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Abstract

Weighted automata map input words to numerical values. Applica-
tions of weighted automata include formal verification of quantitative
properties, as well as text, speech, and image processing. In the 90’s, Krob
studied the decidability of problems on rational series, which strongly re-
late to weighted automata. In particular, it follows from Krob’s results
that the universality problem (that is, deciding whether the values of all
words are below some threshold) is decidable for weighted automata over
the tropical semiring with weights in N∪ {∞} and undecidable when the
weights are in Z ∪ {∞}.

We continue the study of the borders of decidability in weighted au-
tomata over the tropical semiring, and further analyze the complexity
bounds of the decidable problems. We give a complete picture of the de-
cidability and complexity of the fundamental decision problems of deter-
ministic and nondeterministic weighted automata over the tropical semir-
ing with weights in N ∪ {∞}, Z ∪ {∞}, and Q ∪ {∞}. The problems we
consider are non-emptiness, universality, ∃-exact, ∀-exact, upper bound-
edness, absolute boundedness, equality, and containment. To this end,
we provide alternative and direct proofs of the undecidability results, and
tighten them further. Unlike the proofs of Krob, which are algebraic in
their nature, our proofs stay in the terrain of state machines, and the
reduction is from the halting problem of a two-counter machine. This en-
ables us to strengthen the results to apply already to a very simple class
of automata: all the states are accepting, there are no initial nor final
weights, and all the weights are from the set {−1, 0, 1}.

The fact we work directly with automata enables us to tighten also
the complexity bounds of the decidable problems. We provide a toolbox
of algorithms and techniques for weighted automata, on top of which we
establish the complexity bounds. Some of the tools we provide formalize
and generalize known techniques, while others are novel.

∗A preliminary version appeared in the 9th International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA 2011).
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1 Introduction

Traditional (Boolean) automata accept or reject their input, and are therefore
Boolean. A weighted finite automaton (WFA, for short) has numeric weights on
its transitions and maps each word to a numeric value. Applications of weighted
automata include formal verification, where they are used for the verification
of quantitative properties [9, 10, 14, 30, 39], for reasoning about probabilistic
systems [5], and for reasoning about the competitive ratio of on-line algorithms
[3], as well as text, speech, and image processing, where the weights of the
automaton are used in order to account for the variability of the data and to
rank alternative hypotheses [12, 34]. They have also been used to prove theorems
regarding Boolean automata [20].

Technically, a weighted automaton is defined with respect to a semiring.
The value of a run is the semiring-product of the weights along the transitions
traversed (and the initial and final weights). The value of a word is the semiring-
sum of the values of the accepting runs on it. A formalism that is equivalent to
the one of weighted automata is the one of rational series [41]. There too, the
series is defined with respect to a semiring, and maps words to values from the
domain of the semiring. For the well developed theory on weighted automata,
we refer the reader to [18, 37, 29, 24, 15].

Of special interest is the tropical semiring over the rational numbers (to-
gether with∞), whose sum operator is min (with∞ being the identity element)
and whose product operator is + (with 0 being the identity element). We only
consider, unless stated differently, weighted automata over the tropical semiring
with the domain of the natural numbers, integers, or rational numbers. Con-
sidering decidability questions and complexity questions that do not go below
PTIME, all of our results are the same over the integers and over the rational
numbers, while often very different over the natural numbers. We thus present
all the results with respect to the integers and the natural numbers.

The rich structure of weighted automata makes them intriguing mathemat-
ical objects. Fundamental problems that have been solved decades ago for
Boolean automata are still open or known to be undecidable in the weighted
setting. For example, while in the Boolean setting, nondeterminism does not
add to the expressive power of the automata, not all weighted automata can
be determinized, and the problem of deciding whether a given nondeterministic
weighted automaton can be determinized, is still open, in the sense we do not
even know whether it is decidable.

The standard decision problems in the Boolean setting, namely non-emptiness,
universality, containment, and equivalence, have natural analogues for weighted
automata. For example, in the Boolean setting, the universality problem asks,
given a nondeterministic automaton (NFA) A, whether all the words in Σ∗ are
accepted by A. In the weighted setting, the “goal” of the automaton is not
just to accept words, but also to do it with a minimal value. Accordingly, the
universality problem for WFAs asks, given a WFA A and a threshold ϑ, whether
A assigns a value that is smaller than ϑ to all words in Σ∗. The other problems
admit similarly flavored analogues (see Section 2.3).
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In addition, the weighted setting gives rise to other decision problems, which
do not have a qualitative analogue. For example, given a WFA A, the ∃-exact
problem asks whether there exists a word w that is accepted with value exactly
ϑ. Another example, when A is defined with respect to an ordered semiring,
in particular the tropical semiring, is the upper-boundedness problem, where
we ask whether the values that words are mapped to by A are bounded from
above. We introduce these problems and others in Section 2.3.

In the Boolean setting, the complexity of the problems we mentioned is well
understood. Specifically, the complexity of universality, containment, and equiv-
alence of NFAs are PSPACE-complete [32], and are NLOGSPACE-complete for
deterministic automata, whereas the non-emptiness problem is NLOGSPACE-
complete already for NFAs. In contrast, for weighted automata, already the
non-emptiness problem may become undecidable, even for simple semirings [36].
As we shall see in this paper, for weighted automata over the tropical semiring,
the picture is involved. Thus, the complexity and decidability of the problems
at hand depend both on the determinism of the automata, as well as on the
underlying semiring.

The problems we study are of great practical interest: in the automata-
theoretic approach to reasoning about systems and their specifications, non-
emptiness, universality, and equivalence amount to satisfiability, validity, and
equivalence of specifications, respectively, and containment amounts to correct-
ness of systems with respect to their specifications. The same motivation ap-
plies also for weighted systems, with the specifications being quantitative [9],
and these also motivate the other weighted problems.

In [27], Krob proved that the universality problem for rational series is un-
decidable for the tropical semiring with domain Z∪ {∞}, and that this implies
undecidability of the containment and equivalence problems for the tropical
semiring with domain N∪ {∞}. Moreover, in [28], Krob proved that universal-
ity for rational series defined with respect to the tropical semiring with domain
N∪{∞} is decidable. The equivalence between rational series and weighted au-
tomata implies the same results for the universality and containment problems
for weighted automata.

In this paper we refine the borders of decidability by restricting the con-
ditions for undecidability on one hand, and by giving complexity bounds for
the decidable fragments, on the other. We now elaborate on these two aspects.
On the undecidability frontier, we describe alternative and direct proofs of the
above results. Our clean reduction enables us to strengthen the result to a
weaker model of automata, and to make the proof generalizable to additional
decision problems.

Our proofs offer the following advantages. First, unlike the undecidability
proofs of Krob, which refer to rational series and are therefore algebraic in their
nature, our proofs stay in the terrain of state machines. 1 In particular, while

1Readers familiar with both rational series and weighted automata may find this contribu-
tion straightforward, as algebraic operations like min, sum and Hadamard product of rational
series have analogous constructions in weighted automata. Given, however, the intricacy of
Krob’s proof, in particular the fact these operations and constructions cannot be taken as
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Krob’s reduction is from Hilbert’s 10th problem (solving a Diophantine equa-
tion), ours is from the halting problem of a two-counter machine. This enables
us to significantly simplify Krob’s reasoning and make the undecidability result
accessible to the automata-theoretic community. Second, the clean reduction
enables us to strengthen the result and show that undecidability applies already
to a very simple class of automata. For example, universality is already unde-
cidable when the weights of the automaton are in {−1, 0, 1}, it has no initial nor
final weights, and all its states are accepting. Third, the pure algebraic view of
rational series has the drawback that it cannot be generalized to some natural
extensions of the weighted setting, in which the automata-theoretic definition
is useful [4, 7, 8, 9, 10, 11, 13, 45].

Our reductions from the counter-machine halting problem use ideas similar
to those presented in [13]. Given a two-counter machineM, we define a weighted
automaton A whose alphabet is the set of M’s operations. We show that A
assigns a positive value to a word w if and only if w describes the actual run of
M and this run is halting with both counters having value 0. Intuitively, this
enable us to “simulate” the run of M using A. Our undecidability results for
the various problems then follow, either directly or with some additional small
modifications. Our proofs generalize the undecidability results of [27], and we
believe that they may also be useful when investigating other models of weighted
automata.

On the decidability frontier, we further study the complexity of each prob-
lem. To this end, we improve and generalize known techniques, as well as provide
some novel tools and constructions. In particular, we present a standalone tool-
box of constructions and algorithms for weighted automata. Our results are
summarized in Table 1, providing a complete picture of the decidability and
complexity of the fundamental problems for WFAs.

2 Preliminaries

In this section we define the models of automata we use throughout the paper,
and the decision problems we study.

2.1 Boolean Automata

We start by briefly giving the notations we use for Boolean automata. We refer
the reader to e.g., [44] for the complete definitions. A (Boolean) nondeterminis-
tic finite automaton (NFA) is a 5-tuple A = 〈Σ, Q, δ,Q0, F 〉 where Σ is a finite
alphabet, Q is a finite set of states, δ : Q×Σ→ 2Q is a nondeterministic transi-
tion function, Q0 ⊆ Q is a set of initial states, and F is a set of accepting states.
When |Q0| = 1 and |δ(q, σ)| = 1 for every q ∈ Q and σ ∈ Σ, we say that A is a
deterministic finite automaton (DFA). The language of A is denoted by L(A).

black boxes, its adoption to the formalism of weighted automata is not trivial.
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Deterministic Nondeterministic

N-WFA | Z-WFA N-WFA Z-WFA

Non-emptiness
PTIME

Prop. 6.1

Universality
PTIME PSPACE-C Undecidable

Prop. 6.2 Thm. 6.3 Thm. 4.1; [27]

∃-Exact
NP-C PSPACE-C Undecidable

Thm. 6.7 Thm. 6.10 Thm. 4.5

∀-Exact
PTIME PSPACE-C

Prop. 6.11 Prop. 6.12 Thm. 6.13

Upper PTIME PSPACE-C Undecidable

Boundedness Prop. 6.21 Thm. 6.20 Thm. 4.6; [1]

Absolute PTIME PSPACE-C

Boundedness Prop. 6.23 Thm. 6.22

Equality
DD: PTIME Prop. 6.15

NN : Undecidable Thm. 4.3
DN , ND: PSPACE-C Thm. 6.16

Containment DD, ND: PTIME Prop. 6.14 DN , NN : Undecidable Thm. 4.2

Table 1: Complexity of solving the decision problems. In the equality and
containment problems, the same results hold for N-WFAs and Z-WFAs, and
the D/N notation indicates whether the involved automata are deterministic
or nondeterministic.

