
DCM 2005 Preliminary Version

Abstract Effective Models

Udi Boker 1,2

School of Computer Science
Tel Aviv University

Tel Aviv 69978, Israel

Nachum Dershowitz 3

School of Computer Science
Tel Aviv University

Tel Aviv 69978, Israel

Abstract

We modify Gurevich’s notion of abstract machine so as to encompass computational
models, that is, sets of machines that share the same domain. We also add an effec-
tiveness requirement. The resultant class of “Effective Models” includes all known
Turing-complete state-transition models, operating over any countable domain.

Key words: Computational models, Turing machines, ASM,
Abstract State Machines, Effectiveness

1 Sequential Procedures

We first define “sequential procedures”, along the lines of the “sequential
algorithms” of [3]. These are abstract state transition systems, whose states
are algebras.

Definition 1.1 [States]

• A state is a structure (algebra) s over a (finite-arity) vocabulary F , that is,
a domain (nonempty set of elements) D together with interpretations [[f]]s
over D of the function names f ∈ F .

• A location of vocabulary F over a domain D is a pair, denoted f(a), where
f is a k-ary function name in F and a ∈ Dk.

1 This work was carried out in partial fulfillment of the requirements for the Ph.D. degree
of the first author.
2 Email: udiboker@tau.ac.il
3 Email: nachumd@tau.ac.il

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Boker and Dershowitz

• The value of a location f(a) in a state s, denoted [[f(a)]]s, is the domain
element [[f]]s(a).

• We sometimes use a term f(t1, . . . , tk) to refer to the location f([[t1]]s, . . . , [[tk]]s).

• Two states s and s′ over vocabulary F with the same domain coincide over
a set T of F -terms if [[t]]s = [[t]]s′ for all terms t ∈ T .

• An update of location l over domain D is a pair, denoted l := v, where
v ∈ D.

• The modification of a state s into another state s′ over the same vocabulary
and domain is ∆(s, s′) = {l := v′ | [[l]]s 6= [[l]]s′ = v′}.

• A mapping ρ(s) of state s over vocabulary F and domain D via injection
ρ : D → D′ is a state s′ of vocabulary F over D′, such that ρ([[f(a)]]s) =
[[f(ρ(a))]]s′ for every location f(a) of s.

• Two states s and s′ over the same vocabulary with domains D and D′,
respectively, are isomorphic if there is a bijection π : D ↔ D′, such that
s′ = π(s).

A “sequential procedure” is like Gurevich’s [3] “sequential algorithm”, with
two modifications for computing a specific function, rather than expressing an
abstract algorithm: the procedure vocabulary includes special constants “In”
and “Out”; there is a single initial state, up to changes in In.

Definition 1.2 [Sequential Procedures]

• A sequential procedure A is a tuple 〈F , In, Out, D,S,S0, τ〉, where: F is
a finite vocabulary; In and Out are nullary function names in F ; D, the
procedure domain, is a domain; S, its states, is a collection of structures of
vocabulary F , closed under isomorphism; S0, the initial states, is a subset
of S over the domain D, containing equal states up to changes in the value
of In (often referred to as a single state s0); and τ : S → S, the transition
function, such that:
· Domain invariance. The domain of s and τ(s) is the same for every

state s ∈ S.
· Isomorphism constraint. τ(π(s)) = π(τ(s)) for some bijection π.
· Bounded exploration. There exists a finite set T of “critical” terms,

such that ∆(s, τ(s)) = ∆(s′, τ(s′)) if s and s′ coincide over T .
Tuple elements of a procedure A are indexed FA, τA, etc.

• A run of a procedure A is an infinite sequence s0 ;τ s1 ;τ s2 ;τ · · ·,
where s0 is an initial state and every si+1 = τA(si).

• A run s0 ;τ s1 ;τ s2 ;τ · · · terminates if si = si+1 from some point on.

• The terminating state of a terminating run s0 ;τ s1 ;τ s2 ;τ · · · is
its stable state. If there is a terminating run beginning with state s and
terminating in state s′, we write s ;!

τ s′.

• The extensionality of a sequential procedure A over domain D is the partial

2

Boker and Dershowitz

function f : D → D, such that f(x) = [[Out]]s′ whenever there’s a run
s ;!

