below in §6 we separately model the non-matte
contribution for each R,G,B colour channel.

In summary, since we expect the matte component to be comparatively smooth with respect to light
direction, compared to specular highlights and shadows, we have adopted the (modified, and also made
robust) original PTM for the matte component and reserve the RBF formulation for the other components.
For the reconstructed luminance, then, we have the decomposition from eq. (12),

L̂i = p(ai)c + ζ̂i − σ̂i (20)

and have perfect reconstruction of the original images, because nodes are perfectly regenerated.
So far we have considered a single pixel. Grouping all N pixels together, the above considerations

generate the N × (n+ 4) sheen part, which we denote by Z ′, and the corresponding shade part is denoted
S′. For Z ′, using the extended matrix Φ′ derived above we can solve for all RBF coefficients Ψ′ at once
by inverting

Z ′ = Φ′ Ψ′

(n+4)×N (n+4)×(n+4) (n+4)×N
(21)

where Z ′ is sheen vectors each extended by four zeros.
This gives all interpolation coefficients Ψ′ for all pixels and all lights. Now we can use this Ψ′

determined by (21) to interpolate for new lighting directions using their associated distance vectors.

5.3. New Light
For interpolation, given RBF coefficients Ψ′ determined above, an interpolated (N × 1) sheen image Ẑ

is found by first generating an extended Gaussian distance (n+ 4)-vector φ′ for the new light a via eq. (15).
Then we derive an estimate of sheen over the whole image via

Ẑ = φ′(a) Ψ′

1×N 1×(n+4) (n+4)×N
(22)

and similarly for shade Ŝ. (We reserve calligraphic letters for recovered single images, as opposed to the
input set of images.)

An interpolated (N × 1) luminance image is thus given by

L̂ = C p(a) + Ẑ − Ŝ (23)

where C is the N × 6 collection of matte PTM slope coefficients over all the pixels. We can verify the
correctness of eq. (23) by simply regenerating L for any of the input lights, and within machine accuracy
the input luminance image is perfectly reconstructed.

For a new, unmeasured light the interpolation summarized in eq. (23) is expected to deliver a reasonable
luminance image, finding continuous and accurate interpolations for non-sampled parameters. Below in §6
we verify the accuracy of this interpolation model by carrying out experiments on synthetic data with ground
truth and also in §7 using a leave-one-out experiment to reconstruct real data. We also introduce a small
amount of Tikhonov regularization into the pseudoinverse in eq. (18), to guard against instability. If we use a
small Tikhonov parameter (λ = mean(diag(Φ′))/(5×104), here) then we will guard against overshooting
between in-sample nodes while only reducing the mean PSNR for in-sample image reconstruction down
from machine-infinity to the completely acceptable level of 45dB (effectively negligible difference). I.e., in
place of (Φ′)+ in eq. (18) we instead use [(Φ′TΦ′ + λI)−1Φ′T ] .
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5.4. Modelling Combined Non-Matte Component

Suppose that rather than using RBF modelling to apprehend each non-matte component separately,
as in eq. (23), we instead model all departure from matte luminance using the total difference η. If the
reconstructed η image is denoted Ĥ, then our model is simply

L̂ = C p(a) + Ĥ (24)

Since RBF modelling returns the nodes themselves essentially exactly, reconstructing all input luminance
images will be accurate. Therefore for interpolation we can in fact use η instead of sheen and shade sep-
arately, and produce virtually identical results. Hence in the interests of reducing complexity we therefore
move to using a unified departure η from luminance. Nevertheless, for some applications we may indeed
wish to carry both sheen and shade separately.

In the next section, we will show how to include colour in the interpolant.

6. Interpolating Colour

6.1. Recovered Matte Image

In [33], we used a simple approach to recover colour information for the interpolated PTM imagery.
Since we recovered chromaticity χ robustly via eq. (7), we can produce a recovered colour matte image by
multiplying the recovered luminance L̂matte by chromaticity:

L̂matte = C p(a); R̂matte = L̂matteχ (25)

where R̂matte is our recovered matte colour image. Fig. 6 shows how this quantity appears for one input
dataset.

Carrying on with eq. (9) for robustly recovered albedo and surface normal, and eq. (6) for the intrinsic
image, we recover images as displayed in Fig. 7. Note that since Figure 6(d) includes shading, its appearance
is somewhat more realistic, of course, than is Fig. 7(c). From Fig. 6(d) and from Fig. 7 it is clear that the high
specular content in this set of images means that settling for a matte-only reconstruction will simply not be
good enough. Instead, we have to interpolate either the shade and sheen separately or the entire non-matte
contribution η.