2.2 Weighted Automata

We turn to describe the model of weighted automata we study. Let Q∞,Z∞,
and N∞ denote Q ∪ {∞},Z ∪ {∞}, and N ∪ {∞}, respectively.

While Boolean automata map words in Σ∗ to either “accept” or “reject”,
weighted automata may be viewed as functions from Σ∗ to Q∞.

Formally, a weighted finite automaton (WFA, for short) is a 5-tuple A =
〈Σ, Q,∆, init, fin〉, where Σ is a finite input alphabet, Q is a finite set of
states, ∆ : Q×Σ×Q→ Q∞ is a weighted transition function, init : Q→ Q∞
is an initial-weight function, and fin : Q→ Q∞ is a final-weight function.

A transition 〈q, a, p〉 ∈ Q×Σ×Q can be taken by A when reading the input
letter a in the state q, and it causes A to move to the state p with cost ∆(q, a, p).

Note that the range of ∆, init, and fin includes the value ∞. Intuitively,
once the weight∞ is traversed (either along a run, in the initial state, or in a final
state), the relevant run of the automaton is “doomed”. In the Boolean setting,
this corresponds to non-existing transitions, a non-initial state, or a rejecting
state, respectively. By abusing notation, we add the following definitions. For
states q, p ∈ Q, and for a letter a ∈ Σ, we write (q, a, p) ∈ ∆ if ∆(q, a, p) < ∞.
Similarly, we write q ∈ init if init(q) < ∞ and q ∈ fin if fin(q) < ∞. Also,
when referring to the weights in a WFA, we only refer to weights that are not
∞.
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Note that a WFA A may be nondeterministic in the sense that it may
have many initial states, and that for some q ∈ Q and a ∈ Σ, it may have
(q, a, p1) ∈ ∆ and (q, a, p2) ∈ ∆, with p1 6= p2. We say that A is deterministic
if |{q : q ∈ init}| = 1 and for every q ∈ Q and a ∈ Σ there exists up to a single
state p ∈ Q such that (q, a, p) ∈ ∆. We say that A is complete if for every state
q ∈ Q and letter a ∈ Σ, there is at least one state p ∈ Q such that (q, a, p) ∈ ∆.

For a word w = w1 . . . wn ∈ Σ∗, a run of A on w is a sequence r =
r0r1 . . . rn ∈ Q+, where r0 ∈ init, rn ∈ fin, and for all 1 ≤ i ≤ n, we
have di = 〈ri−1, wi, ri〉 ∈ ∆. The cost of the run r is costA(r) = init(r0) +∑n

i=1 ∆(di) + fin(rn) (we omit the subscript A when it is clear from the con-
text). Note that if A is nondeterministic, it may have several runs on w. The
cost of w in A is A(w) = min {cost(r) : r is a run of A on w }. If the minimum
is taken over an empty set, then A(w) =∞.

A state q ∈ Q is called live if it lies on a (finite-cost) run on some word. We
shall assume that all states in a WFA are live, as “dead” states can be removed
in polynomial time from the automaton, obtaining an equivalent WFA.

We define Dom(A) = {w ∈ Σ∗ : A(w) <∞}. Observe that Dom(A) is a
regular language, and can be recognized by an NFA with the same structure as
A.

We note that in general, a WFA may be defined with respect to a semiring
〈K,⊕,⊗, 00,1〉. The cost of a run is then the semiring product of the initial
weight of the first state, the weights along the run, and the final weight of the
last state. The cost of an accepted word is the semiring sum over the costs of
all accepting runs on it. In this work, we focus on weighted automata defined
with respect to the min-sum semiring, 〈Q∞,min,+,∞, 0〉, sometimes called the
tropical semiring, as defined above.

When speaking of the complexity of solving a problem, we assume that
all weights are given in binary. (A rational value is represented by a pair of
integers, corresponding to its reduced fraction.) That is, we consider the size
of a WFA A = 〈Σ, Q,∆, init, fin〉 to be the maximum between |Σ|, |Q|2, and
the maximal binary representation of a weight in ∆, init, and fin.2 Similarly,
thresholds are given in binary representation.

We distinguish between subclasses of weighted automata based on the un-
derlying domain of their weights. Specifically, if the weights are all integers, we
refer to the automaton as a Z-WFA, and if the weights are all naturals, as an
N-WFA (recall that we also allow ∞ weights). Note that for K ∈ {N∞,Z∞}
we have that 〈K,min,+,∞, 0〉 is a semiring.

We can obtain from every WFA A a Z-WFA B by multiplying rational
weights by their common denominator c, such that for every word w ∈ Σ∗, we
have that c · A(w) = B(w). For the purpose of this paper, it suffices to work
with B, as the description length of B is polynomial in that of A (since c is at
most singly exponential in the denominators of the weights in A). Therefore, in
the following we only consider Z-WFAs and N-WFAs, unless stated otherwise.

2We take |Q|2 as an upper bound on the number of transitions in the automaton per letter
of the alphabet.
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2.3 Decision Problems for WFAs

Recall that in the Boolean setting, the “goal” of an automaton is, intuitively,
to accept a given word. That is, to have a run that reaches an accepting state
on the word. In the weighted setting, the “goal” of the automaton is not just to
accept a word, but also to do it with a minimal weight. This intuition gives rise
to quantitative analogues of standard decision problems for Boolean automata,
as well as to some new decision problems. For example, in the Boolean setting,
the non-emptiness problem is to decide, given an automaton, whether it accepts
some word. Thus, in the weighted setting, the non-emptiness problem asks
whether some word is accepted below a given threshold.

We are going to study the following decision problems. 3

• The non-emptiness problem is to decide, given a WFA A and a threshold
ϑ ∈ Z, whether there exists a word w ∈ Σ∗ such that A(w) < ϑ.

• The universality problem is to decide, given a WFA A and a threshold
ϑ ∈ Z, whether for every word w ∈ Σ∗, it holds that A(w) < ϑ.

• The ∃-exact problem is to decide, given a WFA A and a value ϑ ∈ Z,
whether there exists a word w ∈ Σ∗ such that A(w) = ϑ.

• The ∀-exact problem is to decide, given a WFA A and a value ϑ ∈ Z,
whether for every word w ∈ Dom(A), it holds that A(w) = ϑ.

• The upper boundedness problem is to decide whether there exists M ∈ N
such that A(w) < M , for every w ∈ Σ∗.

• The absolute boundedness problem is to decide whether there existsM ∈ N
such that −M < A(w) < M , for every w ∈ Σ∗.

• The equality problem is to decide, given two WFAs A and B, whether for
every word w ∈ Σ∗, it holds that A(w) = B(w).

• The containment problem is to decide, given two WFAs A and B, whether
for every word w ∈ Σ∗, it holds that A(w) ≥ B(w).

Two comments about the problems. First, regarding the A(w) ≥ B(w)
condition in the containment problem. For our confused readers, the ≥ there is
not a typo: recall that the “goal” of a WFA is to accept a given word w with a
minimal value. When A is contained in B, then for every word w, the WFA B
can achieve its goal with w at least as well as A can. In the Boolean setting, this
amounts to L(A) being a subset of L(B). In the weighted setting, this amounts
to the values that words are mapped to in B being smaller than (or equal to)
the values to which they are mapped in A. Second, observe that for the ∀-exact

3We consider only one variant of each problem, corresponding to one inequality notion.
For example, the non-emptiness problem with respect to the strictly-smaller-than notion <.
As weights are integers, it is easy to reduce one variant of a problem to another, for example
our non-emptiness problem to the one with the ≤ notion.
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problem, we restrict attention to words in Dom(A). Our results can be easily
adapted to hold also for the version of the problem that requires all words in
Σ∗ to attain value ϑ.

In order to demonstrate the flavor of the problems, consider the universality
problem. In the Boolean setting, the universality problem asks, given a nonde-
terministic automaton (NFA) A, whether L(A) = Σ∗. Thus, the automaton has
to accept all the words in Σ∗. In the weighted setting, the “goal” is not just to
accept, but to do so with a minimal value. Accordingly, the universality prob-
lem for WFAs asks, given a WFA A and a threshold ϑ ∈ Z, whether A(w) < ϑ
for all w ∈ Σ∗. We denote the latter fact by A < ϑ. The rest of the problems
follow a similar flavor.

It is easy to see that an upper bound on the complexity of the containment
problem implies upper bounds on the complexity of the equality problem (by
checking two-sided containment) and the universality problem. Likewise, a lower
bound on the universality problem implies a lower bound on the containment
and the equality problems. In the Boolean setting, the complexities for the
three problems coincide, and are PSPACE-complete [32]. As we shall see in this
paper, in the weighted setting the picture is more involved, and depends on the
domain of the weights in the WFA.

3 Simulation of Counter Machines with Z-WFAs

In this section we present our main technical construction. We show how we
can simulate, in a sense, a two-counter machine using a WFA. We then apply
this construction in order to show the undecidability of various problems.

In fact, our construction requires considering only complete automata where
all weights are in {−1, 0, 1}, initial weights are in {0,∞}, final weights are 0,
and all states are accepting, i.e., {q : q ∈ fin} = Q.

We note that an extension of the construction below is described, in the
algebraic approach, in [16], Theorem 8.6.

3.1 From Counter Machines to Z-WFAs

Our construction uses ideas similar to those presented in [13]. A two-counter
machineM is a sequence (l1, . . . , ln) of commands involving two counters x and
y. We refer to {1, . . . , n} as the locations of the machine. There are five possible
forms of commands:

inc(c), dec(c), goto li, if c=0 goto li else goto lj , halt,

where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are locations. The counters are
initially set to 0. Since we can always check whether c = 0 before a dec(c) com-
mand, we assume that the machine never reaches dec(c) with c = 0. That is,
the counters never have negative values. Given a counter machineM, deciding
whether M halts is known to be undecidable [33]. Given M, deciding whether
M halts with both counters having value 0 is also undecidable. Indeed, given a
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counter machineM, we can replace every halt command with code that clears
the counters before halting. Thus, the halting problem can be reduced to the
latter problem, termed the 0-halting problem.