τ s′ with [[In]]s = x, and is undefined otherwise.

Domain invariance simply ensures that a specific “run” of the procedure
is over a specific domain. The isomorphism constraint reflects the fact that
we are working at a fixed level of abstraction. See [3, p. 89]. The bounded-
exploration constraint ensures that the behavior of the procedure is effective.
This reflects the informal assumption that the program of an algorithm can
be given by a finite text [3, p. 90].

2 Programmable Machines

The transition function of a “programmable machine” is given by a finite “flat
program”:

Definition 2.1 [Programmable Machines]

• A flat program P of vocabulary F has the following syntax:

if x11
.
= y11 and x12

.
= y12 and . . . x1k1

.
= y1k1

then l1 := v1

if x21
.
= y21 and x22

.
= y22 and . . . x2k2

.
= y2k2

then l2 := v2

...

if xn1
.
= yn1 and xn2

.
= yn2 and . . . xnkn

.
= ynkn

then ln := vn

where each
.
= is either ‘=’ or ‘6=’, n, k1, . . . , kn ∈ N, and all the xij, yij, li,

and vi are F -terms.

• Each line of the program is called a rule.

• The activation of a flat program P on an F -structure s, denoted P (s), is
a set of updates {l := v | if p then l := v ∈ P, [[p]]s} (under the standard
interpretation of =, 6=, and conjunction), or the empty set ∅ if the above
set includes two values for the same location.

• A programmable machine is a tuple 〈F , In, Out, D,S,S0, P 〉, where all but
the last component is as in a sequential procedure (Definition 1.2), and P
is a flat program of F .

• The run of a programmable machine and its extensionality are defined as
for sequential procedures (Definition 1.2), where the transition function τ
is given by τ(s) = s′ ∈ S such that ∆(s, s′) = P (s).

To make flat programs more readable, we combine rules, as in

% comment
if cond-1

stat-1

3

Boker and Dershowitz

stat-2
else

stat-3

Analogous to the the main lemma of [3], one can show that every pro-
grammable machine is a sequential procedure, and every sequential procedure
is a programmable machine.

In contradistinction to those Abstract Sequential Machines (ASMs), we
do not have built in equality, booleans, or an undefined in the definition of
procedures: The equality notion is not presumed in the procedure’s initial
state, nor can it be a part of the initial state of an “effective procedure”,
as defined below. Rather, the transition function must be programmed to
perform any needed equality checks. Boolean constants and connectives may
be defined like any other constant or function. Instead of a special term for
undefined values, a default domain value may be used explicitly.

3 Effective Models

We define an “effective procedure” as a sequential procedure satisfying an
“initial-data” postulate (Axiom 3.3 below). This postulate states that the
procedures may have only finite initial data in addition to the domain repre-
sentation (“base structure”). An “effective model” is, then, any set of effective
procedures that share the same domain representation.

We formalize the finiteness of the initial data by allowing the initial state
to contain an “almost-constant structure”. Since we are heading for a char-
acterization of effectiveness, the domain over which the procedure actually
operates should have countably many elements, which have to be nameable.
Hence, without loss of generality, one may assume that naming is via terms.

Definition 3.1 [Almost-Constant and Base Structures]

• A structure S is almost constant if all but a finite number of locations have
the same value.

• A structure S of finite vocabulary F over a domain D is a base structure
if all the domain elements are the value of a unique F -term. That is, for
every element e ∈ D there exists a unique F -term t such that [[t]]S = e.

• A structure S of vocabulary F over domain D is the union of structures S ′

and S ′′ of vocabularies F ′ and F ′′, respectively, over D, denoted S = S ′]S ′′,
if F = F ′] F ′′, [[l]]S = [[l]]S′ for every location l of S ′, and [[l]]S = [[l]]S′′ for
every location l of S ′′.

A base structure is isomorphic to the standard free term algebra (Herbrand
universe) of its vocabulary.

Proposition 3.2 Let S be a base structure over vocabulary G and domain D.
Then:

4

Boker and Dershowitz

• Vocabulary G has at least one nullary function.

• Domain D is countable.

• Every domain element is the value of a unique location of S.