But the problem remains as to how to properly interpolate colour of highlights. In [33], we solved
this problem by modelling shade and sheen in luminance only, with colour given by the chromaticity; then
colour change associated with highlights was added back by identifying the chromaticity of highlights as
that for the maximum value of R, G, and B over all input images. However, that solution led to some colour
artefacts in the output images, which looked grey in that the highlight colour was achromatic.

Here we take a simpler and much more satisfactory approach: we simply model the non-matte com-
ponent η separately in each colour channel. Fig. 7(d) shows one image from the input set, and Fig. 7(e)
shows an image interpolant for a nearby new lighting direction: clearly, both specularities and shadows are
properly interpolated. 6 Fig. 7(f) shows another example of interpolation, clearly showing interpolation of
cast shadows as well as of specularities.

6.2. Modelling Colour

Now all RBF quantities become functions of the colour channel as well. Firstly, our approximated
colour matte image is given by eq. (25) for each of the input images, giving an N × 3 × n matte colour

6A video showing interpolation over new lighting directions is online at http://www.cs.sfu.ca/∼mark/ftp/Ivc2012/barb.wmv .
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tensorRmatte. Then we define an (N × 3× n) set of non-matte colour valuesH (the “excursion”) for our
input set of colour images, via

H = R − Rmatte (26)

whereR is the (N×3×n) set of input images. (We use boldface upper-case letters for quantities associated
with the entire set of n input images.) We extend H into an extended version H ′ by appending a set of
(n× 3× 4) zeros.

Then for each colour channel we recover an approximation Ĥ of the non-matte image as we did in
eqs. (21) and (22) to develop the sheen Ẑ . We find that using a 3-channel approach, the grey artefacts that
appeared in [33] are no longer present.

The complete algorithm is thus as follows:
Phase 1: Offline
Over the input set of n images, we first consider the colour:

approx. luminance: Lmatte = C (p(A))T

N×n N×6 6×n

matte colour: Ri
matte = diag

(
Li

matte

)
χ , i = 1..n,

N×3 N×N N×3
excursion: H = R − Rmatte

N×3×n N×3×n N×3×n
excursion′ : H ′ = [H , 0]

N×3×(n+4) N×3×n N×4

(27)

Here, p(A) once again means the set of n×6 polynomial functions of the n×3 lighting-direction collection
A. Matte regression coefficient matrix C is N × 6 for N pixels. And chromaticity χ is N × 3.
Then we calculate and store the RBF coefficients Ψ′ over all the input lights:

Ψ′ = H ′ (Φ′)+

N×3×(n+4) N×3×(n+4) (n+4)×(n+4)
(28)

Phase 2: Online
For a new light a, firstly eq.(15) gives the extended Gaussian distance vector φ′ from the new light to the
measured lights. The recovered matte luminance pixel values for the new light are given by eq. (25) and
here this reads

L̂matte = C p(a)
N×1 N×6 6×1

(29)

and then recovered matte pixel colours are

R̂matte = diag
(
L̂matte

)
χ

N×3 N×N N×3
(30)

For the non-matte component, in colour, the recovered RGB values for the recovered excursion-from-matte
imageH is given by eq. (13), expressed here for excursion instead of sheen as follows:

excursion: Ĥk = Ψ′k φ′ , k = 1..3,
N×3 N×(n+4) (n+ 4)× 1

interpolated colour: R̂ = R̂matte + Ĥ
N×3 N×3 N×3

(31)
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7. Experiments

7.1. Reconstructing Synthetic Noisy Data: Put-One-In Analysis
Using the noisy synthetic data in Fig. 5, we can very simply test the efficacy of the weighted-LS method

(Method:QUANTILE) compared to the robust approach in Method:LMS. For the 50 images of a sphere with
10% Gaussian noise, suppose we randomly choose any pair of image lighting directions and interpolate an
output image re-lit from the mean of the two lighting directions. We can then compare the results with a
perfect synthetic sphere (with shadows and specularities appropriately constructed) for that same lighting
direction. We call this test a “put-one-in” analysis.

Such a test is simply meant to guide us in understanding the properties of the methods available. Ta-
ble I shows results for three methods as follows: Method:QUANTILE is the relatively simple weighted
least-squares approach set out in §4.3; Method:LMS+RBF is the proposed robust method, using LMS
regression for the matte component followed by RBF interpolation for shadows and specularities; and
Method:QUANTILE+RBF is the Method:QUANTILE again for the matte component, but followed by RBF
interpolation for the excursion from matte. Here we run over 100 pairs out of the possible 50C2 pairs of di-
rections. Note that here we are concerned only with interpolated image appearance, not recovered surface
properties.