Given a two-counter machine M, we are going to construct a Z-WFA that
can be used to characterize whether M 0-halts.

Theorem 3.1 Given a two-counter machine M, we can compute a Z-WFA A
with the following properties:

1. A(w) ≤ 1 for every word w.

2. M 0-halts iff there exists a word w such that A(w) = 1.

3. A is complete, all its initial weights are in {0,∞}, all final weights are 0
(and there are no ∞ final weights), and all weights in ∆ are in {−1, 0, 1}.

Proof: Let M be a two-counter machine with commands (l1, . . . , ln). A run
of a two-counter machine with commands from the set L = {l1, . . . , ln} is a
sequence ρ = ρ1, . . . , ρm ∈ (L×N×N)∗ such that the following hold.

1. ρ1 = 〈l1, 0, 0〉.

2. For all 1 < i ≤ m, let ρi−1 = (lk, α, β) and ρi = (l′, α′, β′). Then, the
following hold.

• If lk is a inc(x) command (resp. inc(y)), then α′ = α + 1, β′ = β
(resp. β = β + 1, α′ = α), and l′ = lk+1.

• If lk is a dec(x) command (resp. dec(y)), then α′ = α − 1, β′ = β
(resp. β = β − 1, α′ = α), and l′ = lk+1.

• If lk is a goto ls command, then α′ = α, β′ = β, and l′ = ls.

• If lk is an if x=0 goto ls else goto lt command, then α′ = α,
β′ = β, and l′ = ls if α = 0, and l′ = lt otherwise.

• If lk is a if y=0 goto ls else goto lt command, then α′ = α, β′ =
β, and l′ = ls if β = 0, and l′ = lt otherwise.

• If l′ is a halt command, then i = m. That is, a run does not continue
after halt.

If, in addition, we have that ρm = 〈lk, α, β〉 such that lk is a halt command,
we say that ρ is a halting run.

Observe that the machine M is deterministic. We say that a machine M
0-halts if its run is halting and ends in 〈l, 0, 0〉.

We say that a sequence of commands τ ∈ L∗ fits a run ρ, if τ is the projection
of ρ on its first component.

The command trace π = π1, . . . , πm of a run ρ = ρ1, . . . , ρm is defined as
follows. For every 1 ≤ i ≤ m, if the command taken in ρi is not of the form
if c=0 goto lk else goto lk′ , then πi = li. Otherwise, πi = goto ls, where
s is the location of the command in ρi+1.
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We start by explaining the intuition behind the construction. We construct
a WFA A such thatM 0-halts iff there exists w ∈ Σ∗ such that A(w) = 1. The
alphabet of A consists of the following n+ 5 letters:

Σ = {inc(x),dec(x), inc(y),dec(y),halt} ∪ {goto li : i ∈ {1, . . . , n}}.

When A reads a sequence of commands w, it tries to simulate the run of M
that induces the command trace w. If the sequence of commands fits the actual
run, and this run 0-halts, then all the runs of A have cost exactly 1. Thus, the
word w is such that A(w) = 1. If, however, the sequence of commands does
not fit the actual run, then the violation is detected and A has a run on w with
non-positive cost.

We now construct the WFA A = 〈Σ, Q,∆, init, fin〉. In Section 3.2 we
describe an example of the reduction.

We set fin(q) = 0 for every q ∈ Q. That is, there are no final costs.
We designate a state qfreeze such that for all σ ∈ Σ, there is the tran-

sition ∆(qfreeze, σ, qfreeze) = 0. There is also a state qhalt with the transition
∆(qhalt, σ, qfreeze) = −1 for all σ ∈ Σ (see Figure 1).

qfreeze qhalt
Σ,−1

Σ, 0

Figure 1: qfreeze and qhalt.

In order to define A, we first define a “skeleton” ComCheck, which is an
underspecified WFA. We then compose A from variants of ComCheck.

The skeleton ComCheck consists of states q1, . . . , qn that correspond to the
commands l1, . . . , ln. For two locations i and j, there is a transition from qi
to qj iff lj can locally follow li in a run of M. That is, either j = i + 1
and li is an inc or dec command, li is a goto lj command, or li is an
if c=0 goto lk else goto l′k command, with j ∈ {k, k′}. The letter label-
ing the transition from qi to qj corresponds to the command trace. That is, the
letter is li, except the case li is an if c=0 goto lk else goto l′k command
with j ∈ {k, k′}, in which case the letter is goto lj . The weights on the tran-
sitions, as well as additional transitions, are specified below in every variant of
ComCheck.

The WFA A is composed of 5 gadgets, each responsible for checking a certain
type of violation in the description of a 0-halting run of M. The gadgets are
obtained from ComCheck as described below.

Command Checker. The first gadget we construct is the command checker.
This gadget checks for local violations of successive commands. That is, it makes
sure that the letter wi represents a command that can follow the command rep-
resented by wi−1 in M. For example, if the command in location l2 is inc(x),
then from state q2, which is associated with l2, we move with the letter inc(x)
to q3, which is associated with l3. The test is local, as this gadget does not

10



check for violations involving illegal jumps due to the values of the counters.
The command checker consists of a ComCheck in which all the weights are 0.
In addition, we add transitions labeled by halt from every state qi such that
li = halt to qhalt. These transitions have cost 1. Every other transition that is
not specified in ComCheck leads to qfreeze with weight 0. For example, reading
a command that does not correspond to li in qi leads to qfreeze with weight 0.
Note that indeed, if a word represents the command trace of a halting run, it
ends with a halt letter from a state qi such that li = halt. Thus, the last
transition has weight 1. Otherwise, the run of the command checker on w ends
with a 0 weight transition.

Positive Jump Checker. The second gadget we need is the positive jump
checker, which is defined for each counter c ∈ {x, y}. This gadget checks for
violations in conditional jumps. In every if c=0 goto lj else goto lk com-
mand, it makes sure that if the jump goto lk is taken, then the value of c is
indeed greater than 0.

This gadget is a variant of ComCheck in which the weights are defined
as follows. Every transition that is taken upon reading inc(c) has weight 1,
and every transition that is taken upon reading dec(c) has weight −1. In
every state qi such that li = if c=0 goto lj else goto lk, we add a transi-
tion 〈qi,goto lk, qfreeze〉 with weight −1. We add an initial state q0 (i.e. we
set init(q0) = 0) that, intuitively, has an ε transition with weight 1 to q1 in
ComCheck. Since we do not allow ε transitions, we remove the transition by
connecting q0 to the appropriate descendants of q1. All the other transitions in-
duced by ComCheck have weight 0. In addition, for every state q in ComCheck
we add a transition 〈q,halt, qfreeze〉 with weight 0 (See Figure 2).

The intuition behind this gadget is as follows. Along the run, the cost of the
run reflects the value of the counter c plus 1. Whenever a conditional jump is
taken, A nondeterministically moves to qfreeze, accumulating a weight of −1. If
the jump is legal, then the value of the counter is at least 1, so the cost of the
run so far is at least 1 + 1 = 2. Thus, the nondeterministic run that follows this
route has weight at least 1 when it reaches qfreeze. Otherwise, the value of the
counter is 0, so the cost of the run is 1, and the nondeterministic move to qfreeze
induces a run with cost 0, thus “detecting” the violation.

inc(x), 1

dec(x),−1
qi

qfreeze

qkqj
goto lj , 0 goto lk, 0

goto lk,−1

Figure 2: Positive Jump Checker for x, where li :
if x=0 goto lj else goto lk.

Zero Jump Checker. Dually to the positive jump checker, we define the
gadget zero jump checker for each counter c ∈ {x, y}.
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This gadget checks for the dual violations in conditional jumps. Thus, in
every command of the form if c=0 goto lj else goto lk, it makes sure that
if the jump goto lj is taken, then the value of c is indeed 0.

This gadget is a variant of ComCheck in which the weights are as follows. Ev-
ery transition that is taken upon reading inc(c) has weight −1, and every transi-
tion that is taken upon reading dec(c) has weight 1. In every state qi such that
li = if c=0 goto lj else goto lk, we add a transition 〈qi,goto lj , qfreeze〉
with weight 0. We add an initial state q0 exactly as in the positive jump
checker. All the other transitions in ComCheck have weight 0. In addition,
for every state q in ComCheck we have a transition 〈q,halt, qfreeze〉 with weight
0 (See Figure 3).

inc(x),−1

dec(x), 1
qi

qfreeze

qkqj
goto lj , 0 goto lk, 0

goto lj , 0

Figure 3: Zero Jump Checker for x, where li : if x=0 goto lj else goto lk.

To complete the definition of the automaton, we define init to give weight
0 to the states corresponding to l1 in the command checker gadget and the q0

states defined for the jump checkers for each counter c ∈ {x, y}.
It is easy to check that Property 3 in the theorem statement holds. That is,

A is complete, all its initial weights are in {0,∞}, all final weights are 0, and
all weights in ∆ are in {−1, 0, 1}.

It remains to prove that the following properties hold:

1. A(w) ≤ 1 for every w ∈ Σ∗.

2. M 0-halts iff there exists w ∈ Σ∗ such that A(w) ≥ 1.

Property 1 is easy to see: every run in the command checker accumulates weight
0 until seeing halt. Then, it either accumulates weight 1, and reaches qhalt, or
immediately reaches qfreeze with weight −1 (which does not change further).
From qhalt, it may still reach qfreeze, but that makes it cost 0 again. It follows
that the maximal possible weight for any word is 1.

We now turn to prove Property 2. Observe that the runs of A consist of all
the runs in the underlying gadgets. Thus, it is enough to prove that M 0-halts
iff there exists w ∈ Σ∗ such that all the runs of all the gadgets of A on w have
cost of at least 1.

We start with the easier direction. Assume that M 0-halts. Let ρ be the
0-halting run of M, and let w be the command trace of ρ. We prove that w is
assigned a cost of at least 1 in all gadgets. Consider first the command checker.
Since M 0-halts, all the transitions are “legal” in M. Also, ComCheck is de-
terministic. Accordingly, all the commands except for the final halt command
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accumulate cost 0, and the final halt command moves to qhalt with weight 1.
It follows that the command checker contributes a single run with weight 1.