Axiom 3.3 (Initial Data) The procedure’s initial states consist of an infi-
nite base structure and an almost-constant structure. That is, for some infinite
base structure BS and almost-constant structure AS, and for every initial state
s0, we have s0 = BS] AS] {In} for some In.

Definition 3.4 [Effective Procedures and Models]

• An effective procedure A is a sequential procedure satisfying the initial-data
postulate. An effective procedure is, accordingly, a tuple
〈F , In, Out, D,S,S0, τ,BS,AS〉, adding a base structure BS and an almost-
constant structure AS to the sequential procedure tuple, defined in Defini-
tion 1.2.

• An effective model E is a set of effective procedures that share the same
base structure. That is, BSA = BSB for all effective procedures A, B ∈ E.

A computational model might have some predefined complex operations, as
in a RAM model with built-in integer multiplication. Viewing such a model
as a sequential algorithm allows the initial state to include these complex
functions as oracles [3]. Since we are demanding effectiveness, we cannot
allow arbitrary functions as oracles, and force the initial state to include only
finite data over and above the domain representation (Axiom 3.3). Hence, the
view of the model at the required abstraction level is accomplished by “big
steps”, which may employ complex functions, while these complex functions
are implemented by a finite sequence of “small steps” behind the scenes. That
is, (the extensionality of) an effective procedure may be included (as an oracle)
in the initial state of another effective procedure. (Cf. the “turbo” steps of
[2].)

4 Effective Includes Computable

Turing machines, and other computational methods, can be shown to be ef-
fective. We demonstrate below how Turing machines and counter machines
can be described by effective models.

Turing Machines.

We consider Turing machines (TM) with two-way infinite tapes. The tape
alphabet is {0, 1}. The two edges of the tape are marked by a special $
sign. As usual, the state (instantaneous description) of a Turing machine is
〈Left, q,Right〉, where Left is a finite string containing the tape section left of
the reading head, q is the internal state of the machine, and Right is a finite

5

Boker and Dershowitz

string with the tape section to the right to the read head. The read head
points to the first character of the Right string.

TMs can be described by the following effective model E:

Domain: Finite strings ending with a $ sign. That is the domain D =
{0, 1}∗$.

Base structure: Constructors for the finite strings (name/arity): $/0, Cons 0/1,
and Cons 1/1.

Almost-constant structure:

• Input and Output (nullary functions): In, Out. The value of In at the initial
state is the content of the tape, as a string over {0, 1}∗ ending with a $ sign.

• Constants for the alphabet characters and TM-states (nullary): 0, 1, q 0,
q 1, . . . , q k. Their initial value is irrelevant, as long it is a different value
for each constant.

• Variables to keep the current status of the Turing machine (nullary): Left,
Right, and q. Their initial values are: Left = $, Right = $, and q = q 0.

• Functions to examine the tape (unary functions): Head and Tail. Their
initial value, at all locations, is $.

Transition function: For each Turing machine m ∈ TM, define an effective
procedure m′ ∈ E via a flat program looking like this:

if q = q_0 % TM’s state q_0
if Head(Right) = 0

% write 1, move right, switch to q_3
Left := Cons_1(Left)
Right := Tail(Right)
q := q_3
% Internal operations
Tail(Cons_1(Left)) := Left
Head(Cons_1(Left)) := 1

if Head(Right) = 1
% write 0, move left, switch to q_1
Left := Tail(Left)
Right := Cons_0(Right)
q := q_1
% Internal operations
Tail(Cons_0(Right)) := Right
Head(Cons_0(Left)) := 0

if q = q_1 % TM’s state q_1
...

if q = q_k % the halting state
Out := Right

6

Boker and Dershowitz

The updates for Head and Tail are bookkeeping operations that are really
part of the “behind-the-scenes” small steps.

The procedure also requires some initialization, in order to fill the internal
functions Head and Tail with their values for all strings up to the given input
string. It sequentially enumerates all strings, assigning their Head and Tail
values, until encountering the input string. The following internal variables
(nullary functions) are used in the initialization (Name = initial value): New =
$, Backward = 0, Forward = 1; AddDigit = 0, and Direction = $.