Method Mean PSNR Median PSNR
QUANTILE 26.68 27.05
LMS+RBF 29.90 29.81
QUANTILE+RBF 29.90 29.81

Table 1: Mean and median PSNR (dB) for reconstructing synthetic image data, including both shadows and specularities.

Unsurprisingly, the least-squares approach Method:QUANTILE, albeit one that uses a heuristic to ex-
clude shadows and highlights, performs worst in interpolating out-of-sample data. 7 However, the present
method, Method:LMS+RBF, does quite well, in fact regenerating image data at about the same PSNR as
for the noisy data used compared to perfect synthetic data. But notice that, if we did indeed use the simpler
QUANTILE method for detecting shadow- and specular-weighted pixels, we would nonetheless arrive at
just the same median PSNR for output images, provided we utilized RBF interpolation for the non-matte
part of an interpolation image — i.e., provided we use Method:QUANTILE+RBF. This makes sense in that
the RBF method is capable of excellent interpolation whatever the non-matte excursion η happens to be.
Therefore this seem to argue for using Method:QUANTILE+RBF.

However, the problem arises if we also wish to recover surface normals and albedo (and chromaticity):
we might indeed regenerate images that are good interpolants, but we must also ask how the methods do
in recovering surface properties. From Fig. 5 we note that comparing the correct surface normals and albe-
dos with those recovered from noisy synthetic data, Method:QUANTILE is worse than the robust method,
Method:LMS. So in reconstruction, if appearance is the main concern, then it is fine to use the simple
approach, Method:QUANTILE. However it makes sense to use a robust approach when we indeed are mo-
tivated to generate correct surface properties, such as in the case of museum objects.

7.2. Leave-One-Out Analysis, Real Data
Since we generally have no ground truth data for interpolants of image sets of real objects, we can test

the different methods by leaving out in turn each of the input set images used in forming the interpolation

7Of course the PSNR in Table I does not fully capture visual saliency of the lack of non-matte information in
Method:QUANTILE since the many matte pixels will indeed approximately agree with the correct synthesized image.
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basis, and then regenerating the deleted image by interpolation.
For the particular image set of 50 images of which some are shown in Fig. 2, we compare values of PSNR

for the reconstructed left-out image, plotted against the x− and y− components of the lighting direction for
that left-out image, in Fig. 8(a). Here we show both the 50 data points (blue circles) as well as an error-
interpolation surface. In Fig. 8(b) we also show the PSNR for Method:QUANTILE without any use of RBF
interpolation: not surprisingly, its accuracy is much poorer and consequently its PSNR is a great deal lower.
Fig. 8(c,d) show the original and interpolated rendition, for the case with error closest to the mean, for
method LMS+RBF.

Table 2 gives the performance statistics for these methods. For completeness we also give the perfor-
mance of a Method:0+RBF, meaning that no regression is carried out for the matte part, but instead only RBF
interpolation is applied. We note that accuracy performance is almost the same as for Method:LMS+RBF
or Method:QUANTILE+RBF, in terms of performance in regenerating the appearance of an interpolated
image including specularities and shadows. However, such a method would return no information about the
surface properties.

For an interactive, real-time viewer, though, we may not be interested in obtaining surface properties,
but only interested in generating the correct appearance of interpolated results. Therefore Method:0+RBF
is included in Table 2.

Method Mean PSNR Median PSNR Min PSNR Max PSNR
LMS+RBF 29.91 29.99 15.47 37.30
QUANTILE+RBF 29.95 30.00 16.43 37.36
QUANTILE 23.36 23.03 13.86 31.59
0+RBF 29.92 30.02 15.43 37.33

Table 2: PSNR statistics (dB) for reconstructing real image data including both shadows and specularities, in a leave-one-out
analysis.

From the above results we can conclude that we are left with an accuracy/speed tradeoff: LMS is best
for recovering surface properties but is slowest; but for any method RBF generates the best appearance for
interpolants.

7.3. Further Interpolation Results
Here we visually inspect results for the interpolation algorithm Method:LMS+RBF proposed, for more

datasets. Of course, another aspect of the interpolation presented is the recovery of a matte image. Fig. 9(a) 8

shows how a purely Least Squares approach to PTM (but using the modified polynomial model (3)) would
produce a matte image, for lighting direction averaged from two of the 3-D input light directions. We see
that the specular content in the input set of images has unduly influenced the output matte interpolant. This is
not surprising since a least-squares based method is based on a sum, which is greatly influenced by absolute
brightness (theoretically it has an infinite breakdown point for even one single outlier). In comparison,
the weighted-LS Method:QUANTILE produces an interpolant as in Fig. 9(b) – clearly, this has gone some
way to repair the inclusion of specular information but still does not appear acceptably matte. In contrast,
Method:LMS generates a matte approximation R̂matte as in Fig. 9(c), a decidedly preferable result that
ignores the strong highlights in the original captured dataset. The images whose lighting directions are
being interpolated are shown in Fig. 9(d,e). 9 The Method:LMS+RBF interpolation result is shown in (f) for