Next, consider the positive jump checker for counter c. The ComCheck
part of this gadget acts the same as the command checker in the sense that
the transitions never reach qfreeze or qhalt until the halt command. However,
by the definition of the gadget, the accumulated cost of the single run on a
prefix w[1, . . . , k] is valk(c) + 1, where valk(c) is the value of the counter c after
the commands w1, . . . , wk have been executed. (The +1 is from the transition
from the initial state q0). Since w is the trace of a legal run, then when a line
lk of the form if c=0 goto li else goto lj is encountered in the run of M,
the corresponding goto command in w is legal for valk(c). According to the
definition of the transitions, if val(c) = 0, and hence the next letter in the input
is goto li, then the run continues with goto li in the ComCheck component.
Otherwise, the next letter in the input is goto lj , and the nondeterministic
choice on goto lj enables the run to also continue to qfreeze with weight −1.
Since we assume that the value of the counters is never negative, the fact that
valk(c) 6= 0 implies that val(c) + 1 ≥ 2. Thus, the cost accumulated in the run
that goes to qfreeze is at least 2 + (−1) = 1. Finally, the runs that remain in
the ComCheck component go, upon reading halt, to qfreeze, with whatever cost
they have. Since this is a 0-halting run, this cost is 0 + 1 ≥ 1.

Dually, consider the zero jump checker for counter c. Here, the accumulated
cost in ComCheck is −val(c) + 1. If a jump is to lj in a location where the
command is of the form if c=0 goto li else goto lj , the run continues in
ComCheck. If the run takes the li jump, then val(c) = −val(c) = 0, so the
nondeterministic choice to qfreeze induces a run with weight 0 + 1 ≥ 1. As for
the runs that remain in ComCheck, upon reading halt their accumulated cost
is 0, and as in the positive jump checker, they move to qfreeze with weight 1.

Thus, all the runs have cost of at least 1, so A(w) ≥ 1.
We proceed to prove the harder direction. Assume there exists w ∈ Σ∗ such

that A(w) ≥ 1. We claim that w is the command trace that is induced by a
0-halting run of M.

Consider the run of the command checker on w. Assume by way of con-
tradiction that the sequence of commands described by w is not the command
trace of the run of M. Thus, there is some violation in the run induced by the
word w. Let k be the minimal index in w where a violation occurs.

If the violation is not in a conditional jump, it must be that the successive
command of w does not fit the current location ofM. In this case, the command
checker goes to qfreeze with accumulated cost 0. Thus, there exists at least one run
of A on w with accumulated cost 0, so A(w) ≤ 0, contradicting the assumption
that A(w) ≥ 1. Furthermore, if w does comply with M along the entire run,
but does not halt, then the run stays in ComCheck, with cost 0. If w has a
halt command, but then has additional letters, the command checker reaches
qhalt with cost 1, and then moves to qfreeze with accumulated cost of 1 − 1 = 0.
From this we get that if A(w) ≥ 1, then w is the command trace of the run of
M, up to violations in conditional jumps or a violation of halting with non-zero
counters.
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Consider again the first violation (which occurs in wk). By the above argu-
ment, either w takes a conditional jump with the wrong jumping condition, or
w halts with a (strictly) positive counter.

Assume that w takes an illegal conditional jump as the first violation. Let
the corresponding command in M be li = if c=0 goto lj else goto lk be.
Two scenarios are possible. Either wk is goto lj and valk(c) > 0, or wk is
goto lk and valk(c) = 0. In the former case, consider the runs of the zero jump
checker on w. The cost accumulated by the run that stays in the ComCheck
component is −valk(c)+1 ≤ 0. Thus, reading goto lj , the run moves to qfreeze
with accumulated cost of at most 0, and the run stays there with the same
accumulated cost contradicting the assumption that A(w) ≥ 1. In the latter
case, consider the runs of the positive jump checker. The value of the run that
stays in the ComCheck component at the corresponding letter is valk(c)+1 = 1.
Thus, reading goto lj moves to qfreeze with accumulated weight of 1 − 1 = 0,
which is again a contradiction.

Finally, assume that w halts with a strictly positive counter c. Consider
again the run of the zero jump checker (for c) on w. The cost accumulated by
the run that stays in the ComCheck component is −valk(c) + 1. If valk(c) ≥ 1
then this run costs at most 0. Upon reading halt the run moves to qfreeze with
accumulated cost 0, contradicting the assumption that A(w) ≥ 1.

We conclude that w is the actual trace of the 0-halting run ofM. Therefore,
M 0-halts, and we are done.

Remark 3.2 Observe that the alphabet of the WFA constructed in the proof of
Theorem 3.1 is dependent on the number of commands in the machine. However,
we can easily modify the construction to work with a binary alphabet {a, b}.
Indeed, one only needs to encode each letter in the original construction by a
string aib for distinct i. Then, we modify the transition function as follows: for
each transition of the form (q, σ, r) with weight W for states q, r and letter σ,
if σ is encoded as aib, we introduce states q1, . . . , qi with transitions (q, a, q1)
and (qj , a, qj+1) for every 1 ≤ j < i with weight 0. Finally, we have a transition
(qi, b, r) with weight W .

It is not hard to verify that the behavior of the modified automaton maintains
the desired properties of the reductions. Thus, undecidability of universality
holds already for automata over a binary alphabet.

3.2 An Example

In this section we describe an example of the reduction presented in Theorem 3.1.
Consider the following two-counter machine M.

l1 : if x=0 goto l5 else goto l2
l2 : dec(x)
l3 : inc(y)
l4 : goto l1
l5 : halt
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The single run ofM is 〈l1, 0, 0〉, 〈l5, 0, 0〉, and its command trace is goto l5,halt.
Note, however, thatM contains many “potential violations”, which would make
it an interesting machine to consider. Figure 4 describes the command checker
for M. The gray arrows are transitions that are taken on every letter that is
unspecified in the gadget, all with cost 0.

qfreeze

qhalt
goto l2, 0 dec(x), 0 inc(y), 0

goto l1, 0

goto l5, 0

halt, 1

Σ,−1

Σ, 0

Figure 4: Example Command Checker.

Note that the cost of goto l5,halt is 1. Note also that some words that
do not fit the actual run of M also have cost 1, for example goto l2, dec(x),
inc(y), goto l1,goto l5,halt, . This is, however, not a problem, as the com-
mand checker does not attempt to detect violations that have to do with condi-
tional jumps in which a wrong jump has been taken – such violations are going
to be detected by the jump checkers. On the other hand, the command checker
assigns a cost of 0 to words like goto l2, inc(y), which do not follow M, or to
words like goto l5 or goto l5,halt,goto l1, which are too short or too long.

Figure 5 describes the positive jump checker for x. For clarity, we use an
ε-transition. Formally, this transition is removed by replacing it with two edges
with cost 1 to the states reachable from q1.

q0

qfreeze

ǫ, 1

goto l2, 0 dec(x),−1 inc(y), 0

goto l1, 0

goto l5, 0

goto l2,−1

Σ, 0

Figure 5: Example Positive Jump Checker for x.

Recall the trace goto l2, dec(x), inc(y), goto l1,goto l5,halt, which is
illegal inM, but went undetected in the command checker. In the positive jump
checker, this trace has a run with cost 0. Indeed, reading the goto l2 command,
the gadget has accumulated cost 1 and proceeds to qfreeze, with accumulated cost
1 + (−1) = 0. Thus, the violation is detected.

Finally, Figure 6 describes the zero jump checker for x. The jump checkers
for y are similar and are therefore not depicted here. In fact, in our case of M,
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q0

qfreeze

ǫ, 1

goto l2, 0 dec(x), 1 inc(y), 0

goto l1, 0

goto l5, 0

goto l5, 0

Σ, 0

Figure 6: Example Zero Jump Checker for x.

no word that survives the command checker may violated the conditions that
the zero jump checker attempts to detect. Indeed, the only possible violation
that is not detected by the command checker is a wrong jump in l1, which is a
positive (rather than zero) jump, or a halt with the counters not being cleared,
which again cannot happen in words that survive the other checks. Still, it is
important to observe that the zero jump checker does not detect false violations.
For example, the word goto l5,halt has two runs in this gadget, both with
cost 1.

4 Undecidability Results

Theorem 3.1 enables us to show undecidability of several decision problems for
WFAs. We remark that several of these problems (namely universality, contain-
ment, and equality) were already shown to be undecidable in [27]. Nonetheless,
our proofs here contribute to two aspects. First, all the reductions are based
on our construction in Theorem 3.1. This circumvents the algebraic approach
taken in [27], which is often inaccessible to the automata community. Second,
it allows us to carefully analyze properties of the models for which the unde-
cidability results apply. Indeed, in Section 6 we complement the undecidability
results with decidability results for the remaining models.

We start by showing the undecidability result of the universality problem.

Theorem 4.1 The universality problem for nondeterministic Z-WFAs is un-
decidable, even for complete WFAs with weights in {−1, 0, 1} and with threshold
1.

Proof: We show a reduction from the 0-halting problem of two-counter ma-
chines to the complement of the universality problem, namely the problem of
deciding, given a Z-WFA A and a value ϑ, whether there exists a word w such
that A(w) ≥ ϑ. In particular, we use the threshold ϑ = 1.

The reduction proceeds as follows: given a two-counter machineM, we apply
the construction in Theorem 3.1 to obtain a Z-WFA A, and the output of the
reduction is A and the threshold 1. By Theorem 3.1, M 0-halts iff there exists
a word w for which A(w) ≥ 1, and we are done.

16



By the construction in Theorem 3.1, we have that A is complete, and the
weights in A are from {−1, 0, 1}.

Since the set of decidable languages is closed under complementation, unde-
cidability applies also to the universality problem.

Recall that the containment problem is to decide, given two WFAs A and B,
whether A(w) ≥ B(w) for every word w. As in the Boolean case, the complexity
(or decidability) of this problem depends on whether A and/or B are determin-
istic or nondeterministic. We thus refer to four cases of the problem, namely
(D,D), (D,N), (N,D), and (N,N), where the first and second components in-
dicate whether A and B, respectively, are deterministic (D) or nondeterministic
(N). For example, the (D,N) containment problem gets as input a deterministic
WFA A and a nondeterministic WFA B.

Theorem 4.2 The (D,N) and (N,N) containment problems are undecidable
for N-WFAs (and in particular for Z-WFAs).