% Sequentially constructing the Left variable
% until it equals to the input In, for filling
% the values of Head and Tail.
% The enumeration is $, 0$, 1$, 00$, 01$, ...
if Left = In % Finished

Right := Left
Left := $

else % Keep enumerating
if Direction = New % default val

if Head(Left) = $ % $ -> 0$
Left := Cons_0(Left)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

if Head(Left) = 0 % e.g. 110$ -> 111$
Left := Cons_1(Tail(Left))
Head(Cons_1(Tail(Left)) := 1
Tail(Cons_1(Tail(Left)) := Tail(Left)

if Head(Left) = 1 % 01$->10$; 11$->000$
Direction := Backward
Left := Tail(Left)
Right := Cons_0(Right)

if Direction = Backward
if Head(Left) = $ % add rightmost digit

Direction := Forward
AddDigit := True

if Head(Left) = 0 % change to 1
Left := Cons_1(Tail(Left))
Direction := Forward

if Head(Left) = 1 % keep backwards
Left := Tail(Left)
Right := Cons_0(Right)

if Direction = Forward % Gather right 0s
if Head(Right) = $ % finished gathering

Direction := New
if AddDigit = 1

Left := Cons_0(Left)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

7

Boker and Dershowitz

AddDigit = 0
else

Left := Cons_0(Left)
Right := Tail(Right)
Head(Cons_0(Left)) := 0
Tail(Cons_0(Left)) := Left

Counter Machines.

Counter machines (CM) can be described by the following effective model
E: The domain is the natural numbers N. The base structure consists of
a nullary function Zero and a unary function Succ, interpreted as the reg-
ular successor over N. The almost-constant structure has the vocabulary
(name/arity): Out/0, CurrentLine/0, Pred/1, Next/1, Reg 0, . . . , Reg n/0,
and Line 1, . . . , Line k/0. Its initial data are True = 1, Line i = i, and all
other locations are 0. The same structure applies to all machines, except for
the number of registers (Reg i) and the number of lines (Line i). For ev-
ery counter machine m ∈ CM define an effective procedure m′ ∈ E with the
following flat program:

% Initialization: fill the values of the
% predecessor function up to the value
% of the input
if CurrentLine = Zero

if Next = Succ(In)
CurrentLine := Line_1

else
Pred(Succ(Next)) := Next
Next := Succ(Next)

% Simulate the counter-machine program.
% The values of a,b,c and d are as in
% the CM-program lines.
if CurrentLine = Line_1

Reg_a := Succ(Reg_a) % or Pred(Reg_a)
Pred(Succ(Reg_a)) := Reg_a
if Reg_b = Zero

CurrentLine := c
else

CurrentLine := d
if CurrentLine = Line_2

...
% Always:
Out := Reg_0

8

Boker and Dershowitz

5 Discussion

In [3], Gurevich proved that any algorithm satisfying his postulates can be
represented by an Abstract State Procedure. But an ASM is designed to be
“abstract”, so is defined on top of an arbitrary structure that may contain non-
effective functions. Hence, it may compute non-effective functions. We have
adopted Gurevich’s postulates, but added an additional postulate (Axiom 3.3)
for effectivity: an algorithm’s initial state may contain only finite data in
addition to the domain representation. Different runs of the same procedure
share the same initial data, except for the input; different procedures of the
same model share a base structure.

Here, we showed that Turing machines and counter machines are effective
models. In [1], we prove the flip side, namely that Turing machines can sim-
ulate all effective models. To cover hypercomputational models, one would
need to relax the effectivity axiom or the bounded exploration requirement.

References

[1] Udi Boker and Nachum Dershowitz, A formalization of the Church-Turing
Thesis, submitted.

[2] N. G. Fruja and R. F. Stärk. The hidden computation steps of Turbo Abstract
State Machines. In E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract
State Machines — Advances in Theory and Applications, 10th International
Workshop, ASM 2003, Taormina, Italy, pages 244–262. Springer-Verlag, Lecture
Notes in Computer Science 2589, 2003.

[3] Yuri Gurevich. Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic, 1:77–111, 2000.

9

	Sequential Procedures
	Programmable Machines
	Effective Models
	Effective Includes Computable
	Discussion
	References