8Tavern Scene painting by School of Teniers, data courteously supplied by Philip Klausmeyer of the Worcester Art Museum.
9The strong specularity derives from the original paint surface plus a spray-varnish applied after an adhesive (fish glue) was

introduced into the cracks of the painting surface to repair damage.
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an interpolation angle given by the mean of the two 3-D lighting vectors in (d) and (e), normalized. Clearly
Method:LMS+RBF produces physically plausible results and note that to date no previous PTM method
has been able to produce results reproducing physical highlights in this way. Image (g) shows the closest
in-sample input image, which is quite close in appearance to the interpolant produced in (f). On the other
hand, the interpolant is not simply the same as the closest input image, which here has lighting direction
7.0◦ away from from the interpolated light direction. (Note that here only 16 input lights were available for
this painting. For such a small dataset one expects accurate reconstructions only when there is sufficient
input-data support near enough to the interpolated light direction. In general in PTM, datasets with 40 to 70
input images are common.)

Fig. 10 shows further results: In Fig. 10, column (a) shows the input image for one lighting direction and
column (b) shows that for another direction; column (c) shows the interpolated result for that non-measured
angle; and column (d) shows the recovered matte image for the interpolated light direction; column (e)
displays the recovered normals. Examination of these results shows them to be sensible, at least visually.
Angles from the z-axis for interpolant directions in Figure 10 have median 33.95◦ and maximum 49.27◦ for
these particular tests.

The three rows of images in Fig. 10-Continued are especially interesting in that the objects being im-
aged 10 consist largely of highly specular gold or gold leaf. Notwithstanding this difficulty the method
provides a convincing and compelling interpolation.

8. Conclusion

In this paper we have introduced a robust version of PTM, based on a polynomial modified from the
original method. Using the inliers found from the luminance regression, we identify both specular and
shadow pixels and then model their contribution, separately or together, using an RBF interpolation. The
main success of the work is in being able to interpolate data that includes both shadows and specularities
for out-of-sample lighting directions, continuously and accurately. Not only do we arrive at accurate in-
terpolants but, importantly, the images reconstituted for actually measured directions are always essentially
correct.

One disadvantage of using a robust regression method is that the number of lights used must inherently
be larger than the minimum number had we used least squares. For if we have 6-D regression coefficients
then using LS we could use a minimum of 6 lights; 11 but for LMS regression we need more than twice
as many observations as variables, so a minimum of 13 lights is required. However, the advantage is that
the regression is not swayed by specular and shadow outliers. In practice, we found that interpolation could
proceed even with a relatively small number of lights if necessary — as in Fig. 9 for a basically flat but
highly specular surface that uses only 16 lights.

We found that the robust method returns more accurate surface normals, surface colours, and albedos in
the face of additive noise than other methods tested. As well, to test accuracy of appearance interpolation we
carried out two different error analyses. In the first, we used noisy synthetic data and generated an interpolant
in a new, non-measured direction equal to the mean between two sampled directions, repeating the test for
100 randomly chosen direction pairs. We compared the interpolant against a noise-free synthesized image
generated with correctly modelled shadows and specular highlights. The result was that using our shadows
and specular interpolation, we achieved about the same accuracy as simply the difference between the noisy
and non-noise data, thus showing that the method performed as accurately as possible. In a second analysis,

10Data was courteously supplied by Mark Mudge of Cultural Heritage Imaging. Licensing is via Creative Commons license
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

11However, the use of only 6 lights is not practical for other reasons, namely that in practice the quality of the PTM normals
recovered would not be good enough to produce useful reflectance transformation results.
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for real data we left out one measured image and regenerated that image, repeating over all the images in
the dataset. We found that using the RBF approach substantially increased accuracy.

We note from the plot of error in the Leave-One-Out analysis in §7.2 that in general the error increases
as the light-direction interpolation direction approaches the perimeter of sampled directions – there is less
information to interpolate. Also, insisting on exact reproduction of in-sample inputs will lead to overfitting
the data to some degree. A small amount of smoothing will maintain accuracy of in-sample images while
reducing overshooting between nodes. As well, clearly the quality of interpolants will depend on the quality
of input data sets. Here, we have used JPEG-compressed inputs only, stored using lossy compression.