Proof: From Theorem 4.1 we have that it is undecidable, given a Z-WFA
A with weights in {−1, 0, 1}, whether 0 ≥ A(w) for every word w. Since the
function that assigns to every word the value 0 can be realized by a deterministic
N-WFA Zero, this implies that the (D,N) and (N,N) containment problems
for Z-WFAs are undecidable.

In order to lift this toN-WFAs, we make the following observation. Consider
a WFA A, and let A+1 be the WFA obtained from A by adding 1 to all the
weights, then for every word w we have that A+1(w) = A(w) + |w|.

Applying this to the Z-WFA A above, as well as to the N-WFA Zero, we
have that 0 ≥ A(w) for every word w iff Zero+1(w) ≥ A+1(w) for every word w.
Moreover, observe that A+1 is a WFA whose weights are all in {0, 1, 2}, and in
particular, is an N-WFA. We conclude that the (D,N) and (N,N) containment
problems for N-WFAs are undecidable.

We now turn to study the equality problem – given two WFAs A and B,
whether A(w) = B(w) for every word w. As in the containment problem, we
refer to the four cases.

Theorem 4.3 The (N,N) equality problem is undecidable for N-WFAs (and
in particular for Z-WFAs).

Proof: We show a reduction from the (N,N) containment problem for N-
WFAs, which is undecidable by Theorem 4.2.

The reduction proceeds as follows. Given two N-WFAs A and B, we con-
struct an N-WFA C which is obtained by taking the union of A and B. That is,
C reads a word by nondeterministically choosing between A and B. It follows
that for every word w, C(w) = min {A(w),B(w)}. The reduction then outputs
C and B.

Observe that for every word w, C(w) = B(w) iff A(w) ≥ B(w), which con-
cludes the correctness of the reduction.

17



Remark 4.4 We note that Theorem 8.6 in [16] gives an alternative proof (rem-
iniscent to that in Theorem 3.1) that the (N,N) containment and equality prob-
lems for N-WFAs are undecidable, which also follows from [27]. Furthermore,
it is shown in [16] that these problems remain undecidable even if one of the
automata is a (specific) fixed WFA. This subsumes our result in Theorem 4.3.
The result in Theorem 4.2 shows that the containment problem remains unde-
cidable even if the “left” WFA is fixed, and that moreover – this fixed WFA can
be taken to be a very simple and deterministic WFA.

We proceed to the ∃-exact problem. The following is obtained from Theo-
rem 3.1 in the same manner as Theorem 4.1 is obtained from it.

Theorem 4.5 The ∃-exact problem for nondeterministic Z-WFAs is undecid-
able, even for complete WFAs with weights in {−1, 0, 1} and with threshold 1.

Finally, we study the upper-boundedness problem for nondeteministic Z-
WFAs. This problem was shown to be undecidable in [1]. We bring an alterna-
tive proof here.

Theorem 4.6 The upper-boundedness problem is undecidable for nondetermin-
istic Z-WFAs.

Proof: We show a reduction from the 0-halting problem of two-counter ma-
chines to the complement of the upper-boundedness problem, namely the prob-
lem of deciding, given a WFA A, whether for every ϑ ∈ N there exists a word
w such that A(w) ≥ ϑ.

The reduction proceeds as follows: given a two-counter machine M, we
apply the construction in Theorem 3.1 to obtain a Z-WFA A. We then modify
A as follows. Intuitively, we allow A to reset from qhalt back to the initial
states. Thus, if a word gets value (at least) 1, it can be repeated and its weight
accumulated.

Formally, this is done as follows. We introduce a new letter reset and a new
state q⊥, with the following transitions: ∆(qfreeze, reset, q0) = ∆(qhalt, reset, q0) =
0 for every state q0 ∈ init, ∆(q, reset, q⊥) = 0 for every state q /∈ {qfreeze, qhalt},
and ∆(q⊥, σ, q⊥) = −1 for every letter σ. We refer to the new WFA as B.

We claim that B is not upper bounded iff there exists a word w with A(w) ≥
1. Observe that for every word w, if A(w) = 1, then all the runs of A on w
end up in either qhalt or qfreeze. Consider the word un = (w · reset)n−1w for some
n ∈ N. It follows that B(un) = n, so B is not upper bounded. Conversely, if
A(w) ≤ 0 for every word w, it is easy to see that any application of reset cannot
result in a word with positive weight, so B is upper bounded, which concludes
the proof.

Remark 4.7 The construction in the proof of Theorem 4.6 is a variant of well-
known constructions, which are analogous to the Kleene-star operator on regular
languages [16, 15]. These constructions, which are typically presented in the
algebraic view of weighted automata, namely with rational series, can be used
to prove Theorem 4.6 by directly reducing from universality of WFAs with
threshold 1, which is undecidable by Theorem 4.1.
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5 A Toolbox for WFAs

Having established undecidability results in Section 4, the remainder of the
paper is dedicated to establishing decidability results, with corresponding com-
plexity bounds. Before approaching the problems at hand, we develop several
general tools.

5.1 The Product Construction – Sum and Difference of
WFAs

In the Boolean setting, given two NFAs A and B, we can use the standard
product construction to obtain an NFA whose language is L(A) ∩ L(B). In
the tropical setting, intersection corresponds to summation. Fortunately, it is
well known [17, 15] that the construction can be adapted easily to WFAs. For
completeness, we detail the construction below, as we use it later.

Consider WFAs Ai = 〈Σ, Qi,∆i, initi, fini〉, for i ∈ {1, 2}. We construct
their sum WFA B = 〈Σ, Q′,∆′, init′, fin′〉 as follows. The set of states is
Q′ = Q1 × Q2. For states (q1, q2), (s1, s2) ∈ Q′ and for σ ∈ Σ, we define
∆′((q1, q2), σ, (s1, s2)) = ∆1(q1, σ, s1) + ∆2(q2, σ, s2). Similarly, for every state
(q1, q2) ∈ Q′ we set init′(q1, q2) = init1(q1) + init2(q2) and fin′(q1, q2) =
fin1(q1) + fin2(q2).

The following proposition is easy to prove by induction.

Proposition 5.1 In the notation above, for every word w ∈ Σ∗, we have that
B(w) = A1(w) +A2(w).

In the Boolean setting, the product construction is often used to reason about
containment and equality of automata. Indeed, we have that e.g., L(A) ⊆ L(B)
iff L(A)∩L(B) = ∅. Crucially, however, this requires the ability to complement
automata.

In the weighted setting, complementation corresponds to taking the negation
of a WFA. Unfortunately, WFAs are, in general, not closed under negation. [9, 2]
Deterministic WFAs, however, can be negated, in the following sense.

Consider a deterministic Z-WFA A = 〈Σ, Q,∆, init, fin〉, and let A be the
WFA obtained from A by negating all non-infinity weights. Then, we have the
following.

Proposition 5.2 For every w ∈ Σ∗, we have that

A(w) =

{
−A(w) if w ∈ Dom(A),

∞ if w /∈ Dom(A).

Combining Propositions 5.1 and 5.2, we conclude with the following.

Proposition 5.3 Consider a WFA A and a deterministic WFA B, and let C
be the WFA obtained by taking the sum WFA of A and B. Then for every word
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w ∈ Σ∗, we have that

C(w) =

{
A(w)− B(w) if w ∈ Dom(B),

∞ if w /∈ Dom(B).

5.2 Weighted Subset Construction

In the Boolean setting, nondeterministic finite automata (NFAs) can be de-
terminized to equivalent deterministic finite automata (DFAs) using the subset
construction, which keeps track of all the reachable states after reading each
letter of the word. This construction suffices for determinization, as this set,
also known as a configuration, contains all the necessary information of the runs
of the NFA.

It is well known that WFAs are in general, not determinizable. For example,
the function that assigns a word in {a, b}∗ the minimum between the number of
a’s and the number of b’s can be realized by a nondeterministic WFA, but not
by a deterministic WFA [9, 2].

Intuitively, the reason that WFAs cannot be determinized is because their
configurations must also account for the weight accumulated along the different
runs, resulting in an infinite state space. Nonetheless, the subset-construction
approach described above can be used to gain insight into the working of a
WFA, as we demonstrate in this section.

Consider a Z-WFA A = 〈Σ, Q,∆, init, fin〉. The weighted subset con-
struction of A is an infinite-state deterministic structure wss(A) = 〈Σ, E , δ〉
defined as follows. E is a set of states comprising all functions from Q to Z∞.
That is, E = ZQ

∞. Intuitively, a reachable state E : Q → Z∞ assigns, for
each state q ∈ Q, the value of the minimal run of A that ends in q on the
word that has been read so far (ignoring final weights). The transition function
δ : E × Σ → E is deterministic and is defined as follows: for states E,E′ ∈ E
and a letter σ ∈ Σ, we have that δ(E, σ) = E′ iff for every q′ ∈ Q it holds that
E′(q′) = minq∈Q {E(q) + ∆(q, σ, q′)}.

Observe that init, fin ∈ E . The following proposition formalizes the way
wss(A) captures the behavior of A.

Proposition 5.4 Consider a word w ∈ Σ∗, and let E′ ∈ E be the state that
is reached by wss(A) on its run on w when starting in init. Then, for every
state q ∈ Q, the minimal weight of a run of A on w that ends in q (ignoring
final weights) is E′(q). In particular, A(w) = minq∈Q {E′(q) + fin(q)}.

In general, the weighted subset construction is infinite. However, in problems
where a threshold is available, we can often restrict attention to a finite subset,
as we now demonstrate.

Consider an N-WFA A = 〈Σ, Q,∆, init, fin〉 (note that while Proposi-
tion 5.4 applies for Z-WFAs, we now restrict attention to N-WFAs), and let
ϑ ∈ N be a threshold. Let wss(A) be its weighted subset construction. We
define an equivalence relation ∼ϑ on E as follows: for E,E′ ∈ E we say that
E ∼ϑ E

′ iff for every q ∈ Q the following hold:
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1. E(q) < ϑ iff E′(q) < ϑ, and if E(q) < ϑ then E(q) = E′(q).

2. E(q) =∞ iff E′(q) =∞.

Intuitively, we ignore any values over ϑ, except ∞. We identify the equivalence
class of a function E : Q → Z∞ with the function E|ϑ : Q → {0, . . . , ϑ,∞},
defined by

E|ϑ(q) =


E(q) if E(q) < ϑ,

∞ if E(q) =∞,
ϑ otherwise.

Thus, there are at most (ϑ + 2)Q equivalence classes of ∼ϑ. We naturally
lift the transition function δ to the equivalence classes by setting δ(E|ϑ, σ) =
δ(E, σ)|ϑ. Since the weights are non-negative, this is well defined.

We can now obtain a Boolean deterministic automaton (DFA) B = 〈Σ, S, δ, s0, F 〉
as follows. The alphabet is Σ, the states are S = E/∼ϑ, i.e., the equivalence
classes of ∼ϑ, the transition function is δ, lifted to the equivalence classes as
described above, and the initial state is s0 = init|ϑ. We may naturally extend
δ to words. We omit the definition of F , as it is irrelevant for the following
lemma, whose proof is immediate.

Lemma 5.5 Using the notations above, consider a word w ∈ Σ∗ and let E|ϑ =
δ(init|ϑ, w). Then, the following hold.

1. If A(w) < ϑ then A(w) = minq∈Q {E|ϑ(q) + fin(q)}.

2. If ∞ > A(w) ≥ ϑ then ∞ > minq∈Q {E|ϑ(q) + fin(q)} ≥ ϑ.

3. A(w) =∞ iff E|ϑ(q) + fin(q) =∞ for all q ∈ Q.

Lemma 5.5 shows that we can construct a Boolean automaton that intuitively
captures any bounded fragment of a function described by an N-WFA. We refer
to B above as the ϑ-bounded weighted determinization of A.

5.3 Z-WFAs Without Negative Cycles

Recall that by the semantics of WFAs, the cost of a word w is the cost of the
minimal run of the automaton on w. Therefore, if a Z-WFA A has a negative
cycle (i.e., a cycle in the underlying weighted graph whose sum of weights is
negative) then for every M ∈ Z there is a word w such that A(w) < M .

In several decision problems, we wish to consider Z-WFAs without such
negative cycles. Consider such a WFA A, then there exists some M ∈ Z such
that A ≥ M . Moreover, if M < 0, then consider the WFA A′ obtained from
A by, intuitively, adding a transition with cost −M “before” the initial state.
Then, A′ ≥ 0. It is proved in [28] that a Z-WFA whose image is non-negative
has an equivalentN-WFA. Unfortunately, the proof described in [28] only states
that there exists an equivalent N-WFA of bounded size, and the procedure to
find it is by brute-force search, which takes exponential time.
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Since A′ has no negative cycles, and moreover - no negative-valued runs, it
seems that “morally”, we should be able to redistribute the weights to obtain
an equivalent N-WFA. As we now show, this is indeed the case. The main tool
to achieve this is Johnson’s algorithm [23] for reweighing on graphs.

A weighted graph is a directed graphG = 〈V,E〉 equipped with a weight func-

tion ω : E → Z. The cost of a path p = v0, v1, . . . , vk is ω(p) =
∑k−1

i=0 ω(vi, vi+1).
We say that p is a negative cycle in G if vk = v0 and ω(p) < 0.

Theorem 5.6 (Johnson’s Algorithm [23]) Consider a weighted graph G =
〈V,E〉 with weight function ω : E → Z, such that G has no negative cycles
according to ω. We can compute in polynomial time functions h : V → Z

and ω′ : E → N such that for every path p = v0, v1, . . . , vk in G it holds that
ω′(p) = ω(p) + h(v0)− h(vk).

Remark 5.7 Theorem 5.6 is stated for graphs. However, for our applications
we need to apply it to multi-graphs (namely the underlying graphs of WFAs).
Fortunately, the theorem readily applies to multi-graphs as well: given a multi-
graph G, we obtain from G a (simple) graph H by keeping, for every ordered
pair of vertices (u, v), only the edge of minimal weight from u to v (if there is
an edge between them).

Then, applying Theorem 5.6 to H yields a new weight function ω′ with the
property that ω′(u, v) = ω(u, v) + h(u)− h(v). That is, we view u, v as a path
in H.

We can now lift ω′ to all the edges in the multi graph G, by increasing the
weight of every edge from u to v by h(u) − h(v). Since H used the minimal-
weight edges in G, we now have that all weights in the re-weighted multigraph
are positive.

We can now use Theorem 5.6 to eliminate negative costs from Z-WFAs
without negative cycles.

Lemma 5.8 Given a Z-WFA A with no negative cycles, we can compute in
polynomial time an N-WFA A+ and M ∈ N such that A+(w) = A(w) +M for
every w. Moreover, A+ differs from A only by the weights.

Proof: Consider a Z-WFA A = 〈Σ, Q,∆, init, fin〉. We can view A as a
weighted multi-graph with weights prescribed by ∆, and ignoring init, fin, and
infinite weights. We obtain fromA a Z-WFAA′ = 〈Σ, Q,∆′, init′, fin′〉 by first
applying Theorem 5.6 (and Remark 5.7) to the graph, and defining ∆′ according
to ω′. (An infinite-weight transition of ∆ remains the same in ∆′.) Next, for
every q ∈ Q we define init′(q) = init(q) − h(q) and fin′(q) = fin(q) + h(q),
where h is as per Theorem 5.6.

We claim that for every word w ∈ Σ∗, we have that A′(w) = A(w). Indeed,
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consider a word w = σ1, . . . , σn and a run r = q0, q1, . . . , qn of A on w. Then,

costA′(r) = init′(q0) +

n−1∑
i=0

∆′(qi, σi+1, qi+1) + fin′(qn)

= init(q0)− h(q0) +

n−1∑
i=0

∆′(qi, σi+1, qi+1) + fin(qn) + h(qn)

= init(q0)− h(q0) +

n−1∑
i=0

∆(qi, σi+1, qi+1) + h(q0)− h(qn) + fin(qn) + h(qn)

= init(q0) +

n−1∑
i=0

∆(qi, σi+1, qi+1) + fin(qn) = costA(r)

where in the third equality we use the reweighing property of Theorem 5.6.
Since all the runs maintain their values in A and A′, we conclude our claim.
Finally, note that in A′, the only negative weights occur in init′ and fin′.

Let W be the minimal weight in init′ and fin′, then if W < 0 we can obtain
from A′ the N-WFA A+ by adding −W to each entry of init′ and of fin′. Let
M = 2W , then for every word w we have that A+(w) = A′(w)+M = A(w)+M .

6 Decidability Results

In this section we complement the results of Section 4 by showing decidability,
and analyzing the complexity, of all problems in Section 2.3 that were not proven
to be undecidable.

6.1 The non-emptiness problem

The min-sum semantics of WFAs means that the value of a word is the value
of the minimal run of the automaton on it. In the non-emptiness problem, we
try to find a word whose value is below some given threshold. It is thus enough
to find a run of the automaton that has a minimal value. Therefore, the labels
on the transitions have no real effect, and the problem reduces to finding a
shortest path in a weighted graph. Using standard algorithms such as Dijkstra
or Bellman-Ford, we can easily decide non-emptiness.

Proposition 6.1 The non-emptiness problem is decidable in polynomial time
for nondeterministic Z-WFAs.

Proof: Consider a Z-WFA A and a threshold ϑ ∈ Z. Observe that if Z has a
negative cycle, then there exists a word w such that A(w) < ϑ. Indeed, a run
that repeats the negative cycle enough times can reduce the cost arbitrarily, and
since all states are live, we can augment such a run to end in a state q ∈ fin,
thus inducing a run with an arbitrarily low value. This, in turn, induces a
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word with arbitrarily low value. Since finding negative cycles can be done in
polynomial time, this concludes the proof in this case.

If A does not have a negative cycle, then there exists a word w for which
A(w) < ϑ iff there exists a cycle-free run of A with cost less than ϑ. We can
determine whether such a run exists by finding the shortest paths from the
initial states {q : q ∈ init} to the final states {q : q ∈ fin} in the underlying
graph of A, and checking whether any of these paths, with the addition of the
initial and final weights prescribed in A, has cost less than ϑ. This can be done
in polynomial time e.g., by finding all-pairs shortest paths.

6.2 The universality problem

We split our analysis of the universality problem to deterministic and non-
deterministic WFAs.

For a deterministic WFA A, we start by checking whether Dom(A) = Σ∗.
This can be done in polynomial time by constructing a DFA for Dom(A) and
checking its universality. If Dom(A) 6= Σ∗, we reject (see Remark 6.4 below).
Next, we obtain the WFA A as per Proposition 5.2. Since Dom(A) = Σ∗, we
have that A(w) = −A(w) for every word w ∈ Σ∗. Then, A < ϑ iff there does
not exist a word w such that A(w) ≥ ϑ, which takes place iff A(w) ≤ −ϑ as well
as iff A(w) < −ϑ+ 1. Thus, we can reduce the universality problem in this case
to the complement of the non-emptiness problem, and from Proposition 6.1 we
have the following.

Proposition 6.2 The universality problem is decidable in polynomial time for
deterministic Z-WFAs.

For nondeterministic WFAs, things are more involved. By Theorem 4.1,
the problem is undecidable for Z-WFAs, and therefore we restrict attention to
N-WFAs.

Theorem 6.3 The universality problem for N-WFAs is PSPACE-complete.

Proof: We start by showing that the problem is in PSPACE. Consider an
N-WFA A and a threshold ϑ ∈ N. By Lemma 5.5, there exists a word w such
that A(w) ≥ ϑ iff there exists a state E|ϑ for which E|ϑ(q) + fin(q) ≥ ϑ for
all q ∈ Q that is reachable in the ϑ-bounded weighted determinization of A.
In particular, such a state is reachable iff it is reachable by a word of length
at most (ϑ + 2)|Q| (which is an upper bound on the number of states in the
construction). We conclude that A < ϑ iff there does not exist a word w of
length at most (ϑ+ 2)|Q| such that A(w) ≥ ϑ.

Checking whether such a word w exists can be easily done in NPSPACE by
guessing each letter of w and keeping track of the accumulated weight. Since
NPSPACE=PSPACE [38], and since PSPACE=co-PSPACE, we conclude that
universality is in PSPACE.