Overall we found that there is a tradeoff between model complexity versus accuracy of surface properties
recovery. Even a simplest, agnostic, model of matte properties can return accurate rendering of image ap-
pearance for unmeasured interpolants. A model with moderate complexity can also do well in interpolation;
but only a robust model can return both correct imagery and correct surface properties.

Visually, we found that for further image sets tested the interpolated results make sense and, for the first
time, incorporate specularities and shadows into PTM results in a way that shows how the actual surface
would indeed appear under a new light. The proposed approach thus runs counter to the previous objective
of seeing matte versions of objects under new lights and, instead of avoiding specular highlights, here we
include them. In the original PTM work [1], specularities were subsequently regenerated using a standard,
but unphysical, graphics model of highlights based on the recovered normals.

So instead, what we aim at here is seeing specularities (and shadows) as the real surface would generate
them – not synthesizing them via graphics. The robust approach does deliver a more accurate set of surface
normals, so in fact one could still generate non-photorealistic results as in the original work, including re-
flectance transformation results. Also, more accurate normals make it more likely that one could accurately
regenerate the 3D surface itself, e.g. the geometry of a wrinkled parchment document. In future work, we
intend to examine how the method lends itself to this objective, with a view to better comparing surfaces
before and after damage or restoration. Future work also would involve addressing the fairly large number
of regression coefficients carried at each pixel, more than the amount of input data itself, with a subspace
reduction approach being possibly useful for reducing this storage burden.

In summary, the method presented represents a novel realistic re-lighting scheme as well as a promising
new approach for more accurately accessing colour and surface properties of imaged objects.
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 5: Noise sensitivity for PST estimate of surface normal and albedo for synthetic images. (a): Median angular error of
recovered surface normal for synthetic sphere images. (b): Median percent albedo error. Solid blue line: robust PST – using
weights w0 generated by robust PTM (Method:LMS). Dashed magenta line: robust PST using weights from Method:QUANTILE.
Dot-dashed green line: Method:COEFF. Dotted red line: standard PST. (c): Synthetic sphere with 10% Gaussian noise. (d-f):
Shaded (noisy) laser range finder depth map, with attached and raycasting cast shadows. (Three out of set of 50 images are shown.)
(g): Gaussian-noise sensitivity for median angular error for Mozart image set (standard PST results are high and are similar to those
in (a)).
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(a) (b) (c) (d)

Figure 6: (a): Actual luminance. (b): Recovered luminance for matte component. (c): Recovered chromaticity. (d): Approximated
colour version for matte contribution.

(a) (b) (c)

(d) (e) (f)

Figure 7: (a): Recovered surface normal components, in pseudocolour. (b): Recovered surface albedo. (c): Intrinsic image. (d):
To compare to an in-sample image, an input set image [(u, v) = (0.61,−0.29)] is displayed that has the closest light-direction
to one of the interpolants, displayed in (e). (e): Interpolant for direction (u, v) = (0.49,−0.41) that is close to the in-sample
image displayed in (d), with angular difference 10.01◦ from in-sample image. (f): Another interpolant, for relighting direction
(u, v)=(-0.67,-0.05), showing interpolation of cast shadows as well as of specularities.
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(a) (b)

(c) (d)

Figure 8: (a): PSNR values for Method:LMS+RBF in a leave-one-out analysis (for the dataset partially shown in Fig. 2). PSNR is
plotted versus the x− and y−components of the lighting direction of the left-out image. (b): PSNR values for Method:QUANTILE,
a weighted-LS algorithm. (c): Original, left out, for case closest to median error, [(u, v)=(0.13,-0.15)]. (d): Interpolant for left-out
image, PSNR=30.07.

(a) (b) (c) (d)−→ (e)←− (f) (g)

Figure 9: (a): Matte result from LS fit; (b): matte result from weighted-LS fit in Method:QUANTILE; (c): matte result from
robust fit. (d,e): Input images for lights (u, v) = (−0.39,−0.15) and (u, v) = (0.16,−0.38): lights in (d,e) are 34.8◦ apart; (f):
Method:LMS+RBF robust interpolation onto lighting direction (u, v) = (−0.12,−0.28), which is 17.4◦ from either light in (d,e).
Note that of course there are indeed 16 input images used in generating the interpolant, not just the two images (d,e) shown above.
We display (d,e) to show that the interpolated light direction is sensibly interpolated in (f). For comparison, (g) shows the closest
image in the input set, with light (u, v) = (−0.17,−0.38), which is 7.0◦ away from the interpolated light direction. This verifies
that the interpolation is generating reasonable images, whilst not simply choosing the nearest-neighbour light.
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