Finally, it is not hard to see that the universality problem is at least as hard
as the universality problem for Boolean nondeterministic automata, which is
known to be PSPACE-hard [32].
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Remark 6.4 (Domain-restricted universality) In the universality problem,
the requirement that A < ϑ implies, in particular, that Dom(A) = Σ∗. This is
desirable, since we want the universality in the weighted setting to extend uni-
versality in the Boolean setting. However, there are cases where we want to relax
this, and only require that A(w) < ϑ for all w ∈ Dom(A) (e.g., Proposition 6.11
below).

For deterministic WFAs, adapting the solution is easy - we only drop the
initial check that Dom(A) = Σ∗. For nondeterministic WFAs, observe that the
ϑ-bounded weighted determinization differentiates between runs of value ∞ to
runs of finite value. Thus, we can adapt the proof of Theorem 6.3 to search for a
state E|ϑ for which∞ > minq∈Q {E|ϑ(q) + fin(q)} ≥ ϑ. Lemma 5.5 guarantees
the correctness of this procedure.

6.3 The ∃-exact problem

Recall that by Theorem 4.5, the ∃-exact problem is undecidable for nondeter-
ministic Z-WFAs. We now turn to study the remaining cases. We start with
deterministic WFAs.

We provide below an integer linear programming solution to the ∃-exact
problem of deterministic Z-WFAs, which implies that its complexity is in NP.
Then, using a reduction from the subset-sum problem, we show that the problem
is NP-hard already for deterministicN-WFAs, getting NP-completeness for both
N-WFAs and Z-WFAs.

We start with the upper bound. Consider a deterministic Z-WFA A and a
target value ϑ ∈ N. The ∃-exact problem asks for the existence of a word w,
such that A(w) = ϑ. Since A is deterministic, the existence of such a word is
equivalent to the existence of a path π along the graph of A, such that the total
cost of π, including the initial and final weights, is exactly ϑ.

The ability to only consider the weights of transitions, ignoring their alpha-
bet letters, is what makes this problem decidable, as opposed to the case of
the same problem over nondeterministic WFAs. Yet, unlike the non-emptiness
problem, which also ignores the alphabet letters, in the case of the ∃-exact prob-
lem, we cannot use polynomial algorithms that find an optimal path, such as
Dijkstra or Bellman-Ford, as we look for a path with a specific value.

We resolve the question of whether there exists a path whose value is exactly
ϑ, by following known techniques for defining graph properties by Presburger
arithmetic formulas, in the more general cases, and integer linear programming
in special cases, such as ours [6, 19, 26, 35, 40]. Intuitively, we define a variable
xe for every transition e of A whose weight is not ∞, and construct a set of
integer linear equations and inequalities, such that its solution assigns to each
variable xe the number of times that e is repeated in a path whose value is
exactly ϑ.

Lemma 6.5 The ∃-exact problem for deterministic Z-WFAs is in NP.

Proof: Consider a deterministic Z-WFAA = 〈Σ, Q,∆, init, fin〉 and a target
value ϑ ∈ N. Guess the set of states Q′ ⊆ Q that will participate in the path,
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as well as an order of them, namely denote them by q1, q2, . . . , qn. Also guess
the initial state s = q1 ∈ init ∩Q′, and a final state t ∈ fin ∩Q′. (It need not
be that t = qn.) Let ∆′ be the restriction of ∆ to Q′.

We shall define a set of linear equations and inequalities, such that it has
integer solutions iff there exists a path π from s to t that visits exactly the states
of Q′ and whose value is exactly ϑ. Our set of equations and inequalities follows
similar ones in the literature, and specifically the one given in [40].

For every transition e ∈ ∆′, define the variable xe, which intuitively stands
for the number of repetitions of e in π, and the inequality xe ≥ 0. To ensure
that the value of the corresponding path is ϑ, we sum up the transition weights,
multiplied by the number of times that they are repeated. That is, we have the
equation init(s) + fin(t) +

∑
e∈∆′ xe ·∆′(e) = ϑ.

The next step is to ensure that the assigned transition repetitions indeed
correspond to a connected path. This is done in two parts. The first part
ensures that cycle-wise, the path is proper, in the sense that it completes entire
cycles. This is done by adding “flow equations”, also known as “Kirchhoff’s
circuit laws”, which ensure that every state, except for the initial and final
states, is entered and left the same number of times.

Formally, for every state q ∈ Q′, let In(q) = {e ∈ ∆′ | e is an incoming tran-
sition of q} and Out(q) = {e ∈ ∆′ | e is an outgoing transition of q}. Then, for
every state q ∈ Q′ \ {s, t}, define the equation

∑
e∈In(q) xe =

∑
e∈Out(q) xe,

for s the equation 1 +
∑

e∈In(s) xe =
∑

e∈Out(s) xe, and for t the equation∑
e∈In(t) xe = 1 +

∑
e∈Out(t) xe.

The above flow equations ensure that the transition repetitions correspond
to some connected paths, yet not necessarily to a single connected path. For
example, they allow for a path that starts in s and ends in t, accompanied
by another path that makes a complete cycle that is unconnected to the first
path. For ensuring a single connected path, we require that every state q ∈ Q′
participates in the path by the inequality

∑
e∈In(q) xe +

∑
e∈Out(q) xe > 0, and

that every state except for s, namely every qi ∈ {q2, . . . , qn}, has a partici-
pating incoming transition from a state of a smaller order by the inequality∑

1≤j<i

∑
e∈Out(qj)∩In(qi)

xe > 0.

Lemma 6.6 The ∃-exact problem for deterministic N-WFAs is NP-hard.

Proof: We show NP-hardness by a reduction from the subset-sum problem.
Recall that an instance of subset-sum consists of a set of numbers x1, . . . , xn, t ∈
N given in binary, and the problem is to decide whether there exists I ⊆ [1..n]
such that

∑
i∈I xi = t.

The reduction is depicted in Figure 7. Intuitively, given an instance as above,
we construct a deterministic N-WFA A with states s0, . . . sn, such that at every
state si we can either choose to add xi+1, using the letter ‘a’, or to add 0, using
the letter ‘b’. After going over all the states, we reach a final state sn. Thus,
every word of length n induces a sum of a subset of the elements, and there
exists a word of cost exactly t iff there is a subset whose sum is t.
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Formally, A = 〈Σ, Q,∆, init, fin〉, with Σ = {a, b} and Q = {s0, . . . , sn}.
The initial weights are init(s0) = 0 and init(q) = ∞ for q 6= s0, and the
final weights are fin(sn) = 0 and fin(q) = ∞ for q 6= sn. The transition
function is defined as follows. For i ∈ [0..n − 1] we have ∆(si, a, si+1) = xi+1

and ∆(si, b, si+1) = 0. All other transitions have weight ∞.
Observe that Dom(A) = {w ∈ {a, b}∗ : |w| = n}. Indeed, words longer or

shorter than n either use a transition of cost ∞, or do not reach sn. For every
word w, let w|a be the set of indices in w where the letter a appears. It is
easy to see that A(w) =

∑
i∈w|a xi. Therefore, there exists I ⊆ [1..n] such that∑

i∈I xi = t iff there exists a word w such that A(w) = t, and we are done.

s0 s1 s2 sn−1 sn· · ·
(a, x1)

(b, 0)

(a, x2)

(b, 0)

(a, xn)

(b, 0)

Figure 7: The reduction from subset-sum to ∃-exact. The transitions are labeled
with (letter,weight).

From Lemmas 6.5 and 6.6, we conclude the NP-completeness of the problem.

Theorem 6.7 The ∃-exact problem of deterministic N-WFAs and Z-WFAs is
NP-complete.

It remains to study the ∃-exact problem for nondeterministic N-WFAs. We
show that the problem is in PSPACE by taking a similar approach to that taken
for universality in Theorem 6.3.

Lemma 6.8 The ∃-exact problem for N-WFAs is in PSPACE.

Proof: Let A be an N-WFA and ϑ ∈ N be the given target. Consider the
ϑ + 1-bounded weighted determinization of A, described in Section 5.2. By
Lemma 5.5 and Proposition 5.4, there exists a word w such that A(w) = ϑ (and
in particular, A(w) < ϑ + 1) iff there exists a reachable state E|ϑ such that
minq∈Q {E|ϑ(q) + fin(q) = ϑ}.

In particular, such a state is reachable iff it is reachable by a word of length
at most (ϑ + 1 + 2)|Q| = (ϑ + 3)|Q| (which is an upper bound on the number
of states in the construction). We conclude that there exists a word w with
A(w) = ϑ iff there exists such a word w of length at most (ϑ+ 3)|Q|.

As in the proof of theorem 6.3, checking the latter condition can be easily
done in NPSPACE by guessing each letter of w and keeping track of the accu-
mulated weights in all the runs. Since NPSPACE=PSPACE [38], we conclude
the proof.

Finally, it remains to show that the problem is PSPACE-hard.
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Lemma 6.9 The ∃-exact problem for N-WFAs is PSPACE-hard.

Proof: We show a reduction from the universality problem for NFAs to the
complement of the ∃-exact problem.

Given an NFA A, we obtain an N-WFA from it as follows. Assume A is
complete, that is, for every state and every letter there is at least one defined
transition (this can be achieved by adding transitions to a rejecting sink). Then,
we obtain anN-WFA B by giving weight 0 to all the transitions in A, and setting
the final weight of accepting states in A to be 0, and of non-accepting states to
be 1.

The output of the reduction is the N-WFA B with threshold 1.
Then, if L(A) = Σ∗ we have B(w) = 0 for every w ∈ Σ∗, and if L(B) 6= Σ∗,

there exists a word x such that B(x) = 1, which concludes the correctness of
the reduction.

Combining Lemmas 6.8 and 6.9, we have the following.

Theorem 6.10 The ∃-exact problem for N-WFAs is PSPACE-complete.

6.4 The ∀-exact problem

Recall that the ∀-exact problem asks, given a WFA A and a threshold ϑ ∈ Z,
whether A(w) = ϑ for every word w ∈ Dom(A). Since A(w) = ∞ for w /∈
Dom(A), an equivalent formulation is to ask whether the following conditions
hold:

1. A(w) ≥ ϑ for every w ∈ Σ∗,

2. A(w) < ϑ+ 1 for every w ∈ Dom(A).

Observe that the first condition is the complement of the non-emptiness prob-
lem with threshold ϑ, while the second condition is the universality problem,
restricted to Dom(A) in the sense of Remark 6.4. Thus, from Propositions 6.1,
6.2 and Remark 6.4, we have the following.

Proposition 6.11 The ∀-exact problem is decidable in polynomial time for de-
terministic Z-WFAs (and hence for N-WFAs).

Similarly, from Proposition 6.1, Theorem 6.3, and Remark 6.4 we can con-
clude that the ∀-exact problem is in PSPACE for nondeterministic N-WFAs. In
addition, we notice that the reduction described in the proof of Lemma 6.9 can
be adapted to show PSPACE-hardness for ∀-exact, by changing the threshold
from 2 to 1. We thus conclude with the following.

Proposition 6.12 The ∀-exact problem is PSPACE-complete for nondetermin-
istic N-WFAs.
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It remains to address the case of nondeterministic Z-WFAs. Recall from
Theorem 4.1 that universality for Z-WFAs is undecidable, and therefore the
result does not follow immediately as above. Nonetheless, it turns out that
the main difficulty that exists for universality, namely negative cycles, does not
hinder us in the case of ∀-exact.

Theorem 6.13 The ∀-exact problem is PSPACE-complete for nondeterminis-
tic Z-WFAs.

Proof: Consider a Z-WFA A and a threshold ϑ ∈ Z. If there is a negative
cycle in A, then A is unbounded from below, and in particular, words attain
values other than ϑ and ∞, so we can reject. Note that this check can be done
in polynomial time.

If A does not have a negative cycle, then by Lemma 5.8 we can compute in
polynomial time an N-WFA A+ and M ∈ N such that for every word w ∈ Σ∗

we have that A+(w) = A(w)+M . Then, it suffices to solve the ∀-exact problem
for A+ with the threshold ϑ+M , using Proposition 6.12.

PSPACE-hardness follows from the hardness forN-WFAs in Proposition 6.12.

6.5 The containment problem

Recall that by Theorem 4.2, the (D,N) and (N,N) containment problems are
undecidable for both N and Z-WFAs. Thus, it remains to study the (N,D) and
(D,D) containment problems.

Proposition 6.14 The (N,D) and (D,D) containment problems are decidable
in polynomial time for Z-WFAs (and hence for N-WFAs).

Proof: It’s enough to consider the (N,D) containment problem. Consider
a nondeterministic Z-WFA A = 〈Σ, Q1,∆1, init1, fin1〉 and a deterministic
Z-WFA B = 〈Σ, Q2,∆2, init2, fin2〉.

Note that if A(w) ≥ B(w) for every word w, then in particular Dom(A) ⊆
Dom(B). We thus start by checking, in polynomial time, whether Dom(A) ⊆
Dom(B) by constructing an NFA for Dom(A) and a DFA for Dom(B). If the
latter does not hold, we reject. Note that this check takes polynomial time,
since the right-hand automaton is deterministic.

Next, we construct a WFA C as per Proposition 5.3, such that C(w) =
A(w) − B(w) for every word w ∈ Dom(B), and C(w) = ∞ otherwise. Observe
that now, A(w) ≥ B(w) for every word w iff there does not exist a word w for
which C(w) < 0. Indeed, if A(w) ≥ B(w) for every word w ∈ Σ∗, then for every
word w ∈ Dom(B) we have that C(w) ≥ 0, and for every word w /∈ Dom(B)
we have C(w) = ∞. Conversely, if C(w) ≥ 0 for every word w, then for every
word w ∈ Dom(B) we have A(w) ≥ B(w) and for every word w /∈ Dom(B) we
have that w /∈ Dom(A) (by the Boolean containment check above), so A(w) =
B(w) =∞

Thus, it suffices to check the non-emptiness of C with the threshold 0, which
can be done in polynomial time by Proposition 6.1.
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6.6 The equality problem

Recall that by Theorem 4.3, (N,N) equality is undecidable for N-WFAs (and
hence for Z-WFAs). It thus remains to handle (D,N), (N,D), and (D,D)
equality.

Observe that for (D,D)-equality, we can simply check two-sided contain-
ment. By Proposition 6.14, we have the following.

Proposition 6.15 The (D,D) equality problem is decidable in polynomial time
for Z-WFAs (and hence for N-WFAs).

It remains to handle the (N,D) equality problem (which is symmetrical to
the (D,N) equality problem).

Theorem 6.16 The (N,D) equality problem is PSPACE complete for Z-WFAs
and for N-WFAs.

Proof: We start by showing that the problem is in PSPACE for Z-WFAs (and
hence for N-WFAs). Let A = 〈Σ, Q1,∆1, init1, fin1〉 be a nondeterministic Z-
WFA, and let B = 〈Σ, Q2,∆2, init2, fin2〉 be a deterministic Z-WFA.

Note that if A(w) = B(w) for every word w, then in particular Dom(A) =
Dom(B). We thus start by checking, in polynomial space, whether Dom(A) =
Dom(B) by constructing NFAs for Dom(A) and for Dom(B). If the latter does
not hold, we reject.

Next, we construct a WFA C as per Proposition 5.3, such that C(w) =
A(w) − B(w) for every word w ∈ Dom(B), and C(w) = ∞ otherwise. Observe
that now, A(w) = B(w) for every word w iff C(w) = 0 for every word w ∈
Dom(B) = Dom(A).

The latter condition can be viewed as an instance of the ∀-exact problem,
which can be solved in PSPACE by Theorem 6.13.

Next, it is easy to see that the (N,D)-equality problem is PSPACE-hard
for N-WFAs, by reducing from the universality problem for NFAs in a similar
manner as the proof of Lemma 6.9.

6.7 The upper-boundedness problem

The upper-boundedness problem asks, given a WFA A, whether there exists
M ∈ N such that A(w) < M for every w ∈ Σ∗. By Theorem 4.6, the problem
is undecidable for nondeterministic Z-WFAs. We now turn to complete the
picture by showing that the remaining cases are decidable.

The upper-boundedness problem was studied in [21, 31, 43] for distance au-
tomata, namely N-WFAs with weights in {0, 1,∞}. Using very careful analysis
and methods such as the tree factorization forest of [42], they show the following.

Theorem 6.17 ([21, 31, 43]) The upper-boundedness problem for distance au-
tomata is in PSPACE.
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Consider now an arbitrary N-WFA A, we can obtain from it a distance automa-
ton by changing every weight c 6= 0 in A to weight 1. It is easy to see that A is
upper bounded iff the obtained distance automaton is upper bounded. We thus
have the following.

Lemma 6.18 The upper-boundedness problem for nondeterministic N-WFAs
is in PSPACE.

We proceed to present a matching lower bound.

Lemma 6.19 The upper-boundedness problem for nondeterministic N-WFAs
is PSPACE-hard.

Proof: We show a reduction from the universality problem for NFAs. Given
an NFA A, we obtain from it an N-WFA B as follows. First, as in Lemma 6.9,
we assume A is complete. We add a new letter # to the alphabet of A, and two
new states f and g, having self loops of weight 1 and 0, respectively, on every
letter. Then, when reading # in an accepting state, we proceed to g, and in a
non-accepting state, proceed to f . The final weight of f and g is 0, as well as
the weight for all other accepting states. The initial weights are 0 for the initial
states of A, and all the transitions in A have weight 0. All other weights are∞.

We claim that L(A) = Σ∗ iff B is upper bounded. Indeed, the only way for a
run to accumulate nonzero cost is by reaching f , from which we can accumulate
unbounded cost. Thus, B is not upper bounded iff there exists a word w for
which all the runs reach non-accepting states, iff L(A) 6= Σ∗.

Combining Lemmas 6.18 and 6.19, we have the following.

Theorem 6.20 The upper-boundedness problem for nondeterministic N-WFAs
is PSPACE-complete.

We now turn to the case of deterministic WFAs. Consider a deterministic
Z-WFA A. It is easy to see that A is upper-bounded iff there does not exist a
positive cycle. Since detecting positive cycles can be easily done in polynomial
time (using, e.g., Bellman-Ford), we have the following.

Proposition 6.21 The upper-boundedness problem for deterministic Z-WFAs
is decidable in polynomial time.

6.8 The absolute-boundedness problem

Recall that the absolute-boundedness problem asks, given a WFA A, whether
there exists M ∈ N such that |A(w)| < M for every w ∈ Σ∗.

We first observe that for N-WFAs, this is equivalent to upper-boundedness,
since N-WFAs are always bounded from below by 0. We thus turn our attention
to Z-WFAs.

Consider a Z-WFA A. As we observed in our study of the non-emptiness
problem, A is unbounded from below iff it has a negative cycle (both for deter-
ministic and nondeterministic WFAs). Moreover, if A does not have a negative
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cycle, then by Lemma 5.8 we can obtain from A the N-WFA A+, and notice
that A is upper-bounded iff A+ is upper bounded.

Combining this with Theorem 6.20 and with Proposition 6.21, we have the
following.

Theorem 6.22 The absolute-boundedness problem for nondeterministic Z-WFAs
is PSPACE-complete.

Proposition 6.23 The absolute-boundedness problem for deterministic Z-WFAs
is decidable in polynomial time.

7 Discussion and Future Research

We consider several fundamental decision problems for weighted automata. We
provide alternative proofs of known undecidability results, and strengthen the
results by restricting the class of automata for which they apply. We complete
the picture by studying the decidability frontier, and by providing complexity
bounds for the decidable problems. In order to establish these bounds, we pro-
vide a toolbox of algorithms and techniques for weighted automata. In addition,
we employ Johnson’s algorithm (Section 5.3) to obtain a novel efficient con-
struction for translating Z-WFAs without negative cycles into N-WFAs, which
in turn yields efficient algorithms for relevant problems.

The undecidability of many problems for WFAs, as well as the open status
of the determinizability, has lead researchers to focus on fragments of WFAs
that relate to their ambiguity – the number of possible runs with finite weight
on a given word. Restricting the ambiguity can have significant implications on
the decidability and complexity of decision problems. For instance, it is shown
in [25] that determinizability is decidable for polynomially-ambiguous WFAs,
and in [22] that the equivalence problem is decidable for finitely-ambiguous
WFAs.

It is not hard to see that the construction we present in Section 3 yields a
linearly-ambiguous WFA, implying that our undecidability results hold already
for linearly-ambiguous WFAs. In the future, we plan to refine our study and
include bounds for different ambiguity classes.
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